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Environment-induced decoherence and superselection have been a subject of
intensive research over the past two decades, yet their implications for the
foundational problems of quantum mechanics, most notably the quantum
measurement problem, have remained a matter of great controversy. This
paper is intended to clarify key features of the decoherence program, includ-
ing its more recent results, and to investigate their application

1 Introduction

The implications of the decoherence program for the foundations of quantum
mechanics have been the subject of an ongoing debate since the first precise
formulation of the program in the early 1980s. The key idea promoted by
decoherence is the insight that realistic quantum systems are never isolated,
but are immersed in the surrounding environment and interact continuously
with it. The decoherence program then studies, entirely within the standard
quantum formalism (i.e., without adding any new elements to the math-
ematical theory or its interpretation), the resulting formation of quantum
correlations between the states of the system and its environment and the
often surprising effects of these system-environment interactions. In short,
decoherence brings about a local suppression of interference between pre-
ferred states selected by the interaction with the environment.

Bub (1997) termed decoherence part of the “new orthodoxy” of understand-
ing quantum mechanics - as the working physicist’s way of motivating the
postulates of quantum mechanics from physical principles. Proponents of de-
coherence called it an “historical accident” (Joos, 2000, p. 13) that the impli-
cations for quantum mechanics and for the associated foundational problems
were overlooked for so long. Zurek (2003a, p. 717) suggests

The idea that the “openness” of quantum systems might have
anything to do with the transition from quantum to classical was
ignored for a very long time, probably because in classical physics
problems of fundamental importance were always settled in iso-
lated systems.

When the concept of decoherence was first introduced to the broader scientific
community by Zurek’s (1991) article in Physics Today, it elicited a series of
contentious comments from the readership (see the April 1993 issue of Physics
Today). In response to his critics, Zurek (2003a, p. 718) states



In a field where controversy has reigned for so long this resistance
to a new paradigm [namely, to decoherence] is no surprise.

Omnes (2002, p. 2) had this assessment:

The discovery of decoherence has already much improved our un-
derstanding of quantum mechanics. (...) [B]ut its foundation, the
range of its validity and its full meaning are still rather obscure.
This is due most probably to the fact that it deals with deep
aspects of physics, not yet fully investigated.

In particular, the question whether decoherence pro- vides, or at least sug-
gests, a solution to the measurement problem of quantum mechanics has been
discussed for several years. For example, Anderson (2001, p. 492) writes in
an essay review

The last chapter (...) deals with the quantum measurement prob-
lem (...). My main test, allowing me to bypass the extensive dis-
cussion, was a quick, unsuccessful search in the index for the word
“decoherence” which describes the process that used to be called
“collapse of the wave function.”

Zurek speaks in various places of the “apparent” or “effective” collapse of the
wave function induced by the interaction with environment (when embed-
ded into a minimal additional interpretive framework) and concludes (Zurek,
1998, p. 1793)

A “collapse” in the traditional sense is no longer necessary. (...)
[The] emergence of “objective existence” [from decoherence] (...)
significantly reduces and perhaps even eliminates the role of the
“collapse” of the state vector.

d’Espagnat, who considers the explanation of our experiences (i.e., of “ap-
pearances”) as the only “sure” requirement of a physical theory, states (dEspag-
nat, 2000, p. 136)

For macroscopic systems, the appearances are those of a clas-
sical world (no interferences etc.,), even in circumstances, such
as those occurring in quantum measurements, where quantum
effects take place and quantum probabilities intervene (...). De-
coherence explains the just mentioned appearances and this is a
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most important result. (...) As long as we remain within the
realm of mere predictions concerning what we shall observe (i.e.,
what will appear to us) - and refrain from stating anything con-
cerning “things as they must be before we observe them” - no
break in the linearity of quantum dynamics is necessary.

In his monumental book on the foundations of quantum mechanics (QM),
Auletta (2000, p. 791) concludes that

the Measurement theory could be part of the interpretation of
QM only to the extent that it would still be an open problem,
and we think that this is largely no longer the case.

This is mainly so because, according to Auletta (2000, p. 289),

decoherence is able to solve practically all the problems of Mea-
surement which have been dis- cussed in the previous chapters.

On the other hand, even leading adherents of decoherence have expressed
caution or even doubt that decoherence has solved the measurement problem.
Joos (2000, p. 14) writes

Does decoherence solve the measurement problem? Clearly not.
What decoherence tells us, is that certain objects appear clas-
sical when they are observed. But what is an observation? At
some stage, we still have to apply the usual probability rules of
quantum theory.

Along these lines, Kiefer and Joos (1999, p. 5) warn that

One often finds explicit or implicit statements to the effect that
the above processes are equivalent to the collapse of the wave
function (or even solve the measurement problem). Such state-
ments are certainly unfounded.

In a response to Andersons (2001, p. 492) comment, Adler (2003, p. 136)
states

I do not believe that either detailed theoretical calculations or
recent experimental results show that decoherence has resolved
the difficulties associated with quantum measurement theory.
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Similarly, Bacciagaluppi (2003b, p. 3) writes

Claims that simultaneously the measurement problem is real [and]
decoherence solves it are confused at best.

Zeh asserts (Joos et al., 2003, Chap. 2)

Decoherence by itself does not yet solve the measurement prob-
lem (...). This argument is nonetheless found wide-spread in the
literature. (...) It does seem that the measurement problem can
only be resolved if the Schrödinger dynamics (...) is supplemented
by a nonunitary collapse (...).

The key achievements of the decoherence program, apart from their impli-
cations for conceptual problems, do not seem to be universally understood
either. Zurek (1998, p. 1800) remarks

[The] eventual diagonality of the density matrix (...) is a byprod-
uct (...) but not the essence of decoherence. I emphasize this
because diagonality of (the density matrix) in some basis has
been occasionally (mis-)interpreted as a key accomplishment of
decoherence. This is misleading. Any density matrix is diagonal
in some basis. This has little bearing on the interpretation.

These remarks show that a balanced discussion of the key features of deco-
herence and their implications for the foundations of quantum mechanics is
overdue. The decoherence program has made great progress over the past
decade, and it would be inappropriate to ignore its relevance in tackling con-
ceptual problems. However, it is equally important to realize the limitations
of decoherence in providing consistent and noncircular answers to founda-
tional questions.

An excellent review of the decoherence program has recently been given by
Zurek (2003a). It deals primarily with the technicalities of decoherence, al-
though it contains some discussion on how decoherence can be em- ployed
in the context of a relative-state interpretation to motivate basic postulates
of quantum mechanics. A helpful first orientation and overview, the entry
by Bacciagaluppi (2003a) in the Stanford Encyclopedia of Philosophy, fea-
tures a relatively short (in comparison to the present paper) introduction
to the role of decoherence in the foundations of quantum mechanics, includ-
ing comments on the relationship between decoherence and several popular
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interpretations of quantum theory. In spite of these valuable recent contri-
butions to the literature, a detailed and self-contained discussion of the role
of decoherence in the foundations of quantum mechanics seems still to be
lacking. This review article is intended to fill the gap.

To set the stage, we shall first, in Sec. 2, review the measurement problem,
which illustrates the key difficulties that are associated with describing quan-
tum measurement within the quantum formalism and that are all in some
form addressed by the decoherence program. In Sec. 3, we then introduce
and discuss the main features of the theory of decoherence, with a particular
emphasis on their foundational implications. Finally, in Sec. 4, we investi-
gate the role of decoherence in various interpretive approaches of quantum
mechanics, in particular with respect to the ability to motivate and support
(or disprove) possible solutions to the measurement problem.

2 The Measurement Problem

One of the most revolutionary elements introduced into physical theory by
quantum mechanics is the super- position principle, mathematically founded
in the linearity of the Hilbert-state space. If ∣1⟩ and ∣2⟩ are two states,
then quantum mechanics tells us that any linear combination α ∣1⟩ + β ∣2⟩
also corresponds to a possible state. Whereas such superpositions of states
have been experimentally extensively verified for microscopic systems (for
instance, through the observation of interference effects), the application of
the formalism to macroscopic systems appears to lead immediately to se-
vere clashes with our experience of the everyday world. A book has never
been observed to be in a state of being both “here” and “there” (i.e., to be
in a superposition of macroscopically distinguishable positions), nor does a
Schrödinger cat that is a superposition of being alive and dead bear much
resemblance to reality as we perceive it. The problem is, then, how to recon-
cile the vastness of the Hilbert space of possible states with the observation
of a comparatively few “classical” macrosopic states, de- fined by having a
small number of determinate and ro- bust properties such as position and
momentum. Why does the world appear classical to us, in spite of its sup-
posed underlying quantum nature, which would, in principle, allow for arbi-
trary superpositions?
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A. Quantum measurement scheme

This question is usually illustrated in the context of quantum measurement
where microscopic superpositions are, via quantum entanglement, amplified
into the macroscopic realm and thus lead to very “nonclassical” states that
do not seem to correspond to what is actually perceived at the end of the
measurement. In the ideal measurement scheme devised by von Neumann
(1932), a (typically microscopic) system S, represented by basis vectors {∣sn⟩}
in a Hilbert space HS , interacts with a measurement apparatus A, described
by basis vectors {∣an⟩} spanning a Hilbert space HA, where the ∣an⟩ are as-
sumed to correspond to macroscopically distinguishable “pointer” positions
that correspond to the outcome of a measurement if S is in the state ∣sn⟩.1

Now, if S s in a (microscopically “unproblematic”) superposition ∑n cn ∣sn⟩,
and A is in the initial “ready” state ∣ar⟩, the linearity of the Schrödinger
equation entails that the total system SA, assumed to be represented by the
Hilbert product space HS ⊗HA, evolves according to

(∑

n

cn ∣sn⟩) ∣ar⟩
t
Ð→∑

n

cn ∣sn⟩ ∣an⟩ (2.1)

This dynamical evolution is often referred to as a premeasurement in order
to emphasize that the process de- scribed by Eq. (2.1) does not suffice to
directly conclude that a measurement has actually been completed. This is
so for two reasons. First, the right-hand side is a superposition of system-
apparatus states. Thus, without supplying an additional physical process
(say, some collapse mechanism) or giving a suitable interpretation of such a
superposition, it is not clear how to account, given the final composite state,
for the definite pointer positions that are perceived as the result of an actual
measurement - i.e., why do we seem to perceive the pointer to be in one
position ∣an⟩ but not in a superposition of positions? This is the problem of
definite outcomes. Second, the expansion of the final composite state is in
general not unique, and therefore the measured observable is not uniquely
defined either. This is the problem of the preferred basis. In the literature, the
first difficulty is typically referred to as the measurement problem, but the

1Note that von Neumann’s scheme is in sharp contrast to the Copenhagen interpreta-
tion, where measurement is not treated as a system-apparatus interaction described by
the usual quantum-mechanical formalism, but instead as an independent component of
the theory, to be represented entirely in fundamentally classical terms.
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preferred-basis problem is at least equally important, since it does not make
sense even to inquire about specific outcomes if the set of possible out- comes
is not clearly defined. We shall therefore regard the measurement problem as
composed of both the problem of definite outcomes and the problem of the
preferred basis, and discuss these components in more detail in the following.

B. The problem of definite outcomes

1. Superpositions and ensembles

The right-hand side of Eq. (2.1) implies that after the premeasurement the
combined system SA is left in a pure state that represents a linear superpo-
sition of system-pointer states. It is a well-known and important property of
quantum mechanics that a superposition of states is fundamentally different
from a classical enemble of states, where the system actually is in only one
of the states but we simply do not know in which (this is often referred to as
an “ignorance-interpretable,” or “proper” ensemble).

This can be shown explicitly, especially on microscopic scales, by perform-
ing experiments that lead to the direct observation of interference patterns
instead of the realization of one of the terms in the superposed pure state,
for example, in a setup where electrons pass individually (one at a time)
through a double slit. As is well known, this experiment clearly shows that,
within the standard quantum-mechanical formalism, the electron must not
be described by either one of the wave functions de- scribing the passage
through a particular slit (ψ1 or ψ2), but only by the superposition of these
wave functions (ψ1 +ψ2). This is so because the correct density distribution
% of the pattern on the screen is not given by the sum of the squared wave
functions describing the addition of individual passages through a single slit
(% = ∣ψ1∣

2
+ ∣ψ2∣

2), but only by the square of the sum of the individual wave
functions (% = ∣ψ1 + ψ2∣

2).

Put differently, if an ensemble interpretation could be attached to a superpo-
sition, the latter would simply rep- resent an ensemble of more fundamentally
determined states, and based on the additional knowledge brought about by
the results of measurements, we could simply choose a subensemble consisting
of the definite pointer state obtained in the measurement. But then, since the
time evolution has been strictly deterministic according to the Schrödinger
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equation, we could backtrack this subensemble in time and thus also specify
the initial state more completely (“postselection”), and therefore this state
necessarily could not be physically identical to the initially prepared state on
the left-hand side of Eq. (2.1).

2. Superpositions and outcome attribution

In the standard (“orthodox”) interpretation of quan- tum mechanics, an ob-
servable corresponding to a physical quantity has a definite value if and only
if the system is in an eigenstate of the observable; if the system is, however,
in a superposition of such eigenstates, as in Eq. (2.1), it is, according to
the orthodox interpretation, meaningless to speak of the state of the system
as having any definite value of the observable at all. (This is frequently re-
ferred to as the so-called eigenvalue-eigenstate link, or “e-e link” for short.)
The e-e link, however, is by no means forced upon us by the structure of
quantum mechanics or by empirical constraints (Bub, 1997). The concept
of (classical) “values” that can be ascribed through the e-e link based on
observables and the existence of exact eigenstates of these observables has
therefore frequently been either weakened or altogether abandoned. For in-
stance, outcomes of measurements are typically registered in position space
(pointer positions, etc.), but there exist no exact eigenstates of the posi-
tion operator, and the pointer states are never exactly mutually orthogonal.
One might then (explicitly or implicitly) promote a “fuzzy” e-e link, or give
up the concept of observables and values entirely and directly interpret the
time-evolved wave functions (working in the Schrödinger picture) and the
corresponding density matrices. Also, if it is regarded as sufficient to explain
our perceptions rather than describe the “absolute” state of the entire uni-
verse (see the argument below), one might only require that the (exact or
fuzzy) e-e link hold in a “relative” sense, i.e., for the state of the rest of the
universe relative to the state of the observer.

Then, to solve the problem of definite outcomes, some interpretations (or ex-
ample, modal interpretations and relative-state interpretations) interpret the
final composite state in such a way as to explain the existence, or at least the
subjective perception, of “outcomes” even if this state has the form of a super-
position. Other interpretations attempt to solve the measurement problem
by modifying the strictly unitary Schrödinger dynamics. Most prominently,
the orthodox interpretation postulates a collapse mechanism that transforms
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a pure-state density matrix into an ignorance-interpretable ensemble of in-
dividual states (a “proper mixture”). Wave-function collapse theories add
stochastic terms to the Schödinger equation that induce an effective (albeit
only approximate) collapse for states of macroscopic systems (Pearle, 1979,
1999; Gisin, 1984; Ghirardi et al., 1986), while other authors have suggested
that collapse occurs at the level of the mind of a conscious observer (Wigner,
1963; Stapp, 1993). Bohmian mechanics, on the other hand, upholds a uni-
tary time evolution of the wave function, but introduces an additional dy-
namical law that explicitly governs the always-determinate positions of all
particles in the system.

3. Objective vs subjective definiteness

In general, (macroscopic) definiteness - and thus a solution to the problem of
outcomes in the theory of quantum measurement - can be achieved either on
an ontological (objective) or an observational (subjective) level. Objective
definiteness aims at ensuring “actual” definiteness in the macroscopic realm,
whereas subjective definiteness only attempts to explain why the macroscopic
world appears to be definite - and thus does not make any claims about def-
initeness of the underlying physical reality (whatever this reality might be).
This raises the question of the significance of this distinction with respect to
the formation of a satisfactory theory of the physical world. It might appear
that a solution to the measurement problem based on ensuring subjective,
but not objective, definiteness is merely good “for all practical purposes” -
abbreviated , rather disparagingly, as “FAPP” by Bell (1990) - and thus not
capable of solving the “fundamental” problem that would seem relevant to
the construction of the “precise theory” that Bell demanded so vehemently.

It seems to the author, however, that this criticism is not justified, and that
subjective definiteness should be viewed on a par with objective definite-
ness with respect to a satisfactory solution to the measurement problem.
We demand objective definiteness because we experience definiteness on the
subjective level of observation, and it should not be viewed as an a priori re-
quirement for a physical theory. If we knew independently of our experience
that definiteness existed in nature, subjective definiteness would presumably
follow as soon as we had employed a simple model that connected the “ex-
ternal” physical phenomena with our “internal” perceptual and cognitive
apparatus, where the expected simplicity of such a model can be justified
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by referring to the presumed identity of the physical laws governing external
and internal processes. But since knowledge is based on experience, that
is, on observation, the existence of objective definiteness could only be de-
rived from the observation of definiteness. And, moreover, observation tells
us that definiteness is in fact not a universal property of nature, but rather
a property of macroscopic objects, where the borderline to the macroscopic
realm is difficult to draw precisely; mesoscopic interference experiments have
demonstrated clearly the blurriness of the boundary. Given the lack of a
precise definition of the boundary, any demand for fundamental definiteness
on the objective level should be based on a much deeper and more general
commitment to a definiteness that applies to every physical entity (or sys-
tem) across the board, regardless of spatial size, physical property, and the
like.

Therefore, if we realize that the often deeply felt commitment to a general
objective definiteness is only based on our experience of macroscopic sys-
tems, and that this definiteness in fact fails in an observable manner for
microscopic and even certain mesoscopic systems, the author sees no com-
pelling grounds on which objective definiteness must be demanded as part of
a satisfactory physical theory, provided that the theory can account for sub-
jective, observational definiteness in agreement with our experience. Thus
the author suggests that the same legitimacy be attributed to proposals for a
solution of the measurement problem that achieve “only” subjective but not
objective definiteness - after all, the measurement problem arises solely from
a clash of our experience with certain implications of the quantum formalism.
d’Espagnat (2000, pp. 134 and 135) has advocated a similar viewpoint:

The fact that we perceive such “things” as macroscopic objects
lying at distinct places is due, partly at least, to the structure
of our sensory and intellectual equipment. We should not, there-
fore, take it as being part of the body of sure knowledge that we
have to take into account for defining a quantum state. (...) In
fact, scientists most rightly claim that the purpose of science is
to describe human experience, not to describe “what really is”;
and as long as we only want to describe human experience, that
is, as long as we are content with being able to predict what
will be observed in all possible circumstances (...) we need not
postulate the existence - in some absolute sense - of unobserved
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(i.e., not yet observed) objects lying at definite places in ordinary
3-dimensional space.

C. The preferred-basis problem

The second difficulty associated with quantum measurement is known as the
preferred-basis problem, which demonstrates that the measured observable is
in general not uniquely defined by Eq. (2.1). For any choice of system states
{∣sn⟩}, we can find corresponding apparatus states {∣sn⟩}, and vice versa, to
equivalently rewrite the final state emerging from the premeasurement inter-
action, i.e., the right-hand side of Eq. (2.1). In general, however, for some
choice of apparatus states the corresponding new system states will not be
mutually orthogonal, so that the observable associated with these states will
not be Hermitian, which is usually not desired (however, not forbidden - see
the discussion by Zurek, 2003a). Conversely, to ensure distinguishable out-
comes, we must, in general, require the (at least approximate) orthogonality
of the apparatus (pointer) states, and it then follows from the biorthogo-
nal decomposition theorem that the expansion of the final premeasurement
system-apparatus state of Eq. (2.1),

∣ψ⟩ =∑
n

cn ∣sn⟩ ∣an⟩ (2.2)

is unique, but only if all coefficients cn distinct. Otherwise, we can in general
rewrite the state in terms of different state vectors,

∣ψ⟩ =∑
n

c′n ∣s
′
n⟩ ∣a

′
n⟩ (2.3)

such that the same postmeasurement state seems to correspond to two dif-
ferent measurements, that is, of the observables Â = ∑n λn ∣sn⟩ ⟨sn∣ and
B̂ = ∑n λ

′
n ∣s

′
n⟩ ⟨s

′
n∣ of the system, respectively, although in general Â and

B̂ do not commute.

As an example, consider a Hilbert space H = H1 ⊗ H2 where H1 and H2

are two-dimensional spin spaces with states corresponding to spin up or spin
down along a given axis. Suppose we are given an entangled spin state of
the Einstein-Podolsky-Rosen form (Einstein et al., 1935)

∣ψ⟩ =
1

√

2
(∣z+⟩1 ∣z−⟩2 − ∣z−⟩1 ∣z+⟩2 (2.4)
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where ∣z±⟩1,2 represents the eigenstates of the observable σz corresponding to
spin up or spin down along the z axis of the two systems 1 and 2. The state
∣ψ⟩ can, however, equivalently be expressed in the spin basis corresponding
to any other orientation in space. For ex- ample, when using the eigenstates
∣x±⟩1,2 of the observable σx (which represents a measurement of the spin
orientation along the x axis) as basis vectors, we get

∣ψ⟩ =
1

√

2
(∣x+⟩1 ∣x−⟩2 − ∣x−⟩1 ∣x+⟩2 (2.5)

Now suppose that system 2 acts as a measuring device for the spin of system
1. Then Eqs. (2.4) and (2.5) imply that the measuring device has estab-
lished a correlation with both the z and the x spin of system 1. This means
that, if we interpret the formation of such a correlation as a measurement
in the spirit of the von Neumann scheme (without assuming a collapse), our
apparatus (system 2) could be considered as having measured also the x spin
once it has measured the z spin, and vice versa - in spite of the noncom-
mutativity of the corresponding spin observables σz and σx. Moreover, since
we can rewrite Eq. (2.4) in infinitely many ways, it appears that once the
apparatus has measured the spin of system 1 along one direction, it can also
be regarded as having measured the spin along any other direction, again in
apparent contradiction with quantum mechanics due to the noncommutativ-
ity of the spin observables corresponding to different spatial orientations.

It thus seems that quantum mechanics has nothing to say about which ob-
servable(s) of the system is (are) being recorded, via the formation of quan-
tum correlations, by the apparatus. This can be stated in a general theorem
(Zurek, 1981; Auletta, 2000): When quantum mechanics is applied to an
isolated composite object consisting of a system S and an apparatus A, it
cannot determine which observable of the system has been measured - in
obvious contrast to our experience of the workings of measuring devices that
seem to be “designed” to measure certain quantities.

D. The quantum-to-classical transition and decoherence

In essence, as we have seen above, the measurement problem deals with the
transition from a quantum world, described by essentially arbitrary linear
superpositions of state vectors, to our perception of “classical” states in the
macroscopic world, that is, a comparatively small subset of the states allowed
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by the quantum-mechanical superposition principle, having only a few, but
determinate and robust, properties, such as position, momentum, etc. The
question of why and how our experience of a “classical” world emerges from
quantum mechanics thus lies at the heart of the foundational problems of
quantum theory.

