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Abstract

I list several strong requirements for what I would consider a sensible inter-
pretation of quantum mechanics and I discuss two simple theo- rems. One,
as far as I know, is new; the other was only noted a few years ago. Both
have important implications for such a sensible interpretation. My talk will
not clear everything up; indeed, you may conclude that it has not cleared
anything up. But I hope it will provide a different perspective from which
to view some old and vexing puzzles (or, if you believe nothing needs to be
cleared up, some ancient verities.)

1 Introduction: A Strategy for Constructing

an Interpretation.

I’d like to describe some thoughts about what ought to go into a satisfactory
interpretation of quantum mechanics. I do this with considerable trepidation.
”Ought to” can be a highly personal business. And I have yet to put all the
pieces together in a fully convincing way. Those who feel they understand
quantum mechanics may find what I have to say boring and self-indulgent,
while those who are bothered by quantum mechanics may find what follows
inadequate or even self-contradictory. So you may get nothing out of my
talk beyond a description of two elementary theorems. And one, and per-
haps even both of the theorems may be already known to you.

I offer this half baked concoction nevertheless because it seems to me the
implications of the theorems for the interpretation of quantum mechanics
have not been emphasized and deserve some serious exploration. I’ve been
thinking about them on and off for about half a year now, and have found,
to my surprise, that they keep resonating in illuminating ways with various
aspects of the Copenhagen interpretation that have always struck me as an-
thropomorphic or obscure. I have been getting sporadic flashes of feeling
that I may actually be starting to understand what Bohr was talking about.
Sometimes the sensation persists for many minutes. It’s a little like a reli-
gious experience and what really worries me is that if I am on the right track,
then one of these days, perhaps quite soon, the whole business will suddenly
become obvious to me, and from then on I will know that Bohr was right
but be unable to explain why to anybody else.



So it’s crucial that I try to communicate some of these ideas before they
become so clear to me that only I can understand them. The problem, of
course, is that my fragmentary vision may be more of a pipe dream than a
religious experience - not a satori but a bad trip. I shall take that risk, and
I ask for your indulgence.

I have a simple strategy for constructing an interpretation of quantum me-
chanics: First of all, by ”quantum mechanics” I mean quantum mechanics as
it is - not some other theory in which the time evolution is modified by non-
linear or stochastic terms, nor even the old theory augmented with some new
physical entities (like Bohmian particles) which supplement the conventional
formalism without altering any of its observable predictions. I have in mind
ordinary everyday quantum mechanics. I myself have never met an interpre-
tation of quantum mechanics I didn’t dislike. I shall try to extract something
constructive from all these strongly held negative intuitions, by prohibiting
from my own interpretation all of the features I have found unreasonable in
all the various interpretations I have encountered. These prohibitions are
listed as the first five desiderata below.

To live with so many requirements I need room for maneuver. This is pro-
vided by adopting, as my sixth and final desideratum, the view that prob-
abilities are objective intrinsic properties of individual physical systems. I
freely admit that I cannot give a clear and coherent statement of what this
means. The point of my game is to see if I can solve the interpretive puzzles
of quantum mechanics, given a primitive, uninterpreted notion of objective
probability. If all quantum puzzles can indeed be reduced to the single puzzle
of interpreting objective probabilities, I would count that as progress. Indeed
since it is only through quantum mechanics that we have acquired any expe-
rience of intrinsically probabilistic phenomena, it seems to me highly unlikely
that we can make sense of objective probability without first constructing
a clear and coherent formulation of quantum mechanics in terms of such
probabilities.
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2 Six Desiderata for an Interpretation of Quan-

tum Mechanics.

Here are my own personal desiderata for a satisfactory interpretation. Most
are based on my persistent discomfort with various commonly held claims
about the nature of quantum mechanics.

(1) The theory should describe an objective reality independent
of observers and their knowledge.

The maddening thing about the wave-function is the way in which
it manages to mix up objective reality and human knowledge. As a
clear indication of this murkiness note that even today there is coex-
istence between those who maintain that the wave-function is entirely
real and objective - notably advocates of Bohmian mechanics or seekers
of a modified quantum mechanics in which wave-function collapse is a
ubiquitous real physical phenomenon - and those who maintain, unam-
biguously with Heisenberg and presumably with Bohr, that the wave-
function is nothing more than a concise encapsulation of our knowledge.

