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1 The Gambler’s Ruin Problem

1.1 Pascal’s problem of the gambler’s ruin

Two gamblers, A and B, play with three dice. At each throw, if the total
is 11 then B gives a counter to A; if the total is 14 then A gives a counter
to B. They start with twelve counters each, and the first to possess all 24 is
the winner. What are their chances of winning?

Pascal gives the correct solution. The ratio of their respective chances of
winning pA : pB, is

150094635296999122 : 129746337890625

which is the same as

282429536481 : 244140625

on dividing by 312.

Unfortunately it is not certain what method Pascal used to get this result.

1.2 Huygen’s Approach

However, Huygens soon heard about this new problem, and solved it in a
few days (sometime between September 28,1656 and October 12, 1656). He
used a version of Pascal’s idea of value.

1.2.1 Digression on Probability and Expected Value

Many problems in chance are inextricably linked with numerical outcomes,
especially in gambling and finance (where “numerical outcome” is a eu-
phemism for money). In these cases probability is inextricably linked to
“value”, as we now show.

To aid our thinking let us consider an everyday concrete and practical prob-
lem

A plutocrat(member of a plutocracy = a government or state in which the
wealthy rule) makes the following offer. She will flip a fair coin; if it shows



heads she will give you $1, if it shows tails she will give your friend Jack $1.
What is the offer worth to you? That is to say, for what fair price $p, should
you sell it?

Clearly, whatever price $p this is worth to you, it is worth the same price $p
to Jack, because the coin is fair, i.e., symmetrical (assuming he needs and
values money just as much as you do). So,to the pair of you, this offer is
altogether worth $2p. But whatever the outcome, the plutocrat has given
away $1. Hence $2p = $1, so that p = 1

2
and the offer is worth $1

2
to you.

It seems natural to regard this value p = 1
2

as a measure of your chance of
winning the money. It is intuitively reasonable to make the following general
rule.

Suppose you receive $1 with probability p (and otherwise you
receive nothing). Then the value or fair price of this offer is $p.
More generally, if you receive $d with probability p (and nothing
otherwise) then the fair price or expected value of this offer is
given by

expected value = pd

This simple idea turns out to be enormously important later on; for the
moment we note only that it is certainly consistent with ideas about proba-
bility.. For example, if the plutocrat definitely gives you $1 then this is worth
exactly $1 to you, and p = 1. Likewise, if you are definitely given nothing,
then p = 0 and it is easy to see that 0 ≤ p ≤ 1, for any such offers.

In particular, for the specific example above we find that the probability of
a head when a fair coin is flipped is 1

2
. Likewise a similar argument shows

that the probability of a six when a fair die is rolled is 1
6

(simply imagine the
plutocrat giving $1 to one of six people selected by the roll of the die).

The “fair price” of such offers is often called the expected value, or expecta-
tion, to emphasize its chance nature.

Returning to Huygens- Huygen’s definition of value

if you are offered $x with probability p, or $y with probability q
(p+ q = 1), then the value of this offer to you is (px+ qy).
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Now of course we do not know for sure if this was Pascal’s method, but Pascal
was certainly at least as capable of extending his own ideas as Huygens was.
The correct balance of probabilities indicates that he did use this method. By
long-standing tradition this problem is always solved in books on elementary
probability, and so we now give a modern version of the solution. Here is a
general statement of the problem.

1.3 Problem and Solution

Two players, A and B again, play a series of independent games. Each game
is won by A with probability α, or by B with probability β; the winner of
each game gets one counter from the loser. Initially A has m counters and
B has n. The victor of the contest is the first to have all m+n counters, the
loser is said to be “ruined”, which explains the name of the problem. What
are the chances of A and B to be the victor?

Note that α + β = 1, and for the moment we assume that α 6= β.

We will need the “partition rule” for two events from probability theory:

P (A) = P (A|B)P (B) + P (A| B)P ( B)

and the “conditional partition rule” for three events

P (A|C) = P (A|B ∩ C)P (B|C) + P (A| B ∩ C)P ( B|C)

It is also helpful to discuss a different problem first.

1.3.1 Digression to the Problem of Points

“Prolonged gambling differentiates people into two groups, those
playing with the odds, who are following a trade or profession;
and those playing against the odds, who are indulging a hobby
or pastime, and if this involves a regular annual outlay, this is no
more than what has been said about most other amusements.”

John Venn

We consider her a problem which was of particular importance in the history
and development of probability. In most texts on probability, one starts off
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with problems involving dice, cards, and other simple gambling devices. The
application of the theory is so natural and useful that it might be supposed
that the creation of probability parallelled the creation of dice and cards. In
fact, this is far from being the case. The greets single initial step in con-
structing a theory of probability was made in response to a more obscure
question - the problem of points.

Roughly speaking the essential question is this.

Two players, traditionally called A and B, are competing for a prize. The
contest takes the form of a sequence of independent similar trials; as a result
of each trial one of the contestants is awarded a point. The first player to
accumulate n points is the winner; in colloquial parlance A and B are playing
the best of 2n − 1 points. Tennis matches are usually the best of five sets;
n = 3.

The problem arises when the contest has to be stopped or abandoned before
either has won n points; in fact A needs a points (having n − a already)
and B needs b points (having n− b already). How should the prize be fairly
divided? (Typically the “prize” consisted of stakes put up by A and B, and
held by the stakeholder).

For example, in tennis, sets correspond to points and men play the best of
five sets. If the players were just beginning the fourth set when the court
was swallowed up by an earthquake, say, what would be a fair division of the
prize? (assuming a natural reluctance to continue the game on some nearby
court).

This is a problem of great antiquity; it first appeared in print in 1494 in a
book by Luca Pacioli, but was almost certainly an old problem even then.
In his example, A and B were playing the best of 11 games for a prize of ten
ducats, and are forced to abandon the game when A has 5 points (needing
1 more) and B has 2 points (needing 4 more). How should the prize be
divided?

