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Abstract

The core principles that underlie quantum weirdness also explain why only
selected quantum states survive monitoring by the environment and, as a
result, why we experience our world as classical.

1. Introduction

The superposition principle of quantum mechanics decrees that every combi-
nation of quantum states is a legal state. That is at odds with our experience;
we never see anything like what is depicted in figure 1.

So why can’t a chef prepare chicken à la Schrödinger?

The answer is that interactions with the environment help select preferred
states of the system (see PHYSICS TODAY, October 1991, page 36). As it
is impossible to follow every variable of the composite system-environment
whole, one relies on a reduced density matrix,[1] a statistical description of
the system alone. It is obtained by averaging out the environment; Born’s
rule,[2] which states that the probability of finding a system with wavefunc-
tion ∣ψ⟩ in a specific state ∣k⟩ is the absolute square of ⟨k ∣ψ⟩, justifies that
averaging.

The interactions that determine preferred states favor the cooked and alive



chickens and banish alternate states with superpositions of cooked and alive.
Those preferred states, left untouched by the interaction with the environ-
ment, are called pointer states. They eventually end up as the eigenstates of
the reduced density matrix. The corresponding eigenvalues give probabilities-
for example, of finding the chicken cooked or alive. The environment-driven
process that selected pointer states is called decoherence, for a reason that
will be clear soon.

In this article I study the emergence of the classical by tracing the origin
of preferred pointer states and deducing their probabilities from core quan-
tum postulates, a starting point more fundamental than decoherence theory,
which relies on Born’s rule. I also explore the role of the decohering environ-
ment as a medium observers use to acquire information. The redundancy of
information transferred from the system to many fragments of the environ-
ment leads to the perception of objective classical reality.

2. The quantum credo

The core quantum postulates I?ll need are a strikingly simple and natural
part of a longer list of axioms found in many textbooks.[3] They underlie
quantum weirdness, but they also help explain the emergence of the classi-
cal.

Much of the weirdness stems from the super- position principle implied by
postulate 1: Quantum states correspond to vectors in a Hilbert space.
Thus when ∣r⟩ and ∣s⟩ are legal quantum states, so is any ∣v⟩ = α ∣r⟩ + β ∣s⟩.
When ∣r⟩ and ∣s⟩ are orthogonal and normalized (that is, when ⟨s ∣ r⟩ = 0 and
⟨r ∣ r⟩ = ⟨s ∣ s⟩ = 1), then ⟨v ∣ v⟩ = ∣α∣2 + ∣β∣2.

Postulate 2 says that time evolution is unitary. According to the Schrödinger
equation, a system prepared in a state ∣s0⟩ will evolve, after a time t, to the
state ∣st⟩ = Ut ∣s0⟩, where the time evolution operator Ut is determined by
the Hamiltonian H: Ut = e−iHt/h̵. Unitary evolution preserves scalar products,
⟨st ∣ rt⟩ = ⟨s0 ∣ r0⟩. It is also linear, so ∣vt⟩ = αUt ∣r⟩ + βUt ∣s⟩.

What I call the composition postulate, postulate 0, deals with states of com-
posite systems-for example, a system S and its environment E . It asserts that
composite states can be expressed as superpositions such as ∑k,l γk,l ∣sk⟩ ∣εl⟩,
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where ∣sk⟩ and ∣εl⟩ are bases in the system and environment Hilbert spaces.
Entanglement enters via that composition postulate.

Postulates 0?2 guide calculations involving ingredients such as Hamiltonians.
But such manipulations are just quantum math. To do physics, the math
must be related to experiments.

The repeatability postulate, postulate 3, starts the task. It says that an
immediately repeated measurement yields the same outcome. Classical re-
peatability is a given: Measurements reveal classical states, so repeatability
follows from their objective existence. Observers cannot reveal an unknown
quantum state, but repeatability lets them confirm the presence of known
states. In fact, it?s hard to make the so-called quantum nondemolition mea-
surements that abide by postulate 3. Yet repeatability is key for the very
idea of a state as a predictive tool: The simplest prediction is that a state is
what it is.