A satisfactory interpretation should be unambiguous about what has
objective reality and what does not, and what is objectively real should
be cleanly separated from what is ”known”. Indeed, knowledge should
not enter at a fundamental level at all.

(2) The concept of measurement should play no fundamental role.

I agree with John Bell.[1] There is a world out there, whether or not we
choose to poke at it, and it ought to be possible to make unambiguous
statements about the character of that world that make no reference
to such probes. A satisfactory interpretation of quantum mechanics
ought to make it clear why ”measurement” keeps getting in the way
of straight talk about the natural world; ”measurement” ought not to
be a part of that straight talk. Measurement should acquire meaning
from the theory - not vice-versa.

The view that physics can offer nothing more than an algorithm telling
you how to get from a state preparation to the results of a measurement
seems to me absurdly anthropocentric; so does limiting what we can
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observe to what we can produce (”state preparation” being one of the
things you can do with a ”measurement apparatus”). Physics ought to
describe the unobserved unprepared world. ”We” shouldn’t have to be
there at all.

(3) The theory should describe individual systems - not just en-
sembles.

The theory should describe individual systems because the world con-
tains individual systems (and is one itself!) and the theory ought to
describe the world and its subsystems. Two attitudes lurk behind every
ensemble interpretation. The first is a yearning (not always acknowl-
edged) for hidden variables. For the notion that probabilistic theories
must be about ensembles implicitly assumes that probability is about
ignorance. (The ”hidden variables” are whatever it is that we are igno-
rant of.) But in a non-deterministic world probability has nothing to
do with incomplete knowledge, and ought not to require an ensemble
of systems for its interpretation.

The second motivation for an ensemble interpretation is the intuition
that because quantum mechanics is inherently probabilistic, it only
needs to make sense as a theory of ensembles. Whether or not prob-
abilities can be given a sensible meaning for individual systems, this
motivation is not compelling. For a theory ought to be able to describe
as well as predict the behavior of the world. The fact that physics
cannot make deterministic predictions about individual systems does
not excuse us from pursuing the goal of being able to describe them as
they currently are.

(4) The theory should describe small isolated systems without
having to invoke interactions with anything external.

Not only should the theory describe individual systems, but it should
be capable of describing small individual systems. We apply quantum
mechanics all the time to toy universes having state-spaces of only a
few dimensions. I would like not only to be able to do that, as I now
can, but to understand what I am talking about when I do it, as I now
cannot.
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In particular I would like to have a quantum mechanics that does not
require the existence of a ”classical domain”. Nor should it rely on
quantum gravity, or radiation escaping to infinity, or interactions with
an external environment for its conceptual validity. These complica-
tions may be important for the practical matter of explaining why cer-
tain probabilities one expects to be tiny are, in fact tiny. But it ought
to be possible to deal with high precision and no conceptual murkiness
with small parts of the universe if they are to high precision, isolated
from the rest.

(5) Objectively real internal properties of an isolated individual
system should not change when something is done to another
non-interacting system.

I agree with Einstein:[2] ”On one supposition we should, in my opin-
ion, absolutely hold fast: the real factual situation of the system S2 is
independent of what is done with the system S1, which is spatially sep-
arated from the former.” Indeed, I would take take spatial separation to
be just a particularly clear-cut way of establishing the absence of medi-
ating interactions between the two systems, and apply the supposition
- generalized Einstein locality - to any two non-interacting systems.

Einstein used his supposition, together with his intuitions about what
constituted a real factual situation, to conclude that quantum mechan-
ics offers an incomplete description of physical reality. I propose to
explore the converse approach: assume that quantum mechanics does
provide a complete description of physical reality, insist on generalized
Einstein-locality, and see how this constrains what can be considered
physically real.

(6) It suffices (for now) to base the interpretation of quantum me-
chanics on the (yet to be supplied) interpretation of objective
probability.

I am willing at least provisionally to base an interpretation of quantum
mechanics on primitive intuitions about the meaning of probability in
individual systems.