Though Pacioli was a man of great talent (among many other things his
book included the first printed account of double-entry book-keeping), he
could not solve this problem.
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Nor could Tartaglia (who is best known for showing how to find the roots of
a cubic equation), nor could Forestani, Peverone, or Cardano, who all made
attempts during the 16th century.

In fact, the problem was finaly solved by Blaise Pascal in 1654, who, with
Fermat thereby officially inaugurated the theory of probability. In that year,
probably sometime around Pascal’s birthday (June 19; he was 31), the prob-
lem of points was brought to his attention. The enquiry was made by Cheva-
lier de Méré (Antoine Gombaud) who as a man-about-town and a gambler,
had a strong and direct interest in the answer. Within a very short time,
Pascal had solved the problem in two different ways. In the course of a cor-
respondence with Fermat, a third method of solution was found by Fermat.

Two of these methods relied on counting the number of equally likely out-
comes. Pascal’s great step forward was to create a method that did not rely
on having equally likely outcomes. This breakthrough came about as a result
of his explicit formulation of the idea of the value of a bet or lottery, as we
discussed above, i.e., if you have a probability p of winning $1 then the game
is worth $p to you.

It naturally follows that, in the problem of the points, the prize should be
divided in proportion to the player’s respective probabilities of winning if the
game were to be continued. The problem is therefore more precisely stated
thus.

Precise problem of the points. A sequence of fair coins is
flipped; A get a pony for every head, B a point for every tail.
Player A wins if there are a heads before b tails, otherwise B
winds. Find the probability that A wins.

Solution. Let α(a, b) be the probability that A wins and β(a, b) the proba-
bility that B wins. If the first flip is a head, then A now needs a− 1 further
heads to win, so the conditional probability that A wins , given a head, is
α(a− 1, b). Likewise the conditional probability that A wins, given a tail is
α(a, b− 1). Hence, by the partition rule,

α(a, b) = 1
2
α(a− 1, b) + 1

2
α(a, b− 1) (1)

Thus, if we know α(a, b) for small values of a and b, we can find the solution
for any a and b by simple recursion. And of course we do know such values
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of α(a, b), because if a = 0 and b > 0, then A has won and takes the whole
prize: that is to say

α(0, b) = 1 (2)

Likewise, if b = 0 and a > 0, then B has won, and so

α(a, 0) = 0 (3)

How do we solve (1) in general, with (2) and (3)? Recall the fundamental
property of Pascal’s triangle: the entries in the (row,column):

(0, 0)

(
0

0

)
= 1

(1, 0)

(
1

0

)
= 1 (1, 1)

(
1

1

)
= 1

(2, 0)

(
2

0

)
= 1 (2, 1)

(
2

1

)
= 2 (2, 2)

(
2

2

)
= 1

and so on, i.e., the entries c(j + k, k) = d(j, k) satisfy

d(j, k) = d(j − 1, k) + d(j, k − 1) (4)

You do not need to be genius to suspect that the solution α(a, b) of (1) is
going to be connected with the solutions

c(j + k, k) = d(j, k) =

(
j + k

k

)
of (4). We can make the connect even more transparent by writing

α(a, b) =
1

2a+b
u(a, b)

Then (1) becomes

u(a, b) = u(a− 1, b) + u(a, b− 1) (5)

with
u(0, b) = 2b and u(a, 0) = 0 (6)
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There are various ways of solveng (5) with conditions (6), but Pascal had the
inestimable advantage of having already obtained the solution by another
method. Thus, he had simply to check that the answer is indeed

u(a, b) = 2
b−1∑
k=0

(
a+ b− 1

k

)
(7)

and

α(a, b) =
1

2a+b−1

b−1∑
k=0

(
a+ b− 1

k

)
(8)

At long last there was a solution to this classic problem. We may reasonably
ask why Pascal was able to solve it in a matter of weeks, when all previous
attempts had failed for at least 150 years. As usual the answer lies in a com-
bination of circumstances: mathematicians had become better at counting
things; the binomial coefficients were better understood; notation and the
techniques of algebra had improved immeasurably; and Pascal had a couple
of very good ideas.

Pascal immediately realized the power of these ideas and techniques and
quickly invented new problems on which to use them.

The Gambler’s Ruin problem is the best known of them.

Just as in the problem of points, suppose that at some stage A has a counters
(so B has m + n− a counters), and let A’s chances of victory at that point
be v(a). If A wins the next game his chance of victory is now v(a+ 1); if A
loses the next game his chance of victory is v(a− 1). Hence by the partition
rule,

v(a) = αv(a+ 1) + βv(a− 1) , 1 ≤ a ≤ m+ n− 1 (9)

Furthermore we know that

v(m+ n) = 1 (10)

because in this case A has all the counters, and

v(0) = 0 (11)

because A then has no counters.
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1.3.2 Solving difference equations

Any sequence (xr; r ≥ 0) in which each term is a function of its predecessors,
so that

xr+k = f(xr, xr+1, ......., xr+k−1) , r ≥ 0 (12)

is said to satisfy the recurrence relation (12). When f is linear this is called
a difference equation of order k:

xr+k = a0xr + a1xr+1 + · · ·+ ak−1xr+k−1 + g(r) , a0 6= 0 (13)

When g(r) = 0, the equation is homogeneous:

xr+k = a0xr + a1xr+1 + · · ·+ ak−1xr+k−1 , a0 6= 0 (14)

Some examples to give a hint at the solutions are:

If we have
pn = qpn−1

the solution is easy because

pn−1 = qpn−2 , pn−2 = qpn−3

and so on. By successive substitution we obtain

pn = qnp0

If we have
pn = (q − p)pn−1 + p

this is almost as easy to solve when we notice that

pn =
1

2

is a particular solution. Now writing

pn =
1

2
+ xn

gives
xn = (q − p)xn−1 = (q − p)nx0

so that

pn =
1

2
+ (q − p)nx0
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If we have
pn = ppn−1 + pqpn−2 , pq 6= 0

is more difficult, but after some work which we omit, the solution turns
out to be

pn = c1λ
n
1 + c2λ

n
2 (15)

where λ1 and λ2 are the roots of

x2 + px− pq = 0

and c1 and c2 are arbitrary constants.