Decoherence has been claimed to provide an explanation for this quantum-to-
classical transition by appealing to the ubiquitous immersion of virtually all
physical systems in their environment (“environmental monitoring”). This
trend can also be read off nicely from the titles of some papers and books
on decoherence, for example, “The emergence of classical properties through
interaction with the environment” (Joos and Zeh, 1985), “Decoherence and
the transition from quantum to classical” (Zurek, 1991), and “Decoherence
and the appearance of a classical world in quantum theory” (Joos et al,
2003). We shall critically investigate in this paper to what extent the appeal
to decoherence for an explanation of the quantum-to-classical transition is
justified.

3 The Decoherence Program

As remarked earlier, the theory of decoherence is based on a study of the
effects brought about by the interaction of physical systems with their envi-
ronment. In classical physics, the environment is usually viewed as a kind
of disturbance, or noise, that perturbs the system under consideration in
such a way as to negatively influence the study of its “objective” properties.
Therefore science has established the idealization of isolated systems, with
experimental physics aiming at eliminating any outer sources of disturbance
as much as possible in order to discover the “true” underlying nature of the
system under study.

The distinctly nonclassical phenomenon of quantum entanglement, however,
has demonstrated that the correlations between two systems can be of fun-
damental importance and can lead to properties that are not present in the
individual systems.2 The earlier view of phenomena arising from quantum
entanglement as “paradoxa” has generally been replaced by the recognition

2Broadly speaking, this means that the (quantum-mechanical) whole is different from
the sum of its parts.
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of entanglement as a fundamental property of nature.

The decoherence program3 is based on the idea that such quantum corre-
lations are ubiquitous; that nearly every physical system must interact in
some way with its environment (for example, with the surrounding photons
that then create the visual experience within the observer), which typically
consists of a large number of degrees of freedom that are hardly ever fully
controlled. Only in very special cases of typically microscopic (atomic) phe-
nomena, so goes the claim of the decoherence program, is the idealization
of isolated systems applicable so that the predictions of linear quantum me-
chanics (i.e., a large class of superpositions of states) can actually be observa-
tionally confirmed. In the majority of the cases accessible to our experience,
however, interaction with the environment is so dominant as to preclude the
observation of the “pure” quantum world, imposing effective superselection
rules (Wick et al., 1952, 1970; Galindo et al., 1962; Wightman, 1995; Cis-
nerosy et al., 1998; Giulini, 2000) onto the space of observable states that
lead to states corresponding to the “classical” properties of our experience.
Interference between such states gets locally suppressed and is thus claimed
to become inaccessible to the observer.

Probably the most surprising aspect of decoherence is the effectiveness of
the system-environment interactions. Decoherence typically takes place on
extremely short time scales and requires the presence of only a minimal envi-
ronment (Joos and Zeh, 1985). Due to the large number of degrees of freedom
of the environment, it is usually very difficult to undo system-environment
entanglement, which has been claimed as a source of our impression of irre-
versibility in nature (see, for example, Zurek, 1982, 2003a; Zurek and Paz,
1994; Kiefer and Joos, 1999; Zeh, 2001). In general, the effect of decoher-
ence increases with the size of the system (from microscopic to macroscopic
scales) , but it is important to note that there exist, admittedly somewhat
exotic, examples for which the decohering influence of the environment can
be sufficiently shielded to lead to mesoscopic and even macroscopic superpo-
sitions. One such example would be the case of superconducting quantum
interference devices (SQUIDS), in which superpositions of macroscopic cur-
rents become observable. Conversely, some microscopic systems (for instance,
certain chiral molecules that exist in different distinct spatial configurations)

3For key ideas and concepts, see Zeh (1970, 1973, 1995, 1997, 2000); Zurek (1981, 1982,
1991, 1993, 2003a); Kbler and Zeh (1973); Joos and Zeh (1985); Joos et al. (2003).
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can be subject to remarkably strong decoherence.

The decoherence program has dealt with the following two main consequences
of environmental interaction:

(1) Environment-induced decoherence: The fast local suppression of inter-
ference between different states of the system. However, since only uni-
tary time evolution is employed, global phase coherence is not actually
destroyed - it becomes absent from the lo- cal density matrix that de-
scribes the system alone, but remains fully present in the total system-
environment composition.4 We shall discuss environment-induced local
decoherence in more detail in Sec. 3.D.

(2) Environment-induced superselection: The selection of preferred sets of
states, often referred to as “pointer states”, that are robust (in the
sense of retaining correlations over time) in spite of their immersion
in the environment. These states are deter- mined by the form of the
interaction between the system and its environment and are suggested
to correspond to the “classical” states of our experience. We shall
consider this mechanism in Sec. 3.E.

Another, more recent aspect of the decoherence program, termed enviroment-
assisted invariance or “invariance”, was introduced by Zurek (2003a, 2003b,
2004b) and further developed in Zurek (2004a). In particular, Zurek used
envariance to explain the emergence of probabilities in quantum mechanics
and to derive Born’s rule based on certain assumptions. We shall review
envariance and Zurek’s derivation of the Born rule in Sec. 3.F. Finally, let us
emphasize that decoherence arises from a direct application of the quantum-
mechanical formalism to a description of the interaction of a physical system
with its environment. By itself, decoherence is therefore neither an inter-
pretation nor a modification of quantum mechanics. Yet the implications
of decoherence need to be interpreted in the context of the different inter-
pretations of quantum mechanics. Also, since decoherence effects have been
studied extensively in both theoretical models and experiments (for a sur-
vey, see, for example, Joos et al., 2003; Zurek, 2003a), their existence can be
taken as a well-confirmed fact.

4Note that the persistence of coherence in the total state is important to ensure the
possibility of describing special cases in which mesoscopic or macroscopic superpositions
have been experimentally realized.
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A. Resolution into subsystems

Note that decoherence derives from the presupposition of the existence and
the possibility of a division of the world into “system(s)” and “environment”.
In the decoherence program, the term “environment” is usually understood
as the “remainder” of the system, in the sense that its degrees of freedom
are typically not (cannot be, do not need to be) controlled and are not di-
rectly relevant to the observation under consideration (for example, the many
microscopic degrees of freedom of the system), but that nonetheless the envi-
ronment includes “all those degrees of freedom which contribute significantly
to the evolution of the state” of the system (Zurek, 1981, p. 1520).

This system-environment dualism is generally associated with quantum en-
tanglement, which always describes a correlation between parts of the uni-
verse. As long as the universe is not resolved into individual sub- sys-
tems, there is no measurement problem: the state vector ∣Ψ⟩ of the en-
tire universe5 evolves deterministically according to the Schrödinger equation
ih̵(∂/∂t) ∣Ψ⟩ = Ĥ ∣Ψ⟩, which poses no interpretive difficulty. Only when we de-
compose the total Hilbert-state space H of the universe into a product of two
spaces H1 ⊗H2, and accordingly form the joint-state vector ∣Ψ⟩ = ∣Ψ1⟩ ∣Ψ2⟩,
and want to ascribe an individual state (besides the joint state that describes
a correlation) to one of the two systems (say, the apparatus), does the mea-
surement problem arise. Zurek (2003a, p. 718) puts it like this:

In the absence of systems, the problem of interpretation seems to
disappear. There is simply no need for “collapse” in a universe
with no systems. Our experience of the classical reality does not
apply to the universe as a whole, seen from the outside, but to
the systems within it.

Moreover, terms like “observation”, “correlation”, and “interaction” will nat-
urally make little sense without a division into systems. Zeh has suggested
that the locality of the observer defines an observation in the sense that any
observation arises from the ignorance of a part of the universe; and that
this also defines the “facts” that can occur in a quantum system. Landsman
(1995, pp. 45 and 46) argues similarly:

The essence of a “measurement”, “fact”, or “event” in quantum
mechanics lies in the nonobservation, or irrelevance, of a certain

5If we dare to postulate this total state - see counterarguments by Auletta(2000)
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part of the system in question. (...) A world without parts de-
clared or forced to be irrelevant is a world without facts.

However, the assumption of a decomposition of the universe into subsystems
- as necessary as it appears to be for the emergence of the measurement
problem and for the definition of the decoherence program - is definitely
nontrivial. By definition, the universe as a whole is a closed system, and
therefore there are no “unobserved degrees of freedom” of an external envi-
ronment which would allow for the application of the theory of decoherence
to determine the space of quasiclassical observables of the universe in its en-
tirety. Also, there exists no general criterion for how the total Hilbert space
is to be divided into subsystems, while at the same time much of what is
called a property of the system will depend on its correlation with other sys-
tems. This problem becomes particularly acute if one would like decoherence
not only to motivate explanations for the subjective perception of classicality
(as in Zurek’s “existential interpretation”; see Zurek, 1993, 1998, 2003a, and
Sec. 4.C below), but moreover to allow for the definition of quasiclassical
“macrofacts.” Zurek (1998, p. 1820) admits this severe conceptual difficulty:

In particular, one issue which has been often taken for granted is
looming big, as a foundation of the whole decoherence program.
It is the question of what are the “systems” which play such a
crucial role in all the discussions of the emergent classicality.(...)
[A] compelling explanation of what are the systems - how to define
them given, say, the overall Hamiltonian in some suitably large
Hilbert space - would be undoubtedly most useful.

A frequently proposed idea is to abandon the notion of an “absolute” resolu-
tion and instead postulate the intrinsic relativity of the distinct state spaces
and proper- ties that emerge through the correlation between these relatively
defined spaces (see, for example, the proposals, unrelated to decoherence, of
Everett, 1957, Mermin, 1998a, 1998b; and Rovelli, 1996). This relative view
of systems and correlations has counterintuitive, in the sense of nonclassi-
cal, implications. However, as in the case of quantum entanglement, these
implications need not be taken as paradoxa that demand further resolution.
Accepting some properties of nature as counterintuitive is indeed a satis-
factory path to take in order to arrive at a description of nature that is as
complete and objective as is allowed by the range of our experience (which
is based on inherently local observations).
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B. The concept of reduced density matrices

Since reduced density matrices are a key tool of decoherence, it will be worth-
while to briefly review their basic properties and interpretation in the follow-
ing. The concept of reduced density matrices emerged in the earliest days
of quantum mechanics (Landau, 1927; von Neumann, 1932; Furry, 1936; for
some historical remarks, see Pessoa, 1998). In the context of a system of two
entangled systems in a pure state of the Einstein-Podolsky- Rosen type,

∣ψ⟩ =
1

√

2
(∣+⟩1 ∣−⟩2 − ∣−⟩1 ∣+⟩2) (3.1)

it had been realized early that for an observable Ô that pertains only to sys-
tem 1, Ô = Ô1⊗ Î2, the pure-state density matrix ρ = ∣ψ⟩ ⟨ψ∣ yields, according
to the trace rule ⟨Ô⟩ = Tr(ρÔ) and given the usual Born rule for calculating
probabilities, exactly the same statistics as the reduced density matrix ρ1

obtained by tracing over the degrees of freedom of system 2 (i.e., the states
∣+⟩2 and Ket−2),

ρ1 = Tr2 ∣ψ⟩ ⟨ψ∣ = 2 ⟨+ ∣ψ⟩ ⟨ψ ∣+⟩2 + 2 ⟨− ∣ψ⟩ ⟨ψ ∣−⟩2 (3.2)

since it is easy to show that, for this observable Ô,

⟨Ô⟩ψ = Tr(ρÔ) = Tr1(ρ1Ô1) (3.3)

This result holds in general for any pure state ∣ψ⟩ = ∑iαi ∣φi⟩1 ∣φi⟩2⋯ ∣φi⟩N
of a resolution of a system into N subsystems, where the {∣φi⟩j} are as-
sumed to form orthonormal basis sets in their respective Hilbert spaces
Hj, j = 1,⋯,N . For any observable Ô that pertains only to system j,

Ô = Î1 ⊗ Î2 ⊗ ⋯ ⊗ Îj−1 ⊗ Ôj ⊗ Îj=1 ⊗ ⋯ ⊗ ÎN , the statistics of Ô generated
by applying the trace rule will be identical regardless of whether we use
the pure-state density matrix ρ = ∣ψ⟩ ⟨ψ∣ or the reduced density matrix
ρj = Tr1,...j−1,j+1,...N ∣ψ⟩ ⟨ψ∣, since again ⟨Ô⟩ψ = Tr(ρÔ) = Trj(ρjÔj).

The typical situation in which the reduced density matrix arises is this: Be-
fore a premeasurement-type interaction, the observer knows that each indi-
vidual system is in some (unknown) pure state. After the interaction, i.e.,
after the correlation between the systems is established, the observer has ac-
cess to only one of the systems, say, system 1; everything that can be known
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about the state of the composite system must therefore be derived from mea-
surements on system 1, which will yield the possible outcomes of system 1
and their probability distribution. All information that can be extracted by
the observer is then, exhaustively and correctly, contained in the reduced
density matrix of system 1, assuming that the Born rule for quantum prob-
abilities holds.

Let us return to the Einstein-Podolsky-Rosen type example, Eqs. (3.1) and
(3.2). If we assume that the states of system 2 are orthogonal, 2 ⟨+ ∣−⟩2 = 0,
ρ1 becomes diagonal,

ρ1 = Tr2 ∣ψ⟩ ⟨ψ∣ =
1
2(∣+⟩ ⟨+∣)1 +

1
2(∣−⟩ ⟨−∣)1 (3.4)

But this density matrix is formally identical to the den???sity matrix that
would be obtained if system 1 were in a mixed state, i.e., in either one of
the two states ∣+⟩1 and ∣−⟩1 with equal probabilities - as opposed to the
superposition ∣ψ⟩, in which both terms are considered present, which could
in principle be confirmed by suitable interference experiments. This implies
that a measurement of an observable that only pertains to system 1 cannot
discriminate between the two cases, pure vs mixed state.6

However, note that the formal identification of the reduced density matrix
with a mixed-state density matrix is easily misinterpreted as implying that
the state of the system can be viewed as mixed too (see also the discus-
sion by d’Espagnat, 1988). Density matrices are only a calculational tool
for computing the probability distribution of a set of possible outcomes of
measurements; they do not specify the state of the system.7 Since the two
systems are entangled and the total composite system is still described by
a superposition, it follows from the standard rules of quantum mechanics
that no individual definite state can be attributed to one of the systems.
The reduced density matrix looks like a mixed-state density matrix because,
if one actually measured an observable of the system, one would expect to
get a definite outcome with a certain probability; in terms of measurement

6As discussed by Bub (1997, pp. 208210), this result also holds for any observable of
the composite system that factorizes into the form Ô = Ô1 ⊗ Ô2, where Ô1 and Ô2 do not
commute with the projection operators (∣±⟩ ⟨±∣)1 and (∣±⟩ ⟨±∣)2, respectively.

7In this context we note that any nonpure density matrix can be written in many
different ways, demonstrating that any partition in a particular ensemble of quantum
states is arbitrary.
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statistics, this is equivalent to the situation in which the system is in one
of the states from the set of possible outcomes from the beginning, that is,
before the measurement. As Pessoa (1998, p. 432) puts it, “taking a partial
trace amounts to the statistical version of the projection postulate.”

C. A modified von Neumann measurement scheme

Let us reconsider the von Neumann model for ideal quantum-mechanical
measurement, Eq. (3.5), but now with the environment included. We shall
denote the environment by E and represent its state before the measurement
interaction by the initial state vector ∣e0⟩ in a Hilbert space HE . As usual,
let us assume that the state space of the composite object system-apparatus-
environment is given by the tensor product of the individual Hilbert spaces,
HS ⊗ HA ⊗ HE . The linearity of the Schrödinger equation then yields the
following time evolution of the entire system SAE ,

(∑

n

cn ∣sn⟩) ∣ar⟩ ∣e0⟩
(1)
Ð→ (∑

n

cn ∣sn⟩ ∣an⟩) ∣e0⟩

(2)
Ð→∑

n

cn ∣sn⟩ ∣an⟩ ∣en⟩ (3.5)

where the ∣en⟩ re the states of the environment associated with the differ-
ent pointer states ∣an⟩ of the measuring apparatus. Note that while for two
subsystems, say, S and A, there always exists a diagonal (“Schmidt”) de-
composition of the final state of the form ∑n cn ∣sn⟩ ∣an⟩, for three subsystems
(for example, S, A and E), a decomposition of the form ∑n cn ∣sn⟩ ∣an⟩ ∣en⟩ is
not always possible. This implies that the total Hamiltonian that induces a
time evolution of the above kind, Eq. (3.5), must be of a special form.8

Typically, the ∣en⟩ will be product states of many microsopic subsystem states
∣εn⟩i corresponding to the individual parts that form the environment, i.e.,
∣en⟩ = ∣εn⟩1 ∣εn⟩2 ∣εn⟩3⋯. We see that a nonseparable and in most cases, for
all practical purposes, irreversible (due to the enormous number of degrees
of freedom of the environment) correlation has been established between the
states of the system-apparatus combination SA and the different states of

8For an example of such a Hamiltonian, see the model of Zurek (1981, 1982) and its
outline in Sec. 3.D.2 below. For a critical comment regarding limitations on the form of
the evolution operator and the possibility of a resulting disagreement with experimental
evidence, see Pessoa (1998).
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the environment E . Note that Eq. (3.5) also implies that the environment
has recorded the state of the system - and, equivalently, the state of the
system-apparatus composition. The environment, composed of many sub-
systems, thus acts as an amplifying, higher-order measuring device.

D. Decoherence and local suppression of interference

Interaction with the environment typically leads to a rapid vanishing of the
diagonal terms in the local density matrix describing the probability distribu-
tion for the outcomes of measurements on the system. This effect has become
known as environment-induced decoherence, and it has also frequently been
claimed to imply at least a partial solution to the measurement problem.

1. General formalism

In Sec. 3.B, we have already introduced the concept of local (or reduced)
density matrices and pointed out some caveats on their interpretation. In
the context of the decoherence program, reduced density matrices arise as
follows. Any observation will typically be restricted to the system-apparatus
component, SA, while the many degrees of freedom of the environment E
remain unobserved. Of course, typically some degrees of freedom of the envi-
ronment will always be included in our observation (e.g., some of the photons
scattered off the apparatus) and we shall accordingly include them in the “ob-
served part SA of the universe”. The crucial point is that there still remains
a comparatively large number of environmental degrees of freedom that will
not be observed directly.

Suppose then that the operator ÔSA represents an observable of SA only.
Its expectation value ⟨ÔSA⟩ is given by

⟨ÔSA⟩ = Tr(ρ̂SAE[ÔSA ⊗ ÎE]) = TrSA(ρ̂SAÔSA (3.6)

where the density matrix ρ̂SAE of the total SAE combination,

ρ̂SAE =∑
mn

cmc
∗
n ∣sm⟩ ∣am⟩ ∣em⟩ ⟨sm∣ ⟨am∣ ⟨em∣ (3.7)

has, for all purposes of statistical prediction, been re- placed by the local
(or reduced) density matrix ρ̂SA, obtained by “tracing out the unobserved
degrees of the environment”, that is,

ρ̂SA = TrE(ρ̂SAE) =∑
mn

cmc
∗
n ∣sm⟩ ∣am⟩ ⟨sm∣ ⟨am∣ ⟨em∣ ∣em⟩ (3.8)
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So far, ρ̂SA contains characteristic interference terms ∣sm⟩ ∣am⟩ ⟨sm∣ ⟨am∣, m ≠

n, since we cannot assume from the outset that the basis vectors ∣em⟩ of
the environment are necessarily mutually orthogonal, i.e., that ⟨en ∣ em⟩ = 0
if m ≠ n. Many explicit physical models for the interaction of a system
with the environment (see Sec. 3.D.2 below for a simple example), however,
have shown that due to the large number of subsystems that compose the
environment, the pointer states ∣en⟩ of the environment rapidly approach
orthogonality, ⟨en ∣ em⟩ (t) → δn,m, such that the reduced density matrix ρ̂SA
becomes approximately orthogonal in the “pointer basis” {∣an⟩}; that is

ρ̂SA
t
Ð→ ρ̂dSA ≈∑

n

∣cn∣
2
∣sm⟩ ∣am⟩ ⟨sm∣ ⟨am∣

=∑

n

∣cn∣
2P̂
(S)
n ⊗ P̂

(A)
n (3.9)

Here, P̂
(S)
n and P̂

(A)
n are the projection operators onto the eigenstates of

S and A, respectively. Therefore the interference terms have vanished in
this local representation, i.e., phase coherence has been locally lost. This is
precisely the effect referred to as environment-induced de- coherence. The
decohered local density matrices de- scribing the probability distribution of
the outcomes of a measurement on the system-apparatus combination are
formally (approximately) identical to the corresponding mixed-state density
matrix. But as we pointed out in Sec. 3.B, we must be careful in interpreting
this state of affairs, since full coherence is retained in the total density matrix
ρ̂SAE .