Quantum mechanics has taught us that probability is more than just
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a way of dealing systematically with our own ignorance, but a funda-
mental feature of the physical world. But we do not yet understand
objective probability. Popper[3] insisted that we cannot think correctly
about quantum mechanics until we learn how to think correctly about
probability as an objective feature of the world - that the interpreta-
tion of quantum mechanics had never squarely faced this issue. I think
he was right about that, but wrong in maintaining that with his own
formulation of objective probability he had cleared up the conceptual
puzzles.

I don’t have an understanding of objective probability any better than
Popper’s, but I maintain that if we can make sense of quantum me-
chanics conditional upon making sense of probability as an objective
property of an individual system, then we will have got somewhere.
Indeed, I doubt that we can hope to understand objective probability
until we have achieved the partial success of making sense of quantum
mechanics, modulo such an understanding. Quantum mechanics is our
only source of clues about what objective probability might mean, and
we will only unearth those clues if we can succeed in making sense of
quantum mechanics from such a perspective.

So my attitude is this: Assume that some wise person has come up
with an acceptable notion of probabilities as objective properties of in-
dividual systems, and see if one can sweep all the puzzles of quantum
mechanics - what Popper called the muddle, mysteries, and horrors -
under that single accommodating rug.

In summary, these are my Six Desiderata for an interpretation of quantum
mechanics:

(1) Is unambiguous about objective reality.

(2) Uses no prior concept of measurement.

(3) Applies to individual systems.

(4) Applies to (small) isolated systems.

(5) Satisfies generalized Einstein-locality.

(6) Rests on prior concept of objective probability.
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o persuade you that my aspirations are not made entirely of fluff, let me next
digress to tell you about two elementary theorems of quantum mechanics that
seem only recently to have been noticed.

3 Two Elementary Theorems

I shall describe in a naive way two elementary theorems of quantum mechan-
ics, which bear on the interpretive problem. By ”naive” I mean that I shall
use uncritically terms forbidden by Desideratum (2) like ”measurement”,
”results of a measurement”, etc., because they are a code we all understand,
and because avoiding them would make the purely mathematical argument
much more clumsy. I shall return to more careful talk when I discuss the
relevance of these theorems for the interpretation of quantum mechanics.

To motivate the first theorem, consider the simplest possible quantum me-
chanical system: a single two-state system, represented as the spin of a spin-1

2

particle. Let this system be described by the density matrix

W =
1

2
|↑z〉 〈↑z|+

1

2
|↓z〉 〈↓z| (1)

This density matrix has many alternative representations, among them being

W =
1

2
|↑x〉 〈↑x|+

1

2
|↓x〉 〈↓x| (2)

The first form is usually said to describe a situation in which the system is in
the state |↑x〉 with probability 1

2
and in the state |↓x〉 with probability 1

2
; the

second, a situation in which the equally probable states are |↑x〉 and |↓x〉.

Is there an objective difference between these two situations? The statistics
of all possible measurements one can make are, of course, the same in both
cases because the density matrix is the same, but is there nevertheless an
objective difference between a spin with a definite but random polarization
along z and a definite but random polarization along x?

There is no agreement on this elementary conceptual point. People who take
the quantum state to be an objective property of an individual system would
say there is a difference: in one case this objective property is unknown, but
is equally likely to be |↑z〉 or |↓z〉; in the other case it is either |↑x〉 or |↓x〉.
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But if you accept Desideratum (5) there can be no objective difference. For
one can introduce a second two-state system that does not currently interact
with the first, taking the two systems to be in the singlet state

|Ψ〉 =
1√
2
|↑z〉 〈↓z|+

1√
2
|↓z〉 〈↑z| (3)

which can equally well be written

|Ψ〉 =
1√
2
|↑x〉 〈↓x|+

1√
2
|↓x〉 〈↑x| (4)

The representation (3) of |Ψ〉 establishes that one can produce the situa-
tion suggested by the representation (1) of W by measuring σz on the non-
interacting ancillary system, while the representation (4) establishes that one
can produce the situation suggested by (2) by measuring σx on the ancilla.
If objectively real internal properties of an isolated individual system are not
to depend on what is done to another non-interacting system, then there can
be no difference between these two realizations of the density matrix W .