Having seen these special examples, one is not surprised to see the general
soluten to the second order difference equation: let

xr+2 = a0xr + a1xr+1 + g(r) , r ≥ 0 (16)

Suppose that π(r) is any function such that

π(r + 2) = a0π(r) + a1π(r + 1) + g(r)

and suppose that λ1 and λ2 are the roots of

x2 = a0 + a1x

Then the solution of (16) is given by

xr =

{
c1λ

r
1 + c2λ

r
2 + π(r) λ1 6= λ2

(c1 + c2r)λ
r
1 + π(r) λ1 = λ2

where c1 and c2 are arbitrary constants. Here π(r) is called a particular
solution. One should note that λ1 and λ2 may be complex, as then may c1
and c2.

The solution of higher-order difference equations proceeds along similar lines.
From section 1.3.2 we know that the solution of (9) takes the form

v(a) = c1λ
a + c2µ

a

where c1 and c2 are arbitrary constants, and λ and µ are roots of

αx2 − x+ β = 0 (17)

9



Trivially, the roots of (17) are λ = 1 and µ = β/α 6= 1 (since we assumed
that α 6= β). Hence, using (10) and (11), we find that

v(a) =
1− (β/α)a

1− (β/α)m+n
(18)

In particular, when A starts with m counters,

pA = v(m) =
1− (β/α)m

1− (β/α)m+n
(19)

This method of solution of difference equation was unknown in 1656, so
other approaches were employed. In obtaining the answer to the gambler’s
ruin problem, Huygens (and later workers) used intuitive induction with the
proof omitted. Pascal probably did use (9) but solved it by a different route.

Finally, we consider the case when alpha = β. Now (9) is

v(a) = 1
2
v(a+ 1) + 1

2
v(a− 1) (20)

and it is easy to check that, for arbitrary constants c1 and c2

v(a) = c1 + c2a

satisfies (20). Now using (10) and (11) gives

v(a) =
a

m+ n
(21)

Thus, there is always a winner (hence the ruin of the loser) . Note that this
relation is linear in a!

2 Ruin, Random Walks and Diffusion

2.1 General Orientation

Some of this discussion will be a repeat of result in section 1. Consider the
familiar gambler who wins or loses a dollar with probability p and q, respec-
tively. Let his initial capital be z and let him play against an adversary with
initial capital a − z, so that the combined capital is a. The game continues
until the gambler’s capital either is reduced to zero or has increased to a, that
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is, until one of the two players is ruined. We are interested in the probability
of the gambler’s ruin and the probability distribution of the duration of the
game. This is the classical ruin problem.

Physical applications and analogies suggest the more flexible interpretation
in terms of the notion of a variable point or “particle” on the x-axis. This
particle starts from the initial position z, and moves at regular time intervals
a unit step in the positive or negative direction, depending on whether the
corresponding trial resulted in success or failure. The position of the particle
after n steps represents the gambler’s capital at the conclusion of the nth

trial. The trials terminate when the particle for the first time reaches either
0 or a, and we describe this by saying that the particle performs a random
walk with absorbing barriers at 0 and a. This random walk is restricted to
the possible positions 1, 2, ..., a− 1; in the absence of absorbing barriers the
random walk is called unrestricted. Physicists use the random-walk model
as a crude approximation to one-dimensional diffusion or Brownian motion,
where a physical particle is exposed to a great number of molecular collisions
which impart to it a random motion. The case p > q corresponds to a drift
to the right when shocks from the left are more probable; when p = q = 1

2
;

the random walk is called symmetric.

In the limiting case a→∞ we get a random walk on a semi-infinite line: A
particle starting at z > 0 performs a random walk up to the moment when
it for the first time reaches the origin. In this formulation we recognize the
first-passage time problem; it can be solved by elementary methods (at least
for the symmetric case) and by the use of generating functions. The present
derivation is self-contained.

In this section we shall use the method of difference equations which serves
as an introduction to the differential equations of diffusion theory. This anal-
ogy leads in a natural way to various modifications and generalizations of the
classical ruin problem, a typical and instructive example being the replacing
of absorbing barriers by reflecting and elastic barriers. To describe a re-
flecting barrier, consider a random walk in a finite interval as defined before
except that whenever the particle is at point 1 it has probability p of moving
to position 2 and probability q to stay at 1. In gambling terminology this
corresponds to a convention that whenever the gambler loses his last dollar
it is generously replaced by his adversary so that the game can continue.
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The physicist imagines a wall placed at the point 1
2

of the as-axis with the
property that a particle moving from 1 toward 0 is reflected at the wall and
returns to 1 instead of reaching 0. Both the absorbing and the reflecting
barriers are special cases of the so-called elastic barrier. We define an elastic
barrier at the origin by the rule that from position 1 the particle moves with
probability p to position 2; with probability δq it stays at 1; and with proba-
bility (1 − δ)q it moves to 0 and is absorbed (i.e., the process terminates).
For δ = 0 we have the classical ruin problem or absorbing barriers, for δ = 1
reflecting barriers. As δ runs from 0 to 1 we have a family of intermediate
cases. The greater δ is, the more likely is the process to continue, and with
two reflecting barriers the process can never terminate.

Sections 2.2 and 2.3 are devoted to an elementary discussion of the classical
ruin problem and its implications. The next three sections are more technical
(and may be omitted); in 2.4 and 2.5 we derive the relevant generating func-
tions and from them explicit expressions for the distribution of the duration
of the game, etc. Section 2.6 contains an outline of the passage to the limit
to the diffusion equation (the formal solutions of the latter being the limiting
distributions for the random walk).