The core postulates 0-3 are my quantum credo. As we will see, they imply,
or at least motivate, the troubling remainder of the textbook list.

3. The measurement amendments

The remaining textbook axioms involve measurement but, unlike the re-
peatability postulate 3, are controversial. Postulate 4, the collapse axiom,
has two parts. According to part 4a, observables are Hermitian; as a conse-
quence, only operators with orthogonal eigenstates are measurable. Axiom
4b says that the outcome of a measurement must correspond to an eigenstate
of the measured Hermitian operator. A system in an arbitrary superposition
of states will, when measured, collapse to an eigenstate of the measured ob-
servable.

Consensus is the hallmark of objective existence. An unknown classical state
can be discovered by many and remain unchanged. By contrast, direct mea-
surement of a quantum system resets its state to an item on the eigenstate
menu. Thus the predictive power of quantum math is limited and consensus
precluded. A pure quantum state doesn’t determine measurement outcomes
with certainty; rather, it determines their probabilities via the final axiom,
postulate 5: Born’s rule, pk = ∣ ⟨k ∣ψ⟩ ∣2, the key link between quantum math
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and physics.

The randomness inherent in postulates 4 and 5 clashes with the unitarity of
postulate 2. The forefathers of quantum theory bypassed that conflict by in-
sisting with Niels Bohr[4] that a part of the universe-including measuring de-
vices and observers-must be classical. The selection of allowed measurement
outcomes was determined by the classical apparatus, and the randomness of
quantum jumps arose due to “the disturbance involved in the act of mea-
surement” (page 36).[3] However, as I will discuss, the quantum credo leads
to axioms 4a and 5 and even hints at 4b. And the perception of objective
reality follows from the role of the environment as a communication channel
that delivers information to us.

4. Repeatability and quantum jumps

Decoherence leads to environment-induced superselection of preferred states,
and so accounts for effectively classical states and the menu of measurement
outcomes.[5] A key tool used in practice-the reduced density matrix-arises
from averaging over the environmental degrees of freedom in accord with
Born’s rule. As I will show, though, environment-induced superselection and
decoherence follow directly from the quantum credo; Born’s rule is not nec-
essary.

Consider a measurement-like interaction of a system S with a quantum ap-
paratus A. The state of A changes, but to ensure repeatability, the state of
S does not:

∣u⟩ ∣A0⟩
HS,A
Ð→ ∣u⟩ ∣Au⟩ , ∣v⟩ ∣A0⟩

HS,A
Ð→ ∣v⟩ ∣Av⟩ (1)

Here, the arrows represent the unitary evolution determined by the Hamilto-
nian HS,A describing the system-apparatus interaction. Inasmuch as ∣u⟩ and
∣v⟩ are untouched, a second apparatus with an analogous interaction will get
the same outcomes.

Because the time evolution is unitary, the before and after scalar products
of compositeSA state vectors must be equal:

⟨u ∣ v⟩ ⟨A0 ∣A0⟩ = ⟨u ∣ v⟩ ⟨Au ∣Av⟩ (2)
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Equation 2, though simple, has profound consequences. To analyze them,
start with a misstep: In an attempt to simplify, divide by ⟨u ∣ v⟩. The result
is ⟨A0 ∣A0⟩ = ⟨Au ∣Av⟩, or ⟨Au ∣Av⟩ = 1. That unit value implies ∣Au⟩ = ∣Av⟩.
In other words, the apparatus cannot distinguish ∣u⟩ fro ∣v⟩.

Insisting on the repeatability postulate seems to have led to an absurd result.
Have I just ruled out that part of the quantum credo as being incompatible
with postulates 0?2? Not at all. Only when ⟨u ∣ v⟩ ≠ 0 can one simplify equa-
tion 2.