This is the position of those who maintain that Einstein-Podolsky-Rosen
correlations and Bell’s Theorem establish only that there can be no local
hidden-variables underlying quantum mechanics, but do not establish that
quantum mechanics itself implies non-locality. I would like to explore where
one can get by adhering to this view.

I once thought this peculiar situation - the ability remotely to produce ei-
ther of two apparently distinct realizations of the same density matrix W
- stemmed from the degeneracy of W . But this is wrong. Consider, for
example, the non-degenerate density matrix

W = p |↑z〉 〈↑z|+ q |↓z〉 〈↓z| (5)

with p 6= q, which in spite of its non-degeneracy also has many alternative
representations, one of which is

W =
1

2
|R〉 〈R|+ 1

2
|L〉 〈L| (6)

where |R〉 and |L〉 are the (non-orthogonal) states

|R〉 =
√
p |↑z〉+

√
q |↓z〉 (7)
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and
|L〉 =

√
p |↑z〉 −

√
q |↓z〉 (8)

To make talking about things simple suppose that the probability p is very
much larger than the probability q = 1 − p. Then interpretation (5) of
the density matrix describes a system that is in the state |↑z〉 with high
probability and in the state |↓z〉 with low probability, while the interpretation
(6) describes a system that is with equal probability in one of two non-
orthogonal states representing spin along an axis tilted just slightly away
from z in either the direction x or −x.

Again one can ask whether there is an objective difference between these two
apparently quite different situations, and again the answer must be no. For
one can now introduce a second non-interacting two-state system with the
pair in the state

|Ψ〉 =
√
p |↑z〉 |↑z〉+

√
q |↓z〉 |↓z〉 (9)

which can equally well be written

|Ψ〉 =
1√
2
|R〉 |↑x〉+

1√
2
|L〉 |↓x〉 (10)

since |↑x〉 and |↓x〉 are explicitly

|↑x〉 =
1√
2
|↑z〉+

1√
2
|↓z〉

|↓x〉 =
1√
2
|↑z〉 −

1√
2
|↓z〉 (11)

One can produce the situation associated with the representation (5) of W
by measuring σz on the non-interacting ancilla, while one can produce the
situation suggested by (6) by measuring σx on the ancilla.

It is the content of Theorem I that this state of affairs is completely gen-
eral:[4,5,6]

Theorem I:

Given an arbitrary system described by a d-dimensional density matrix W ,
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and given N different interpretations of that density matrix in terms of en-
sembles of systems in different (not-necessarily orthogonal) pure states, as-
sociated with the expansions

W =
Dn∑
µ=1

p(n)µ

∣∣φ(n)
µ

〉 〈
φ(n)
µ

∣∣ , n = 1, 2, ..., N, (12)

then if D is the largest of the Dn there sia state |Ψ〉 in d×D dimensions and
N different observables An in the D dimensional ancillary subspace such that
measuring the observable An on the ancilla leaves the original d-dimensional

subsystem in the state
∣∣∣φ(n)
µ

〉
with probability p

(n)
µ .

If you take Desideratum (5) seriously, then there can be no more objective
reality to the different possible realizations of a density matrix, then there is
to the different possible ways of expanding a pure state in terms of different
complete orthonormal sets. This is not to say that the ”ignorance interpreta-
tion” of a density matrix does not provide a useful technical way to deal with
ensembles of systems. But in the case of an individual system the density
matrix must be a fundamental and irreducible objective property, whether
or not it is a pure state.

The case of EPR correlations has made familiar the fact that when a system
is in a pure state that is not a simple product over subsystems, then its sub-
systems can have no pure states of their own. As far as I can tell, however,
there is no consensus on whether to take the subsystem density matrices as
complete objective characterizations of their internal properties. In view of
Theorem I, Desideratum (5) requires us to do so.[7]

The second theorem also applies to EPR correlations, but will be used here
in a much more general context. To motivate it consider two spin-1

2
parti-

cles in the singlet state |φ〉. Famously, their spin components are perfectly
anti-correlated. In particular

〈φ|σ(1)
µ σ(2)

µ |φ〉 = −1 , µ = x, y, z (13)

There is a (less famous) converse of (13): If a system consisting of two spin-1
2

particles has a density matrix W , and if

tr(Wσ(1)
µ σ(2)