2. An exactly solvable two-state model for decoherence

To see how the approximate mutual orthogonality of the environmental state
vectors arises, let us discuss a simple model first introduced by Zurek (1982).
Consider a system S with two spin states {∣⇑⟩ , ∣⇓⟩} that interacts with an
environment E described by a collection of N other two-state spins repre-
sented by {∣↑k⟩ , ∣↓k⟩}, k = 1, . . . ,N . The self-Hamiltonians ĤS and ĤE and
the self-interaction Hamiltonian ĤEE of the environment are taken to be equal
to zero. Only the interaction Hamiltonian ĤSE that describes the coupling
of the spin of the system to the spins of the environment is assumed to be
nonzero and of the form

ĤSE = (∣⇑⟩ ⟨⇑∣ − ∣⇓⟩ ⟨⇓∣)⊗∑

k

gk(∣↑k⟩ ⟨↓k∣ − ∣↓k⟩ ⟨↑k∣) ⊗
k′≠k

Îk′ (3.10)
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where the gk are coupling constants and Îk = (∣↑k⟩ ⟨↓k∣+∣↑k⟩ ⟨↓k∣) is the identity
operator for the kth environmental spin. Applied to the initial state before
the interaction is turned on,

∣ψ(0)⟩ = (∣⇑⟩ + ∣⇓⟩)

N
⊗
k=1

(αk ∣↑k⟩ + βk ∣↓k⟩) (3.11)

this Hamiltonian yields a time evolution of the state given by

∣ψ(t)⟩ = a ∣⇑⟩ ∣E⇑(t)⟩ + b ∣⇓⟩ ∣E⇓(t)⟩ (3.12)

where the two environmental states ∣E⇑(t)⟩ and ∣E⇓(t)⟩ are

∣E⇑(t)⟩ = ∣E⇓(−t)⟩ =
N
⊗
k=1

(αke
igkt ∣↑k⟩ + βke

−igkt ∣↓k⟩) (3.13)

The reduced density matrix ρS = TrE(∣ψ(t)⟩ ⟨ψ(t)∣) is then

ρS =∣a∣
2
∣⇑⟩ ⟨⇑∣ + ∣b∣2 ∣⇓⟩ ⟨⇓∣

+ z(t)ab∗ ∣⇑⟩ ⟨⇓∣ + z∗(t)a∗b ∣⇓⟩ ⟨⇑∣ (3.14)

where the interference coefficient z(t) which determines the weight of the
off-diagonal elements in the reduced density matrix is given by

z(t) = ⟨E⇑(t) ∣E⇓(t)⟩ =
N

∏

k=1

(∣αk∣
2eigkt + ∣βk∣

2e−igkt) (3.15)

and thus

∣z(t)∣2 =
N

∏

k=1

{1 + [(∣αk∣
2
− ∣βk∣

2
)

2
− 1] sin2 2gkt} (3.16)

At t = 0, z(t) = 1, i.e., the interference terms are fully present, as expected.
If ∣αk∣2 = 0 or 1 for each k, i.e., if the environment is in an eigenstate of
the interaction Hamiltonian ĤSE of the type ∣↑1⟩ ∣↑2⟩ ∣↓3⟩⋯ ∣↑N⟩ and/or if
2gkt = mπ (m = 0,1, ....), then z(t)2

≡ 1, so coherence is retained over time.
However, under realistic circumstances, we can typically assume a random
distribution of the initial states of the environment (i.e., of coefficients αk, βk)
and of the coupling coefficients gk. Then, in the long-time average,

⟨∣z(t)∣2⟩t→∞ ≃ 2−N
N

∏

k=1

[1 + (∣αk∣
2
− ∣βk∣

2
)

2
]
N→∞
Ð→ 0 (3.17)
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so the off-diagonal terms in the reduced density matrix become strongly
damped for large N .

It can also be shown directly that, given very general assumptions about the
distribution of the couplings gk (namely, requiring their initial distribution to
have finite variance), z(t) exhibits a Gaussian time dependence of the form
z(t) ∝ eiAte−B

2t2/2, where A and B are real constants (Zurek et al., 2003).
For the special case in which αk = α and gk = g for all k, this behavior of z(t)
can be immediately seen by first rewriting z(t) as the binomial expansion

z(t) = (∣α∣2eigt + ∣β∣2e−igt)N =

N

∑

l=0

(
N

l
)∣α∣2l∣β∣2(N−l)eig(2l−N)t (3.18)

For large N , the binomial distribution can then be approximated by a Gaus-
sian,

(
N

l
)∣α∣2l∣β∣2(N−l) ≈

e−(l−N ∣α∣
2)2/(2N ∣α∣2∣β∣2)

√

2πN ∣α∣2∣β∣2
(3.19)

in which case z(t) becomes

z(t) =
N

∑

l=0

e−(l−N ∣α∣
2)2/(2N ∣α∣2∣β∣2)

√

2πN ∣α∣2∣β∣2
eig(2l−N)t (3.20)

that is, z(t) is the Fourier transform of an (approximately) Gaussian distri-
bution and is therefore itself (approximately) Gaussian.

Detailed model calculations, in which the environment is typically repre-
sented by a more sophisticated model consisting of a collection of harmonic
oscillators (Caldeira and Leggett, 1983; Unruh and Zurek, 1989; Hu et al.,
1992; Zurek et al., 1993; Joos et al., 2003; Zurek, 2003a), have shown that
the damping occurs on extremely short decoherence time scales τD, which
are typically many orders of magnitude shorter than the thermal relaxation.
Even microscopic systems such as large molecules are rapidly decohered by
the interaction with thermal radiation on a time scale that is much shorter
than any practical observation could resolve; for mesoscopic systems such as
dust particles, the 3K cosmic microwave background radiation is sufficient to
yield strong and immediate decoherence (Joos and Zeh, 1985; Zurek, 1991).

Within τD, ∣z(t)∣ approaches zero and remains close to zero, fluctuating with
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an average standard deviation of the random-walk-type σ ∼

√

N (Zurek,
1982). However, the multiple periodicity of z(t) implies that coherence, and
thus the purity of the reduced density matrix, will reappear after a certain
time τr, which can be shown to be very long and of the Poincar-type with
τr ∼ N !. For macroscopic environments of realistic but finite sizes, τr can
exceed the lifetime of the universe (Zurek, 1982) but nevertheless always re-
mains finite.

From a conceptual point of view, recurrence of coherence is of little relevance.
The recurrence time could only be infinitely long in the hypothetical case of
an infinitely large environment. In this situation, off-diagonal terms in the
reduced density matrix would be irreversibly damped and lost in the limit
t→∞, which has sometimes been regarded as describing a physical collapse
of the state vector (Hepp, 1972). But the assumption of infinite sizes and
times is never realized in nature (Bell, 1975), nor can information ever be
truly lost (as achieved by a “true” state vector collapse) through unitary time
evolution - full coherence is always retained at all times in the total density
matrix ρSAE = ∣ψ(t)⟩ ⟨ψ(t)∣.

We can therefore state the general conclusion that, except for exceptionally
well-isolated and carefully prepared microscopic and mesoscopic systems, the
interaction of the system with the environment causes the off- diagonal terms
of the local density matrix, expressed in the pointer basis and describing the
probability distribution of the possible outcomes of a measurement on the
system, to become extremely small in a very short period of time, and this
process is irreversible for all practical purposes.

E. Environment-induced superselection

Let us now turn to the second main consequence of the interaction with the
environment, namely, the environment-induced selection of stable preferred-
basis states. We discussed in Sec. 2.C the fact that the quantum-mechanical
measurement scheme as represented by Eq. (2.1) does not uniquely define
the expansion of the post-measurement state and thereby leaves open the
question of which observable can be considered as having been measured by
the apparatus. This situation is changed by the inclusion of the environment
states in Eq. (3.5) for the following two reasons:

(1) Environment-induced superselection of a preferred basis. The interac-
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tion between the apparatus and the environment singles out a set of
mutually commuting observables.

(2) The existence of a tri-decompositional uniqueness theorem (Elby and
Bub, 1994; Clifton, 1995; Bub, 1997). If a state ∣ψ⟩ in a Hilbert space
H1 ⊗H2 ⊗H3 can be decomposed into the diagonal (“Schmidt”) form
∣ψ⟩ = ∑iαi ∣φi⟩1 ∣φi⟩2 ∣φi⟩3, the expansion is unique provided that the
{∣φi⟩1} and {∣φi⟩2} are sets of linearly independent, normalized vectors
in H1 and H2, respectively, and that {∣φi⟩3} is a set of mutually non-
collinear normalized vectors in H3. This can be generalized to an N -
decompositional uniqueness theorem, in which N ≥ 3. Note that it is
not always possible to decompose an arbitrary pure state of more than
two systems (N ≥ 3) into the Schmidt form ∣ψ⟩ = ∑iαi ∣φi⟩1 ∣φi⟩2⋯ ∣φi⟩N ,
but if the decomposition exists, its uniqueness is guaranteed.

The tri-decompositional uniqueness theorem ensures that the expansion of
the final state in Eq. (3.5) is unique, which fixes the ambiguity in the choice
of the set of possible outcomes. It demonstrates that the inclusion of (at
least) a third “system” (here referred to as the environment) is necessary to
remove the basis ambiguity.

Of course, given any pure state in the composite Hilbert space H1 ⊗H2 ⊗

H3, the tri-decompositional uniqueness theorem neither tells us whether a
Schmidt decomposition exists nor specifies the unique expansion itself (pro-
vided the decomposition is possible), and since the precise states of the en-
vironment are generally not known, an additional criterion is needed that
determines what the preferred states will be.

1. Stability criterion and pointer basis

The decoherence program has attempted to define such a criterion based on
the interaction with the environment and the idea of robustness and preserva-
tion of correlations. The environment thus plays a double role in suggesting
a solution to the preferred-basis problem: it selects a preferred pointer ba-
sis, and it guarantees its uniqueness via the tri-decompositional uniqueness
theorem.

In order to motivate the basis superselection approach proposed by the de-
coherence program, we note that in step (2) of Eq. (3.5) we tacitly assumed
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that interaction with the environment does not disturb the established cor-
relation between the state of the system, ∣sn⟩, and the corresponding pointer
state ∣an⟩. This assumption can be viewed as a generalization of the concept
of “faithful measurement” to the realistic case in which the environment is
included. Faithful measurement in the usual sense concerns step (1), namely,
the requirement that the measuring apparatus A act as a reliable “mirror” of
the states of the system S by forming only correlations of the form ∣sn⟩ ∣an⟩
but not ∣sm⟩ ∣an⟩ with m ≠ n. But since any realistic measurement process
must include the inevitable coupling of the apparatus to its environment, the
measurement could hardly be considered faithful as a whole if the interaction
with the environment disturbed the correlations between the system and the
apparatus.9

It was therefore first suggested by Zurek (1981) that the preferred pointer
basis be taken as the basis that “contains a reliable record of the state of
the system S” (Zurek, 1981, p. 1519), i.e., the basis in which the system-
apparatus correlations ∣sn⟩ ∣an⟩ are left undisturbed by the subsequent for-
mation of correlations with the environment (the stability criterion). One
can then find a sufficient criterion for dynamically stable pointer states that
preserve the system-apparatus correlations in spite of the interaction of the
apparatus with the environment by requiring all pointer state projection op-
erators P̂

(A)
n = ∣an⟩ ⟨an∣ to commute with the interaction Hamiltonian ĤAE ,10

[P̂
(A)
n , ĤAE] = 0 for all n (3.21)

This implies that any correlation of the measured system (or any other sys-
tem, for instance, an observer) with the eigenstates of a preferred apparatus
observable,

ÔA =∑

n

λnP̂
(A)
n (3.22)

is preserved, and that the states of the environment reliably mirror the
pointer states P̂

(A)
n . In this case, the environment can be regarded as carry-

ing out a non-demolition measurement on the apparatus. The commutativ-
ity requirement, Eq. (3.21), is obviously fulfilled if ĤAE is a function of ÔA,

9For fundamental limitations on the precision of von Neumann measurements of opera-
tors that do not commute with a globally conserved quantity, see the Wigner-Araki-Yanase
theorem(Wigner, 1952; Araki and Yanase, 1960).

10For simplicity, we assume here that the environment E interacts directly only with the
apparatus A, but not with the system S.
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ĤAE = ĤAE(ÔA). Conversely, system-apparatus correlations in which the
states of the apparatus are not eigenstates of an observable that commutes
with ĤAE will, in general, be rapidly destroyed by the interaction.

Put the other way around, this implies that the environment determines,
through the form of the interaction Hamiltonian ĤAE , a preferred apparatus
observable ÔA, Eq. (3.22), and thereby also the states of the system that
are measured by the apparatus, that is, reliably recorded through the for-
mation of dynamically stable quantum correlations. The tri-decompositional
uniqueness theorem then guarantees the uniqueness of the expansion of the
final state ∣ψ⟩ = ∑n cn ∣sn⟩ ∣an⟩ ∣en⟩ (where no constraints on the cn have to be
imposed) and thereby the uniqueness of the preferred pointer basis.

Other criteria similar to the commutativity requirement, Eq. (3.21), have
been suggested for the selection of the preferred pointer basis because it
turns out that in realistic cases the simple relation of Eq. (3.21) can usu-
ally only be fulfilled approximately (Zurek, 1993; Zurek et al., 1993). More
general criteria, for example, have been based on the von Neumann entropy
−Trρ2

Ψ(t) lnρ2
Ψ(t), or the purity Trρ2

Ψ(t), with the goal of finding the most
robust states or the states which become least entangled with the environ-
ment in the course of the evolution (Zurek, 1993, 1998, 2003a; Zurek et al.,
1993). Pointer states are obtained by extremizing the measure (.e., mini-
mizing entropy, or maximizing purity, etc.) over the initial state ∣Ψ⟩ and
requiring the resulting states to be robust when varying the time t. Appli-
cation of this method leads to a ranking of the possible pointer states with
respect to their “classicality”, i.e., their robustness with respect to interaction
with the environment, and thus allows for the selection of a preferred pointer
basis in terms of the “most classical” pointer states (the predictability sieve;
see Zurek, 1993; Zurek et al., 1993). Although the proposed criteria differ
somewhat and other meaningful criteria are likely to be suggested in the fu-
ture, it is hoped that in the macroscopic limit the resulting stable pointer
states obtained from different criteria will turn out to be very similar (Zurek,
2003a). For some toy models (in particular, for harmonic-oscillator models
that lead to coherent states as pointer states), this has already been verified
explicitly (see, for example, Kbler and Zeh, 1973; Zurek et al., 1993; Disi and
Kiefer, 2000; Joos et al., 2003; Eisert, 2004).

2. Selection of quasiclassical properties
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System-environment interaction Hamiltonians frequently describe a scatter-
ing process of surrounding particles (photons, air molecules, etc.) interacting
with the system under study. Since the force laws describing such processes
typically depend on some power of distance (such as ∝ r−2 in Newton’s or
Coulomb’s force law), the interaction Hamiltonian will usually commute with
the position basis, such that, according to the commutativity requirement of
Eq. (3.21), the preferred basis will be in position space. The fact that po-
sition is frequently the determinate property of our experience can then be
explained by referring to the dependence of most interactions on distance
(Zurek, 1981, 1982, 1991).

This holds, in particular, for mesoscopic and macroscopic systems, as demon-
strated, for instance, by the pioneering study of Joos and Zeh (1985), in which
surrounding photons and air molecules are shown to continuously “measure”
the spatial structure of dust particles, leading to rapid decoherence into an
apparent (improper) mixture of wave packets that are sharply peaked in po-
sition space. Similar results sometimes even hold for microscopic systems
(usually found in energy eigenstates; see below) when they occur in distinct
spatial structures that couple strongly to the surrounding medium. For in-
stance, chiral molecules such as sugar are always observed to be in chirality
eigenstates (left-handed and right-handed) which are superpositions of dif-
ferent energy eigenstates (Harris and Stodolsky, 1981; Zeh, 2000). This is
explained by the fact that the spatial structure of these molecules is continu-
ously “monitored” by the environment, for example, through the scattering
of air molecules, which gives rise to a much stronger coupling than could typ-
ically be achieved by a measuring device that was intended to measure, say,
parity or energy; furthermore, any attempt to prepare such molecules in en-
ergy eigenstates would lead to immediate decoherence into environmentally
stable (“dynamically robust”) chirality eigenstates, thus selecting position as
the preferred basis.

On the other hand, it is well known that many systems, especially in the
microscopic domain, are typically found in energy eigenstates, even if the
interaction Hamiltonian depends on a different observable than energy, e.g.,
position. Paz and Zurek (1999) have shown that this situation arises when the
predominant frequencies present in the environment are significantly lower
than the intrinsic frequencies of the system, that is, when the separation
between the energy states of the system is greater than the largest energies
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available in the environment. Then, the environment will only be able to
monitor quantities that are constants of motion. In the case of nondegener-
acy, this will be energy, thus leading to the environment-induced superselec-
tion of energy eigenstates for the system.

Another example of environment-induced superselection that has been stud-
ied is related to the fact that only eigenstates of the charge operator are
observed, but never superpositions of different charges. The existence of
the corresponding superselection rules was first only postulated (Wick et al.,
1952, 1970), but could subsequently be explained in the framework of deco-
herence by referring to the interaction of the charge with its own Coulomb
(far) field, which takes the role of an “environment”, leading to immedi-
ate decoherence of charge superpositions into an apparent mixture of charge
eigenstates (Giulini et al., 1995; Giulini, 2000).

In general, three different cases have typically been distinguished (or exam-
ple, in Paz and Zurek, 1999) for the kind of pointer observable emerging from
an interaction with the environment, depending on the relative strengths of
the system’s self-Hamiltonian ĤS and of the system-environment interaction
Hamiltonian ĤSE :

(1) When the dynamics of the system are dominated by ĤSE , i.e., the in-
teraction with the environment, the pointer states will be eigenstates
of ĤSE (and thus typically eigenstates of position). This case corre-
sponds to the typical quantum measurement setting; see, for example,
the model of Zurek (1981, 1982), which is outlined in Sec. 3.D.2 above.

(2) When the interaction with the environment is weak and ĤS dominates
the evolution of the system (that is, when the environment is “slow”
in the above sense), a case that frequently occurs in the microscopic
domain, pointer states will arise that are energy eigenstates of ĤS (Paz
and Zurek, 1999).

(3) In the intermediate case, when the evolution of the system is gov-
erned by ĤSE and ĤS in roughly equal strength, the resulting preferred
states will represent a “compromise” between the first two cases; for
in- stance, the frequently studied model of quantum Brownian motion
has shown the emergence of pointer states localized in phase space, i.e.,
in both position and momentum (Unruh and Zurek, 1989; Zurek et al.,
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1993; Joos et al., 2003; Zurek, 2003a; Eisert, 2004).

3. Implications for the preferred-basis problem

The decoherence program proposes that the preferred basis be selected by the
requirement that correlations be preserved in spite of the interaction with the
environment, and thus be chosen through the form of the system-environment
interaction Hamiltonian. This seems certainly reasonable, since only such
“robust” states will in general be observable - and, after all, we seek only an
explanation for our experience (see the discussion in Sec. 2.B.3). Although
only particular examples have been studied (for a survey and references, see,
for example, Blanchard et al., 2000; Joos et al., 2003; Zurek, 2003a), the
results thus far suggest that the selected properties are in agreement with
our observation: for mesoscopic and macroscopic objects the distance- de-
pendent scattering interaction with surrounding air molecules, photons, etc.,
will in general give rise to immediate decoherence into spatially localized
wave packets and thus select position as the preferred basis. On the other
hand, when the environment is comparably “slow”, as is frequently the case
for microscopic systems, environment-induced superselection will typically
yield energy eigenstates as the preferred states.

The clear merit of the approach of environment-induced superselection lies
in the fact that the preferred basis is not chosen in an ad hoc manner simply
to make our measurement records determinate or to match our experience
of which physical quantities are usually perceived as determinate (for exam-
ple, position). Instead the selection is motivated on physical, observer-free
grounds, that is, through the system-environment inter- action Hamiltonian.
The vast space of possible quantum-mechanical superpositions is reduced so
much because the laws governing physical interactions depend only on a few
physical quantities (position, momentum, charge, and the like), and the fact
that precisely these are the properties that appear determinate to us is ex-
plained by the dependence of the preferred basis on the form of the interac-
tion. The appearance of “classicality” is therefore grounded in the structure
of the physical laws - certainly a highly satisfying and reasonable approach.

The above argument in favor of the approach of environment-induced supers-
election could, of course, be considered as inadequate on a fundamental level:
All physical laws are discovered and formulated by us, so they can contain
only the determinate quantities of our experience. These are the only quan-
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tities we can perceive and thus include in a physical law. Thus the derivation
of determinacy from the structure of our physical laws might seem circular.
However, we argue again that it suffices to demand a subjective solution to
the preferred-basis problem - that is, to provide an answer to the question of
why we perceive only such a small subset of properties as determinate, not
whether there really are determinate properties (on an ontological level) and
what they are (cf. the remarks in Sec. 2.B.3).

We might also worry about the generality of this approach. One would need
to show that any such environment-induced superselection leads, in fact, to
precisely those properties that appear determinate to us. But this would
require precise knowledge of the system and the interaction Hamiltonian.
For simple toy models, the relevant Hamiltonians can be written down ex-
plicitly. In more complicated and realistic cases, this will in general be very
difficult, if not impossible, since the form of the Hamiltonian will depend on
the particular system or apparatus and the monitoring environment under
consideration, where, in addition, the environment is not only difficult to de-
fine precisely, but also constantly changing, uncontrollable, and, in essence,
infinitely large.

But the situation is not as hopeless as it might sound, since we know that the
interaction Hamiltonian will, in general, be based on the set of known phys-
ical laws which, in turn, employ only a relatively small number of physical
quantities. So as long as we assume the stability criterion and consider the
set of known physical quantities as complete, we can automatically anticipate
that the preferred basis will be a member of this set. The remaining, yet very
relevant, question is then which sub- set of these properties will be chosen
in a specific physical situation (for example, will the system preferably be
found in an eigenstate of energy or of position?), and to what extent this will
match the experimental evidence. To give an answer, one usually will need
a more detailed knowledge of the interaction Hamiltonian and of its relative
strength with respect to the self-Hamiltonian of the system in order to verify
the approach. Besides, as mentioned in Sec. 3.E, there exist other criteria
than the commutativity requirement, and whether they all lead to the same
determinate properties is a question that has not yet been fully explored.

Finally, a fundamental conceptual difficulty of the decoherence-based ap-
proach to the preferred-basis problem is the lack of a general criterion for
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what defines the systems and the “unobserved” degrees of freedom of the
environment (see the discussion in Sec. 3.A). While in many laboratory-type
situations, the division into system and environment might seem straight-
forward, it is not clear a priori how quasiclassical observables can be defined
through environment-induced superselection on a larger and more general
scale, when larger parts of the universe are considered where the split into
subsystems is not suggested by some specific system-apparatus-surroundings
setup.

To summarize, environment-induced superselection of a preferred basis (i)
proposes an explanation for why a particular pointer basis gets chosen at
all - by arguing that it is only the pointer basis that leads to stable, and
thus perceivable, records when the interaction of the apparatus with the en-
vironment is taken into account; and (ii) argues that the preferred basis will
correspond to a subset of the set of the determinate properties of our experi-
ence, since the governing interaction Hamiltonian will depend solely on these
quantities. But it does not tell us precisely what the pointer basis will be in
any given physical situation, since it will usually be hardly possible to write
down explicitly the relevant interaction Hamiltonian in realistic cases. This
also means that it will be difficult to argue that any proposed criterion based
on the interaction with the environment will al- ways and in all generality
lead to exactly those proper- ties that we perceive as determinate.

More work remains to be done, therefore, to fully explore the general valid-
ity and applicability of the approach of environment-induced superselection.
But since the results obtained thus far from toy models have been in promis-
ing agreement with empirical data, there is little reason to doubt that the
decoherence program has proposed a very valuable criterion for explaining
the emergence of preferred states and their robustness. The fact that the
approach is derived from physical principles should be counted additionally
in its favor.