In section 2.7 the discussion again turns elementary and is devoted to random
walks in two or more dimensions where new phenomena are encountered.
Section 2.8 treats a generalization of an entirely different type, namely a
random walk in one dimension where the particle is no longer restricted to
move in unit steps but is permitted to change its position in jumps which
are arbitrary multiples of unity.

2.2 The Classical Ruin problem

We shall consider the problem stated at the opening of the present section.
Let qz, be the probability of the gambler’s ultimate(Strictly speaking, the
probability of ruin is defined in a sample space of infinitely prolonged games,
but we can work with the sample space of n trials. The probability of ruin in
less than n trials increases with n and has therefore a limit. We call this limit
“the probability of ruin”. All probabilities in this section may be interpreted
in this way without reference to infinite spaces ruin and pz the probability
of his winning. In random-walk terminology qz and pz are the probabilities
that a particle starting at z will be absorbed at 0and a, respectively. We
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shall show that pz + qz = 1, so that we need not consider the possibility of
an unending game.

After the first trial the gambler’s fortune is either z−1 or z+1, and therefore
we must have

qz = pqz+1 + qqz−1 (22)

provided that 1 < z < a− 1. For z = 1 the first trial may lead to ruin, and
(22) is to be replaced by q1 = pq2 + q. Similarly, for z = a− 1 the first trial
may result in victory, and therefore qa−1 = qqa−2. To unify our equations we
define

q0 = 1 , qa = 0 (23)

With this convention the probability qz of ruin satisfies (22) for z = 1, 2, ..., a−
1.

Systems of the form (22) are known as difference equations, and (23) repre-
sents the boundary conditions on qz. We shall derive an explicit expression
for qz by the method of particular solutions, which will also be used in more
general cases.

Suppose first that p 6= q. It is easily verified that the difference equations
(22) admit of the two particular solutions qz = 1 and qz = (q/p)z. It follows
that for arbitrary constants A and B the sequence

qz = A+B

(
q

p

)z
(24)

represents a formal solution of (22). The boundary conditions (23) will hold
if, and only if, A and B satisfy the two linear equations A + B = 1 and
A+ b(q/p)z = 0. Thus

qz =
(q/p)a − (q/p)z

(q/p)a − 1
(25)

is a formal solution of the difference equation (22), satisfying the boundary
conditions (23). In order to prove that (24) is the required probability of ruin
it remains to show that the solution is unique, that is, that all solutions of
(22) are of the form (24). Now, given an arbitrary solution of (22), the two
constants A and B can be chosen so that (24) will agree with it for z = 0 and
z = 1. From these two values all other values can be found by substituting
in (22) successively z = 1, 2, 3, ..... Therefore two solutions which agree for
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z = 0 and z = 1 are identical, and hence every solution is of the form (24).

Our argument breaks down if p = q = 1
2
, for then (25) is meaningless because

in this case the two formal particular solutions qz = 1 and qz = (q/p)z are
identical. However, when p = q = 1

2
we have a formal solution in qz = z,

and therefore qz = A+Bz is a solution of (22) depending on two constants.
In order to satisfy the boundary conditions (23) we must put A = 1 and
A+Ba = 0. Hence

qz = 1− z

a
(26)

(The same numerical value can be obtained formally from (25) by finding
the limit as p→ 1

2
, using L’Hospital’s rule).

We have thus proved that the required probability of the gambler’s ruin is
given by (25) if p 6= q and by (26) if p = q = 1

2
. The probability pz of the

gambler’s winning the game equals the probability of his adversary’s ruin and
is therefore obtained from our formulas on replacing p, q, and z by q, p, and
a− z, respectively. It is readily seen that pz + qz = 1, as stated previously.

We can reformulate our result as follows: Let a gambler with an initial capital
z play against an infinitely rich adversary who is always willing to play,
although the gambler has the privilege of stopping at his pleasure. The gambler
adopts the strategy of playing until he either loses his capital or increases it
to a (with a net gain a−z). Then qz is the probability of his losing and 1−qz
the probability of his winning.

Under this system the gamblers ultimate gain or loss is a random variable
G which assumes the values a− z and −z with probabilities 1− qz, and qz,
respectively. The expected gain is

E(G) = a(1− qz)− z (27)

Clearly E(G) = 0 if, and only if, p = q. This means that, with the system
described, a “fair” game remains fair, and no “unfair” game can be changed
into a “fair” one.

From (26) we see that in the case p = q a player with initial capital z = 999
has a probability 0.999 to win a dollar before losing his capital. With q = 0.6,
p = 0.4 the game is unfavorable indeed, but still the probability (25) of win-
ning a dollar before losing the capital is about 2

3
. In general, a gambler with a
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relatively large initial capital z has a reasonable chance to win a small amount
a− z before being ruined(A certain man used to visit Monte Carlo year after
year and was always successful in recovering the cost of his vacations. He
firmly believed in a magic power over chance. Actually his experience is not
surprising. Assuming that he started with ten times the ultimate gain, the
chances of success in any year are nearly 0.9. The probability of an unbroken

sequence of ten successes is about
(
1− 1

2

)10 ≈ e−1 ≈ 0.37. Thus continued
success is by no means improbable. Moreover, one failure would, of course,
be blamed on an oversight or momentary indisposition).