µ ) = −1 , µ = x, y, z (14)
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then W is necessarily the projection operator on the singlet state:

W = W0 = |φ〉 〈φ| = 1− σ(1) · σ(2)

4
(15)

This is a direct consequence of the fact that W = W0 if and only 〈φ|W |φ〉 =
1, but if W satisfies (14) then

〈φ|W |φ〉 = tr(WW0) = tr

(
W

(
1− σ(1) · σ(2)

4

))
=

1

4

(
1−

∑
µ=x,y,z

tr(Wσ(1)
µ σ(2)

µ )

)
= 1 (16)

There is a way of looking at this trivial result that makes it a little surprising.
Suppose you have an ensemble of pairs of spin-1

2
particles and you want to

know if they all have total spin zero. Total spin being a global property of the
pair, one way to determine this would be to measure the total spin of enough
pairs to convince yourself that you are always going to get the result 0. But
suppose the pairs are so far apart that this is impractical. There is another
way. Two people can do a series of separate measurements of the two x
components to convince themselves that they are always anti-correlated, and
then do the same for the y and z components. In this way they can establish
a global property of an entangled state by a series of local measurements
together with the exchange of information about the results of those local
measurements.

It is the content of Theorem II that this intriguing state of affairs is entirely
general:[8]

Theorem II:

Given a system S = S1 ⊕ S2 with density matrix W , then W is completely
determined by the values of tr(WA⊗B) for an appropriate set of observable
pairs A, B, where A = A⊗1 is an observable of subsystem S1 and B = 1⊗B
is an observable of subsystem S2. The proof is as follows:[9]

Let the Mi be a set of hermitian operators that form a basis for the algebra
of operators on the subsystem S1 and let the Ni be a similar set for S2. (If
the state space for S1 is given an orthonormal basis of states |ψµ〉 then the
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Mi could, for example consist of all the operators |ψµ〉 〈ψν | + |ψν〉 〈ψµ| and
all the operators i(Ketψµ 〈ψν | − |ψν〉 〈ψµ|). Since the set of all Mi ⊗Nj is a
basis of hermitian operators for the algebra of operators on the full system
S, it follows that if |φ〉 is any state of S then the projection operator on φ
has an expansion of the form

|φ〉 〈φ| =
∑
i,j

cij(φ)Mi ⊗Nj (17)

where the coefficients cij are (real) numbers that can be explicitly calculated
for any state |φ〉 and any choice of the sets of operators Mi and Ni. So if W
is the density matrix of S then

〈φ|W |φ〉 =
∑
i,j

cij(φ)tr(WMi ⊗Nj) (18)

Therefore one can determine any diagonal matrix element of the density
matrix W of an ensemble of systems S = S1 ⊕ S2 from the correlations in
the results of an appropriate series of measurements of observables specific
to the subsystems S1 and S2. Since an arbitrary off-diagonal matrix element
can be expressed in terms of diagonal ones,

〈β|W |α〉 =
1

2
〈α + β|W |α + β〉+

i

2
〈α + iβ|W |α + iβ〉

− 1 + i

2
(〈α|W |α〉+ 〈β|W |β〉) (19)

we can determine in this way all the matrix elements of the density matrix
W in some complete orthonormal basis for S, and hence determine W itself.

This proof easily generalizes to a system S = S1 ⊕ · · · ⊕ Sn composed of
more than two subsystems: given any resolution of S into n subsystems, the
density matrix of S is entirely determined by the correlations among appro-
priate observables belonging to those subsystems. In such cases the structure
of quantum mechanics guarantees the important fact that it doesnt matter
whether we pin down the density matrix, for example, of S = S1 ⊕ S2 ⊕ S3
from correlations between observables of S1 with observables that act globally
on S2 ⊕ S3, or from correlations between observables of S3 with observables
that act globally on S1 ⊕ S2, or from tripartite correlations between observ-
ables acting only on the three subsystems.
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Thus the density matrix of a composite system determines all the correla-
tions among the subsystems that make it up and, conversely, the correlations
among all the subsystems completely determine the density matrix for the
composite system they make up. The mathematical structure of quantum
mechanics imposes constraints, of course, on what those correlations can be
- namely they are restricted to those that can arise from some global density
matrix.[10] The particular form of that density matrix is then completely
pinned down by the correlations themselves.

