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Abstract

In honor of Daniel Greenberger’s 65th birthday, I record for posterity two
superb examples of his wit, offer a proof of an important theorem on quan-
tum correlations that even those of us over 60 can understand, and suggest,
by trying to make it look silly, that invoking ”quantum nonlocality” as an
explanation for such correlations may be too cheap a way out of the dilemma
they pose.

1 INTRODUCTION

Daniel Greenberger has a fine sense of the absurd. He can be breathtakingly
funny at the most unexpected moments, leaving you gasping in admiration.
I consider it my duty to record for the pleasure of future generations two
examples of his wit in which I am privileged to have served as straight man.

My first example tells us something about Danny. I submitted a paper
explaining how the three-particle version of the Greenberger-Horne-Zeilinger
argument can be reformulated as an extremely simple version of the more
complicated Bell-Kochen-Specker theorem. Dimly remembering Danny long
ago making incomprehensible remarks about why it might be interesting to
think about a particle decaying into a pair of particles each of which then
decayed into a pair of its own, I carelessly began a footnote with ”Greenberger
invented his example to....” In due course the report of an anonymous referee
arrived. Here it is in full:

A very pretty paper. Unfortunately it is rendered unpublishable by
virtue of the mischievous footnote 19, which is an affront to what is
left of Western Civilization. When three people agree to work together
on a project, it is very unfair to single out one for most of the credit.
Regrettably, because physicists are hero-worshippers, they often do this
anyway, especially if one of the group is very famous. Thus, everyone
usually mentions only Einstein in connection with EPR.

But to accord such treatment to a bonehead like Greenberger is un-
forgivable. I recommend the paper be sent back to the author for cor-
rection (”The GHZ example was invented to...” or better, ‘”The lovely
GHZ example was invented to...”) and upon resubmission, it should be



published without further refereeing or delay.

My second example, I rashly suggest, serves as a metaphor for how not
to think about quantum nonlocality. After a conference on foundations of
quantum mechanics in Urbino about a dozen years ago, Danny and I spent
a couple of days traveling around Tuscany and Umbria. The moment of
the creation of the finest spontaneous joke in human history finds us in the
Academy in Florence, standing in front of Michaelangelo’s David:

Mermin: Look, he’s not circumcised.

Greenberger [instantly]: Ah, what do these goyim know about sculp-
ture?

I would like to suggest that the same kind of exuberantly setting sail in
entirely the wrong direction takes place when one is led to infer physical
nonlocality from the strange correlations in EPR or GHZ or Hardy states.
The straight response to my remark about David’s puzzling anatomy would
have been ”What do these goyim know about Jewish ritual?” That lunatic
last-minute switch from Levitical legislation to Michaelangelo’s qualifications
as an artist is analogous to the breathtaking switch we make from the inabil-
ity of physics to deal with the individual properties of an individual system,
to the miraculous creation of such properties from afar.

This, of course, is just a hunch. I do not establish it here by direct argu-
mentation, but try at least to undermine the notion that nonlocality is a
sensible inference from quantum entanglement, by a method which, inspired
by Danny, I make bold to call a process of successive exasperations. I give
the main reductio ad absurdum in Sec. 3. I describe in Sec. 2 some attitudes
toward nonlocality, give a preliminary, familiar, run through the successive
exasperations, and describe a pertinent theorem (whose elementary proof is
in the Appendix) which deserves to be more widely known

2 AGAINST NONLOCALITY: THE OBJEC-

TIVE NATURE OF MIXED STATES

Sir Rudolf Peierls didn’t believe Bell’s theorem established nonlocality. It
only showed that any attempt to complete quantum mechanics with hidden
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variables would be necessarily nonlocal.[1] On one of his visits to Ithaca I
put it to him that he must therefore take the view that the real lesson of
EPR-Bell is not that there is objective nonlocality, but that there is no ob-
jective difference between a 50 − 50 ensemble of horizontally (90◦, H) and
vertically (0◦, V ) polarized photons, and a 50 − 50 ensemble of diagonally
(±45◦, D and D̄) polarized photons. He said he did.