4. Pointer basis vs instantaneous Schmidt states

The so-called Schmidt basis, obtained by diagonalizing the (reduced) density
matrix of the system at each instant of time, has been frequently studied
with respect to its ability to yield a preferred basis (see, for example, Zeh,
1973; Albrecht, 1992, 1993), having led some to consider the Schmidt-basis
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states as describing “instantaneous pointer states” (Albrecht, 1992). How-
ever, as it has been emphasized (for example, by Zurek, 1993), any density
matrix is diagonal in some basis, and this basis will in general not play any
special interpretive role. Pointer states that are supposed to correspond to
quasi- classical stable observables must be derived from an explicit criterion
for classicality (typically, the stability criterion); the simple mathematical
diagonalization procedure of the instantaneous density matrix will generally
not suffice to determine a quasiclassical pointer basis (see the studies by
Barvinsky and Kamenshchik, 1995; Kent and McElwaine, 1997).

n a more refined method, one refrains from computing instantaneous Schmidt
states and instead allows for a characteristic decoherence time τD to pass,
during which the reduced density matrix decoheres (a process that can be
described by an appropriate master equation) and becomes approximately
diagonal in the stable pointer basis, the basis that is selected by the stability
criterion. Schmidt states are then calculated by diagonalizing the decohered
density matrix. Since decoherence usually leads to rapid diagonality of the
reduced density matrix in the stability-selected pointer basis to a very good
approximation, the resulting Schmidt states are typically very similar to the
pointer basis except when the pointer states are very nearly degenerate. The
latter situation is readily illustrated by considering the approximately diag-
onalized decohered density matrix

ρ = (

1
2 + δ ω∗

ω 1
2 − δ

) (3.23)

where ∣omega∣ << 1 (strong decoherence) and δ << 1 (near-degeneracy; Al-
brecht, 1993). If decoherence led to exact diagonality, ω = 0, the eigen-
states would be, for any fixed value of δ, proportional to (0,1) and (1,0)
(corresponding to the “ideal” pointer states). However, for fixed ω > 0 (ap-
proximate diagonality) and δ → 0 (degeneracy), the eigenstates become pro-
portional to (±∣ω∣/ω,1), which implies that, in the case of degeneracy, the
Schmidt decomposition of the reduced density matrix can yield preferred
states that are very different from the stable pointer states, even if the deco-
hered, rather than the instantaneous, reduced density matrix is diagonalized.

In summary, it is important to emphasize that stability (or a similar crite-
rion) is the relevant requirement for the emergence of a preferred quasiclas-
sical basis, which cannot, in general, be achieved by simply diagonalizing
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the instantaneous reduced density matrix. However, the eigenstates of the
decohered reduced density matrix will, in many situations, approximate the
quasiclassical stable pointer states well, especially when these pointer states
are sufficiently nondegenerate.

F. Envariance, quantum probabilities, and the Born rule

In the following, we shall review an interesting and promising approach intro-
duced recently by Zurek (2003a, 2003b, 2004a, 2004b) that aims to explain
the emergence of quantum probabilities and to deduce the Born rule based
on a mechanism termed “environment- assisted invariance”, or “envariance”
for short, a particular symmetry property of entangled quantum states. The
original exposition of Zurek (2003a) was followed up by several articles by
other authors, who assessed the approach, pointed out more clearly the as-
sumptions entering into the derivation, and presented variants of the proof
(Barnum, 2003; Schlosshauer and Fine, 2003; Mohrhoff, 2004). An expanded
treatment of envariance and quantum probabilities that addresses some of
the issues discussed in these papers and that offers an interesting outlook on
further implications of envariance can be found in Zurek (2004a). In our out-
line of the theory of envariance, we shall follow this most recent treatment,
as it spells out the derivation and the required assumptions more explicitly
and in greater detail and clarity than in Zurek’s earlier (2003a, 2003b, 2004b)
papers (cf. also the remarks of Schlosshauer and Fine, 2003).

We include a discussion of Zurek’s proposal here for two reasons. First, the
derivation is based on the inclu- sion of an environment E , entangled with the
system S of interest to which probabilities of measurement out- comes are to
be assigned, and thus it matches well the spirit of the decoherence program.
Second, and more importantly, despite the contributions of decoherence to
explaining the emergence of subjective classicality from quantum mechanics,
a consistent derivation of classicality (including a motivation for some of the
axioms of quantum mechanics, as suggested by Zurek, 2003a) requires the
separate derivation of the Born rule. The decoherence program relies heavily
on the concept of reduced density matrices and the related formalism and
interpretation of the trace operation, see Eq. (3.6), which presuppose Borns
rule. Therefore decoherence itself cannot be used to derive the Born rule (as
was tried, for example, by Zurek, 1998, and Deutsch, 1999) since otherwise
the argument would be rendered circular (Zeh, 1997; Zurek, 2003a).
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There have been various attempts in the past to replace the postulate of the
Born rule by a derivation. Gleason’s (1957) theorem has shown that if one
imposes the condition that for any orthonormal basis of a given Hilbert space
the sum of the probabilities associated with each basis vector must add up to
one, the Born rule is the only possibility for the calculation of probabilities.
However, Gleason’s proof provides little insight into the physical meaning
of the Born probabilities, and therefore various other attempts, typically
based on a relative-frequencies approach (i.e., on a counting argument), have
been made towards a derivation of the Born rule in a no-collapse (and usually
relative-state) setting (see, for example, Everett, 1957; Hartle, 1968; DeWitt,
1971; DeWitt and Graham, 1973; Graham, 1973; Geroch, 1984; Farhi et al.,
1989; Deutsch, 1999). However, it was pointed out that these approaches fail
due to the use of circular arguments (Stein, 1984; Kent, 1990; Squires, 1990;
Barnum et al., 2000); cf. also Wallace(2003b) and Saunders (2002).

Zurek’s recently developed theory of envariance provides a promising new
strategy for deriving, given certain assumptions, the Born rule in a manner
that avoids the circularities of the earlier approaches. We shall outline the
concept of envariance in the following and show how it can lead to Born’s
rule.

1. Environment-assisted invariance

Zurek introduces his definition of envariance as follows: Consider a compos-
ite state ∣ψSE⟩ (where, as usual, S refers to the “system” and E to some
“environment”) in a Hilbert space given by the tensor product HS ⊗HE , and
a pair of unitary transformations ÛS = ûS ⊗ ÎE and ÛE = ÎS ⊗ ûE acting on S
and E , respectively. If ∣ψSE⟩ invariant under the combined application of ÛS
and ÛE

ÛE(ÛS ∣ψSE⟩) = ∣ψSE⟩ (3.24)

∣ψSE⟩ is called envariant under ûS . In other words, the change in ∣ψSE⟩
induced by acting on S via ÛS can be undone by acting on E via ÛE . Note
that envariance is a distinctly quantum feature, absent from pure classical
states, and a consequence of quantum entanglement.

The main argument of Zurek’s derivation is based on a study of a composite
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pure state in the diagonal Schmidt decomposition

∣ψSE⟩ =
1

√

2
(eiϕ1

∣s1⟩ ∣e1⟩ + e
iϕ2

∣s2⟩ ∣e2⟩) (3.25)

where the {∣sk⟩} and {∣ek⟩} are sets of orthonormal basis vectors that span the
Hilbert spaces HS and HE , respectively. The case of higher-dimensional state
spaces can be treated similarly, and a generalization to expansion coefficients
of different magnitudes can be made by application of a standard counting
argument (Zurek, 2003b, 2004a). The Schmidt states ∣sk⟩ are identified with
the outcomes, or “events” (Zurek, 2004b, p. 12), to which probabilities are
to be assigned.

Zurek now states three simple assumptions, called “facts” (Zurek, 2004a, p.
4; see also the discussion in Schlosshauer and Fine, 2003):

(A1) A unitary transformation of the form ⋯ ⊗ ÎS ⊗ ⋯ does not alter the
state of S.

(A2) All measurable properties of S including probabilities of outcomes of
measurements on S, are fully determined by the state of S.

(A3) The state of S is completely specified by the global composite state
vector ∣ψSE⟩

Given these assumptions, one can show that the state of S and any measur-
able properties of S cannot be affected by envariant transformations. The
proof goes as follows. The effect of an envariant transformation ûS⊗ÎE acting
on ∣ψSE⟩ can be undone by a corresponding “countertransformation” ÎS ⊗ ûE
that restores the original state vector ∣ψSE⟩. Since it follows from (A1) that
the latter transformation has left the state of S unchanged, but (A3) implies
that the final state of S (after the transformation and countertransforma-
tion) is identical to the initial state of S, the first transformation ûS ⊗ ÎE
cannot have altered the state of S either. Thus, using assumption (A2), it
follows that an envariant transformation ûS ⊗ ÎE acting on ∣ψSE⟩ leaves any
measurable properties of S unchanged, in particular the probabilities associ-
ated with outcomes of measurements performed on S.

Let us now consider two different envariant transformations: A phase trans-
formation of the form

ûS(ξ1, ξ2) = e
iξ1

∣s1⟩ ⟨s1∣ e
iξ2

∣s2⟩ ⟨s2∣ (3.26)
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that changes the phases associated with the Schmidt product states ∣sk⟩ ∣ek⟩
in Eq. (3.25), and a swap transformation

ûS(1↔ 2) = eiξ12 ∣s1⟩ ⟨s2∣ e
iξ21

∣s2⟩ ⟨s1∣ (3.27)

that exchanges the pairing of the ∣sk⟩ with the ∣el⟩. Based on the assumptions
(A1)-(A3) mentioned above, envariance of ∣ψSE⟩ under these transformations
means that measurable properties of S cannot depend on the phases ϕk in
the Schmidt expansion of ∣ψSE⟩, Eq. (3.25). Similarily, it follows that a swap
ûS(1↔ 2) leaves the state of S unchanged, and that the consequences of the
swap can- not be detected by any measurement that pertains to S alone.

2. Deducing the Born rule

Together with an additional assumption, this result can then be used to
show that the probabilities of the “outcomes” ∣sk⟩ appearing in the Schmidt
decomposition of ∣ψSE⟩, must be equal, thus arriving at Borns rule for the
special case of a state-vector expansion with coefficients of equal magnitude.
Zurek (2004a) offers three possibilities for such an assumption. Here we
shall limit our discussion to one of these possible assumptions (see also the
comments in Schlosshauer and Fine, 2003):

(A4) The Schmidt product states ∣sk⟩ ∣ek⟩ appearing in the state-vector ex-
pansion of ∣ψSE⟩ imply a direct and perfect correlation of the mea-
surement outcomes associated with the ∣sk⟩ and ∣ek⟩. That is, if an
observable ÔS = ∑l sl ∣sl⟩ ⟨sl∣ is measured on S and ∣sk⟩ is obtained, a
subsequent measurement of ÔE = ∑l el ∣el⟩ ⟨el∣ on E will yields ∣el⟩ with
certainty (i.e., with probability equal to one).

This assumption explicitly introduces a probability concept into the deriva-
tion. (Similarly, the two other possible assumptions suggested by Zurek
establish a connection between the state of S and probabilities of outcomes
of measurements on S).

Then, denoting the probability for the outcome ∣sk⟩ by p(∣sk⟩ , ∣ψSE⟩) when
the composite system SE is described by the state vector ∣ψSE⟩, this assump-
tion implies that

p(∣sk⟩ , ∣ψSE⟩) = p(∣ek⟩ , ∣ψSE⟩) (3.28)
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After acting with the envariant swap transformation ÛS = ûS(1 ↔ 2) ⊗ ÎE
[see Eq. (3.27)] on ∣ψSE⟩ and using assumption (A4) again, we get

p(∣s1⟩ ; ÛS ∣ψSE⟩) = p(∣e2⟩ ; ÛS ∣ψSE⟩) (3.29a)

p(∣s2⟩ ; ÛS ∣ψSE⟩) = p(∣e1⟩ ; ÛS ∣ψSE⟩) (3.29b)

Now, when a “counter swap” ÎS ⊗ ÛE = ûE(1 ↔ 2) is applied to ∣ψSE⟩, the
original state vector ∣ψSE⟩ is restored, i.e., ÛE(ÛS ∣ψSE⟩) = ∣ψSE⟩. It then
follows from assumptions (A2) and (A3) listed above that

p(∣sk⟩ ; ÛEÛS ∣ψSE⟩) = p(∣sk⟩ ; ∣ψSE⟩) (3.30)

Furthermore, assumptions (A1) and (A2) imply that the first and second
swaps cannot have affected the measurable properties of E and S, respec-
tively, particularly not the probabilities for outcomes of measurements on
E(S),

p(∣sk⟩ ; ÛEÛS ∣ψSE⟩) = p(∣sk⟩ ; ÛS ∣ψSE⟩) (3.31a)

p(∣ek⟩ ; ÛS ∣ψSE⟩) = p(∣ek⟩ ; ∣ψSE⟩) (3.31b)

Combining Eqs. (3.28)(3.31) yields

p(∣s1⟩ ; ∣ψSE⟩)
3.30
= p(∣s1⟩ ; ÛEÛS ∣ψSE⟩)

3.31
= p(∣s1⟩ ; ÛS ∣ψSE⟩) (3.32)

3.29
= p(∣e2⟩ ; ÛS ∣ψSE⟩)

3.31
= p(∣e2⟩ ; ∣ψSE⟩)

3.28
= p(∣s2⟩ ; ∣ψSE⟩) (3.33)

which establishes the desired result p(∣s1⟩ ; ∣ψSE⟩) = p(∣s2⟩ ; ∣ψSE⟩). The gen-
eral case of unequal coefficients in the Schmidt decomposition of ∣ψSE⟩ can
then be treated by means of a simple counting method (Zurek, 2003b, 2004a),
leading to Born’s rule for probabilities that are rational numbers. Using a
continuity argument, this result can be further generalized to include prob-
abilities that cannot be expressed as rational numbers (Zurek, 2004a).

3. Summary and outlook

If one grants the stated assumptions, Zurek’s development of the theory of
envariance offers a novel and promising way of deducing Born’s ule in a
noncircular manner. Compared to the relatively well-studied field of deco-
herence, envariance and its consequences have only begun to be explored.
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In this review, we have focused on envariance in the context of a derivation
of the Born rule, but other far-reaching implications of envariance have re-
cently been suggested by Zurek (2004a). For ex- ample, envariance could also
account for the emergence of an environment-selected preferred basis (that
is, for environment-induced superselection) without an appeal to the trace
operation or to reduced density matrices. This could open up the possibil-
ity of a redevelopment of the decoherence program based on fundamental
quantum-mechanical principles that do not require one to presuppose the
Born rule; this also might shed new light, for example, on the interpretation
of reduced density matrices that has led to much controversy in discus- sions
of decoherence (see Sec. 3.B). As of now, the development of such ideas is at
a very early stage, but we can expect further interesting results derived from
envariance in the near future.

4 The Role of Decoherence in Interpretations

of Quantum Mechanics

It was not until the early 1970s that the importance of the interaction of
physical systems with their environments for a realistic quantum-mechanical
description of these systems was realized and a proper viewpoint on such in-
teractions was established (Zeh, 1970, 1973). It took another decade for the
first concise formulation of the theory of decoherence (Zurek, 1981, 1982)
to be worked out and for numerical studies to be made that showed the
ubiquity and effectiveness of decoherence effects (Joos and Zeh, 1985). Of
course, by that time, several interpretive approaches to quantum mechanics
had already been established, for example, Everett-style relative-state inter-
pretations (Everett, 1957), the concept of modal interpretations introduced
by van Fraassen (1973, 1991), and the pilot-wave theory of de Broglie and
Bohm (Bohm, 1952).

When the relevance of decoherence effects was recognized by (parts of) he
scientific community, decoherence provided a motivation for a fresh look at
the existing interpretations and for the introduction of changes and exten-
sions to these interpretations, as well as for new interpretations. Some of the
central questions in this context were, and still are, the following:

(1) Can decoherence by itself solve certain foundational issues at least for
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all practical purposes, such as to make certain interpretive additives
superfluous? What then, are, the crucial remaining foundational prob-
lems?

(2) Can decoherence protect an interpretation from empirical disproof?

(3) Conversely, can decoherence provide a mechanism to exclude an inter-
pretive strategy as incompatible with quantum mechanics and/or as
empirically inadequate?

(4) Can decoherence physically motivate some of the assumptions on which
an interpretation is based and give them a more precise meaning?

(5) Can decoherence serve as an amalgam that would unify and simplify a
spectrum of different interpretations?

These and other questions have been widely discussed, both in the context
of particular interpretations and with respect to the general implications of
decoherence for any interpretation of quantum mechanics. In particular, in-
terpretations that uphold the universal validity of the unitary Schrödinger
time evolution, most notably relative-state and modal interpretations, have
frequently incorporated environment-induced superselection of a preferred
basis and decoherence into their framework. It is the purpose of this sec-
tion to critically investigate the implications of decoherence for the exist-
ing interpretations of quantum mechanics, with particular attention to the
questions outlined above.

A. General implications of decoherence for interpretations

When measurements are understood as ubiquitous interactions that lead to
the formation of quantum correlations, the selection of a preferred basis be-
comes, in most cases, a fundamental requirement. This also corresponds, in
general, to the question of what properties are being ascribed to systems (or
worlds, minds, etc.). Thus the preferred-basis problem is at the heart of any
interpretation of quantum mechanics. Some of the difficulties that must be
faced in solving the preferred-basis problem are

(i) to decide whether the selection of any preferred basis (or quantity or
property) is justified at all or only an artifact of our subjective experi-
ence;
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(ii) f we decide on (i) in the positive, to select those determinate quantity or
quantities (what appears determinate to us does not need to be appear
de- terminate to other kinds of observers, nor does it need to be the
“true” determinate property);

(iii) to avoid any ad hoc character of the choice and any possible empirical
inadequacy or inconsistency with the confirmed predictions of quantum
mechanics;

(iv) if a multitude of quantities is selected that apply differently among
different systems, to be able to formulate explicit rules that specify the
determinate quantity or quantities under every circumstance;

(v) to ensure that the basis is chosen such that if the system is embedded
in a larger (composite) system, the principle of property composition
holds, i.e., the property selected by the basis of the original system
should also persist when the system is considered as part of a larger
composite system.11

The hope is then that environment-induced superselection of a preferred ba-
sis can provide a universal mechanism that fulfills the above criteria and
solves the preferred-basis problem on strictly physical grounds.

A popular reading of the decoherence program typically goes as follows. First,
the interaction of the system with the environment selects a preferred basis,
i.e., a particular set of quasiclassical robust states that commute, at least
approximately, with the Hamiltonian governing the system-environment in-
teraction. Since the form of the interaction Hamiltonians usually depends
on familiar “classical” quantities, the preferred states will typically also cor-
respond to the small set of “classical” properties. Decoherence then quickly
damps superpositions between the localized preferred states when only the
system is considered. This is taken as an explanation of the appearance to a
local observer of a “classical” world of determinate, “objective” (in the sense
of being robust) properties. The tempting interpretation of these achieve-
ments is then to conclude that this accounts for the observation of unique (via
environment-induced superselection) and definite (via decoherence) pointer
states at the end of the measurement, and the measurement problem appears
to be solved, at least for all practical purposes.

11This is a problem encountered in some modal interpretations (see Clifton, 1996)
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However, the crucial difficulty in the above reasoning is justifying the second
step: How is one to interpret the local suppression of interference in spite of
the fact that full coherence is retained in the total state that describes the
system-environment combination? While the local destruction of interference
allows one to infer the emergence of an (improper) ensemble of individually
localized components of the wave function, one still needs to impose an in-
terpretive framework that explains why only one of the localized states is
realized and/or perceived. This has been done in various interpretations of
quantum mechanics, typically on the basis of the decohered reduced density
matrix to ensure consistency with the predictions of the Schrödinger dynam-
ics and thus to guarantee empirical adequacy.

In this context, one might raise the question whether retention of full co-
herence in the composite state of the system-environment combination could
ever lead to empirical conflicts with the ascription of definite values to (meso-
scopic and macroscopic) systems in some decoherence-based interpretive ap-
proach. After all, one could think of enlarging the system so as to include the
environment in such a way that measurements could now actually reveal the
persisting quantum coherence even on a macroscopic level. However, Zurek
(1982) asserted that such measurements would be impossible to carry out in
practice, a statement that was supported by a simple model calculation by
Omnès (1992) for a body with a macroscopic number (1024

) of degrees of
freedom.

B. The standard and the Copenhagen interpretations

As is well known, the standard interpretation (“orthodox” quantum mechan-
ics) postulates that every measurement induces a discontinuous break in the
unitary time evolution of the state through the collapse of the total wave
function onto one of its terms in the state- vector expansion (uniquely deter-
mined by the eigenbasis of the measured observable), which selects a single
term in the superposition as representing the outcome. The nature of the
collapse is not at all explained, and thus the definition of measurement re-
mains unclear. Macroscopic superpositions are not a priori forbidden, but
are never observed since any observation would entail a measurement-like
interaction. In the following, we shall also consider a “Copenhagen” vari-
ant of the standard interpretation, which adds an additional key element,
postulating the necessity of classical concepts in order to describe quantum
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phenomena, including measurements.

1. The problem of definite outcomes

The interpretive rule of orthodox quantum mechanics that tells us when we
can speak of outcomes is given by the e-e link.12 This is an “objective”
criterion since it allows us to infer the existence of a definite state in the
system to which a value of a physical quantity can be ascribed. Within this
interpretive framework (and without presuming the collapse postulate) de-
coherence cannot solve the problem of outcomes: Phase coherence between
macroscopically different pointer states is preserved in the state that includes
the environment, and we can always enlarge the system so as to include (at
least parts of) the environment. In other words, the superposition of dif-
ferent pointer positions still exists; coherence is only “delocalized into the
larger system” (Kiefer and Joos, 1999, p. 5), that is, into the environment -
or, as Joos and Zeh (1985, p. 224) put it, “the interference terms still exist,
but they are not there” - and the process of decoherence could, in principle,
always be reversed. Therefore, if we assume the orthodox e-e link to estab-
lish the existence of determinate values of physical quantities, decoherence
cannot ensure that the measuring device actually ever is in a definite pointer
state (unless, of course, the system is initially in an eigenstate of the ob-
servable), or that measurements have outcomes at all. Much of the general
criticism directed against decoherence with respect to its ability to solve the
measurement problem (at least in the context of the standard interpretation)
has been centered on this argument.

Note that, with respect to the global postmeasurement state vector, given
by the final step in Eq. (3.5), the interaction with the environment has only
led to additional entanglement. It has not transformed the state vector in
any way, since the rapidly increasing orthogonality of the states of the en-
vironment associated with the different pointer positions has not influenced
the state description at all. In brief, the entanglement brought about by
interaction with the environment could even be considered as making the
measurement problem worse. Bacciagaluppi (2003a, Sec. 3.2) puts it like

12It is not particularly relevant for the subsequent discussion whether the e-e link is as-
sumed in its “exact form, i.e., requiring the exact eigenstates of an observable, or a “fuzzy”
form that allows the assignment of definiteness based on only approximate eigenstates or
on wave functions with (tiny) “tails”.
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this:

Intuitively, if the environment is carrying out, without our in-
tervention, lots of approximate position measurements, then the
measurement problem ought to apply more widely, also to these
spontaneously occurring measurements. (...) The state of the
object and the environment could be a superposition of zillions
of very well localized terms, each with slightly different positions,
and which are collectively spread over a macroscopic distance,
even in the case of everyday objects. (...) If everything is in
interaction with everything else, everything is entangled with ev-
erything else, and that is a worse problem than the entanglement
of measuring apparatuses with the measured probes.