This is familiar in the case n = 1, where it reduces to the fact that the
set of all mean values over the entire system determines the density matrix.
What seems to have been overlooked, and what Theorem II establishes is
the additional fact that for any resolution of S into non-trivial subsystems
S1, .....,Sn, it suffices to determine W to know those mean values only for a
set of observables restricted to those of the form A1⊗· · ·⊗An where Aj acts
only on Sj.

In the context of the Six Desiderata, Theorem I asserts that the fundamental
irreducible objective character of an individual system is entirely specified
by its density matrix, and Theorem II then tells us that the fundamental
irreducible objective character of an individual system is entirely specified by
all the correlations among any particular set of the subsystems into which it
can be decomposed.

4 The Ithaca Interpretation of Quantum Me-

chanics

Having only begun looking at quantum mechanics from the point of view
of my six Desiderata and two Theorems, I have only scattered, incomplete
conclusions to report. At this stage the Ithaca Interpretation is rather frag-
mentary. Central to it is the doctrine that the only proper subjects of physics
are correlations among different parts of the physical world. Correlations are
fundamental, irreducible, and objective. They constitute the full content of
physical reality. There is no absolute state of being; there are only correla-
tions between subsystems.

Once it occurs to you to put it this way it sounds like a trivial point. For
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how could it be otherwise? One might imagine a God existing outside of the
World with direct unfathomable Access to its Genuine Essence. But physics
is more modest in its scope than theology. It aims to understand the world
in the world’s own terms, and therefore aims only to relate some parts of the
world to others. For physicists, if not for theologians, this reduction in scope
ought not to be a serious limitation.

If correlations are the fundamental, irreducible, objective components of
physical reality, and physical reality consists of individual systems, then
probabilities are fundamental, irreducible, objective properties of individual
systems. For among the possible correlations among subsystems are those
between projection operators associated with the subsystems, which have an
immediate interpretation as joint probability distributions. This raises diffi-
cult questions about the meaning of probability for individual systems. As I
noted at the outset, the strategy of the Ithaca interpretation is to set aside
such questions, not because they are unimportant, but because the interpre-
tation of quantum mechanics has enough problems of its own. My aim is
to find a satisfactory interpretation of quantum mechanics contingent upon
finding a satisfactory understanding of objective probability as a property of
individual systems. I would consider that progress.

The question that cannot be evaded, however, is correlations between what?
I claim that the failure explicitly to formulate and address this question or
to give it only partial answers, is responsible for many of the most notorious
difficulties and anthropomorphisms of the Copenhagen interpretation: the
claim that the existence of a classical domain is essential for a proper formu-
lation of quantum mechanics; the intrusion at a fundamental level of notions
like observation, measurement, or state preparation, into what ought to be a
description of phenomena in the unobserved, unmeasured, unprepared nat-
ural world; and the murkiness of the distinction between objective fact and
human knowledge.

To see how this comes about, note that if correlations between subsystems
of a closed system are indeed the only proper subjects for physics then the
simplest closed non-trivial quantum mechanical system is not a two-state
system, but a four-state system, for a two-state (or three-state) system can-
not describe two non-trivial subsystems. What is real and objective about
such a four-state universe are only the correlations that exist between the
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pair of two-state subsystems it contains. Observables of one subsystem have
no inherent meaning. They acquire such meaning as they have only from the
character of their correlations with observables of the other subsystem. If the
entire universe consisted of a two-site spin-1

2
Heisenberg model the complete

objective facts about that universe would be subsumed by the density matrix
of that Heisenberg model - i.e., by nothing more or less than the collection
of all the correlations between the two subsystems. To ask about the nature
of the correlated quantities is to go outside of the universe, for it can only be
to ask how they are correlated with something else, and in this toy universe
there is nothing else.

And thats all there is to it for a pair of two-state systems.[11] Other toy
universes are, of course, more complicated, but what is real and objective
about them is nothing more or less than all the correlations among their
subsystems. What’s real about the Universe (if you insist on talking about
the Universe) are the correlations among its subsystems.

These correlations constitute the totality of the internal objective reality
of individual systems. So what do measurement, or a classical domain, or
knowledge have to do with objective reality? Nothing - nothing whatever.
They have to do with us.