The view that different realizations of one and the same mixed-state density
matrix describe objectively identical ensembles is one of those propositions
whose validity can flicker on and off like an optical illusion. On the one hand,
there is obviously no objective difference between a 50 − 50 mixture of H
and V polarizations and a 50−50 mixture of D and D̄, since the statistics of
any measurements you can make on each of the two ensembles are identical.

On the other hand, there obviously is an objective difference, since the pho-
tons in the two ensembles have different histories, having been prepared in
different ways. In one case Bob can give the ensemble to Alice by sending
her a series of photons each of which has emerged from a polarizer randomly
chosen each time to transmit either horizontal or vertical polarizations; in
the second case his polarizer randomly transmits either of the two diagonal
polarizations. So the photons have quite distinct past experiences in the two
cases, which makes the two ensembles objectively different. Furthermore Bob
can demonstrate the difference to Alice by telling her, in the first case, the
results she would get if she were to measure the horizontal-vertical polariza-
tion of each photon, or, in the second case, the results she would get for their
diagonal polarizations.

But on further reflection, there obviously is not an objective difference since
Bob can also do this trick by preparing pairs of photons in the polariza-
tion state 1/

√
2(|H,H〉+ |V, V 〉) = 1/

√
2(|D,D〉+

∣∣D̄, D̄〉), and sending one
member of each pair to Alice. He can then get the information he needs
to inform Alice of the results she will get for either set of experiments by
measuring the appropriate polarization of the member of each pair that he
keeps for himself, i.e., without doing anything whatever to Alice’s photons,
whose past experiences are identical in the two cases.

Yet on subsequent reconsideration, if one believes in quantum nonlocality,
then, after all, there still is an objective difference, for by subjecting his
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member of each pair to a polarization measurement, Bob is, in fact, altering
the character of Alice’s corresponding member in a way that depends on his
choice of which polarization to measure. The alteration takes place through
the well-known mechanism of spooky action at a distance, which might bet-
ter be called the SF mechanism, in recognition of Einstein’s original term,
spukhafte Fernwirkungen.[2]

Even so, however, if you look a little more carefully, then, in the final analysis
there clearly is not an objective difference, since Alice can measure either the
horizontal-vertical or the diagonal polarizations of all her photons, indelibly
recording the data in a notebook, long before Bob ever starts to measure
any of his corresponding photons. Bob’s acts of measurement cannot pos-
sibly alter the character of the data in Alice’s notebook, nor can they alter
the character of her photons, which can be destroyed in the process of her
polarization measurements long before Bob attempts to alter them via the
SF mechanism.

This last flip-flop strikes me its definitive. While it may be reasonable to
contemplate the possibility that Bob’s measurement can alter the character
of something as wraith-like as the potentialities of Alice’s photons for sub-
sequently behaving in one way or another, if the behavior has already taken
place and been recorded in ink before Bob takes any action, then nobody
(except those who think that it’s looking in the box that kills Schrodinger’s
cat) would maintain that the SF mechanism can affect the notebook entries.

And indeed, if you believe in SF, then the least implausible thing to say by
way of refutation is that if Alice makes her measurements long before Bob
makes his, then she is at that very time inadvertently and spookily trans-
mitting to him the very information he will later need to deceive her into
thinking that he prepared the ensemble, which she herself disposed of some
time before, as either a horizontal-vertical or a diagonal ensemble. At this
point SF takes on the character of a clever (if not uproariously funny) joke.

I tell in Sec. 3 a somewhat more subtle ( still- sorry, Danny-not rib-tickling)
version of this joke, which, at least for me, makes SF look even more like
science fiction.