Let us now investigate the effect of changing stakes. Changing the unit from
a dollar to a half dollar is equivalent to doubling the initial capitals. The
corresponding probability of ruin q∗z is obtained from (25) on replacing z by
2z and a by 2a:

qz =
(q/p)2a − (q/p)2z

(q/p)2a − 1
= qz ·

(q/p)2a + (q/p)2z

(q/p)2a + 1
(28)

For q > p the last fraction is greater than unity and q∗z > qz. We restate this
conclusion as follows: if the stakes are doubled while the initial capitals remain
unchanged, the probability of ruin decreases for the player whose probability
of success is p < 1

2
and increases for the adversary (for whom the game is

advantageous. Suppose, for example, that Peter owns 90 dollars and Paul
10, and let p = 0.45, the game being unfavorable to Peter. If at each trial
the stake is one dollar, table 1 shows the probability of Peter’s ruin to be
0.866, approximately. If the same game is played for a stake of 10 dollars,
the probability of Peter’s ruin drops to less than one fourth, namely about
0.210. Thus the effect of increasing stakes is more pronounced than might
be expected. In general, if k dollars are staked at each trial, we find the
probability of ruin from (25), replacing z by Z/k and a by a/k; the probability
of ruin decreases as k increases. In a game with constant stakes the unfavored
gambler minimizes the probability of ruin by selecting the stake as large
as consistent with his goal of gaining an amount fixed in advance. The
empirical validity of this conclusion has been challenged, usually by people
who contended that every “unfair” bet is unreasonable. If this were to be
taken seriously, it would mean the end of all insurance business, for the careful
driver who insures against liability obviously plays a game that is technically
“unfair”. Actually, there exists no theorem in probability to discourage such
a driver from taking insurance.
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p q z a Prob(Ruin) Prob(Success) Expected Gain Expected Duration
0.5 0.5 9 10 0.1 0.9 0 9
0.5 0.5 90 100 0.1 0.9 0 900
0.5 0.5 900 1000 0.1 0.9 0 90000
0.5 0.5 950 1000 0.05 0.95 0 47500
0.5 0.5 8000 10000 0.2 0.8 0 16000000
0.45 0.55 9 10 0.210 0.790 -1.1 11
0.45 0.55 90 100 0.866 0.134 -76.6 765.6
0.45 0.55 99 100 0.182 0.818 -17.2 171.8
0.4 0.6 90 100 0.983 0.017 -88.3 441.3
0.4 0.6 99 100 0.333 0.667 -32.3 161.7

Table 1: Illustrating the Classical Ruin Problem. The initial capital is z.
The game terminates with ruin (loss z) or capital a (gain a− z).

2.2.1 The limiting case

The limiting case a = ∞ corresponds to a game against an infinitely rich
adversary. Letting a→∞ in (25) and (26) we get

qz =

{
1 if p ≤ q

(q/p)z if p > q
(29)

We interpret qz as the probability of ultimate ruin of a gambler with initial
capital z playing against an infinitely rich adversary(It is easily seen that the
qz represent a solution of the difference equations (22) satisfying the (now
unique) boundary condition q0 = 1. When p > q the solution is not unique).
In random walk terminology qz is the probability that a particle starting at
z > 0 will ever reach the origin. It is more natural to rephrase this result
as follows; In a random walk starting at the origin the probability of ever
reaching the position z > 0 equals 1 if p ≥ q and equals (p/q)z when p < q.

2.3 Expected Duration of the Game

The probability distribution of the duration of the game will be deduced
in the following sections. However, its expected value can be derived by a
much simpler method which is of such wide applicability that it will now be
explained at the cost of a slight duplication.

We are still concerned with the classical ruin problem formulated at the be-
ginning of this section. We shall assume as known the fact that the duration
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of the game has a finite expectation Dz. A rigorous proof will be given in the
next section. If the first trial results in success the game continues as if the
initial position had been z + 1. The conditional expectation of the duration
assuming success at the first trial is therefore Dz+1+1. This argument shows
that the expected duration Dz satisfies the difference equation

Dz = pDz+1 + qDz−1 + 1 , 0 < z < a (30)

with the boundary conditions

D0 = 0 , Da = 0 (31)

The appearance of the term 1 makes the difference equation (30) non-homogeneous.
If p 6= q, then Dz = z/(q − p) is a formal solution of (30). The differ-
ence ∆z of any two solutions of (30) satisfies the homogeneous equations
∆z = p∆z+1 +q∆z−1, and we know already that all solutions of this equation
are of the form A+B(q/p)z. It follows that when p 6= q all solutions of (30)
are of the form

Dz =
z

q − p
+ A+B

(
q

p

)z
(32)

The boundary conditions (31) require that

A+B = 0 , A+B

(
q

p

)q
= − a

q − p

Solving for A and B, we find

Dz =
z

q − p
− a

q − p
· 1− (q/p)z

1− (q/p)a
(33)

Again the method breaks down if q = p = 1
2
. In this case we replace z/(q−p)

by −z2, which is now a solution of (30). It follows that when q = p = 1
2

all
solutions of (30) are of the form Dz = −z2 +A+Bz. The required solution
Dz satisfying the boundary conditions (31) is

Dz = z(a− z) (34)

The expected duration of the game in the classical ruin problem is given by
(33) or (34), according as p 6= q or q = p = 1

2
.

It should be noted that this duration is considerably longer than we would
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naively expect. If two players with 500 dollars each toss a coin until one is
ruined, the average duration of the game is 250, 000 trials. If a gambler has
only one dollar and his adversary 1000, the average duration is 1000 trials.
Further examples are found in table 1.

As indicated at the end of the preceding section, we may pass to the limit
a → ∞ and consider a game against an infinitely rich adversary. When
p > q the game may go on forever, and in this case it makes no sense to talk
about its expected duration. When p < q we get for the expected duration
z(q − p)−1, but when p = q the expected duration is infinite. (The same
result was established will be proved independently in the next section.)