Only once we have formed the reduced pure-state density matrix ρ̂SA, Eq.
(3.8), can the orthogonality of the environmental states have an effect; then,
ρ̂SA dynamically evolves into the improper ensemble ρ̂d

SA
[Eq. (3.9)]. How-

ever, as pointed out in our general discussion of reduced density matrices in
Sec. 3.B, the orthodox rule of interpreting superpositions prohibits regard-
ing the components in the sum of Eq. (3.9) as corresponding to individual
well-defined quantum states.

Rather than considering the postdecoherence state of the system (or, more
precisely, of the system-apparatus combination SA), we can instead analyze
the influence of decoherence on the expectation values of observables pertain-
ing to SA; after all, such expectation values are what local observers would
measure in order to arrive at conclusions about SA. The diagonalized re-
duced density matrix, Eq. (3.9), together with the trace relation, Eq. (3.6),
implies that, for all practical purposes, the statistics of the system SA will
be indistinguishable from that of a proper mixture (ensemble) by any local
observation on SA. That is, given (i) the trace rule ⟨Ô⟩ = Tr(ρ̂Ô) and (ii)
the interpretation of ⟨Ô⟩ as the expectation value of an observable Ô, the ex-
pectation value of any observable ÔSA restricted to the local system SA will
be, for all practical purposes, identical to the expectation value of this ob-
servable if SA had been in one of the states ∣sn⟩ ∣an⟩ (as if SA were described
by an ensemble of states). In other words, decoherence has effectively re-
moved any interference terms (such as ∣sm⟩ ∣am⟩ ⟨an∣ ⟨sn∣ where m ≠ n) from
the calculation of the trace Tr(ρ̂SAÔSA) and thereby from the calculation of
the expectation value ⟨ÔSA⟩. It has therefore been claimed that formal equiv-
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alence - i.e., the fact that decoherence transforms the reduced density matrix
into a form identical to that of a density matrix representing an ensemble of
pure states - yields observational equivalence in the sense above, namely, the
(local) indistinguishability of the expectation values derived from these two
types of density matrices via the trace rule.

But we must be careful in interpreting the correspondence between the math-
ematical formalism (such as the trace rule) and the common terms employed
in describing “the world”. In quantum mechanics, the identification of the
expression “Tr(ρA)” as the expectation value of a quantity relies on the
mathematical fact that, when writing out this trace, it is found to be equal
to a sum over the possible outcomes of the measurement, weighted by the
Born probabilities for the system to be “thrown” into a particular state cor-
responding to each of these outcomes in the course of a measurement. This
certainly represents our common-sense intuition about the meaning of ex-
pectation values as the sum over possible values that can appear in a given
measurement, multiplied by the relative frequency of actual occurrence of
these values in a series of such measurements. This interpretation, however,
presumes (i) that measurements have outcomes, (ii) that measurements lead
to definite “values”, (iii) that measurable physical quantities are identified as
operators (observables) in a Hilbert space, and (iv) that the modulus square
of the expansion coefficients of the state in terms of the eigenbasis of the
observable can be interpreted as representing probabilities of actual mea-
surement outcomes (Born rule).

Thus decoherence brings about an apparent (and approximate) mixture of
states that seem, based on the models studied, to correspond well to those
states that we perceive as determinate. Moreover, our observation tells us
that this apparent mixture indeed looks like a proper ensemble in a measure-
ment situation, as we observe that measurements lead to the “realization”
of precisely one state in the “ensemble”. But within the framework of the
orthodox interpretation, decoherence cannot explain this crucial step from
an apparent mixture to the existence and/or perception of single outcomes.

2. Observables, measurements, and environment-induced superse-
lection

In the standard and Copenhagen interpretations, property ascription is de-
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termined by an observable that represents the measurement of a physical
quantity and that in turn defines the preferred basis. However, any Hermi-
tian operator can play the role of an observable, and thus any given state
has the potential for an infinite number of different properties whose at-
tribution is usually mutually exclusive unless the corresponding observables
commute (in which case they share a common eigenbasis, which preserves
the uniqueness of the preferred basis). What then determines the observable
that is being measured? As our discussion in Sec. 2.C has demonstrated,
the derivation of the measured observable from the particular form of a given
state-vector expansion can lead to paradoxical results since this expansion
is in general nonunique, so the observable must be chosen by other means.
In the standard and Copenhagen interpretations, it is essentially the “user”
who “chooses” the particular observable to be measured and thus determines
which properties the system possesses.

This positivist point of view has, of course, led to a lot of controversy, since it
runs counter to the attempt to establish an observer-independent reality that
has been the central pursuit of natural science since its beginning. Moreover,
in practice, one certainly does not have the freedom to choose any arbitrary
observable and measure it; instead, one has “instruments” (including one’s
senses) that are designed to measure a particular observable. For most (and
maybe all) practical purposes, this will ultimately boil down to a single rel-
evant observable, namely, position. But what, then, makes the instruments
designed for such a particular observable?

Answering this crucial question essentially means abandoning the orthodox
view of treating measurements as a “black box” process that has little, if any,
relation to the workings of actual physical measurements (where measure-
ments can here be understood in the broadest sense of a “monitoring” of the
state of the system). The first key point, the formalization of measurements
as a formation of quantum correlations between system and apparatus, goes
back to the early years of quantum mechanics and is reflected in the mea-
surement scheme of von Neumann (1932), but it does not resolve the issue
of how the choice of observables is made. The second key point, the explicit
inclusion of the environment in a description of the measurement process,
was brought into quantum theory by the studies of decoherence. Zurek’s
(1981) stability criterion discussed in Sec. 3.E has shown that measurements
must be of such a nature as to establish stable records, where stability is to
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be understood as preserving the system-apparatus correlations in spite of the
inevitable interaction with the surrounding environment. The “user” cannot
choose the observables arbitrarily, but must design a measuring device whose
interaction with the environment is such as to ensure stable records in the
sense above (which, in turn, defines a measuring device for this observable).
In the reading of orthodox quantum mechanics, this can be interpreted as
the environment determining the properties of the system.

In this sense, the decoherence program has embedded the rather formal con-
cept of measurement as proposed by the standard and Copenhagen interpre-
tations - with its vague notion of observables that are seemingly freely chosen
by the observer - in a more realistic and physical framework. This is accom-
plished via the specification of observer-free criteria for the selection of the
measured observable through the physical structure of the measuring device
and its interaction with the environment, which is, in most cases, needed
to amplify the measurement record and thereby to make it accessible to the
external observer.

3. The concept of classicality in the Copenhagen interpretation

The Copenhagen interpretation additionally postulates that classicality is
not to be derived from quantum mechanics, for example, as the macroscopic
limit of an underlying quantum structure (as is in some sense assumed, but
not explicitly derived, in the standard interpretation), but instead that it be
viewed as an indispensable and irreducible element of a complete quantum
theory - and, in fact, be considered as a concept prior to quantum theory. In
particular, the Copenhagen interpretation assumes the existence of macro-
scopic measurement apparatuses that obey classical physics and that are not
supposed to be described in quantum-mechanical terms (in sharp contrast to
the von Neumann measurement scheme, which rather belongs to the standard
interpretation); such a classical apparatus is considered necessary in order to
make quantum-mechanical phenomena accessible to us in terms of the “clas-
sical” world of our experience. This strict dualism between the system S, to
be described by quantum mechanics, and the apparatus A, obeying classical
physics, also entails the existence of an essentially fixed boundary between S
and A, which separates the microworld from the macroworld (the “Heisen-
berg cut”). This boundary cannot be moved significantly without destroying
the observed phenomenon (i.e., the full interacting compound SA).

48



Especially in the light of the insights gained from decoherence, it seems im-
possible to uphold the notion of a fixed quantum-classical boundary on a fun-
damental level of the theory. Environment-induced superselection and sup-
pression of interference have demonstrated how quasiclassical robust states
can emerge, or remain absent, using the quantum formalism alone and over
a broad range of microscopic to macroscopic scales, and have established the
notion that the boundary between S and A is to a large extent movable to-
wards A. Similar results have been obtained from the general study of quan-
tum nondemolition measurements (see, for example, Chap. 19 of Auletta,
2000) which include the monitoring of a system by its environment. Also note
that, since the apparatus is described in classical terms, it is macroscopic by
definition; but not every apparatus must be macroscopic: the actual “instru-
ment” could well be microscopic. Only the “amplifier” must be macroscopic.
As an example, consider Zurek’s (1981) toy model of decoherence, outlined
in Sec. 3.D.2, in which the instrument can be represented by a bistable atom
while the environment plays the role of the amplifier; a more realistic ex-
ample is a macroscopic detector of gravitational waves that is treated as a
quantum-mechanical harmonic oscillator.

Based on the progress already achieved by the decoherence program, it is
reasonable to anticipate that decoherence embedded in some additional in-
terpretive structure could lead to a complete and consistent derivation of the
classical world from quantum-mechanical principles. This would make the
assumption of an intrinsically classical apparatus (which has to be treated
outside of the realm of quantum mechanics), appear as neither a necessary
nor a viable postulate. Bacciagaluppi (2003b, p. 22) refers to this strategy as
“having Bohr’s cake and eating it”; acknowledging the correctness of Bohr’s
notion of the necessity of a classical world (“having Bohr’s cake”), but being
able to view the classical world as part of and as emerging from a purely
quantum-mechanical world.

C. Relative-state interpretations

Everett’s original (1957) proposal of a relative-state interpretation of quan-
tum mechanics has motivated several strands of interpretation, presumably
owing to the fact that Everett himself never clearly spelled out how his theory
was supposed to work. The system-observer duality of orthodox quantum
mechanics introduces into the theory external “observers” who are not de-
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scribed by the deterministic laws of quantum systems but instead follow a
stochastic indeterminism. This approach obviously runs into problems when
the universe as a whole is considered: by definition, there cannot be any
external observers. The central idea of Everett’s proposal is then to abandon
duality and instead (i) to assume the existence of a total state ∣Ψ⟩ repre-
senting the state of the entire universe and and (ii) to uphold the universal
validity of the Schrödinger evolution, while (iii) postulating that all terms
in the superposition of the total state at the completion of the measurement
actually correspond to physical states. Each such physical state can be un-
derstood as relative (a) to the state of the other part in the composite system
(as in Everett’s original proposal; also see, Rovelli, 1996; Mermin, 1998a), (b)
to a particular “branch” of a constantly “splitting” universe(the many-worlds
interpretations, popularized by De Witt, 1970 and Deutsch, 1985), or (c) to
a particular “mind” in the set of minds of the conscious observer (the many-
minds interpretation; see, for example, Lockwood, 1996). In other words,
every term in the final-state superposition can be viewed as representing an
equally “real” physical state of affairs that is realized in a “branch of reality”.

Decoherence adherents have typically been inclined towards relative-state in-
terpretations (for instance, Zeh, 1970, 1973, 1993; Zurek, 1998), presumably
because the Everett approach takes unitary quantum mechanics essentially
“as is”, with a minimum of added interpretive elements. This matches well
the spirit of the decoherence program, which attempts to explain the emer-
gence of classicality purely from the formalism of basic quantum mechanics.
It may also seem natural to identify the decohering components of the wave
function with different Everett branches. Conversely, proponents of relative-
state interpretations have frequently employed the mechanism of decoherence
in solving the difficulties associated with this class of interpretations (see, for
example, Deutsch, 1985, 1996, 2002; Saunders, 1995, 1997, 1998; Vaidman,
1998; Wallace, 2002, 2003a).

There are many different readings and versions of relative-state interpreta-
tions, especially with respect to what defines the “branches”, “worlds”, and
“minds” - whether we deal with one, a multitude, or an infinity of such
worlds and minds; and whether there is an actual (physical) or only perspec-
tival splitting of the worlds and minds into different branches corresponding
to the terms in the superposition. Does the world or mind split into two sep-
arate copies (thus somehow doubling all the matter contained in the original

50



system), or is there just a “reassignment” of states to a multitude of worlds
or minds of constant (typically infinite) number, or is there only one phys-
ically existing world or mind in which each branch corresponds to different
“aspects” (whatever they are). Regardless, in the following discussion of the
key implications of decoherence, the precise details and differences of these
various strands of interpretation will, for the most part, be largely irrelevant.

Relative-state interpretations face two core difficulties. First, the preferred-
basis problem: If states are only relative, the question arises, relative to
what? What determines the particular basis terms that are used to define
the branches, which in turn define the worlds or minds in the next instant of
time? When precisely does the “splitting” occur? Which properties are made
determinate in each branch, and how are they connected to the determinate
properties of our experience? Second, what is the meaning of probabilities,
since ever) outcome actually occurs in some world or mind, and how can
Born’s rule be motivated in such an interpretive framework?

1. Everett branches and the preferred-basis problem

Stapp (2002, p. 1043) stated the requirement that “a many-worlds inter-
pretation of quantum theory exists only to the extent that the associated
basis problem is solved”. In the context of relative-state interpretations,
the preferred-basis problem is not only much more severe than in the ortho-
dox interpretation, but also more fundamental for several reasons: (i) The
branching oc- curs continuously and essentially everywhere; in the general
sense of measurements understood as the formation of quantum correlations,
every newly formed correlation, whether it pertains to microscopic or macro-
scopic systems, corresponds to a branching. (ii) The ontological implications
are much more drastic, at least in those relative-state interpretations which
assume an actual “splitting” of worlds or minds, since the choice of the basis
determines the resulting “world” or “mind” as a whole.

The environment-based basis superselection criteria of the decoherence pro-
gram have frequently been employed to solve the preferred-basis problem
of relative-state interpretations (see, for example, Zurek, 1998; Butterfield,
2001; Wallace, 2002, 2003a). There are several advantages in a decoherence-
related approach to selecting the preferred Everett bases: First, no a priori
existence of a preferred basis needs to be postulated, but instead the pre-
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ferred basis arises naturally from the physical criterion of robustness. Second,
the selection will be likely to yield empirical adequacy, since the decoher-
ence program is derived solely from the well-confirmed Schrödinger dynam-
ics (modulo the possibility that robustness may not be the universally valid
criterion). Lastly, the decohered components of the wave function evolve in
such a way that they can be reidentified over time (forming “trajectories”
in the preferred state spaces), and thus can be used to define stable, tempo-
rally extended Everett branches. Similarly, such trajectories can be used to
ensure robust observer record states and/or environmental states that make
information about the state of the system of interest widely accessible to
observers (see, for example, Zurek’s “existential interpretation”, outlined in
Sec. 4.C.3 below).

While the idea of directly associating the environment-selected basis states
with Everett worlds seems natural and straightforward, it has also been sub-
ject to criticism. Stapp (2002) has argued that an Everett-type interpretation
must aim at determining a denumerable set of distinct branches that corre-
spond to the apparently discrete events of our experience. Among these
branches one must be able to assign determinate values and finite probabili-
ties according to the usual rules and therefore one would need to be able to
specify a denumerable set of mutually orthogonal projection operators. It is
well known, however (Zurek, 1998), that the preferred states chosen through
the interaction with the environment via the stability criterion frequently
form an overcomplete set of states - often a continuum of narrow Gaussian-
type wave packets, for example, the coherent states of harmonic-oscillator
models that are not necessarily orthogonal (i.e., the Gaussians may overlap;
see Kbler and Zeh, 1973; Zurek et al., 1993). Stapp therefore considers this
approach to the preferred-basis problem in relative-state interpretations to
be unsatisfactory. Zurek (2003c) has rebutted this criticism by pointing out
that a collection of harmonic oscillators that would lead to such overcom-
plete sets of Gaussians cannot serve as an adequate model of the human
brain, and it is ultimately only in the brain where the perception of denu-
merability and mutual exclusiveness of events must be accounted for (see Sec.
2.B.3); when neurons are more appropriately modeled as two-state systems,
the issue raised by Stapp disappears (for a discussion of decoherence in a
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simple two-state model, see Sec. 3.D.2).13

The approach of using environment-induced superselection and decoherence
to define the Everett branches has also been criticized on grounds of being
“conceptually approximate”, since the stability criterion generally leads only
to an approximate specification of a preferred basis and therefore cannot give
an “exact” definition of the Everett branches (see, for example, the comments
of Zeh, 1973, Kent, 1990, and also the well-known “anti-FAPP” position of
Bell, 1982). Wallace (2003a, pp. 90 and 91) has argued against such an
objection as

(...) arising from a view implicit in much discussion of Everett-
style interpretations: that certain concepts and objects in quan-
tum mechanics must either enter the theory formally in its ax-
iomatic structure, or be regarded as illusion. (...) [Instead] the
emergence of a classical world from quantum mechanics is to be
understood in terms of the emergence from the theory of certain
sorts of structures and patterns, and ... this means that we have
no need (as well as no hope!) of the precision which Kent [in his
(1990) critique] and others (...) demand.

Accordingly, in view of our argument in Sec. 2.B.3 for considering sub-
jective solutions to the measurement problem as sufficient, there is no a
priori reason to doubt that an “approximate” criterion for the selection of
the preferred basis can give a meaningful definition of the Everett branches
- one that is empirically adequate and that accounts for our experiences.
The environment-superselected basis emerges naturally from the physically
very reasonable criterion of robustness together with the purely quantum-
mechanical effect of decoherence. It would be rather difficult to imagine that
an axiomatically introduced “exact” rule could be able to select preferred
bases in a manner that is similarly physically motivated and capable of en-
suring empirical adequacy.

Besides using the environment-superselected pointer states to describe the
Everett branches, various authors have directly used the instantaneous Schmidt
decomposition of the composite state (or, equivalently, the set of orthogonal

13For interesting quantitative results on the role of decoherence in brain processes, see
Tegmark (2000). Note, however, the (at least partial) rebuttal of Tegmark’s claims by
Hagan et al (2002).
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eigenstates of the reduced density matrix) to define the preferred basis (see
also Sec. 3.E.4). This approach is easier to implement than the explicit search
for dynamically stable pointer states, since the preferred basis follows di-
rectly from a simple mathematical diagonalization procedure at each instant
of time. Furthermore, it has been favored by some (e.g., Zeh, 1973) since it
gives an “exact” rule for basis selection in relative-state interpretations; the
consistently quantum origin of the Schmidt decomposition, which matches
well the “pure quantum-mechanics” spirit of Everett’s proposal (where the
formalism of quantum mechanics supplies its own interpretation), has also
been counted as an advantage (Barvinsky and Kamenshchik, 1995). In an
earlier work, Deutsch (1985) attributed a fundamental role to the Schmidt
decomposition in relative-state interpretations as defining an “interpretation
basis” that imposes the precise structure that is needed to give meaning to
Everett’s basic concept.

However, as pointed out in Sec. 3.E.4, emerging basis states based on the
instantaneous Schmidt states will frequently have properties that are very
different from those selected by the stability criterion and that are undesir-
ably nonclassical. For example, they may lack the spatial localization of the
robustness-selected Gaussians (Stapp, 2002). The question to what extent
the Schmidt basis states correspond to classical properties in Everett-style
interpretations was investigated in detail by Barvinsky and Kamenshchik
(1995). The authors study the similarity of the states selected by the Schmidt
decomposition to coherent states (i.e., minimum-uncertainty Gaussians) that
are chosen as the “yardstick states” representing classicality (see also Eisert,
2004). For the investigated toy models it is found that only subsets of the
Everett worlds corresponding to the Schmidt decomposition exhibit classical-
ity in this sense; furthermore, the degree of robustness of classicality in these
branches is very sensitive to the choice of the initial state and the interaction
Hamiltonian, such that classicality emerges typically only temporarily, and
the Schmidt basis generally lacks robustness under time evolution. Similar
difficulties with the Schmidt-basis approach have been de- scribed by Kent
and McElwaine (1997).

These findings indicate that a selection criterion based on robustness provides
a much more meaningful, physically transparent, and general rule for the se-
lection of quasiclassical branches in relative-state interpretations, especially
with respect to its ability to lead to wavefunction components representing
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quasiclassical properties that can be re-identified over time (which a simple
diagonalization of the reduced density matrix at each instant of time does
not, in general, allow for).

2. Probabilities in Everett interpretations

Various attempts unrelated to decoherence have been made to find a consis-
tent derivation of the Born probabilities (for instance, Everett, 1957; Hartle,
1968; De Witt, 1971; Graham, 1973; Geroch, 1984; Deutsch, 1999) in the
explicit or implicit context of a relative-state interpretation, but several ar-
guments have been presented that show that these approaches fail.14 When
When the effects of decoherence and environment-induced superselection are
included, it seems natural to identify the diagonal elements of the decohered
reduced density matrix (in the environment-superselected basis) with the set
of possible elementary events and to interpret the corresponding coefficients
as relative frequencies of worlds (or minds, etc) in the Everett theory, assum-
ing a typically infinite multitude of worlds, minds, etc. Since decoherence
enables one to re-identify the individual localized components of the wave
function over time (describing, for example, observers and their measure-
ment outcomes attached to individual well-defined “worlds”), this leads to a
natural interpretation of the Born probabilities as empirical frequencies.

However, decoherence cannot yield an actual derivation of the Born rule (for
attempts in this direction, see Zurek, 1998; Deutsch, 1999). As mentioned
before, this is so because the key elements of the decoherence program, the
formalism and the interpretation of reduced density matrices and the trace
rule, presume the Born rule. Attempts to consistently derive probabilities
from reduced density matrices and from the trace rule are therefore subject to
the charge of circularity (Zeh, 1997; Zurek, 2003a). In Sec. 3.F, we outlined
a recent proposal by Zurek (2003b) that evades this circularity and deduces
the Born rule from envariance, a symmetry property of entangled systems,
and from certain assumptions about the connection between the state of the
system S of interest, the state vector of the composite system SE that in-
cludes an environment E entangled with S, and probabilities of outcomes of
measurements performed on S. Decoherence combined with this approach

14See, for example, the critiques of Stein (1984); Kent (1990); Squires (1990); Barnum
et al. (2000). However, also note the arguments of Wallace (2003b) and Gill (2003),
defending the approach of Deutsch (1999); see also Saunders (2002).
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provides a framework in which quantum probabilities and the Born rule can
be given a rather natural motivation, definition, and interpretation in the
context of relative-state interpretations.