Instead, the above demonstration proves axiom 4a: Hermitian operators-that
is, those corresponding to measurable observables-have orthogonal outcomes.
Indeed, any ⟨Au ∣Av⟩ ≠ 1 implies ⟨u ∣ v⟩ = 0, so the quality of the measurement
record does not matter. Moreover, the persistence of recorded states sets the
stage for quantum jumps accompanying any information transfer, including
decoherence (in which case the environment plays the role of A): When only
a discrete set of states in the Hilbert space is stable, the evolution of the
system will look like a jump into one of the states.

Orthogonal states that survive multiple confirmations of their identity are se-
lected by their inter- action with the apparatus or decohering environment.
Their superpositions could persist in isolation but cannot be recorded. Only
discrete, stable states can be followed. Although there is no literal collapse
of the wavefunction, measurement records will suggest a quantum jump from
an initial superposition to one of the stable states or from stable state to sta-
ble state. According to decoherence theory, the ability to withstand scrutiny
of the environment defines pointer states. As I will discuss, the proliferation
of records about those states throughout the environment is the essence of
quantum Darwinism.

In microsystems, repeatability is, in fact, rare: Nondemolition measurements
are difficult. In the macroworld, however, repeatability is essential for the
emergence of objective reality. Macrostates such as records inscribed in an
apparatus should persist through many readouts, even as the underlying mi-
crostates change. A demonstration such as the one given above shows that
stable macrostates must also be orthogonal to accommodate repeatability.[6]

Born’s rule never entered into the above discussion. Scalar products of 0 and
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1 signified orthogonality and equality; in-between values were not needed.
Much of axiom 4 follows from the simple and natural core postulates 0?3.

5. Entanglement-assisted invariance

Decoherence is the loss of phase coherence between preferred states. It occurs
when S starts in a superposition of pointer states, but in the decoherence
context, S is “measured” by the environment E :

(α ∣↑⟩ + β ∣↓⟩) ∣ε0⟩
HS,A
Ð→ α ∣↑⟩ ∣ε↑⟩ + β ∣↓⟩ ∣ε↓⟩ = ∣ψSE⟩ (3)

The discussion centered around equation 2 implies that the unaltered states
are orthogonal, ⟨↑ ∣ ↓⟩ = 0. Their superposition, upon interacting with the
environment, turns into an entangled ∣ψSE⟩; neither S nor E retains an indi-
vidual pure state.

Phases in a superposition matter. In a spin 1
2 -like system, ∣→⟩ = (∣↑⟩ +

∣↓⟩)/sqrt2 is orthogonal to ∣←⟩ = (∣↑⟩ − ∣↓⟩)/
√

2. The phase shift operator
uϕ
S
= ∣↑⟩ ⟨↑∣ + eiϕ ∣↓⟩ ⟨↓∣ leaves ∣↑⟩ untouched and multiplies ∣↓⟩ by eiϕ; when

ϕ = π, it converts ∣→⟩ to ∣←⟩. In experiments, such phase shifts translate into
shifts of interference patterns.

For simplicity, assume perfect decoherence, ⟨ε↑ ∣ ε↓⟩ = 0. In that case, the en-
vironment has a perfect record of pointer states. What information survives
decoherence, and what is lost? I now show that the phases of α and β no
longer matter-that is, ϕ has no effect on the local state of S. Measurements
on the system will not detect a phase shift, as there is no interference pattern
to shift.

he key observation is that the phase shift uϕ
S
acting on an entangled ∣ψSE⟩ can

be undone by u−ϕ
S

= ∣ε↑⟩ ⟨ε↑∣ + e−iϕ ∣ε↓⟩ ⟨ε↓∣, a countershift acting on a distant
E decoupled from the system:

u−ϕ
S
(uϕ
S
∣ψSE⟩) = u

−ϕ
S
(α ∣↑⟩ ∣ε↑⟩ + e

iϕ ∣↓⟩ ∣ε↓⟩) = ∣ψSE⟩ (4)

As phases in ∣ψSE⟩ can be changed in a faraway environment decoupled from
but entangled with the system, they can no longer influence the state of S.
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If they could, a measurement of S would reveal that influence and enable
superluminal communication.