2.4 Generating Functions for the Duration of the Game
and for the First-Passage Times

We shall use the method of generating functions to study the duration of the
game in the classical ruin problem, that is, the restricted random walk with
absorbing barriers at 0 and a. The initial position is z (with 0 < z < a).
Let uz,n denote the probability that the process ends with the nth step at the
barrier 0 (gamblers ruin at the nth trial). After the first step the position is
z + 1 or z − 1, and we conclude that for 1 < z < a− 1 and n ≥ 1

uz,n+1 = puz+1,n + quz−1,n (35)

This is a difference equation analogous to (22), but depending on the two
variables 2 and n. In analogy with the procedure of section 2.2 we wish to
define boundary values u0,n, ua,n, and uz,0 so that (35) becomes valid also for
z = 1, z = a− 1, and n = 0. For this purpose we put

u0,n = ua,n = 0 when n ≥ 1 (36)

and
u0,0 = 1 , uz,0 = 0 when 0 < z ≤ a (37)

Then (35) holds for all z with 0 < z < a and all n ≥ 0.

We now introduce the generating functions

Uz(s) =
∞∑
n=0

uz,ns
n (38)
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Multiplying (35) by sn+1 and adding for n = 0, 1, 2, ....., we find

Uz(s) = psUz+1(s) + qsUz−1(s) 0 < z < a (39)

the boundary conditions (36) and (37) lead to

U0(s) = 1 , Ua(s) = 0 (40)

The system (39) represents difference equations analogous to (22), and the
boundary conditions (40) correspond to (23). The novelty lies in the cir-
cumstance that the coefficients and the unknown Uz(s) now depend on the
variable s, but as far as the difference equation is concerned, s is merely an
arbitrary constant. We can again apply the method of section 2.2 provided
we succeed in finding two particular solutions of (39). It is natural to inquire
whether there exist two solutions Uz(s) of the form Uz(s) = λz(s). Substi-
tuting this expression into (39), we find that λ(s) must satisfy the quadratic
equation

λ(s) = psλ2(s) + qs (41)

which has the two roots

λ1(s) =
1 +

√
1− 4pqs2

2ps
, λ2(s) =

1−
√

1− 4pqs2

2ps
(42)

(we take 0 < s < 1 and the positive square root).

We are now in possession of two particular solutions of (39) and conclude as
in section 2.2 that every solution is of the form

Uz(s) = A(s)λz1(s) +B(s)λz2(s) (43)

with A(s) and B(s) arbitrary. To satisfy the boundary conditions (40), we
must have A(s) +B(s) = 1 and A(s)λa1(s) +B(s)λa2(s) = 0, whence

Uz(s) =
λa1(s)λ

z
2(s)− λz1(s)λa2(s)
λa1(s)− λa2(s)

(44)

Using the obvious relation λ1(s)λ2(s) = q/p, this simplifies to

Uz(s) =

(
q

p

)z
λa−z1 (s)− λa2(s)
λa−z1 (s)− λa2(s)

(45)
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This is the required generating function of the probability of ruin (absorption
at 0) at the nth trial. The same method shows that the generating function
for the probabilities of absorption at a is given by

Uz(s) =
λz1(s)− λz2(s)
λa1(s)− λa2(s)

(46)

The generating function for the duration of the game is, of course, the sum
of the generating functions (45) and (46).

2.4.1 Infinite Intervals and First Passages

The preceding considerations apply equally to random walks on the interval
(0,∞) with an absorbing barrier at 0. A particle starting from the position
z > 0 is eventually absorbed at the origin or else the random walk continues
forever. Absorption corresponds to the ruin of a gambler with initial cap-
ital z playing against an infinitely rich adversary. The generating function
Uz(s) of the probabilities uz,n that absorption takes place exactly at the nth

trial satisfies again the difference equations (39) and is therefore of the form
(43), but this solution is unbounded at infinity unless A(s) = 0. The other
boundary condition is now U0(s) = 1, and hence B(s) = 1 or

Uz(s) = λz2(s) (47)

[The same result can be obtained by letting a→∞ in (45), and remembering
that λ1(s)λ2(s) = q/p.]

It follows from (47) for s = 1 that an ultimate absorption is certain if p ≤ q,
and has probability (q/p)z otherwise. The same conclusion was reached in
section 2.2.

Our absorption at the origin admits of an important alternative interpreta-
tion as a first passage in an unrestricted random walk. Indeed, on moving
the origin to the position z it is seen that in a random walk on the entire line
and starting from the origin uz,n is the probability that the jirst visit to the
point −z < 0 takes place at the nth trial. That the corresponding generating
function (47) is the zth power of λ2 reflects the obvious fact that the waiting
time for the first passage through −z is the sum of z independent waiting
times between the successive first passages through −1,−2, ...,−z.
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2.5 Explicit Expressions

The generating function Uz, of (45) depends formally on a square root but is
actually a rational function. In fact, an application of the binomial theorem
reduces the denominator to the form

λa1(s)− λa2(s) = s−a
√

1− 4pqs2 Pa(s) (48)

where Pa is an even polynomial of degree a− 1 when a is odd, and of degree
a − 2 when a is even. The numerator is of the same form except that a is
replaced by a−z. Thus Uz is the ratio of two polynomials whose degrees differ
at most by 1. Consequently it is possible to derive an explicit expression for
the ruin probabilities uz,n by the method of partial fractions. The result is
interesting because of its connection with diffusion theory, and the derivation
as such provides an excellent illustration for the techniques involved in the
practical use of partial fractions.

The calculations simplify greatly by the use of an auxiliary variable φ defined
by

cosφ =
1

2
√
pq · s

(49)

(To 0 < s < 1 there correspond complex values of φ, but this has no effect
on the formal calculations.) From (42)

λ1(s) =
√
q/p [cosφ+ i sinφ] =

√
q/p eiφ (50)

while λ2(s) equals the right side with i replaced by −i. Accordingly,

Uz(s) = (
√
q/p)z

sin (a− z)φ

sin aφ
(51)

The roots s1, s2, .... of the denominator are simple and hence there exists a
partial fraction expansion of the form

(
√
q/p)z

sin (a− z)φ

sin aφ
= A+Bs+

ρ1
s1 − s

+ · · ·+ ρa−1
sa−1 − s

(52)

In principle we should consider only the roots sv which are not roots of the
numerator also, but if sv is such a root then Uz(s) is continuous at s = sv
and hence ρv = 0. Such canceling roots therefore do not contribute to the
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right side and hence it is not necessary to treat them separately.