This apparent ability remotely to produce distinct ensembles with the same
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density matrix W might appear to stem from the degeneracy of W , but in
fact the trick (I use the word ”trick,” because the situation is reminiscent
of stage magic, which works by a process of self-deception, skillfully helped
along by the magician. When the trick is SF, the magician is Nature herself.)
can be done quite generally. Take as a simple example the nondegenerate
density matrix

W = p |H〉 〈H|+ q |V 〉 〈V | (1)

with p 6= q, which, in spite of its nondegeneracy has many alternative repre-
sentations in terms of nonorthogonal polarization states, for example,

W =
1

2
|R〉 〈R|+ 1

2
|L〉 〈L| (2)

where |R〉 and |L〉 are

|R〉 =
√
p |H〉+

√
q |V 〉 (3)

and
|L〉 =

√
p |H〉 − √q |V 〉 (4)

Representation (1) of W describes an ensemble of photons that are horizon-
tally polarized with probability p and vertically polarized with probability
q; representation (2) describes an ensemble of photons that have with equal
probability one of two linear polarizations along axes tilted away from z along
x or −x through an angle θ = cos−1 (

√
p).

One can produce either one of these ensembles from afar, in the EPR man-
ner, by introducing a second noninteracting two-state system and starting
with an ensemble of pairs, each in the pair state

|Ψ〉 =
√
p |H〉 ⊗ |H〉+

√
q |V 〉 ⊗ |V 〉 (5)

This state can equally well be written

|Ψ〉 =
1√
2
|R〉 ⊗ |D〉+

1√
2
|L〉 ⊗

∣∣D̄〉 (6)

since |D〉 and
∣∣D̄〉 are explicitly

|D〉 =
1√
2
|H〉+

1√
2
|V 〉

(7)∣∣D̄〉 =
1√
2
|H〉 − 1√

2
|V 〉
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If he prepares pairs in the state |Ψ〉, Bob can persuade Alice that he has given
her the ensemble associated with the representation (1) of W by measuring
horizontal-vertical polarization on his own photons, while he can persuade
her that her ensemble is the one suggested by (2) by measuring diagonal
polarization. So if one is predisposed against quantum nonlocality, one is
required to acknowledge that there is no objective difference between the
two ensembles associated with the representations (1) and (2) of the density
matrix W .

Einstein was so predisposed:

On one supposition we should, in my opinion, absolutely hold fast: the
real factual situation of the system S2 is independent of what is done
with the system S1, which is spatially separated from the former.[3]

His eminently reasonable supposition has received bad press because of what
Einstein did with it. He combined it with his strong intuition about what
constituted a real factual situation, to conclude that quantum mechanics of-
fers an incomplete description of physical reality. Now that John Bell has
shown us that it is impossible to complete the quantum mechanical descrip-
tion of physical reality along the lines Einstein seemed to call for, we ought to
explore the converse approach to saving his supposition: assume that quan-
tum mechanics does provide a complete description of physical reality, insist
on Einstein locality, and see how this constrains what can be considered
physically real.

This gives a rule of thumb for when an internal property of an isolated physi-
cal system can be certified to be objectively real : a necessary condition for an
individual system to have an objective internal property is that the property
cannot change in immediate response to what is done to a second far-away
system that may be correlated but does not interact with the first.

With this view the reduced density matrix W of a subsystem of a correlated
system can be objectively real, but there can be no objectively real dif-
ferences among any of the different interpretations (it will have (infinitely)
many, unless the system is in a pure state) of W in terms of ensembles of
systems in different (not-necessarily orthogonal) pure states, associated with
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representations of the form

W =
∑
µ

pµ |φµ〉 〈φµ| (8)

This is the content of a theorem of Gisin, Hughston, Jozsa, and Wootters,[4,5]
which makes a powerful case for the fundamental nature of mixed states.

The GHJW theorem establishes that a system (Alice’s) can always be cor-
related with another system (Bob’s) in such a way that when Alice and
Bob have an ensemble of such identically correlated noninteracting pairs of
systems and Alice specifies any particular representation (8) of the density
matrix of her system, then Bob can measure an appropriate observable on
his, the result of which will enable him to instruct Alice how to identify
fractions pµ of her systems which have internal properties appropriate to the
state |φµ〉. Thus Bob can certify as the ”actual” ensemble any possible re-
alization of Alice’s ensemble in the form of a collection of pure states |φµ〉
with probabilities pµ. He does this by giving Alice the information necessary
to sort out her collection of subsystems into any one of those realizations.
In the Appendix, I provide this important fact with an elementary proof,
accessible to senior citizens like Danny and me.