The loss of phase coherence is decoherence. Superpositions decohere as the
∣↑⟩ and ∣↓⟩ states are recorded by E . As phases no longer matter for S, phase
information about S is lost. As promised earlier, that information loss was
established without reduced density matrices, the usual decoherence tool.

The above view of decoherence appeals to symmetry, an entanglement-assisted
invariance, or envariance, of S under phase shifts of pointer-state coeffi-
cients.[7] As S entangles with E , its local state becomes invariant under
transformations that affected it before the entanglement.

In laboratory experiments, a system isolated from the environment is first
measured by an apparatus A so that system and apparatus entangle. That
entangled state ∣ψSA⟩ then decoheres as A interacts with E :

(∣↑⟩ ∣A↑⟩ + β ∣↓⟩ ∣A↓⟩) ∣ε0⟩
HS,A
Ð→ ∣↑⟩ ∣A↑⟩ ∣ε↑⟩ + β ∣↓⟩ ∣A↓⟩ ∣ε↓⟩ = ∣ψSAE⟩ (5)

The pointer states ∣A↑⟩ and ∣A↓⟩ of A, however, are unaffected by the de-
coherence interaction with E . They retain perfect correlation with S (or an
observer, or other systems) in spite of E , regardless of the value of ⟨∣ε↑⟩ ∣ ∣ε↓⟩⟩.
Stability under decoherence is a prerequisite for effective classicality in our
quantum universe: The familiar states of macroscopic objects have to survive
monitoring by E and retain correlations.

The decohered SA is described by a reduced density matrix obtained by av-
eraging out the environment. When ⟨∣ε↑⟩ ∣ ∣ε↓⟩⟩ = 0, the pointer states of A
retain their correlations with the measurement outcomes:

ρSA = ∣α∣2 ∣↑⟩ ⟨↑∣ ∣A↑⟩ ⟨A↑∣ + ∣β∣
2 ∣↓⟩ ⟨↓∣ ∣A↓⟩ ⟨A↓∣ (6)

Both ↑ and ↓ are present. There is no collapse.

The averaging over environmental states is implemented by a mathematical
operation called taking a trace-that is,

ρSA = TrE ∣ψSAE⟩ ⟨ψSAE ∣

However, both the interpretation of ρSA as a statistical mixture of its eigen-
states and the use of averaging via the trace operation rely on Born’s rule,
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axiom 5. To avoid circularity, I have avoided invoking that postulate ear-
lier. Below, I will need it, but I am now in a position to derive it from the
quantum credo using envariance.

6. Born’s rule from entanglement

Pierre Simon Laplace’s starting point for developing probability theory was
the principle of indifference-that is, when nothing favors any one outcome,
all outcomes are equally likely.[8] Thus the probability of blindly drawing a
spade from a full deck of cards is 1

4 because the deck has four suits, each with
the same number of cards. Of course, that result doesn’t change if cards in
the deck are swapped as illustrated in figure 2a, and that indifference to swap
was regarded as a kind of symmetry.
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In the classical case, the symmetry is due to subjective ignorance: After all,
if the cards were turned over as in figure 2b, it would be evident whether or
not the to-be-drawn card is a spade. Classically, there is no objective, phys-
ical basis for the symmetry and, hence, for objectively equal probabilities.

In quantum physics, one seeks the probability of a measurement outcome
starting from known initial states of S and A and the interaction HSA, and
thus from the pure entangled state that results from the interaction; there
is no room for subjective ignorance. Envariance, in a slightly different guise
from when it accounted for decoherence, is an objective symmetry that leads
to probabilities of mutually exclusive outcomes such as the orthogonal states
deduced earlier from the repeatability postulate.

Suppose that S starts as ∣→⟩ = (∣↑⟩ + ∣↓⟩)/
√

2 so interaction with A yields
(∣↑⟩ ∣A↑⟩+∣↓⟩ ∣A↓⟩)/

√
2. I call such states-with equal absolute values of coefficients-

even states. For such states, all measurement outcomes are equally probable,
as I now show. Figure 2c illustrates the key step in the argument.