We’re big complicated systems, and we’ve evolved under the pressure of hav-
ing to deal with other big complicated systems. We understand them, we
can apprehend them, and we’ve developed language, to represent them to
ourselves or to help us tell each other about them. But we did not evolve
having to deal with simple two level systems or even complicated atoms. So
the only way we can cope with such systems, which evolution did not outfit
us to apprehend directly, is to arrange for them to be subsets of larger sys-
tems containing subsystems of the kind we do know something about dealing
with. We can then learn about the objectively real correlations that exist
between the small and the big subsystems, and try to infer the nature of the
systems inaccessible to our intuition from how they correlate with the sys-
tems were equipped to deal with. The larger systems are called ”classical”,
and the process of arranging to correlate them with the smaller systems is
called ”the measurement process”.

In the measurement process as Ive just described it, we ourselves play the
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role of God, outside of the universe and directly perceiving these informative
correlations. It’s really not like that, of course. To put the point more accu-
rately it’s necessary to acknowledge that we ourselves are physical systems,
and what actually emerges from a measurement are the tripartite correla-
tions between us, the classical subsystem, and the inaccessible subsystem.
It is because we have developed the ability to make sense of some of the
correlations between ourselves and classical systems, that we get something
useful out of this process. But this is a property of us - not of the inanimate
physical world. Measurement, the classical world, and human knowledge en-
ter the picture only when we ask how we can extract information about the
correlations that constitute the world. The correlations themselves, however,
are there whether or not we take the trouble to learn about them.

The question of how we are able to understand correlations between ourselves
and the accessible ”classical” systems we have arranged to correlate with the
inaccessible ”quantum” systems is known as the problem of consciousness.
Its a very difficult problem - much more difficult, in my opinion, than the
interpretation of quantum mechanics. But it is a problem about us. It is not
a problem that has anything to do with what is objectively real about those
parts of the physical world that can be well isolated from us.

If the first pillar of the Ithaca Interpretation is that correlations are the only
fundamental and objective properties of the world, the second is that the den-
sity matrix of a system is a fundamental objective property of that system
whether or not it is a one-dimensional projection operator. To put it another
way, in a nomenclature almost designed to obscure the point, ”mixed” states
are as fundamental as ”pure” states. This flies in the face of much textbook
talk about density matrices.

The problem, of course, is that density matrices can serve two purposes. One
may indeed be dealing with an ensemble of isolated systems, each of which
has a one-dimensional projection operator as its density matrix, and want
to average over the ensemble the internal correlations that prevail in each of
the subsystems. The mathematical object you need to do this has exactly
the same structure, but not at all the same significance, as the fundamental
irreducible density matrix of an individual system. It is the latter density
matrix that fully describes all the internal correlations of one of the members
of a single EPR pair.

16



It remains to be seen whether this point of view toward density matrices
can be developed without running into trouble. It will be important that
the development of the Ithaca interpretation must be in a framework that
makes it possible to formulate everything entirely in terms of internal corre-
lations of isolated individual systems. My guess is that this will be enough to
make everything work. Certain common but obscure statements about pure
vs. mixed states already make straightforward sense in this new framework.
For example it is often said that the difference between a pure state and a
mixed state is that in the former case we have maximal knowledge about the
system, while in the latter case ”we” do not ”know” everything that can be
”known”. The anthropomorphisms disappear completely if one states this in
terms of correlations between subsystems:

The density matrix of a subsystem S1 can be a one-dimensional projection
operator (i.e. a pure state) if and only if the only larger systems S = S1⊕S2
that can contain S1 as a subsystem admit of no correlations whatever be-
tween S1 and S2. The absence of such correlations is the objective fact.
The anthropomorphisms simply express the consequences of this fact for us,
should we wish to learn about S1.

It is the program of the Ithaca interpretation to reduce all ”quantum myster-
ies and horrors” to such statements about objective probabilities of individual
systems.