The roots s1, s2, ......, sa−1 correspond obviously to φv = πv/a with v =
1, ....., a− 1, and so

sv =
1

2
√
pq cosπv/a

(53)

This expression makes no sense when v = a/2 and a is even, but then φv
is a root of the numerator also and this root should be discarded. The
corresponding term in the final result vanishes, as is proper.

To calculate ρv we multiply both sides in (52) by sv − s and let s → sv.
Remembering that sin aφv = 0 and cos aφv = 1 we get

ρv = (
√
q/p)z sin zφv · lim

s→sv

s− sv
sin aφ

The last limit is determined by L’Hospital’s rule using implicit differentiation
in (50). The result is

ρv = a−1 · 2√pq (
√
q/p)z sin zφv · sinφv · s2v

From the expansion of the right side in (53) into geometric series we get for
n > 1

uz,n =
a−1∑
v=1

ρvs
−n−1
v = a−1 · 2√pq (

√
q/p)z

a−1∑
v=1

s−n+1
v · sinφv · sin zφv

and hence finally

uz,n = a−12np(n−z)/2q(n+z)/2
a−1∑
v=1

cosn−1
πv

a
sin

πv

a
sin

πzv

a
(54)

This, then, is an explicit formula for the probability of ruin at the nth trial.
It goes back to Lagrange and has been derived by classical authors in various
ways, but it continues to be rediscovered in the modern literature.

Passing to the limit as a→∞ we get the probability that in a game against
an infinitely rich adversary a player with initial capital z will be ruined at
the nth trial.
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A glance at the sum in (54) shows that the terms corresponding to the
summation indices v = k and v = a − k are of the same absolute value;
they are of the same sign when n and z are of the same parity and cancel
otherwise. Accordingly uz,n = 0 when n− z is odd while for even n− z and
n > 1

uz,n = a−12n+1p(n−z)/2q(n+z)/2
∑
v<a/2

cosn−1
πv

a
sin

πv

a
sin

πzv

a
(55)

the summation extending over the positive integers < a/2. This form is more
natural than (54) because now the coefficients cos πv/a form a decreasing
sequence and so for large n it is essentially only the first term that counts.

2.6 Connection with Diffusion Processes

This section is devoted to an informal discussion of random walks in which
the length δ of the individual steps is small but the steps are spaced so close
in time that the resultant change appears practically as a continuous motion.
A passage to the limit leads to the Wiener process (Brownian motion) and
other diffusion processes. The intimate connection between such processes
and random walks greatly contributes to the understanding of both. The
problem may be formulated in mathematical as well as in physical terms.

It is best to begin with an unrestricted random walk starting at the origin.
The nth step takes the particle to the position Sn where Sn = X1 + · · ·+ Xn

is the sum of n independent random variables each assuming the values +1
and −1 with probabilities p and q, respectively. Thus

E(Sn) = (p− q)n , V ar(Sn) = 4pqn (56)

The figure below presents the first 10,000 steps of such a random walk with
p = q = 1

2
; to fit the graph to a printed page it was necessary to choose appro-

priate scales for the two axes. Let us now go a step further and contemplate
a motion picture of the random walk. Suppose that it is to fake 1000 seconds
(between 16 and 17 minutes). To present one million steps it is necessary
that the random walk proceeds at the rate of one step per millisecond, and
this fixes the time scale. What units are we to choose to be reasonably sure
that the record will fit a screen of a given height?
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Figure 1: The record of 10,000 tosses of an ideal coin

For this question we use a fixed unit of measurement, say inches or feet, both
for the screen and the length of the individual steps. We are then no longer
concerned with the variables Sn, but with δSn, where δ stands for the length
of the individual steps. Now

E(Sn) = (p− q)δn , V ar(Sn) = 4pqδ2n (57)

and it is clear from the central limit theorem that the contemplated film is
possible only if for n = 1, 000, 000 both quantities in (657) are smaller than
the width of the screen. But if p = q and δn is comparable to the width of
the screen, δ2n will be indistinguishable from 0 and the film will show linear
motion without visible chance fluctuations. The character of the random
walk can be discerned only when δ2n is of a moderate positive magnitude,
and this is possible only when p− q is of a magnitude comparable to δ.

If the question were purely mathematical we should conclude that the desired
graphical presentation is impossible unless p = q, but the situation is entirely
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different when viewed from a physical point of view. In Brownian motion
we see particles suspended in a liquid moving in random fashion, and the
question arises naturally whether the motion can be interpreted as the result
of a tremendous number of collisions with smaller particles in the liquid. It
is, of course, an over-simplification to assume that the collisions are spaced
uniformly in time and that each collision causes a displacement precisely
equal to ;±δ. Anyhow, for a first orientation we treat the impacts as governed
by the Bernoulli-type trials we have been discussing and ask whether the
observed motion of the particles is compatible with this picture. From actual
observations we find the average displacement c and the variance D for a unit
time interval. Denote by r the (unknown) number of collisions per time unit.
Then we must have, approximately,

(p− q)δr = c , 4pqδ2r = D (58)

In a simulated experiment no chance fluctuations would be observable un-
less the two conditions (58) are satisfied with D > 0. An experiment with
p = 0.6 and δr = 1 is imaginable, but in it the variance would be so small
that the motion would appear deterministic: A clump of particles initially
close together would remain together as if it were a rigid body.

Essentially the same consideration applies to many other phenomena in
physics, economics, learning theory, evolution theory, etc., when slow fluctu-
ations of the state of a system are interpreted as the result of a huge number
of successive small changes due to random impacts. The simple random-walk
model does not appear realistic in any particular case, but fortunately the
situation is similar to that in the central limit theorem. Under surprisingly
mild conditions the nature of the individual changes is not important, be-
cause the observable effect depends only on their expectation and variance.
In such circumstances it is natural to take the simple random-walk model as
universal prototype.