The unitary swap ∣↑⟩ ⟨↓∣ + ∣↓⟩ ⟨↑∣ exchanges the states in S (as indicated by
the colors):

∣↑⟩ ∣A↑⟩ + ∣↓⟩ ∣A↓⟩→ ∣↓⟩ ∣A↑⟩ + ∣↑⟩ ∣A↓⟩ (7a)

Before the swap, ∣↓⟩ was as probable as ∣A↓⟩, and ∣↑⟩ was as probable as ∣A↑⟩.
After the swap, ∣↓⟩ is as probable as ∣A↑⟩, and ∣↑⟩ is as probable as ∣A↓⟩. But
probabilities in A are unchanged, as A is untouched by the swap, so the
probabilities p↑ and p↓ in S must have been exchanged.

To prove equiprobability, we now swap records in A (as indicated by the
colors):

∣↓⟩ ∣A↑⟩ + ∣↑⟩ ∣A↓⟩ → ∣↓⟩ ∣A↑⟩ + ∣↑⟩ ∣A↑⟩ (7b)

That swap restores the original preswap state. Hence all predictions about
S, including probabilities, must be as they were in the original state. Evi-
dently, the probabilities of ∣↑⟩ and ∣↓⟩ (and of ∣A↑⟩ and ∣A↓⟩ for that matter)
re exchanged yet unchanged. Therefore, they must be equal to 1

2 . For N
envariantly equivalent alternatives, it is straight-forward to show that the
probabilities are all 1/N The discussion of envariance in the decoherence con-
text implies that those probabilities are un- changed when the coefficients of
the alternatives are multiplied by arbitrary phases.
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Instead of subjective ignorance à la Laplace, I invoked an objective symmetry
of entanglement, a quantum ingredient absent in Laplace’s classical setting.
As with the uncertainty principle (knowing position precludes knowing mo-
mentum), the in- determinacy of outcomes was a consequence of knowing
something else-the whole entangled state. The objective indeterminacy of S
and A and the equiprobability of ∣↑⟩ and ∣↓⟩ follow.

For an uneven ∣φSA⟩ = α ∣↑⟩ ∣A↑⟩+β ∣↓⟩ ∣A↓⟩, swaps on S and A yield β ∣↑⟩ ∣A↑⟩+
α ∣↓⟩ ∣A↓⟩. That?s not the preswap state, and, indeed, p↑ and p↓ are not equal.
To see how Born’s rule arises for the uneven case, see the discussion below.

Digression to Born’s rule for uneven states

The main text considered superpositions of states involving a system S and
measuring apparatus A and showed how the well-known Born probability
rule follows for the specific case of superpositions whose coefficients have
equal absolute values. Here I show how that special case leads to Born’s rule
for states ∣φSA⟩ = α ∣↑⟩ ∣A↑⟩ + β ∣↓⟩ ∣A↓⟩ in which the coefficients are not equal
in magnitude.

First, let ∣α∣2/∣β∣2 = µ/nu, where µ and ν are natural numbers.The key trick
is to fine-grain-that is, to change the basis in the Hilbert space of A so that
∣A↑⟩ = ∑

µ
k=1 ∣ak⟩ /

√
µ and ∣A↓⟩ = ∑µ+νk=µ+1 ∣ak⟩ /

√
ν. Expressed in terms of that

new basis,

∣φSA⟩∝
√
µ ∣↑⟩ ∣A↑⟩ +

√
ν ∣↓⟩ ∣A↓⟩∝

√
µ

µ

∑
k=1

∣↑⟩ ∣ak⟩ /
√
µ +
√
ν

µ+ν

∑
k=µ+1

∣↓⟩ ∣ak⟩ /
√
ν

(7)
Next, simplify to get rid of the fractions, and imagine an environment that
decoheres A in the new basis, so that the ∣ak⟩ correlates with ∣ek⟩ as if the
∣ak⟩ were the preferred pointer states:

∣φSAE⟩∝
µ

∑
k=1

∣↑ ak⟩ ∣ek⟩ +
µ+ν

∑
k=µ+1

∣↓ ak⟩ ∣ek⟩ (8)