3. The “existential interpretation”

A well-known Everett-type interpretation that relies heavily on decoherence
has been proposed by Zurek (1993, 1998; see also the recent reevaluation in
Zurek, 2004a). This approach, termed the “existential interpretation”, de-
fines the reality, or objective existence, of a state as the possibility of finding
out what the state is and simultaneously leaving it unperturbed, similar to a
classical state.15 Zurek assigns a “relative objective existence” to the robust
states (identified with elementary “events”) selected by the environmental
stability criterion. By measuring properties of the system-environment inter-
action Hamiltonian and employing the robustness criterion, the observer can,
at least in principle, determine the set of observables that can be measured
on the system without perturbing it and thus find out its “objective” state.
Alternatively, the observer can take advantage of the redundant records of
the state of the system as monitored by the environment. By intercepting
parts of this environment, for example, a fraction of the surrounding photons,
he can determine the state of the system essentially without perturbing it
(cf. also the related recent ideas of “quantum Darwinism” and the role of
the environment as a “witness”, see Zurek, 2000, 2003a, 2004b; Ollivier et
al., 2003).16

Zurek emphasizes the importance of stable records for observers, i.e., robust
correlations between the environment-selected states and the memory states
of the observer. Information must be represented physically, and thus the
“objective” state of the observer who has detected one of the potential out-
comes of a measurement must be physically distinct and objectively different
from the state of an observer who has recorded an alternative outcome (since
the record can be determined from the outside without perturbing them -
see the previous paragraph). The different objective states of the observer

15This intrinsically requires the notion of open systems, since, in isolated systems, the
observer would need to know in ad- vance what observables commute with the state of the
system, in order to perform a nondemolition measurement that avoids re-preparing the
state of the system.

16The partial ignorance is necessary to avoid redefinition of the state of the system.

56



are, via quantum correlations, attached to different branches defined by the
environment-selected robust states; they thus ultimately label the different
branches of the universal state vector. This is claimed to lead to the percep-
tion of classicality; the impossibility of perceiving arbitrary superpositions is
explained via the quick suppression of interference between different mem-
ory states induced by decoherence, where each (physically distinct) memory
state represents an individual observer identity.

A similar argument has been given by Zeh (1993), who employs decoherence
together with an (implicit) branching process to explain the perception of
definite outcomes:

[A]fter an observation one need not necessarily conclude that only
one component now exists but only that only one component is
observed. (...) Superposed world components describing the reg-
istration of different macroscopic properties by the “same” ob-
server are dynamically entirely independent of one another: they
describe different observers. (...) He who considers this conclu-
sion of an indeterminism or splitting of the observer’s identity,
derived from the Schrödinger equation in the form of dynam-
ically decoupling (“branching”) wave packets on a fundamental
global configuration space, as unacceptable or “extravagant” may
instead dynamically formalize the superfluous hypothesis of a dis-
appearance of the ‘other” components by whatever method he
prefers, but he should be aware that he may thereby also cre-
ate his own problems: Any deviation from the global Schrödinger
equation must in principle lead to observable effects, and it should
be recalled that none have ever been discovered.

The existential interpretation has recently been connected to the theory of
envariance (see Zurek, 2004a, and Sec. 3.F). In particular, the derivation of
Borns’ rule based on envariance as outlined in Sec. III.F can be recast in
the framework of the existential interpretation such that probabilities refer
explicitly to the future record state of an observer. The concept of such a
probability bears similarities to classical probability theory (for more details
on these ideas, see Zurek, 2004a).

The existential interpretation continues Everett’s goal of interpreting quan-
tum mechanics using the quantum- mechanical formalism itself. Zurek takes
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the standard no-collapse quantum theory “as is” and explores to what ex-
tent the incorporation of environment-induced superselection and decoher-
ence (and recently also envariance) could form a viable interpretation that
would, with a minimal interpretive framework, be capable of ac- counting for
the perception of definite outcomes and of explaining the origin and nature
of probabilities.

D. Modal interpretations

The first type of modal interpretation was suggested by van Fraassen (1973,
1991), based on his program of “constructive empiricism”, which proposes
to take only empirical adequacy, but not necessarily “truth”, as the goal of
science. Since then, a large number of interpretations of quantum mechanics
have been suggested that can be considered as modal (for a review and dis-
cussion of some of the basic properties and problems of such interpretations,
see Clifton, 1996).

In general, the approach of modal interpretations consists in weakening the
orthodox e-e link by allowing for the assignment of definite measurement out-
comes even if the system is not in an eigenstate of the observable representing
the measurement. In this way, one can pre- serve a purely unitary time evo-
lution without the need for an additional collapse postulate to account for
definite measurement results. Of course, this immediately raises the ques-
tion of how physical properties that are perceived through measurements and
measurement results are connected to the state, since the bidirectional link
is broken between the eigenstate of the observable (which corresponds to the
physical property) and the eigenvalue (which represents the manifestation
of the value of this physical property in a measurement). The general goal
of modal interpretations is then to specify rules that determine a catalog of
possible properties of a system described by the density matrix ρ at time t.
Two different views are typically distinguished: a semantic approach that
only changes the way of talking about the connection between properties
and state; and a realistic view that provides a different specification of what
the possible properties of a system really are, given the state vector (or the
density matrix).

Such an attribution of possible properties must fulfill certain requirements.
For instance, probabilities for out- comes of measurements should be con-
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sistent with the usual Born probabilities of standard quantum mechanics;
it should be possible to recover our experience of classicality in the percep-
tion of macroscopic objects; and an explicit time evolution of properties and
their probabilities should be definable that is consistent with the results of
the Schrödinger equation. As we shall see in the following, decoherence has
frequently been employed in modal interpretations to motivate and define
rules for property ascription. Dieks (1994s, 1994b) has argued that one of
the central goals of modal approaches is to provide an interpretation for de-
coherence.

1. Property assignment based on environment-induced superselec-
tion

The intrinsic difficulty of modal interpretations is to avoid any ad hoc charac-
ter of the property assignment, yet to find generally applicable rules that lead
to a selection of possible properties that include the determinate properties
of our experience. To solve this problem, various modal interpretations have
embraced the results of the decoherence program. A natural approach would
be to employ the environment-induced superselection of a preferred basis -
since it is based on an entirely physical and very general criterion (namely,
the stability requirement) and has, for the cases studied, been shown to give
results that agree well with our experience, thus matching van Fraassen’s
goal of empirical adequacy - to yield sets of possible quasiclassical properties
associated with the correct probabilities.

Furthermore, since the decoherence program is based solely on Schrödinger
dynamics, the task of defining a time evolution of the “property states” and
their associated probabilities that is in agreement with the results of unitary
quantum mechanics would presumably be easier than in a model of property
assignment in which the set of possibilities does not arise dynamically via the
Schrödinger equation alone (for a detailed proposal for modal dynamics of
the latter type, see Bacciagaluppi and Dickson, 1999). The need for explicit
dynamics of property states in modal interpretations is controversial. One
can argue that it suffices to show that at each instant of time, the set of pos-
sibly possessed properties that can be ascribed to the system is empirically
adequate, in the sense of containing the properties of our experience, espe-
cially with respect to the properties of macroscopic objects (this is essentially
the view of, for example, van Fraassen, 1973, 1991). On the other hand, this
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cannot ensure that these properties behave over time in agreement with our
experience (for instance, that macroscopic objects that are left undisturbed
do not change their position in space spontaneously in an observable man-
ner). In other words, the emergence of classicality is to be tied not only
to determinate properties at each instant of time, but also to the existence
of quasiclassical “trajectories” in property space. Since decoherence allows
one to re-identify components of the decohered density matrix over time,
this could be used to derive property states with continuous, quasiclassi-
cal trajectory-like time evolution based on Schrödinger dynamics alone. For
some discussions of this approach, see Hemmo (1996) and Bacciagaluppi and
Dickson (1999).

The fact that the states emerging from decoherence and the stability crite-
rion are sometimes nonorthogonal or form a continuum will presumably be
of even less relevance in modal interpretations than in Everett-style interpre-
tations (see Sec. 4.C), since the goal here is solely to specify sets of possible
properties, of which only one set actually gets assigned to the system. Hence
an overlap of the sets is not necessarily a problem (modulo the potential dif-
ficulty of a straightforward assignment of probabilities in such a situation).

2. Property assignment based on instantaneous Schmidt decompo-
sitions

Since it is usually rather difficult to determine explicitly the robust “pointer
states” through the stability (or a similar) criterion, it would not be easy to
specify a general rule for property assignment based on environment-induced
superselection. To simplify this situation, several modal interpretations have
restricted themselves to the orthogonal decomposition of the density ma-
trix to define the set of properties that can be assigned (see, for instance,
Kochen, 1985; Dieks, 1989; Healey, 1989; Vermaas and Dieks, 1995; Bub,
1997). For example, the approach of Dieks (1989) recognizes, by referring to
the decoherence program, the relevance of the environment by considering
a composite system-environment state vector and its diagonal Schmidt de-
composition, ∣ψ⟩ = ∑k

√
pk ∣φSk ⟩ ∣φ

E
k⟩, which always exists. Possible properties

that can be assigned to the system are then represented by the Schmidt pro-
jectors P̂k = λk

√
pk ∣φSk ⟩ ⟨φ

S
k ∣. Although all terms are present in the Schmidt

expansion (that Dieks calls the “mathematical state”), the “physical state”
is postulated to be given by only one of the terms, with probability pk. A
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generalization of this approach to a decomposition into any number of sub-
systems has been described by Vermaas and Dieks (1995). In this sense, the
Schmidt decomposition itself is taken to define an interpretation of quantum
mechanics. Dieks (1995) suggested a physical motivation for the Schmidt
decomposition in modal interpretations based on the assumed requirement
of a one-to-one correspondence between the properties of the system and its
environment. For a comment on the violation of the property composition
principle in such interpretations, see the analysis of Clifton (1996).

A central problem associated with the approach of orthogonal decomposition
is that it is not at all clear that the properties determined by the Schmidt
diagonalization represent the determinate properties of our experience. As
outlined in Sec. 3.E.4, the states selected by the (instantaneous) orthogonal
decomposition of the reduced density matrix will in general differ from the
robust “pointer states” chosen by the stability criterion of the decoherence
program and may have distinctly non- classical properties. That this will be
the case especially when the states selected by the orthogonal decomposition
are close to degeneracy has already been indicated in Sec. III.E.4. It has
also been explored in more detail in the context of modal interpretations by
Bacciagaluppi et al. (1995) and Donald (1998), who showed that in the case
of near degeneracy (as it typically occurs for macroscopic systems with many
degrees of freedom), the resulting projectors will be extremely sensitive to
the precise form of the state (Bacciagaluppi et al., 1995). Clearly such sensi-
tivity is undesired since the projectors, and thus the properties of the system,
will not be well behaved under the inevitable approximations employed in
physics (Donald, 1998).

3. Property assignment based on decompositions of the decohered
density matrix

Other authors therefore have appealed to the orthogonal decomposition of
the decohered reduced density matrix (instead of the decomposition of the in-
stantaneous density matrix), which has led to noteworthy results. When the
system is represented by only a finite-dimensional Hilbert space, a discrete
model of decoherence, the resulting states were indeed found to be typically
close to the robust states selected by the stability criterion (for macroscopic
systems, this typically meant localization in position space), unless again the
final composite state was very nearly degenerate (Bacciagaluppi and Hemmo,
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1996; Bene, 2001; see also Sec. 3.E.4). Thus, in sufficiently nondegenerate
cases, decoherence can ensure that the definite properties selected by modal
interpretations of the Dieks-type will be appropriately close to the properties
corresponding to the ideal pointer states if the modal properties are based
on the orthogonal decomposition of the reduced decohered density matrix.

On the other hand, Bacciagaluppi (2000) showed that in the more general
and realistic case of an infinite-dimensional state space of the system, when
one employs a continuous model of decoherence (namely, that of Joos and
Zeh, 1985), the predictions of the modal approach (Dieks, 1989; Vermaas
and Dieks, 1995) and those of decoherence can differ significantly. It was
demonstrated that the definite properties obtained from the orthogonal de-
composition of the decohered density matrix were highly delocalized (that
is, smeared out over the entire spread of the state), although the coherence
length of the density matrix itself was shown to be very small, so that de-
coherence indicated very localized properties. Thus, based on these results
(and similar ones of Donald, 1998), decoherence can be used to argue for the
physical inadequacy of the rule for the assignment of definite properties as
proposed by Dieks (1989) and Vermass and Dieks (1995).

4. Concluding remarks

There are many different proposals that can be grouped under the heading
of modal interpretations. They all share the problem of motivating and ver-
ifying a consistent system of property assignment. Using the robust pointer
states selected by interaction with the environment and by the stability cri-
terion is a step in the right direction, but the difficulty remains to derive
a general rule for property assignment from this method that would yield
explicitly the sets of possibilities in every situation. In certain cases, for
example, close to degeneracy and in Hilbert spaces of infinite dimension,
the simpler approach of deriving the possible properties from the orthogo-
nal decomposition of the decohered reduced density matrix fails to yield the
sharply localized, quasiclassical pointer states as selected by environmental
robustness criteria. These are the cases in which de- coherence can play a
vital role in helping to identify inadequate rules for property assignment in
modal interpretations.

E. Physical collapse theories
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The basic idea of physical collapse theories is to introduce an explicit mod-
ification of the Schrödinger time evolution to achieve a physical mechanism
for state-vector reduction (for an extensive recent review, see Bassi and Ghi-
rardi, 2003). This is in general motivated by a “realist” interpretation of the
state vector, that is, the state vector is directly identified with a physical
state, which then requires reduction to one of the terms in the superposition
to establish equivalence to the observed determinate properties of physical
states, at least as far as the macroscopic realm is concerned.

The first proposals for theories of this type were made by Pearle (1976, 1979,
1982) and Gisin (1984), who developed dynamical reduction models that
modify unitary dynamics such that a superposition of quantum states evolves
continuously into one of its terms (see also the review by Pearle, 1999). Typ-
ically, terms representing external white noise are added to the Schrödinger
equation, causing the squared amplitudes ∣cn(t)∣2 in the state-vector expan-
sion ∣Ψ(t)⟩ = ∑n cn(t) ∣ψn⟩ to fluctuate randomly in time, while maintaining
the normalization condition ∑n ∣cn(t)∣

2
= 1 for all t. This process is known as

stochastic dynamical reduction. Eventually one amplitude ∣cn(t)∣2 → 1, while
all other squared coefficients → 0 (the “gambler’s ruin game” mechanism),
where ∣cn(t)∣2 → 1 with probability ∣cn(t = 0)∣2 (the squared coefficients in
the initial precollapse state-vector expansion) in agreement with the Born
probability interpretation of the expansion coefficients.

These early models exhibit two main difficulties. First, the preferred-basis
problem: What determines the terms in the state-vector expansion into which
the state vector gets reduced? Why does reduction lead to precisely the dis-
tinct macroscopic states of our experience and not superpositions thereof?
Second, how can one account for the fact that the effectiveness of collapsing
superpositions increases when going from microscopic to macroscopic scales?

These problems motivated spontaneous localization models, initially pro-
posed by Ghirardi, Rimini, and Weber (GRW; Ghirardi et al., 1986). Here
state-vector reduction is not implemented as a dynamical process (i.e., as
a continuous evolution over time), but instead occurs instantaneously and
spontaneously, leading to a spatial localization of the wave function. To be
precise, the N -particle wave function ψ(x1, .....,xN) is at random intervals
multiplied by a Gaussian of the form exp [−(X − xk)2

/2∆2
] (this process is of-

ten called a “hit” or a “jump”), and the resulting product is subsequently nor-
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malized. The occurrence of these hits is not explained, but rather postulated
as a new fundamental physical mechanism. Both the coordinate xk and the
“center of the hit” X are chosen at random, but the probability for a specific
X is postulated to be given by the squared inner product of ψ(x1, .....,xN)

with the Gaussian (and therefore hits are more likely to occur where ∣ψ∣2 ,
viewed as a function of xk only, is large). The mean frequency ν of hits for
a single microscopic particle is chosen so as to effectively preserve unitary
time evolution for microscopic systems, while ensuring that for macroscopic
objects containing a very large number N of particles the localization occurs
rapidly (on the order of Nν), in such a way as to preclude the persistence of
spatially separated macroscopic superpositions (such as the pointer’s being
in a superposition of “up” and “down”) on time scales shorter than realistic
observations could resolve. Ghirardi et al. (1986) choose ν ≈ 10−16 s−1, so a
macroscopic system with N ≈ 1023 particles undergoes localization on aver-
age every 10−7 s. Inevitable coupling to the environment can in general be
expected to lead to a further drastic increase of N and therefore to an even
higher localization rate. Note, however, that the localization process itself
is independent of any interaction with the environment, in sharp contrast to
the decoherence approach.

Subsequently, the ideas of stochastic dynamical reduction and GRW theory
were combined into continuous spontaneous localization models (Pearle, 1989;
Ghirardi et al., 1990) in which localization of the GRW-type can be shown
to emerge from a nonunitary, nonlinear Itô stochastic differential equation,
namely, the Schrödinger equation augmented by spatially correlated Brow-
nian motion terms (see also Diósi, 1988, 1989). The particular choice of
stochastic term determines the preferred basis. Frequently, the stochastic
term has been based on the mass density, which yields a GRW-type spatial
localization (Diósi, 1989; Pearle, 1989; Ghirardi et al., 1990), but stochastic
terms driven by the Hamiltonian, leading to a reduction on an energy basis,
have also been studied (Bedford and Wang, 1975, 1977; Milburn, 1991; Perci-
val, 1995, 1998; Hughston, 1996; Fivel, 1997; Adler and Horwitz, 2000; Adler
et al., 2001; Adler, 2002). If we focus on the first type of term, the Ghirardi-
Rimini-Weber theory and continuous spontaneous localization become phe-
nomenologically similar, and we shall refer to them jointly as “spontaneous
localization” models in the following discussion whenever it is unnecessary
to distinguish them explicitly.
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1. The preferred-basis problem

Physical reduction theories typically remove wave- function collapse from
the restrictive context of the orthodox interpretation (where the external ob-
server arbitrarily selects the measured observable and thus determines the
preferred basis), and rather understand reduction as a universal mechanism
that acts constantly on every state vector regardless of an explicit measure-
ment situation. In view of this, it is particularly important to provide a
definition for the states into which the wave function collapses.

As mentioned before, the original stochastic dynamical reduction models
suffer from this preferred-basis problem. Taking into account environment-
induced superselection of a preferred basis could help resolve this issue. Deco-
herence has been shown to occur, especially for mesoscopic and macroscopic
objects, on extremely short time scales, and thus would presumably be able
to bring about basis selection much faster than the time required for dynam-
ical fluctuations to establish a “winning” expansion coefficient.

In contrast, the GRW theory solves the preferred-basis problem by postulat-
ing a mechanism that leads to reduction to a particular state vector in an
expansion on a position basis, i.e., position is assumed to be the universal
preferred basis. State-vector reduction then amounts to simply modifying the
functional shape of the projection of the state vector ∣ψ⟩ onto the position
basis ⟨x1, ...,xN ∣. This choice can be motivated by the insight that essentially
all (human) observations must be grounded in a position measurement.17

On the one hand, the selection of position as the preferred basis is supported
by the decoherence program, since physical interactions frequently are gov-
erned by distance-dependent laws. Given the stability criterion or a similar
requirement, this leads to position as the preferred observable. In this sense,
decoherence provides a physical motivation for the assumption of the GRW
model. On the other hand, it makes this assumption appear as too restrictive
since it cannot account for cases in which position is not the preferred basis -
for instance, in microscopic systems where typically energy is the robust ob-
servable, or in the superposition of (macroscopic) currents in SQUID’s. The

17This measurement may ultimately occur only in the brain of the observer; see the
objection to the GRW model by Albert and Vaidman (1989). With respect to the general
preference for position as the basis of measurements, see also the comment by Bell (1982).
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GRW model simply excludes such cases by choosing the parameters of the
spontaneous localization process such that microscopic systems remain gener-
ally unaffected by any state-vector reduction. The basis selection approach
proposed by the decoherence program is therefore much more general and
also avoids the ad hoc character of the GRW theory by allowing for a range
of preferred observables and motivating their choice on physical grounds.

A similar argument can be made with respect to the continuous sponta-
neous localization approach. Here, one essentially preselects a preferred basis
through the particular choice of the stochastic terms added to the Schrödinger
equation. This allows for a greater range of possible preferred bases, for in-
stance, by combining terms driven by the Hamiltonian and by the mass
density, leading to a competition between localization in energy and posi-
tion space (corresponding to the two most frequently observed eigenstates).
Nonetheless, any particular choice of terms will again be subject to the charge
of possessing an ad hoc flavor, in contrast to the physical definition of the
preferred basis derived from the structure of the unmodified Hamiltonian as
suggested by environment-induced selection.

2. Simultaneous presence of decoherence and spontaneous local-
ization

Since decoherence can be considered as an omnipresent phenomenon that
has been extensively verified both theoretically and experimentally, the as-
sumption that a physical collapse theory holds means that the evolution of a
system must be guided by both decoherence effects and the reduction mech-
anism.

Let us first consider the situation in which decoherence and the localization
mechanism act constructively in the same direction, i.e., towards a common
preferred basis. This raises the question in which order these two effects
influence the evolution of the system (Bacciagaluppi, 2003a). If localiza-
tion occurs on a shorter time scale than environment-induced superselection
of a preferred basis and suppression of local interference, decoherence will in
most cases have very little influence on the evolution of the system, since typ-
ically the system will already have evolved into a reduced state. Conversely,
if decoherence effects act more quickly on the system than the localization
mechanism, the interaction with the environment will presumably lead to
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the preparation of quasiclassical robust states that are subsequently chosen
by the localization mechanism. As pointed out in Sec. III.D, decoherence
usually occurs on extremely short time scales, which can be shown to be
significantly smaller than the action of the spontaneous localization process
for most cases (for studies related to the GRW model, see Tegmark, 1993
and Benatti et al., 1995). This indicates that decoherence will typically play
an important role even in the presence of physical wavefunction reduction.

The second case occurs when decoherence leads to the selection of a different
preferred basis than the reduction basis specified by the localization mech-
anism. As remarked by Bacciagaluppi (2003a, 2003b) in the context of the
GRW theory, one might then imagine the collapse either to occur only at
the level of the environment (which would then serve as an amplifying and
recording device with different localization properties than the system under
study), or to lead to an explicit competition between decoherence and local-
ization effects.