If you want to take Einstein locality seriously, then the GHJW theorem re-
quires you to acknowledge that there can be no more objective reality to any
of the different possible realizations of a density matrix, then there is to the
different possible ways of expanding a pure state in terms of different com-
plete orthonormal sets. The density matrix of a system must in general be
viewed as a fundamental and irreducible objective property of that system,
containing all information about its internal properties, whether or not the
state the density matrix describes is mixed or pure.

3 QUANTUM NONLOCALITY: A FABLE

Here is a more striking version of the ”good-news-bad news” view of nonlo-
cality given in Sec. 2 (What follows is based on unpublished lecture notes for
a talk I gave at Columbia University in March, 1996. A similar story, with a
somewhat different moral, is told by Kern and Zeilinger[6]). This time Carol
provides Alice and Bob with an ensemble of labeled pairs of spin-1

2
particles.
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Alice gets one member of each pair and Bob, the other. Then they each
measure the spin of their own member of pair 1 along a common direction
n1, pair 2 along a common direction n2, etc., where in each case they ran-
domly select ni from one of the three orthogonal directions x, y, and z. They
find that regardless of their choice of directions, each spin behaves randomly
and independently of the the other. Is it possible to discriminate between
the following two (One can complicate the tale by adding four more options
in which up and down in cases (I) and (II) refer to the x-and y-directions,
but I prefer to break the rotational symmetry and keep the story simple)
explanations for such behavior?

(I) The ensemble Carol gave them consisted of an equally weighted mixture
of spins in the four completely uncorrelated states (up and down are
with respect to the z-direction, a and b identify Alice’s spin and Bob’s)

|↑a↑b〉 , |↑a↓b〉 , |↓a↑b〉 , |↓a↓b〉 (9)

(II) he ensemble Carol sent was an equally weighted mixture of pairs in the
four states consisting of the singlet state

|0, 0〉ab =
1√
2

(|↑a↓b〉 − |↓a↑b〉) (10)

and three triplet states

|1, 1〉ab = |↑a↑b〉
|1, 1̄〉ab = |↑a↓b〉 (11)

|1, 0〉ab =
1√
2

(|↑a↓b〉+ |↓a↑b〉)

Two of these four states are highly correlated – indeed, they are maxi-
mally entangled.

Note that in either case the global density matrix for the pairs of Alice and
Bob is just the four-dimensional unit matrix.

Zygmund and Yvonne have a debate about whether there is any objective
difference between Case (I) and Case (II). Are the ensembles of Alice-Bob
pairs objectively different in the two cases?
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Zygmund : Both ensembles are described by exactly the same two-spin
density matrix. This means there is no way Alice and Bob can tell the
difference. Therefore there is no difference.

Yvonne: You’ve overlooked the fact that Carol can help Alice and Bob
tell the difference. If it was Case (I), then Carol can tell them what
their individual results were in every single one of the cases (about a
third of them) in which they happened to have picked the z-direction
along which to make their measurements. She could not possibly do
this in Case (II). But if the ensemble was Case (II), then Carol knows
which of the pairs were singlets, so she can identify for Alice and Bob a
subset (about a quarter) of their data for which all their measurements
are perfectly anticorrelated, regardless of whether they were along x, y,
or z. She could not possibly do this in Case (I). So in each case she can
identify a subset of Alice and Bob’s ensemble of pairs with properties
that uniquely identify that case.

Zygmund : But in either case, the collection of data Alice and Bob ac-
cumulate for the runs in which they both happen to pick z is completely
random. Carol’s trick supposedly demonstrating that Alice and Bob
are dealing with a Case (I) ensemble has nothing to do with the ob-
jective character of what happens in Alice’s and Bob’s experiments. It
consists merely in her being able to sort out, without actually having
seen it, the zz portion of their random data into the four (about equally
populated) subsets associated with the four possible outcomes.