Now swaps of ∣↑ ak⟩ with ∣↓ ak⟩ can be undone by counterswaps of ∣ek⟩, and
thus all µ + ν alternatives are equally probable. Since µ of those correspond
to measurements of ↑, Born’s rule follows:

p↑ =
µ

µ + ν
= ∣α∣2 , p↓ =

ν

µ + ν
= ∣β∣2 (9)
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Continuity establishes the result for cases in which ∣α∣2 and ∣β∣2 are not related
by rational numbers. The frequencies of detection of ↑ and ↓ can be predicted
by extending the derivation to the case of many measurements.[7]

End of digression

7. Information interlude

Decoherence builds on John von Neumann’s analysis of measurement[1] but
begins to recognize the role of the environment. Its usual implementation,
however, relies on Born’s rule, axiom 5, to justify the physical significance
of reduced density matrices. We now have a simple yet fundamental demon-
stration of Born’s rule. The next goal is to understand the emergence of
objective classical reality in our quantum universe. As I will discuss below,
environments do more than decohere; they act as communication channels
through which we obtain our information.

Pointer states preserve correlations, in particular between a system and a
measuring apparatus. The one-to-one correspondence of states of S and A,
which is evident in equations 5 and 6, does not rely on Born’s rule. However,
quantifying the information A has about S relies on the interpretation of
the reduced density matrices as statistical mixtures of their eigenstates with
probabilities (in the case of equation 6) given by p↑ = pA↑ = ∣α∣2, p↓ = pA↓ = ∣β∣2.
Now that Born’s rule has been justified, the reduced density matrix may be
used with confidence to calculate the entropy and information needed to
study what I call quantum Darwinism.

The entropies of S, A, and the composite SA are given by the von Neumann
expression H(ρ) = −Tr(ρ lnρ). For the reduced density matrix of equation 6,
all three entropies are, in fact, equal:

HS =HA =HSA = −(∣α∣2 ln ∣α∣2 + ∣β∣2 ln ∣β∣2) (8)

That equality means S and A know each other?s preferred states perfectly.
It?s as if one had two identical copies of the same book; each individual
copy would reveal the information content of the two books. How much
two systems know about each other is quantified by the so-called mutual
information[9]

I(S ∶ A) =HS +HA −HSA (9)
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When S and A are totally uncorrelated, ρSA = ρSρA, HSA = HS +HA′ , and
I(S ∶ A) = 0. For the perfectly correlated case corresponding to equation 6,
I(S ∶ A) =HS +HA.

In a classical world, I(S ∶ A) ≤ min (HS ,HA). After all, the information
common to two books cannot exceed the content of the smaller book. Thus
the decohered reduced density matrix of equation 6 saturates the classical
limit.

Quantum correlations can be stronger. Entanglement correlates every basis-
for example,

(∣↑↑⟩ + ∣↓↓⟩)/
√

2 = (∣→→⟩ + ∣←←⟩)/
√

2

Decoherence that favors the pointer states ∣↑⟩ and ∣↓⟩ yields

ρ =
1

2
(∣↑↑⟩ ⟨↑↑∣ + ∣↓↓⟩ ⟨↓↓∣)

Pointer states remain correlated, but the ∣→⟩ and ∣←⟩ states do not. The mu-
tual information reflects that state of affairs: For a pure, entangled SA whole,
α ∣↑⟩ ∣A↑⟩ + α ∣↓⟩ ∣A↓⟩, HSA = 0, whereas HS = HA = −∣α∣2 ln ∣α∣2 − ∣β∣2 ln ∣β∣2 so
I(S ∶ A) = 2HS .

Quantum Darwinism studies the role of the in- formation about the system
that proliferates and spreads throughout the environment in the emergence of
the classical. Mutual information is its essential tool. When I(S ∶ A) = HS ,
an apparatus can fully reveal the state of S. In quantum Darwinism, a frag-
ment F of the environment plays the role of A. Its correlation with S will
often be effectively classical, as the rest of the environment (denoted E/F)
assures decoherence.