3. The tails problem

The clear advantage of physical collapse models over the consideration of
decoherence-induced effects alone for a solution to the measurement problem
lies in the fact that an actual state reduction is achieved such that one may be
tempted to conclude that at the conclusion of the reduction process the sys-
tem actually is in a de- terminate state. However, all collapse models achieve
only an approximate (“for all practical purposes”) reduction of the wave
function. In the case of dynamical reduction models, the state will always
retain small interference terms for finite times. Similarly, in the GRW theory
the width ∆ of the multiplying Gaussian cannot be made arbitrarily small,
and therefore the reduced wave packet cannot be made infinitely sharply lo-
calized in position space, since this would entail an infinitely large energy
gain by the system via the time-energy uncertainty relation, which would
certainly show up experimentally (Ghirardi et al., 1986, chose ∆ ≈ 10−5 cm).
This need for only an approximate reduction leads to wave function “tails”
(Albert and Loewer, 1996), that is, in any region in space and at any time
t > 0, the wave function will remain nonzero if it has been nonzero at t = 0
(before the collapse), and thus there will be always a part of the system that
is not “here”.
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Physical collapse models that achieve reduction only “for all practical pur-
poses” require a modification, namely, a weakening, of the orthodox e-e link
to allow one to speak of the system’s actually being in a definite state, and
thereby to ensure the objective attribution of determinate properties to the
system.18 In this sense, collapse models are as much “just fine for all practical
purposes” (to paraphrase Bell, 1990) as decoherence is, where perfect orthog-
onality of the environment states is only attained as t → ∞. The severity
of the consequences, however, is not equivalent for the two strategies. Since
collapse models directly change the state vector, a single outcome is at least
approximately selected, and it only requires a “slight” weakening of the e-e
link to make this state of affairs correspond to the (objective) existence of
a determinate physical property. In the case of decoherence, the lack of a
precise destruction of interference terms is not the main problem; even if
exact orthogonality of the environment states were ensured at all times, the
resulting reduced density matrix would still represent an improper mixture,
with no outcome having been singled out according to the e-e link. This
would be the case regardless of whether the e-e link were ex- pressed in the
strong or weakened form, and we would still have to supply some additional
interpretative frame- work to explain our perception of outcomes (see also
the comment by Ghirardi et al., 1987).

4. Connecting decoherence and collapse models

t was realized early that there exists a striking formal similarity of the equa-
tions that govern the time evolution of density matrices in the GRW approach
and in models of decoherence. For example, the GRW equation for a single
free mass point reads [Ghirardi et al., 1986, Eq. (3.5)]

i
∂ρ(x,x′, t)

∂t
=

1

2m
[
∂2

∂x2
−
∂2

∂x′2
]ρ − iΛ(x − x′)2ρ (4.1)

where the second term on the right-hand side accounts for the destruction
of spatially separated interference terms. A simple model for environment-
induced decoherence yields a very similar equation [Joos and Zeh, 1985, Eq.
(3.75); see also the comment by Joos, 1987]. Thus the physical justification
for an ad hoc postulate of an explicit reduction-inducing mechanism could be
questioned (of course modulo the important interpretive difference between

18It should be noted, however, that such “fuzzy” e-e links may in turn lead to difficulties,
as the discussion of Lewiss count- ing anomaly has shown (Lewis, 1997).
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the approximately proper ensembles arising from collapse models and the im-
proper ensembles resulting from decoherence; see also Ghirardi et al., 1987).
More constructively, the similarity of the governing equations might enable
one to choose the free parameters in collapse models on physical grounds
rather than on the basis of empirical adequacy. Conversely, this similarity
can also be viewed as leading to a “protection” of physical collapse theories
from empirical disproof. This is so because the inevitable and ubiquitous
interaction with the environment will always, for all practical purposes of
observation (that is, of statistical prediction), result in (local) density ma-
trices that are formally very similar to those of collapse models. What is
measured is not the state vector itself, but the probability distribution of
outcomes, i.e., values of a physical quantity and their frequency, and this
information is equivalently contained in the state vector and the density ma-
trix. Measurements with their intrinsically local character will presumably
be unable to distinguish between the probability distribution given by the
decohered reduced density matrix and the probability distribution defined
by an (approximately) proper mixture obtained from a physical collapse. In
other words, as long as the free parameters of collapse theories are chosen in
agreement with those determined from decoherence, models for state-vector
reduction can be expected to be empirically adequate since decoherence is
an effect that will be present with near certainty in every realistic (especially
macroscopic) physical system.

One might of course speculate that the simultaneous presence of both de-
coherence and reduction effects might actually allow for an experimental
disproof of col- lapse theories by preparing states that differ in an observ-
able manner from the predictions of the reduction models.19 If we acknowl-
edge the existence of interpretations of quantum mechanics that employ only
decoherence-induced suppression of interference to explain the perception of
apparent collapses (as is, for ex- ample, claimed by the “existential inter-
pretation” of Zurek, 1993, 1998; see Sec. 4.C.3), we will not be able to
distinguish experimentally between a “true” collapse and a mere suppres-
sion of interference as explained by decoherence. Instead, an experimental
situation is required in which the collapse model predicts a collapse, but in

19For proposed experiments to detect the GRW collapse, see, for example, Squires (1991)
and Rae (1990). For experiments that could potentially demonstrate deviations from the
predictions of quantum theory when dynamical state-vector reduction is present, see Pearle
(1984, 1986).
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which no suppression of interference through de- coherence arises. Again,
the problem in the realization of such an experiment is that it is very dif-
ficult to shield a system from decoherence effects, especially since we will
typically require a mesoscopic or macroscopic system in which the reduction
is efficient enough to be ob- served. For example, based on explicit numerical
estimates, Tegmark (1993) has shown that decoherence due to scattering of
environmental particles such as air molecules or photons will have a much
stronger influence than the proposed GRW effect of spontaneous localization
(see also Benatti et al., 1995; Bassi and Ghirardi, 2003; for different results
for energy-driven reduction models, cf. Adler, 2002).

5. Summary and outlook

Decoherence has the distinct advantage of being derived directly from the
laws of standard quantum mechanics, whereas current collapse models are
required to postulate their reduction mechanism as a new fundamental law
of nature. On the other hand, collapse models yield, at least for all practical
purposes, proper mixtures, so they are capable of providing an “objective”
solution to the measurement problem. The formal similarity between the
time evolution equations of the col- lapse and decoherence models nourishes
hopes that the postulated reduction mechanisms of collapse models could
possibly be derived from the ubiquituous and inevitable interaction of every
physical system with its environment and the resulting decoherence effects.
We may therefore regard collapse models and decoherence not as mutually
exclusive alternatives for a solution to the measurement problem, but rather
as potential candidates for a fruitful unification. For a vague proposal along
these lines, see Pessoa (1998); cf. also Diósi (1989) and Pearle (1999) for
speculations that quantum gravity might act as a collapse-inducing univer-
sal “environment”.

F. Bohmian mechanics

Bohm’s approach (Bohm, 1952; Bohm and Bub, 1966; Bohm and Hiley,
1993) is a modification of de Broglie’s (1930) original “pilot-wave” pro-
posal. In Bohmian mechanics, a system containing N (nonrelativistic) par-
ticles is described by a wave function ψ(t) and the configuration Q(t) =

(q1(t), ....,qN(t)) ∈ R3N of particle positions qi(t), i.e., the state of the sys-
tem is represented by (ψ,Q) for each instant t. The evolution of the system
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is guided by two equations. The wave function ψ(t) is transformed as usual
via the standard Schrödinger equation, ih̵(∂/∂t)ψ = Ĥψ, while the particle
positions qi(t) of the configuration Q(t) evolve according to the “guiding
equation”

dqi
dt

= vψi (q1, ....,qN) ≡
h̵

mi

Im
ψ∗∇qiψ

ψ∗ψ
(q1, ....,qN) (4.2)

where mi is the mass of the ith particle. Thus the particles follow determi-
nate trajectories described by Q(t), with the distribution of Q(t) being given
by the quantum equilibrium distribution ρ = ∣ψ∣2.

1. Particles as fundamental entities

Bohm’s theory has been criticized for ascribing fundamental ontological sta-
tus to particles. General arguments against particles on a fundamental level
of any relativistic quantum theory have been frequently given (see, for in-
stance, Malament, 1996, and Halvorson and Clifton, 2002).20 Moreover, and
this is the point we would like to discuss in this section, it has been argued
that the appearance of particles (“discontinuities in space”) could be derived
from the continuous process of decoherence, leading to claims that no fun-
damental role need be attributed to particles (Zeh, 1993, 1999, 2003) Based
on decohered density matrices of mesoscopic and macroscopic systems that
essentially always represent quasiensembles of narrow wave packets in posi-
tion space, Zeh (1993, p. 190) holds that such wave packets can be viewed
as representing individual “particle” positions:21

All particle aspects observed in measurements of quantum fields
(like spots on a plate, tracks in a bubble chamber, or clicks of a
counter) can be understood by taking into account this decoher-
ence of the relevant local (i.e., subsystem) density matrix.

20On the other hand, there are proposals for a “Bohmian mechanics of quantum fields”,
i.e., a theory that embeds quantum field theory into a Bohmian-style framework (Dürr et
al., 2003, 2004)

21Schrödinger (1926) had made an attempt into a similar direction but had failed since
the Schrödinger equation tends to continuously spread out any localized wave packet
when it is considered as describing an isolated system. The inclusion of an interacting
environment and thus decoherence counteracts the spread and opens up the possibility of
maintaining narrow wave packets over time (Joos and Zeh, 1985).
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The first question is then whether a narrow wave packet in position space
can be identified with the subjective experience of a “particle”. The answer
appears to be yes: our notion of “particles” hinges on the property of local-
izability, i.e., the definition of a region of space Ω ∈ R3 in which the system
(that is, the support of the wave function) is entirely contained. Although
the nature of the Schrödinger dynamics implies that any wave function will
have nonvanishing support (“tails”) outside of any finite spatial region Ω
and therefore exact localizatibility will never be achieved, we only need to
demand approximate localizability to account for our experience of particle
aspects.

However, to interpret the ensembles of narrow wave packets resulting from
decoherence as leading to the perception of individual particles, we must
embed standard quantum mechanics (with decoherence) into an additional
interpretive framework that explains why only one of the wave packets is
perceived;22 that is, we do need to add some interpretive rule to get from the
improper ensemble emerging from decoherence to the perception of individ-
ual terms, so decoherence alone does not necessarily make Bohm’s particle
concept superfluous. But it suggests that the postulate of particles as funda-
mental entities could be unnecessary, and taken together with the difficulties
in reconciling such a particle theory with a relativistic quantum field theory,
Bohm’s a priori assumption of particles at a fundamental level of the theory
appears seriously challenged.

2. Bohmian trajectories and decoherence

A well-known property of Bohmian mechanics is the fact that its trajectories
are often highly nonclassical (see, for example, Bohm and Hiley, 1993; Hol-
land, 1993; Appleby, 1999a). This poses the serious problem of how Bohm’s
theory can explain the existence of quasiclassical trajectories on a macro-
scopic level.

Bohm and Hiley (1993) considered the scattering of a beam of environmental
particles on a macroscopic system, a process that is known to give rise to de-
coherence (Joos and Zeh, 1985; Joos et al., 2003). The authors demonstrate
that this scattering yields quasiclassical trajectories for the system. It has

22Zeh himself, like Zurek (1998), adheres to an Everett-style branching to which distinct
observers are attached (Zeh, 1993), see also the quote in Sec. 4.C.
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further been shown that, for isolated systems, the Bohm theory will typically
not give the correct classical limit (Appleby, 1999a). It was thus suggested
that the inclusion of the environment and of the resulting decoherence ef-
fects might be helpful in recovering quasiclassical trajectories in Bohmian
mechanics (Appleby, 1999b; Zeh, 1999; Allori, 2001; Allori and Zangh, 2001;
Allori et al., 2002; Sanz and Borondo, 2003).

We mentioned before that the interaction between a macroscopic system and
its environment will typically lead to a rapid approximate diagonalization
of the reduced density matrix in position space, and thus to spatially lo-
calized wave packets that follow (approximately) Hamiltonian trajectories.
[This observation also provides a physical motivation for the choice of posi-
tion as the fundamental preferred basis in Bohm’s theory, in agreement with
Bell’s (1982) well-known comment that “in physics the only observations we
must consider are position observations, if only the positions of instrument
pointers”]. The intuitive step is then to associate these trajectories with the
particle trajectories Q(t) of the Bohm theory. As pointed out by Baccia-
galuppi (2003b), a great advantage of this strategy lies in the fact that the
same approach would allow for a recovery of both quantum and classical
phenomena.

However, a careful analysis by Appleby (1999b) showed that this decoherence-
induced diagonalization in the position basis alone will in general not suffice
to yield quasiclassical trajectories in Bohm’s theory; only under certain ad-
ditional assumptions will processes that lead to decoherence also give correct
quasiclassical Bohmian trajectories for macroscopic systems (Appleby de-
scribed the example of the long-time limit of a system that has initially been
prepared in an energy eigenstate). Interesting results were also reported
by Allori and co- workers (Allori, 2001; Allori and Zangh̀ı, 2001; Allori et
al., 2002). They demonstrated that decoherence effects can play the role of
preserving classical properties of Bohmian trajectories. Furthermore, they
showed that while in standard quantum mechanics it is important to main-
tain narrow wave packets to account for the emergence of classicality, the
Bohmian description of a system by both its wave function and its config-
uration allows for the derivation of quasiclassical behavior from highly de-
localized wave functions. Sanz and Borondo (2003) studied the double-slit
experiment in the frame- work of Bohmian mechanics and in the presence of
de- coherence and showed that even when coherence is fully lost, and thus
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interference is absent, nonlocal quantum correlations remain that influence
the dynamics of the particles in the Bohm theory, demonstrating that in
this example decoherence does not suffice to achieve the classical limit in
Bohmian mechanics.

In conclusion, while the basic idea of employing decoherence-related processes
to yield the correct classical limit of Bohmian trajectories seems reasonable,
many details of this approach still need to be worked out.

G. Consistent-histories interpretations

The consistent- (or decoherent-) histories approach was introduced by Grif-
fiths (1984, 1993, 1996) and further developed by Omnès (1988a, 1988b,
1988c, 1990, 1992, 1994, 2002), Gell-Mann and Hartle (1990, 1991a, 1991b,
1993), Dowker and Halliwell (1992), and others. Reviews of the program
can be found in the papers by Omnès (1992) and Halliwell (1993, 1996);
thoughtful critiques investigating key features and assumptions of the ap-
proach have been given, for example, by d’Espagnat (1989), Dowker and
Kent (1995, 1996), Kent (1998), and Bassi and Ghirardi (1999). The ba-
sic idea of the consistent-histories approach is to eliminate the fundamental
role of measurements in quantum mechanics, and instead study quantum
histories, defined as sequences of events represented by sets of time-ordered
projection operators, and to assign probabilities to such histories. The ap-
proach was originally motivated by quantum cosmology, i.e., the study of the
evolution of the entire universe, which, by definition, represents a closed sys-
tem. Therefore no external observer (which is, for example, an indispensable
element of the Copenhagen interpretation) can be invoked.

1. Definition of histories

We assume that a physical system S is described by a density matrix ρ0 at
some initial time t0 and define a sequence of arbitrary times t1 < t2 < ⋯ < tn
with t1 > t0. For each time point ti in this sequence, we consider an ex-
haustive set P(i) = {P̂

(i)
αi (ti)∣αi = 1⋯mi}, 1 ≤ i ≤ n, of mutually orthogonal

Hermitian projection operators P̂
(i)
αi (ti) obeying

∑

αi

P̂
(i)
αi (ti) = 1 , P̂

(i)
αi (ti)P̂

(i)
βi

(ti) = δαiβiP̂
(i)
αi (ti) (4.3)
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and evolving, using the Heisenberg picture, according to

P̂
(i)
αi (ti) = U

†
(t0, t)P̂

(i)
αi (t0)U(t0, t) (4.4)

where U(t0, t) is the operator that dynamically gates the state vector from
t0 to t.

A possible, “maximally fine-grained” history is defined by the sequence of
times t1 < t2 < ⋯ < tn and by the choice of one projection operator in the set
P
(i) for each time point ti in the sequence, i.e., by the set

H{α} = {P̂
(1)
α1 (t1)P̂

(2)
α2 (t2), ..., P̂

(n)
αn (tn)} (4.5)

We also define the set h = {H{α}} of all possible histories for a given time
sequence t1 < t2 < ⋯ < tn. The natural interpretation of a history H{α} is
then to take it as a series of propositions of the form “the system S was, at
time ti, in a state of the subspace spanned by P̂

(i)
αi (ti)”.

Maximally fine-grained histories can be combined to form “coarse-grained”
sets which assign to each time point ti a linear combination

Q̂
(i)
βi

(ti) =∑
αi

π
(i)
αi P̂

(i)
αi (ti) , π

(i)
αi ∈ {0,1} (4.6)

of the original projection operators P̂
(i)
αi (ti).

So far, the projection operators P̂
(i)
αi (ti) chosen at a certain instant ti in

time in order to form a history H{α} were independent of the choice of the
projection operators at earlier times t0 < t < ti in H{α}. This situation was
generalized by Omnès (1988a, 1988b, 1988c, 1990, 1992) to include “branch-
dependent” histories of the form (see also Gell-Mann and Hartle, 1993)

H{α} = {P̂
(1)
α1 (t1)P̂

(2,α1)
α2 (t2), ..., P̂

(n,α1,...,αn−1)
αn (tn)} (4.7)

2. Probabilities and consistency

In standard quantum mechanics, we can always assign probabilities to single
events, represented by the eigenstates of some projection operator P̂ (i)(t),
via the rule

p(i, t) = Tr[P̂ (i)†(t)ρ(t0)P̂
(i)

(t)] (4.8)
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The natural extension of this formula to the calculation of the probability
p(H{α}) of a history H{α} is given by

p(H{α}) = D(α,α) (4.9)

where the so-called decoherence functional D(α,β) is defined by (Gell-Mann
and Hartle, 1990)

D(α,β) = Tr[P̂
(n)
αn (tn)⋯P̂

(1)
α1 (t1)ρ0P̂

(1)
β1

(t1)⋯P̂
(n)
βn

(tn)] (4.10)

If we instead work in the Schrödinger picture, the decoherence functional is

D(α,β) = Tr[P̂
(n)
αn U(tn−1, tn)⋯P̂

(1)
α1 (ρ(t1)ρ0P̂

(1)
β1
⋯U †

(tn−1, tn)P̂
(n)
βn

] (4.11)

Consider now the coarse-grained history that arises from a combination of
the two maximally fine-grained histories H{α} and H{β},

Hα∨β = {P̂
(1)
α1 (t1)+P̂

(1)
β1

(t1), P̂
(2)
α2 (t2)+P̂

(2)
β2

(t2), ...., P̂
(n)
αn (tn)+P̂

(n)
βn

(tn)} (4.12)

We interpret each combined projection operator P̂
(i)
αi (ti)+ P̂

(i)
βi

(ti) as stating

that, at time ti, the system was in the range described by the union of P̂
(i)
αi (ti)

and P̂
(i)
βi

(ti). Accordingly, we would like to require that the probability for
a history containing such a combined projection operator be equivalently
calculable from the sum of the probabilities of the two histories containing
the individual projectors P̂

(i)
αi (ti) and P̂

(i)
βi

(ti), that is,

Tr[P̂
(n)
αn (tn)⋯(P̂

(i)
αi (ti) + P̂

(i)
βi

(ti))⋯P̂
(1)
α1 (t1)ρ0P̂

(1)
α1 (t1)⋯(P̂

(i)
αi (ti) + P̂

(i)
βi

(ti))P̂
(n)
αn (tn)]

= Tr[P̂
(n)
αn (tn)⋯P̂

(i)
αi (ti)⋯P̂

(1)
α1 (t1)ρ0P̂

(1)
α1 (t1)⋯P̂

(i)
αi (ti)⋯P̂

(n)
αn (tn)]

+ Tr[P̂
(n)
αn (tn)⋯P̂

(i)
βi

(ti)⋯P̂
(1)
α1 (t1)ρ0P̂

(1)
α1 (t1)⋯P̂

(i)
βi

(ti)⋯P̂
(n)
αn (tn)] (4.13)

It can be easily shown that this relation holds if and only if

Re{Tr[P̂
(n)
αn (tn)⋯P̂

(i)
αi (ti)⋯P̂

(1)
α1 (t1)ρ0P̂

(1)
α1 (t1)⋯P̂

(i)
βi

(ti)⋯P̂
(n)
αn (tn)]} = 0 if αi = βi

(4.14)
Generalizing this two-projector case to the coarse-grained history Hα∨β of
Eq. (4.12), we arrive at the (sufficient and necessary) consistency condition
for two histories H{α} and H{β} (Griffiths, 1984; Omnès, 1990, 1992),

Re[D(α,β)] = δα,βD(α,α) (4.15)
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If this relation is violated, the usual sum rule for calculating probabilities
does not apply. This situation arises when quantum interference between
the two combined histories H{α} and H{β} is present. Therefore, to ensure
that the standard laws of probability theory also hold for coarse-grained his-
tories, the set h of possible histories must be consistent in the above sense.

However, Gell-Mann and Hartle (1990) have pointed out that when decoher-
ence effects are included to model the emergence of classicality, it is more
natural to require

D(α,β) = δα,βD(α,α) (4.16)

Condition (4.14) has often been referred to as weak decoherence, and Eq.
(4.15) as medium decoherence (for a proposal of a criterion for strong deco-
herence, see Gell-Mann and Hartle, 1998). The set h of histories is called
consistent (or decoherent) when all its members H{α} fulfill the consistency
condition, Eqs. (4.14) or (4.15), i.e., when they can be regarded as indepen-
dent (noninterfering).

3. Selection of histories and classicali

Even when the stronger consistency criterion (4.15) is imposed on the set h of
possible histories, the number of mutually incompatible consistent histories
remains relatively large (d’Espagnat, 1989; Dowker and Kent, 1996). It is
not at all clear a priori that at least some of these histories necessarily rep-
resent any meaningful set of propositions about the world of our observation.
Even if a collection of such “meaningful” histories is found, it leaves open
the question how to select such histories and which additional criteria would
need to be invoked.

Griffith’s (1984) original aim in formulating the consistency criterion was
only to allow for a consistent description of sequences of events in closed
quantum systems without running into logical contradictions.23 Commonly,
however, consistency has also been tied to the emergence of classicality. For
example, the consistency criterion corresponds to the demand for the absence
of quantum interference - a property of classicality - between two combined

23However, Goldstein (1998) used a simple example to argue that the consistent-histories
approach can lead to contradictions with respect to a combination of joint probabilities,
even if the consistency criterion is imposed; see also the subsequent exchange of letters in
the February 1999 issue of Physics Today.
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histories. On the other hand, it has become clear that most consistent histo-
ries are in fact flagrantly nonclassical (Gell-Mann and Hartle, 1990, 1991b;
Albrecht, 1993; Paz and Zurek, 1993; Zurek, 1993; Dowker and Kent, 1995,
1996). For instance, when the projection operators P̂

(i)
αi (ti) are chosen to

be the time-evolved eigenstates of the initial density matrix ρ(t0), the con-
sistency condition will automatically be fulfilled, yet the histories composed
of these projection operators have been shown to result in highly nonclas-
sical macroscopic superpositions when applied to standard examples such
as quantum measurement or Schrödinger’s cat. This demonstrates that the
consistency condition cannot serve as a sufficient criterion for classicality.