To summarize, as a preparation for a more profound study of various stochas-
tic processes it is natural to consider random walks in which the length δ of
the individual steps is small, the number r of steps per time unit is large, and
p − q is small, the balance being such that (58) holds (where c and D > 0
are given constants). The words large and small are vague and must remain
flexible for practical applications?(The number of molecular shocks per time
unit is beyond imagination. At the other extreme, in evolution theory one
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considers small changes from one generation to the next, and the time sep-
arating two generations is not small by everyday standards. The number of
generations considered is not fantastic either, but may go into many thou-
sands. The point is that the process proceeds on a scale where the changes
appear in practice continuous and a diffusion model with continuous time
is preferable to the random-walk model.) The analytical formulation of the
problem is as follows. To every choice of δ, r, and p there corresponds a
random walk. We ask what happens in the limit when δ → 0, r → ∞, and
p→ 1

2
in such a manner that,

(p− q)δr → c , 4pqδ2r → D (59)

The main procedure is to start from the difference equations governing the
random walks and the derivation of the limiting differential equations. It
turns out that these differential equations govern well defined stochastic pro-
cesses depending on a continuous time parameter. The same is true of various
obvious generalizations of these differential equations, and so this method
leads to the important general class of diffusion processes.

We denote by {Sn} the standard random walk with unit steps and put

vk,n = P{Sn = k} (60)

In our random walk the nth step takes place at epoch n/r, and the position
is Snδ = kδ. We are interested in the probability of finding the particle at a
given epoch tin the neighborhood of a given point x, and so we must inves-
tigate the asymptotic behavior of vk,n when k → ∞ and n → ∞ in such a
manner that n/r → t and kd→ x. The event {Sn = k} requires that n and
k be of the same parity and takes place when exactly (n + k)/2 among the
first n steps lead to the right.

The approach based on the appropriate difference equations is very interest-
ing. Considering the position of the particle at the nth and the (n+ 1)st trial
it is obvious that the probabilities vk,n satisfy the difference equations

vk,n+1 = pvk−1,n + qvk+1,n (61)

Now vk,n is the probability of finding Snδ between kδ and (k + 2)δ, and
since the interval has length 2δ we can say that the ratio vk,n/(2δ) measures
locally the probability per unit length, that is the probability density and
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vk,n/(2δ)→ v(t, x).

On multiplying by 2δ it follows that v(t, x) should be an approximate solution
of the difference equation

v(t+ r−1, x) = pv(t, x− δ) + qv(t, x+ δ) (62)

Since v has continuous derivatives we can expand the terms according to
Taylor’s theorem. Using the first-order approximation on the left and second-
order approximation on the right we get (after canceling the leading terms)

∂v(t, x)

∂t
= (q − p)δr · ∂v(t, x)

∂x
+

1

2
δ2r

∂2v(t, x)

∂x2
+ · · · (63)

In our passage to the limit the omitted terms tend to zero and (63) becomes
in the limit

∂v(t, x)

∂t
= −c∂v(t, x)

∂x
+

1

2
D
∂2v(t, x)

∂x2
(64)

This is a special diffusion equation also known as the Fokker-Planck equation
for diffusion. Now the function v given by

v(t, x) =
1√

2πDt
e−

1
2
(x−ct)2/Dt (65)

satisfies the differential equation (63). Furthermore, it can be shown that
(64) represents the only solution of the diffusion equation having the prop-
erties required by a probabilistic interpretation.

Thus, we have demonstrated some brief and heuristic indications of the con-
nections between random walks and general diffusion theory.

As another example let take the ruin probabilities uz,n discussed earlier. The
underlying difference equations (35) differ from (61) in that the coefficients
p and q are interchanged. The formal calculations indicated in (63) now lead
to a diffusion equation obtained from (64) on replacing −c by c. Our limiting
procedure leads from the probabilities uz,n to a function u(t, ξ) which satisfies
this modified diffusion equation and which has probabilistic significance sim-
ilar to uz,n: In a diffusion process starting at the point ξ > 0 the probability
that the particle reaches the origin before reaching the point α > ξ and that
this event occurs in the time interval t1 < t < t2 is given by the integral of
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u(t, ξ) over this interval.

The formal calculations are as follows. For uz,n we have the explicit expres-
sion (55). Since z and n must be of the same parity, uz,n corresponds to the
interval between n/r and (n+ 2)/r, and we have to calculate the limit of the
ratio uz,nr/2 when r → ∞ and δ → 0 in accordance with (59). The length
a of the interval and the initial position z must be adjusted so as to obtain
the limits α and ξ. Thus z ∼ ξ/δ and a ∼ α/δ. It is now easy to find the
limits for the individual factors in (55).

From (59) we get 2p ∼ 1 + cδ/D, and

2q ∼ 1− cδ/D

From the second relation in (59) we see that δ2r → D. Therefore

(4pq)1/2(q/p)z/2 ∼ (1− c2δ2/D2)(rt)/2(1− 2cδ/D)ξ/(2δ)

∼ e−
1
2
t/D · e−cξ/D (66)

Similarly for fixed v(
cos

vπδ

α

)n
∼
(

1− v2π2δ2

2α2

)tr
∼ e−

1
2
v2π2Dt/α2

(67)

Finally sin vπδ/α ∼ vπδ/α. Substitution into (55) leads formally to

u(t, ξ) = πDα−2e−
1
2
(ct+2ξ)c/D

∞∑
v=1

ve−
1
2
v2π2Dt/α2

sin
πξv

α
(68)

(Since the series converges uniformly it is not difficult to justify the formal
calculations.) In physical diffusion theory (68) is known as Fürth’s formula
for first passages.
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