Furthermore, in either case about half the data collected by Alice and
Bob will be perfectly anti-correlated by sheer chance. Carol’s trick
supposedly demonstrating that Alice and Bob are dealing with a Case
(II) ensemble consists only in her being able to identify about half of
those perfectly anticorrelated pairs without having access to their ac-
tual data. The existence of perfect anticorrelations for some subset of
Alice and Bob’s data, is again an objective feature of that data, present
in both cases.

Since the data Carol need to convince Alice and Bob that their ensem-
ble is either Case (I) or Case (II) are already there in either case, all you
have demonstrated is that Carol’s relation to the Alice-Bob ensemble
– the kinds of information she can have about it – can take various
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forms. You have not shown that there is any objective difference in the
two forms the ensemble itself might have.

Yvonne: You can’t just talk abstractly about ”Carol’s relation” to the
Alice-Bob ensemble. The fact is that in preparing the ensemble for Alice
and Bob she would actually have had to do entirely different things to
the spins, depending on which ensemble she prepared. It’s only because
Carol didn’t provide Alice and Bob with enough information about
what she actually did, that Alice and Bob are required to describe
their ensemble by a density matrix which is the same in both cases.
In Case (I) Carol had to prepare pairs of spins with definite values of
their z-components, while in Case II she had to prepare pairs of spins
with definite total angular momentum (and, in the triplet case, with
the appropriate z-components of total spin.) The pairs of spins Alice
and Bob possess had objectively different past histories so it clearly
makes sense to characterize them as objectively different.

Zygmund : On the contrary, Carol can prepare Alice and Bob’s ensemble
in a way that makes it obvious that Case (I) and Case (II) are not
objectively different. She can produce each pair she sends to Alice and
Bob by taking two singlet pairs, sending a member of one pair to Alice,
a member of the other pair to Bob, and keeping the remaining spins
herself, labeled so she knows which had its partner sent to Alice and
which to Bob, as well as which Alice-Bob pair each of her own pairs is
associated with.

If Carol sends Alice and Bob their ensemble of pairs in this way, then
each quartet of spins is in the (rotationally invariant) state

|Ψ〉 = |0, 0〉ca ⊗ |0, 0〉cb

=
1√
2

(|↑c1↓a〉 − |↓c1↑a〉)⊗
1√
2

(|↑c2↓b〉 − |↓c2↑b〉) (12)

Carol can build up the Alice-Bob ensemble by doing this many times.
Then she can do one of two things: either (I) she measures the individ-
ual z-spins of all the pairs she kept or (II) she measures the total spin
and total z-component of each of her pairs of spins. In the first case
she acquires the information necessary to persuade Alice and Bob that
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their ensemble is of type (I), since the state |Ψ〉 has the expansion

|Ψ〉 =
1

2
(|↑c1〉 |↑c2〉 ⊗ |↓a〉 |↓b〉+ |↓c1〉 |↓c2〉 ⊗ |↑a〉 |↑b〉

− |↑c1〉 |↓c2〉 ⊗ |↓a〉 |↑b〉 − |↓c1〉 |↑c2〉 ⊗ |↑a〉 |↓b〉) (13)

But in the second case she acquires the information needed to persuade
Alice and Bob that their ensemble is of type (II), since the state |Ψ〉
also has the expansion

|Ψ〉 =
1

2
(|1, 1〉cc ⊗ |1, 1̄〉ab + |1, 1̄〉cc ⊗ |1, 1〉ab
− |1, 0〉cc ⊗ |1, 0〉ab + |0, 0〉ab ⊗ |0, 0〉ab) (14)

Since Carol can decide which properties to measure long after Alice and
Bob are in full possession of all their pairs, the two ensembles cannot
be objectively different.

Yvonne: A lovely trick on Caro’s part, to be sure, but you have entirely
overlooked the phenomenon of quantum nonlocality. Carol’s measure-
ments actually do change the objective character of Alice’s and Bob’s
pairs by the SF-process: spukhafte Fernwirkungen.

Zygmund : Even if I grant you the existence of such nonlocal action,
Carol can easily evade your claim that what she does spookily alters
the character of Alice’s and Bob’s pairs. Her action need be taken
only after every pair in the Alice-Bob ensemble has been measured and
the data entered in Alice’s and Bob’s notebooks. Clearly if Carol does
nothing until Alice and Bob have already collected and recorded their
data, nothing she does can alter the character of the Alice-Bob ensem-
ble from which those data were extracted.