4. Consistent histories of open systems

Various authors have appealed to interaction with the environment and the
resulting decoherence effects in defining additional criteria that would select
quasiclassical histories and would also lead to a physical motivation for the
consistency criterion (see, for example, Gell- Mann and Hartle, 1990, 1998;
Albrecht, 1992, 1993; Dowker and Halliwell, 1992; Finkelstein, 1993; Paz and
Zurek, 1993; Twamley, 1993b; Zurek, 1993; Anastopoulos, 1996; Halliwell,
2001). This approach intrinsically requires the notion of local, open systems
and the split of the universe into subsystems, in contrast to the original
aim of the consistent-histories approach to describe the evolution of a single
closed, undivided system (typically the entire universe). The decoherence-
based studies then assume the usual decomposition of the total Hilbert space
H into a space HS , corresponding to the system S, and HE of an environment
E . One then describes the histories of the system S by employing projection
operators that act only on the system, i.e., that are of the form P̂

(i)
αi (ti)⊗ ÎE ,

where P̂
(i)
αi (ti) acts only on HS and ÎE is the identity operator in HE .

This raises the question of when, i.e., under which circumstances, the reduced
density matrix ρS = TrEρSE of the system S suffices to calculate the decoher-
ence functional. The reduced density matrix arises from a nonunitary trace
over E at every time point ti, whereas the de- coherence functional of Eq.
(4.11) employs the full, unitarily evolving density matrix ρSE for all times
ti < tf and only applies a nonunitary trace operation (over both S and E) at
the final time tf . Paz and Zurek (1993) have answered this (rather techni-
cal) question by showing that the decoherence functional can be expressed
entirely in terms of the reduced density matrix if the time evolution of the re-
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duced density matrix is independent of the correlations dynamically formed
between the system and the environment. A necessary (but not always suf-
ficient) condition for this requirement to be satisfied is given by demanding
that the reduced dynamics be governed by a master equation that is local in
time.

When a “reduced” decoherence functional exists, at least to a good approxi-
mation, i.e., when the reduced dynamics are sufficiently insensitive to the for-
mation of system-environment correlations, the consistency of whole-universe
histories, described by a unitarily evolving density matrix ρSE and sequences
of projection operators of the form P̂

(i)
αi (ti)⊗ÎE , will be directly related to that

of open-system histories, represented by a nonunitarily evolving reduced den-
sity matrix ρS(ti) and “reduced” projection operators P̂

(i)
αi (ti) (Zurek, 1993).

5. Schmidt states vs pointer basis as projectors

The ability of the instantaneous eigenstates of the reduced density matrix
(Schmidt states; see also Sec. 3.E.4) to serve as projectors for consistent
histories and possibly to lead to the emergence of quasiclassical histories
has been studied in much detail (Albrecht, 1992, 1993; Paz and Zurek,
1993; Zurek, 1993; Kent and McElwaine, 1997). Paz and Zurek (1993) have

shown that Schmidt projectors P̂
(i)
αi , defined by their commutativity with the

evolved, path-projected reduced density matrix,

[P̂
(i)
αi , U(ti−1, ti){⋯U(t1, t2)P̂

(1)
α1 ρSP̂

(1)
α1 U

†
(t1, t2)⋯}U †

(ti−1, ti)] = 0 (4.17)

will always give rise to an infinite number of sets of consistent histories
(“Schmidt histories”). However, these histories are branch dependent [see
Eq. (4.7)], and usually extremely unstable, since small modifications of the
time sequence used for the projections (for instance, by deleting a time point)
will typically lead to drastic changes in the resulting history, indicating that
Schmidt histories are usually very nonclassical (Paz and Zurek, 1993; Zurek,
1993).

This situation is changed when the time points ti are chosen such that the
intervals (ti+1− ti) are larger than the typical decoherence time τD of the sys-
tem, over which the reduced density matrix becomes approximately diagonal
in the preferred pointer basis chosen through environment-induced superse-
lection (see also the discussion in Sec. 3.E.4). When the resulting pointer
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states, rather than the instantaneous Schmidt states, are used to define the
projection operators, stable quasiclassical histories will typically emerge (Paz
and Zurek, 1993; Zurek, 1993). In this sense, it has been suggested that inter-
action with the environment can provide the missing selection criterion that
ensures the quasiclassicality of histories, i.e., their stability (predictability),
and the correspondence of the projection operators (the pointer basis) to the
preferred determinate quantities of our experience.

The approximate noninterference, and thus consistency, of histories based
on local density operators (energy, number, momentum, charge, etc.) as
quasiclassical projectors (the so-called hydrodynamic observables ; Gell-Mann
and Hartle, 1991b; Dowker and Halliwell, 1992; Halliwell, 1998) has been at-
tributed to the dynamical stability exhibited by the eigenstates of the local
density operators. This stability leads to decoherence in the correspond-
ing basis (Halliwell, 1998, 1999). It has been argued by Zurek (2003a) that
this behavior and thus the special quasiclassical properties of hydrodynamic
observables can be explained by the fact that these observables obey the
commutativity criterion, Eq. (3.21), of the environment-induced superselec-
tion approach.

6. Exact vs approximate consistency

In the idealized case where the pointer states lead to an exact diagonaliza-
tion of the reduced density matrix, histories composed of the corresponding
pointer projectors will automatically be consistent. However, under realistic
circumstances decoherence will typically lead only to approximate diagonal-
ity in the pointer basis. This implies that the consistency criterion will not
be fulfilled exactly and that hence the probability sum rules will only hold
approximately - although usually, due to the efficiency of decoherence, to
a very good approximation (Griffiths, 1984; Gell-Mann and Hartle, 1991b;
Albrecht, 1992, 1993; Omnès, 1992, 1994; Paz and Zurek, 1993; Twamley,
1993b; Zurek, 1993). Hence, the consistency criterion has been viewed both
as overly restrictive, since the quasiclassical pointer projectors rarely obey
the consistency equations exactly, and as insufficient, because it does not
give rise to constraints that would single out quasiclassical histories.

7. Consistency and environment-induced superselection
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The relationship between consistency and environment-induced superselec-
tion, and therefore the connection between the decoherence functional and
the diagonalization of the reduced density matrix through enviornmental
decoherence, has been investigated by various authors. The basic idea, pro-
moted, for example, by Zurek (1993) and Paz and Zurek (1993), is to suggest
that if the interaction with the environment leads to rapid superselection of
a preferred basis, which approximately diagonalizes the local density matrix,
coarse-grained histories defined in this basis will automatically be (approxi-
mately) consistent.

This approach has been explored by Twamley (1993b), who carried out de-
tailed calculations in the context of a quantum-optical model of phase-space
decoherence and compared the results with two-time projected phase-space
histories of the same model system. It was found that when the parameters
of the interacting environment were changed such that the degree of diago-
nality of the reduced density matrix in the emerging preferred pointer basis
was increased, histories in that basis also became more consistent. For a
similar model, however, Twamley (1993b) also showed that consistency and
diagonality in a pointer basis as possible criteria for the emergence of quasi-
classicality may exhibit a very different dependence on the initial conditions.

Extensive studies on the connection between Schmidt states, pointer states,
and consistent quasiclassical histories have also been made by Albrecht (1992,
1993), based on analytical calculations and numerical simulations of toy mod-
els for decoherence, including detailed numerical results on the violation
of the sum rule for histories composed of different (Schmidt and pointer)
projector bases. It was demonstrated that the presence of stable system-
environment correlations (“records”), as demanded by the criterion for the
selection of the pointer basis, was of great importance in making certain
histories consistent. The relevance of “records” for the consistent-histories
approach in ensuring the “permanence of the past” has also been empha-
sized by other authors, for example, by Paz and Zurek (1993) and Zurek
(1993, 2003a), and in the “strong decoherence” criterion by Gell-Mann and
Hartle (1998). The redundancy with which information about the system
is re- corded in the environment and can thus be found out by different ob-
servers without measurably disturbing the system itself has been suggested to
allow for the notion of “objectively existing histories”, based on environment-
selected projectors that represent sequences of “objectively existing” quasi-
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classical events (Paz and Zurek, 1993; Zurek, 1993, 2003a, 2004b).

In general, damping of quantum coherence caused by decoherence will nec-
essarily lead to a loss of quantum interference between individual histories
(but not vice versa - see the discussion by Twamley, 1993b), since the fi-
nal trace operation over the environment in the decoherence functional will
make the off-diagonal elements very small due to the decoherence-induced
approximate mutual orthogonality of the environmental states. Finkelstein
(1993) has used this observation to propose a new decoherence condition that
coincides with the original definition, Eqs. (4.10) and (4.11), except for re-
stricting the trace to E , rather than tracing over both S and E . It was shown
that this condition not only implies the consistency condition of Eq. (4.15),
but also characterizes those histories that decohere due to interaction with
the environment and that lead to the formation of “records” of the state of
the system in the environment.

8. Summary and discussion

The core difficulty associated with the consistent- histories approach has been
to explain the emergence of the classical world of our experience from the
underlying quantum nature. Initially, it was hoped that classicality could be
derived from the consistency criterion alone. Soon, however, the status and
the role of this criterion in the formalism and its proper interpretation be-
came rather unclear and diffuse, since exact consistency was shown to provide
neither a necessary nor a sufficient condition for the selection of quasiclassical
histories.

The inclusion of decoherence effects in the consistent- histories approach,
leading to the emergence of stable quasiclassical pointer states, has been
found to yield a highly efficient mechanism and a sensitive criterion for sin-
gling out quasiclassical observables that simultaneously fulfill the consistency
criterion to a very good approximation due to the suppression of quantum
coherence in the state of the system. The central question is then: What
is the meaning and the remaining role of an explicit consistency criterion
in the light of such “natural” mechanisms for the decoherence of histories?
Can one dispose of this criterion as a key element of the fundamental theory
by noting that for all “realistic” histories consistency will be likely to arise
naturally from environment-induced decoherence alone?
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The answer to this question may actually depend on the viewpoint one takes
with respect to the aim of the consistent-histories approach. As we have
noted before, the original goal was simply to provide a formalism in which
one could, in a measurement-free context, assign probabilities to certain se-
quences of quantum events without logical inconsistencies. The more recent
and rather opposite aim would be to provide a formalism that selects only
a very small subset of “meaningful” quasiclassical histories, all of which are
consistent with our world of experience, and whose projectors can be directly
interpreted as objective physical events.

The consideration of decoherence effects that can give rise to effective super-
selection of possible quasiclassical (and consistent) histories certainly falls
into the latter category. It is interesting to note that this approach has also
led to a departure from the original “closed systems only” view to the study
of local open quantum systems, and thus to the decomposition of the to-
tal Hilbert space into subsystems, within the consistent-histories formalism.
Besides the fact that decoherence intrinsically re- quires the openness of sys-
tems, this move might also reflect the insight that the notion of classicality
itself can be viewed as only arising from a conceptual division of the universe
into parts (see the discussion in Sec. 3.A).

Therefore environment-induced decoherence and superselection have played
a remarkable role in consistent-histories interpretations: a practical one by
suggesting a physical selection mechanism for quasiclassical histories; and
a conceptual one by contributing to a shift in our view of originally rather
fundamental concepts, such as consistency, and of the aims of the consistent-
histories approach, like the focus on description of closed systems.

5 Concluding Remarks

We have presented an extensive discussion of the role of decoherence in the
foundations of quantum mechanics, with a particular focus on the implica-
tions of decoherence for the measurement problem in the context of various
interpretations of quantum mechanics.

A key achievement of the decoherence program is the recognition that open-
ness in quantum systems is important for their realistic description. The
well-known phenomenon of quantum entanglement had already, early in the
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history of quantum mechanics, demonstrated that correlations between sys-
tems can lead to “paradoxical” properties of the composite system that can-
not be composed from the properties of the individual systems. Nonetheless,
the viewpoint of classical physics that the idealization of isolated systems is
necessary to arrive at an “exact description” of physical systems has influ-
enced quantum theory for a long time. It is the great merit of the decoher-
ence program to have emphasized the ubiquity and essential inescapability
of system-environment correlations and to have established the important
role of such correlations as factors in the emergence of “classicality” from
quantum systems. Decoherence also provides a realistic physical modeling
and a generalization of the quantum measurement process, thus enhancing
the “black-box” view of measurements in the standard (“orthodox”) inter-
pretation and challenging the postulate of fundamentally classical measuring
devices in the Copenhagen interpretation.

With respect to the preferred-basis problem of quantum measurement, deco-
herence provides a very promising definition of preferred pointer states via
a physically meaningful requirement, namely, the robustness criterion, and
it describes methods for selecting operationally such states, for example, via
the commutativity criterion or by extremizing an appropriate measure such
as purity or von Neumann entropy. In particular, the fact that macroscopic
systems virtually always decohere into position eigenstates gives a physical
explanation for why position is the ubiquitous determinate property of the
world of our experience.

We have argued that, within the standard interpretation of quantum mechan-
ics, decoherence cannot solve the problem of definite outcomes in quantum
measurement: We are still left with a multitude of (albeit individually well-
localized quasiclassical) components of the wave function, and we need to
supplement or otherwise to interpret this situation in order to explain why
and how single outcomes are perceived. Accordingly, we have discussed how
environment-induced superselection of quasiclassical pointer states together
with the local suppression of interference terms can be put to great use in
physically motivating, or potentially disproving, rules and assumptions of
alternative interpretive approaches that change (or altogether abandon) the
strict orthodox eigenvalue-eigenstate link and/or modify the unitary dynam-
ics to account for the perception of definite outcomes and classicality in gen-
eral. For example, to name just a few applications, decoherence can provide
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a universal criterion for the selection of the branches in relative-state inter-
pretations and a physical argument for the noninterference between these
branches from the point of view of an observer; in modal interpretations,
it can be used to specify empirically adequate sets of properties that can
be ascribed to systems; in collapse models, the free parameters (and possi-
bly even the nature of the reduction mechanism itself) might be derivable
from environmental interactions; decoherence can also assist in the selec-
tion of quasiclassical particle trajectories in Bohmian mechanics, and it can
serve as an efficient mechanism for singling out quasiclassical histories in the
consistent-histories approach. Moreover, it has become clear that decoher-
ence can ensure the empirical adequacy and thus empirical equivalence of
different interpretive approaches, which has led some to the claim that the
choice, for example, between the orthodox and the Everett interpretation
becomes “purely a matter of taste, roughly equivalent to whether one be-
lieves mathematical language or human language to be more fundamental”
(Tegmark, 1998, p. 855).

It is fair to say that the decoherence program sheds new light on many
foundational aspects of quantum mechanics. It paves a physics-based path
towards motivating solutions to the measurement problem; it imposes con-
straints on the strands of interpretations that seek such a solution and thus
makes them also more and more similar to each other. Decoherence remains
an on- going field of intense research, in both the theoretical and experimen-
tal domain, and we can expect further implications for the foundations of
quantum mechanics from such studies in the near future.
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Kübler, O., and H. D. Zeh, 1973, Ann. Phys. ??N.Y.?? 76, 405.

Landau, L. D., 1927, Z. Phys. 45, 430.

Landsman, N. P., 1995, Stud. Hist. Philos. Mod. Phys. 26, 45.

Lewis, P., 1997, Br. J. Philos. Sci. 48, 313.

Lockwood, M., 1996, Br. J. Philos. Sci. 47, 159.

Malament, D. B., 1996, in Perspectives on Quantum Reality, 1st ed.,
edited by R. Clifton (Kluwer, Boston), p. 1.

Mermin, N. D., 1998a, Pramana 51, 549.

Mermin, N. D., 1998b, Am. J. Phys. 66, 753.

Milburn, G. J., 1991, Phys. Rev. A 44, 5401.

Mohrhoff, U., 2004, Int. J. Quantum Inf. 2, 221.

Ollivier, H., D. Poulin, and W. H. Zurek, 2003, quant-ph/0307229.

Omnès, R., 1988a, J. Stat. Phys. 53, 893.

93



Omnès, R., 1988b, J. Stat. Phys. 53, 933.

Omnès, R., 1988c, J. Stat. Phys. 53, 957.

Omnès, R., 1990, Ann. Phys. ??N.Y.?? 201, 354.

Omnès, R., 1992, Rev. Mod. Phys. 64, 339.

Omnès, R., 1994, The Interpretation of Quantum Mechanics (Princeton
University, Princeton).

Omnès, R., 2002, Phys. Rev. A 65, 052119.

Paz, J. P., and W. H. Zurek, 1993, Phys. Rev. D 48, 2728.

Paz, J. P., and W. H. Zurek, 1999, Phys. Rev. Lett. 82, 5181.

Pearle, P., 1976, Phys. Rev. D 13, 857.

Pearle, P., 1982, Found. Phys. 12, 249.

Pearle, P., 1984, Phys. Rev. D 29, 235.

Pearle, P., 1986, Phys. Rev. D 33, 2240.

Pearle, P., 1989, Phys. Rev. A 39, 2277.

Pearle, P. M., 1979, Int. J. Theor. Phys. 48, 489.

Pearle, P. M., 1999, in Open Systems and Measurement in Relativistic
Quantum Theory, edited by H.-P. Breuer and F. Petruccioni (Springer,
Berlin), p. 31.

Percival, I., 1995, Proc. R. Soc. London, Ser. A 451, 503.

Percival, I., 1998, Quantum State Diffusion (Cambridge University,
Cambridge, England).

Pessoa, O., Jr., 1998, Synthese 113, 323.

Rae, A. I. M., 1990, J. Phys. A 23, L57.

Rovelli, C., 1996, Int. J. Theor. Phys. 35, 1637

94



Sanz, A. S., and F. Borondo, 2003, quant-ph/0310096.

Saunders, S., 1995, Synthese 102, 235.

Saunders, S., 1997, Monist 80, 44.

Saunders, S., 1998, Synthese 114, 373.

Saunders, S., 2002, quant-ph/0211138.

Schlosshauer, M., and A. Fine, 2003, Found. Phys., in press, quant-
ph/0312058.

Schrödinger, E., 1926, Naturwiss. 14, 664.

Squires, E. J., 1990, Phys. Lett. A 145, 67.

Squires, E. J., 1991, Phys. Lett. A 158, 431.

Stapp, H. P., 1993, Mind, Matter, and Quantum Mechanics, 1st ed.
(Springer, New York).

Stapp, H. P., 2002, Can. J. Phys. 80, 1043.

Stein, H., 1984, Nous 18, 635.

Tegmark, M., 1993, Found. Phys. Lett. 6, 571.

Tegmark, M., 1998, Fortschr. Phys. 46, 855.

Tegmark, M., 2000, Phys. Rev. E 61, 4194.

Twamley, J., 1993a, gr-qc/9303022.

Twamley, J., 1993b, Phys. Rev. D 48, 5730.

Unruh, W. G., and W. H. Zurek, 1989, Phys. Rev. D 40, 1071.

Vaidman, L., 1998, Int. Stud. Phil. Sci. 12, 245.

van Fraassen, B., 1973, in Contemporary Research in the Foundations
and Philosophy of Quantum Theory, edited by C. A. Hooker (Reidel,
Dordrecht), p. 180.

95



van Fraassen, B., 1991, Quantum Mechanics: An Empiricist View
(Clarendon, Oxford).

Vermaas, P. E., and D. Dieks, 1995, Found. Phys. 25, 145. von
Neumann, J., 1932, Mathematische Grundlagen der Quantenmechanik
(Springer, Berlin).

Wallace, D., 2002, Stud. Hist. Philos. Mod. Phys. 33, 637.

Wallace, D., 2003a, Stud. Hist. Philos. Mod. Phys. 34, 87.

Wallace, D., 2003b, Stud. Hist. Philos. Mod. Phys. 34, 415.

Wick, G. C., A. S. Wightman, and E. P. Wigner, 1952, Phys. Rev. 88,
101.

Wick, G. C., A. S. Wightman, and E. P. Wigner, 1970, Phys. Rev. D
1, 3267.

Wightman, A. S., 1995, Nuovo Cimento Soc. Ital. Fis., B 110, 751.

Wigner, E. P., 1952, Z. Phys. 133, 101.

Wigner, E. P., 1963, Am. J. Phys. 31, 6.

Zeh, H. D., 1970, Found. Phys. 1, 69.

Zeh, H. D., 1973, Found. Phys. 3, 109.

Zeh, H. D., 1993, Phys. Lett. A 172, 189.

Zeh, H. D., 1995, quant-ph/9506020.

Zeh, H. D., 1997, in New Developments on Fundamental Problems in
Quantum Physics (Oviedo II), edited by M. Ferrero and A. van der
Merwe (Kluwer Academic, Dordrecht), p. 441.

Zeh, H. D., 1999, Found. Phys. Lett. 12, 197.

Zeh, H. D., 2000 in Decoherence, Theoretical, Experimental, and Con-
ceptual Problems, Lecture Notes in Physics No. 538, edited by P. Blan-
chard, D. Giulini, E. Joos, C. Kiefer, and I.-O. Stamatescu (Springer,
New York), p. 19.

96



Zeh, H.-D., 2001, The Physical Basis of the Direction of Time, 4th ed
(Springer, Berlin).

Zeh, H. D., 2003, Phys. Lett. A 309, 329.

Zurek, W. H., 1981, Phys. Rev. D 24, 1516.

Zurek, W. H., 1982, Phys. Rev. D 26, 1862.

Zurek, W. H., 1991, Phys. Today 44 (10), 36. An updated version is
available as quant-ph/0306072.

Zurek, W. H., 1993, Prog. Theor. Phys. 89, 281.

Zurek, W. H., 1998, Philos. Trans. R. Soc. London, Ser. A 356, 1793.

Zurek, W. H., 2000, Ann. Phys. ??Leipzig?? 9, 855.

Zurek, W. H., 2003a, Rev. Mod. Phys. 75, 715.

Zurek, W. H., 2003b, Phys. Rev. Lett. 90, 120404.

Zurek, W. H., 2003c, private communication.

Zurek, W. H., 2004a, quant-ph/0405161.

Zurek, W. H., 2004b, in Science and Ultimate Reality, edited by J. D.
Barrow, P. C. W. Davies, and C. H. Harper (Cambridge University,
Cambridge, England), p. 121.

Zurek, W. H., F. M. Cucchietti, and J. P. Paz, 2003, quant-ph/0312207.

Zurek, W. H., S. Habib, and J. P. Paz, 1993, Phys. Rev. Lett. 70,
1187.

Zurek, W. H., and J.-P. Paz, 1994, Phys. Rev. Lett. 72, 2508.

97