8. Quantum Darwinism

We all monitor our world indirectly, eavesdropping on the environment. For
instance, you are now intercepting a fraction of the photons scattered from
this page. Anyone intercepting other fractions will see the same images.
Quantum Darwinism recognizes that environments consist of many subsys-
tems, as illustrated in figure 3,
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and that observers acquire information about a system by intercepting copies
of its pointer states deposited in fragments of the environment. The environment-
induced superselection associated with decoherence has already hinted at
survival of the fittest: Environments select pointer states that survive and
can aspire to classicality. Quantum Darwinism goes beyond mere survival to
address proliferation-how, during the course of decoherence, copies of pointer
states of S or A get imprinted on E .[10]

For an environment comprising many subsystems (formally, an environment
expressible as a ten- sor product of subsystem Hilbert spaces), the initial
state

(α ∣↑⟩ + β ∣↓⟩) ∣ε
(1)
0 ε

(2)
0 ε

(3)
0 ⋯⟩

evolves into

∣ΥSE⟩ = α ∣↑⟩ ∣ε
(1)
↑
ε
(2)
↑
ε
(3)
↑
⋯⟩ + β ∣↓⟩ ∣↑⟩ ∣ε

(1)
↓
ε
(2)
↓
ε
(3)
↓
⋯⟩ (10)

13



The state ∣ΥSE⟩ represents many records inscribed in environmental frag-
ments. As a consequence, the state of S can be found out by many observers-
independently and without disturbing S. That redundancy is how evidence
of objective existence arises in our quantum world.

An environment fragment F acts as an apparatus with a possibly incomplete
record of S. When E/F is traced out, SF decoheres, and the reduced density
matrix describing the joint state of S and F is

ρSF = ∣α∣2 ∣↑⟩ ⟨↑∣ ∣F↑⟩ ⟨F↑∣ + ∣β∣
2 ∣↓⟩ ⟨↓∣ ∣F↓⟩ ⟨F↓∣ (11)

in close analogy with equation 6. When ⟨F↑ ∣F↓⟩ = 0, F contains a perfect
record of the preferred states of the system.

The number of copies of the data in E about pointer states is the measure
of objectivity; it determines how many times information about S can be
extracted from E. The central question of quantum Darwinism is thus, What
fraction of E does one need to sample if the goal is to find out about S?
Mutual information provides the answer. Let #E denote the number of
subsystems and #F be the number of subsystems in a fragment Ff that
makes up a fraction f = #F/#E of E . Then

I(S ∶ Ff) =HS +HFf
−HSFf

is the information about S available from Ff

In principle, each individual subsystem might be enough to reveal the state of
S. In that case, I(S ∶ Ff) would jump to HS at f = 1/#E . Usually, however,
larger fragments of E are needed to find out enough about S. The red curve
in figure 4 shows how, after an initial sharp rise, I(S ∶ Ff) only gradually
approaches the classical plateau at HS . As illustrated in the figure, the initial
rise is completed at a fraction fδ, defined with the help of the information
deficit δ observers tolerate:

I(S ∶ Ff) = (1 − δ)HS (12)

The inverse of f0 is the number of records in the environment-the redundancy,
Rδ.
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It sets the upper limit on how many observers can find out the state of S
independently and indirectly. In several models that have been studied10
(and in particular, for the photon-scattering model of decoherence[11]), Rδ

is huge[12] and varies weakly (that is, logarithmically) with δ.

Decoherence can, under the right conditions, lead to “quantum spam” as Rδ

imprints of pointer states are broadcast through the environment. Many
observers can independently access those im- prints, which ensures the ob-
jectivity of pointer states of S.

Repeatability is key. Collectively, the environ- mental fragments act like the
apparatuses posited in connection with equations 1 and 2; they register mul-
tiple records of pointer states of S without altering them. The no-cloning
theorem restricts the ability to make copies, but copying is possible when
the states to be copied are all orthogonal (see PHYSICS TODAY, February
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2009, page 76).