The only difference between the two cases is that in Case (I) Carol has
collected the information she needs to tell Alice and Bob the results in
the third of their data coming from their z-spin measurements, thereby
sacrificing the possibility of getting the information required to identify
to them a quarter of their data that contains perfect anticorrelations.
In Case (II), on the other hand, she has collected the information en-
abling her to identify an anticorrelated quarter, while sacrificing the
possibility of identifying for them the results of their individual z-spin
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measurements. To maintain that the two ensembles are objectively
different you have to maintain that Carol’s measurement alters the ob-
jective character of the Alice-Bob pairs in a manner that is not only
nonlocal in space but backward in time.

Yvonne: There is no need for anything to go backward in time. If
Carol does not make her measurement until long after Alice and Bob
have collected their data then the nonlocal SF action has gone forward
in time. But it has gone not from Carol to Alice’s and Bob’s ensemble,
but from Alice and Bob to the ensemble of pairs kept by Carol.

As Alice and Bob measure the individual spins of each pair in their en-
semble, SF converts the corresponding pair in Carol’s possession into
a pair in a product of eigenstates strictly correlated through (13) with
the results they found for that pair. [Because |Ψ〉 is rotationally in-
variant it has the same structure (13) whether the spin quantization
axis is taken to be z, x, or y.] For Carol later to do her Case (I) trick
it is necessary only for her to measure the z-components of the spins
of each of her pairs. The results will agree with what Alice and Bob
found in that third of their runs in which they measured along z. On
the other hand, for her to do her Case (II) trick she need only identify
about a quarter of her pairs whose spin eigenvalues are opposite, which
will enable her to identify a quarter of Alice’s and Bob’s data that is
perfectly anticorrelated.

Zygmund : But how can she do the Case (II) trick when she doesn’t
know the direction along which her spins are polarized, since she doesn’t
know whether Alice or Bob measured the spins of any particular pair
along x, y, or z? To ask them would surely arouse their suspicions!

Yvonne: No problem. Every one of Carol’s pairs (about half of them)
that are polarized the same way along their unknown direction (as a
spooky consequence of Alice’s and Bob’s earlier measurements) are in a
state orthogonal to the singlet state (whatever that unknown direction
may be). So, if Carol measures the total spin of her pairs and rejects
those - about three-fourths of them - that have total spin one, she
will be able to identify about half of the Alice-Bob pairs for which
they measured opposite spins. This provides her with just the 25%

12



of perfectly anti-correlated pairs she needs to fool Alice and Bob into
thinking that she had given them an ensemble of type (II).

Zygmund : Clever of Carol, to be sure. But all this shows is that even
in your own terms, the spukhafte Ferwirkungen has nothing to do with
the objective difference between ensemble I and ensemble II. It has
to do only with how Alice and Bob inadvertently telegraph to Carol
the information that enables her to fool them into thinking that she
prepared an ensemble of one or the other type. The fact is that the ob-
jective character of Alice and Bob’s ensemble is not altered from afar by
Carol. Nor do Alice and Bob spookily send Carol information about
their ensemble. The fact that the same actions by Alice, Bob, and
Carol can be interpreted either as Carol altering the character of Alice
and Bob’s ensemble from afar or as Alice and Bob inadvertently trans-
mitting to Carol the information necessary to enable her ingeniously
and deceptively to persuade them of a particular objective character
of their ensemble, illuminates the fundamental absurdity of either of
these two quite different interpretations.

All that is going on here is that because Carol’s pairs of spins are
strongly correlated with the pairs in Alice and Bob’s ensemble, Carol
has mutually exclusive options of extracting from her spins various
kinds of information about Alice and Bob’s ensemble. She has the op-
tion of identifying a quarter of their pairs for which they found opposite
spins. But she also has the option of identifying the specific results they
found in all their zz runs.

Yvonne: [slinking off but muttering under her breath]: Sie wirken doch
fern ... and what about Bell’s theorem ...?

4 INCONCLUSIONS(Inconclusions are to con-

clusions as inconclusive is to conclusive):

FASHION AT A DISTANCE?

What, indeed, about Bell’s theorem? I am not prepared to spell out here how
Alice’s trick in Section 2 or Carol’s in Section 3can be reconciled with the
absence of spooky action at a distance and the completeness of the quantum
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mechanical description of physical reality. I believe that the reconciliation
is to be found in a view of physical reality as comprised only of correlations
between different parts of the physical world, and not at all of unconditional
properties possessed by those parts. In that case the straight answer to the
question posed in my title, like the straight answer to Danny’s inspired but
lunatic question in Florence, is ”everything.” And the straight question - to
which the straight answer is indeed ”nothing” - is, ”What do these corre-
lations know about individual properties.”(I have expanded on such ideas
under the noncommittal rubric of ”the Ithaca interpretation of quantum me-
chanics”.[7,8]

Underlying such a view will be a stronger sense than we currently possess, of
the absurdity of trying to reconcile our perceived particularity of what actu-
ally happens under actual conditions, with an imagined particularity of what
might have happened under conditions that might have held, but did not.
My guess is that Bohr’s not entirely transparent views on such matters[10]
might be elucidated[10] by rephrasing them in a broader context where the
correlated systems are not, as they invariably are for Bohr, limited to a mi-
croscopic specimen and a classical apparatus. Such a broader view might
reveal that the problem of ”nonlocality” and ”the measurement problem”
both stem from the same weakness in current preconceptions about what
constitutes physical reality. I hope to have more to say about this (or to be
disabused of my current sense of partial illumination) by Dannys 75th.

All I have tried to do here (aside from offering up a proof of the GHJW
theorem that is accessible to those of us over 60 who don’t understand expla-
nations cast in terms of POVM’s) is to suggest that people may have become
too facile in their readiness to blame everything on (or credit everything to)
”quantum nonlocality”. Nonlocality seems to me to offer ”too cheap” a way
out of some deep conundra (to appropriate Einstein’s remark to Born about
Bohm theory). If you push hard on it you can force ”nonlocality” into offer-
ing some explanations that strike me as just plain silly.

When Abner Shimony first came up with the term ”passion at a distance”
to characterize the spooky actions at a distance required by the notion of
quantum nonlocality, I thought that by replacing ”action” with ”passion”
he was emphasizing that the action was on the interpretive instincts of peo-
ple (who can experience passion), and not among the correlated subsystems
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themselves (which cannot). But this ”passion” has since been taken by just
about everybody (including, I believe, Abner himself ) to signify a weaker,
spookier kind of action of the physical systems on each other.

I would like to suggest that people have been a little too quick in talking
themselves into this widely held position. To salvage what I had thought
was a very good suggestion of Abner, and as an act of homage to Danny
Greenberger, without the tutorial example of whose many (superior) bon
mots I could never have had the inspiration, I would like to suggest that the
time has come to consider the possibility that quantum nonlocality is nothing
more than fashion at a distance(the acronym has not escaped my attention).

APPENDIX

Let Alice have a system with a density matrix W having a variety of differ-
ent expressions in terms of projection operators on finite or countably infinite
collections of (not necessarily orthogonal) pure states. Each such expression
describes Alice’s system as if it were in a pure state |φµ〉 with probability pµ:

W =
∑
µ

pµ |φµ〉 〈φµ| (15)

The GHJW theorem establishes that for any such collection of alternative
interpretations of W , it is possible to provide Bob with a system of his own
for which the joint Alice-Bob system has a pure state |Ψ〉 with the following
properties:

(i) W is the reduced density matrix for Alices subsystem.

(ii) associated with any interpretation (15) of Alices density matrix W ,
there is a corresponding observable B of Bobs subsystem whose mea-
surement in the state |Ψ〉 gives a result bµ with probability pµ. If Bob
measures B and gets the result bµ, he is able correctly to inform Alice
that the result of any measurement she makes on her own system will
be as if her system were in the state |φµ〉 (In less guarded and clumsy
but decidedly more spooky language, if Bob measures B and gets the
result bµ, then Alices system collapses into the state |φµ〉).