Repeatability thus begets discreteness. The time evolution responsible for
decoherence yields a superposition of distinct branches, each with a stable
state and many environmental imprints, per equation 10. So there is no
literal collapse. However, as a result of decoherence by E/F , an observer
monitoring the records imprinted on fragments of E will see only one branch,
not a superposition of branches. Such evidence will suggest a quantum jump
from a superposition of states to a single outcome (or, under appropriate
circumstances, from state to state), in accord with postulate 4b.

9. Environment as witness

Quantum Darwinism shows why it is so hard to undo decoherence. As illus-
trated in figure 4, a plot of mutual information for an initially pure S and E
is antisymmetric about f = 1

2 and HS [10] Hence, a counterpoint of the initial
quick rise of the red curve at f ≤ f − δ is a quick rise at f ≥ 1 − fδ as the last
few subsystems of E are included in the fragment F that by now contains
nearly all E . Such a rise must occur in an isolated SE , because an initially
pure SE remains pure under unitary evolution.

For the system-environment whole, HSE = 0, so I(S ∶ Ff) must reach 2HS .
Thus a measurement of all of SE could confirm a state?s purity despite the
decoherence caused by E/F for all f ≤ 1 − fδ. (In principle, a measurement
of E alone reveals the state; the measurement of S confirms that revelation.)
However, such a confirmation would require intercepting and measuring all
of SE in a way that reveals the pure state without perturbing it. So undoing
decoherence is possible in principle, but the required resources and foresight
preclude it.

In quantum Darwinism, the decohering environment acts as an amplifier,
inducing a branch structure that is distinct from randomly selected states in
the Hilbert space of SE . For those generic states, as the green plot in figure
4 shows, the mutual information has no plateau and so the environment reg-
isters no redundancy.[13] The plot is still antisymmetric: I(S ∶ Ff) jumps at
f = 1

2 to nearly 2HS .
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Not all environments are good witnesses. However, photons excel: They
do not interact with air or with each other, and so they faithfully pass on
information. A small fraction of a photon environment usually reveals all
an observer needs to know. The scattering of sunlight quickly builds up re-
dundancy. For example, when photons scatter off a 1-µm-diameter dielectric
sphere in a superposition of states 1 µm apart, Rδ=0.1 increases by about 108

every microsecond.[12]

Air is also good in decohering, but its molecules interact and scramble ac-
quired data. Objects of interest scatter air and photons, so both environ-
ments acquire information about position and favor similar localized pointer
states.

Environments, like air, that decohere S but scramble information because of
interactions be- tween subsystems eventually lead to a random state in SE .
Quantum Darwinism is possible only when information about S is preserved
in fragments of E and so can be recovered by observers. Absolute perfection
is not necessary. Partially mixed environments or imperfect measurements
correspond to noisy communication channels that, despite their depleted ca-
pacity, can still deliver the message.[14]

10. Information and objective reality

John Wheeler, Charles Bennett, and others have pre- viously considered the
relation between information and existence.[15] Quantum Darwinism adheres
to the quantum credo and adds to that discussion by recognizing that a de-
cohering environment can be a communication channel. But since observers
intercept only fractions of E , information about S is only accessible when it
is redundantly imprinted on E . Put another way, an observer can get infor-
mation only about pointer states that remain intact despite monitoring by
E : Using the environment as a communication channel comes at the price of
censorship. Fractions of E reveal branches one at a time and suggest quan-
tum jumps.

The basic tenets of decoherence have been confirmed by experiment,[16] and
it may also be possible to test quantum Darwinism; envariance is already
being tested.[17] The list of textbook axioms has now been reduced, as the
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Hermitian nature of observables and Born’s rule follow from the quantum
credo. Accounting for collapse goes beyond mathematics, as it involves per-
ception. That is where quantum physics gets personal. Nevertheless, the
indirect monitoring of quantum systems recognized by quantum Darwinism
implies that after their first glimpse of data in E , observers will get only con-
firmations and updates. So the first glimpse eliminates surprise-collapses it,
if you will. Thereafter, as was the case in the classical world we once thought
we inhabited, pointer states persist objectively, untouched by our curiosity
and oblivious to our indirect monitoring.
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