The proof that follows is Chris Fuchs’s simplification[11] of John Preskill’s
simplification[12] of my simplification[7] of the proof of HJW.[5]
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The crucial thing to notice is that any two states |Ψ〉 and |Ψ′〉 of a joint
Alice-Bob system leading to the same reduced density matrix for Alice,

W = TrBob |Ψ〉 〈Ψ| (16)

can be related by a unitary transformation

V = 1⊗ U (17)

that acts nontrivially only on Bob’s subspace. This follows from expanding
the density matrix W of Alices subsystem in terms of a complete orthonormal
set of eigenvectors (Some of the wi can be zero or the same, so the complete
set is not uniquely determined by W . Any one will do.):

W =
∑
i

wi |αi〉 〈αi| (18)

Because the |αi〉 are complete in Alice’s subsystem, an arbitrary state |Ψ〉 of
the Alice-Bob system has an expansion of the form

|Ψ〉 =
∑
i

|αi〉 ⊗ |βi〉 (19)

(where the |βi〉 are in general neither normalized nor orthogonal). The gen-
eral reduced density matrix (16) associated with the state (19) can thus be
put in the form

W =
∑
ij

〈βj | βi〉 |αi〉 〈αi| (20)

But if W is of the special form (18), then since the |αi〉 are an orthonormal
set, the |βi〉 appearing in (19) are constrained to satisfy

〈βj | βi〉 = wiδij (21)

Therefore the |βi〉 can be nonzero only if wi 6= 0, and when wi 6= 0 they are
of the form

|βi〉 =
√
wi |γi〉 (22)

where the |γi〉 for wi 6= 0 are orthonormal and can be extended (arbitrarily)
to a complete orthonormal set. Hence any |Ψ〉 yielding the reduced density
matrix (16) must be of the form

|Ψ〉 =
∑
i

√
wi |αi〉 ⊗ |γi〉 (23)

16



Since the |γi〉 are a subset of a complete orthonormal set, all such forms (23)
do indeed differ only by a unitary transformation of the form (17).

Now consider that representation (15) of Alice’s density matrix W containing
the largest (possibly infinite) number of distinct states |φµ〉. Let Bob’s sub-
system have a dimension at least as large as that number, so that it possesses
an orthonormal set of states |ψµ〉 that can be put in one-to-one correspon-
dence with Alices states |φµ〉. If the composite Alice-Bob system is in the
state

|Ψ〉 =
∑
µ

√
pµ |φµ〉 ⊗ |ψµ〉 (24)

then Bob can acquire the information necessary to identify which of the
states |φµ〉 characterizes Alices subsystem, by measuring a nondegenerate
observable B of the form

B =
∑
µ

bµ |ψµ〉 〈ψµ| (25)

Consider now any other expansion of Alice’s density matrix,

W =
∑
µ

p′µ
∣∣φ′µ〉 〈φ′µ∣∣ (26)

Bob can do the same trick using a different state

|Ψ′〉 =
∑
µ

√
p′µ
∣∣φ′µ〉⊗ |ψµ〉 (27)

for the Alice-Bob system. But since |Ψ〉 and |Ψ′〉 yield the same reduced
density matrix W , they must be related by

|Ψ〉 = 1⊗ U |Ψ′〉 (28)

Applying 1⊗U to (27) we learn that the original state (24) of the Alice-Bob
system has the alternative expansion ?

|Ψ〉 =
∑
µ

√
p′µ
∣∣φ′µ〉⊗ ∣∣ψ′µ〉 (29)

where ∣∣ψ′µ〉 = |ψµ〉 (30)
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Therefore with the composite system in the original state |Ψ〉, Bob need only
measure an observable of the form

B =
∑
µ

bµ
∣∣ψ′µ〉 〈ψ′µ∣∣ (31)

to acquire the information necessary to persuade Alice that her system is in
the state states

∣∣ψ′µ〉 with probability p′µ.
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