By not making it explicit that the pure state of a system (when it has one
- and the density matrix, when it does not) is nothing more than a concise
way to summarize and reveal the consistency of all the correlations among
its subsystems, the Copenhagen interpretation leaves a conceptual vacuum
that is often filled with the implicit and sometimes explicit notion that its
pure quantum state is a fundamental and irreducible property of a system
under study, or even of the entire world. By conferring physical reality on
the quantum state one creates a major part of the quantum measurement
problem. I am not claiming at this point that granting reality only to corre-
lations among subsystems solves the measurement problem, but it certainly
makes it harder to state just what the problem is. Because everything you
can formulate in terms of state vectors can also be stated entirely in terms of
correlations between subsystems - i.e., in terms of probability distributions
- if a quantum measurement problem remains it is going to be a problem
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about the nature of objective probabilities of individual systems.

It is my optimistic expectation that by making the effort to reformulate the
”measurement problem” in those terms one will either demonstrate that it
has vanished, or learn something new and important about the nature of
objective probability.
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Appendix A: Remote Construction of Arbitrary Ensembles With
a Given Density Matrix

Any density matrix W is hermitian and can therefore be expressed in terms
of the orthonormal (but not necessarily complete) set |φi〉 of its eigenvectors
with non-zero eigenvalues:

W =
d∑
i=1

pi |φi〉 〈φi| (20)

(with all pi > 0). There are alternative ways to interpret W as distributions
of pure states, each of the form:

W =
D∑
µ=1

qµ |ψµ〉 〈ψµ| (21)

where D ≥ d, and the (normalized) states |ψµ〉 are not in general orthogonal.

The |ψµ〉 must span the same space as the |φi〉, since the spaces spanned by
either set have an orthogonal complement which is just the set of all |χ〉 with
〈χ|W |χ〉 = 0.

Consequently there is an expansion

√
qµ |ψµ〉 =

d∑
i=1

Mµi
√
pi |φi〉 (22)

Because the |φi〉 are an orthonormal set, for (20) and (21) to yield the same
density matrix ??W we must have

D∑
µ=1

MµiM
∗
µj = δij (23)

If D > d we can extend M to a D-dimensional unitary matrix[19] U with

Uµν = Mµν , ν ≤ d (24)

It follows from (22) and the unitarity of U that

D∑
µ=1

U∗µν
√
qµ |ψµ〉 = 0 , ν > d (25)
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We now define a state in the product of our original state space and a space
of dimension D:

|Φ〉 =
d∑
i=1

√
pi |φi〉 ⊗ |αi〉 (26)

where the |αi〉 are the first d members of an (arbitrarily chosen) orthonormal
set |αµ〉, µ = 1....D.

It follows from (22) and (23) that

√
pi |φi〉 =

D∑
µ=1

√
qµ |ψµ〉M∗

µi (27)

and therefore

|Φ〉 =
D∑
µ=1

√
qµ |ψµ〉

d∑
i=1

M∗
µi ⊗ |αi〉 (28)

Eq. (25) permits us to extend the sum to the entire set of D vectors |αµ〉:

|Φ〉 =
D∑
µ=1

√
qµ |ψµ〉

D∑
ν=1

U∗µν ⊗ |αν〉 (29)

We have thus arrived at an alternative form

|Φ〉 =
D∑
ν=1

√
qµ |ψµ〉 ⊗ |βµ〉 (30)

where

|βµ〉 =
D∑
ν=1

U∗µν |αν〉 (31)

It follows from the unitarity of U and the orthonormality of the |αµ〉 that
the |βµ〉 are also an orthonormal set.

If we are given a large number of alternative realizations of W of the form
(21), we can take the dimension of the auxilliary space to be the largest D
associated with them. The above argument then shows that if we are given
any state |Φ〉 of the form (26), we can find a representation of |Φ〉 having
the form (30) for any of the many sets of |ψµ〉 satisfying (21). By measuring
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in the auxilliary space an observable whose eigenstates are the associated
|βµ〉, we can therefore produce an ensemble in the original space in which the
system is in the state |ψµ〉 with probability qµ.

Appendix B: The Hardy Paradox.

The simplest possible non-trivial closed individual quantum system - a pair
of two two-state systems - already gives some useful clues about some of
the properties objective probabilities will have to possess. The following ex-
ample, invented by Lucien Hardy to give a particularly powerful version of
Bell’s Theorem, also enables one to make an important point about objective
probabilities.

Call the two two-state subsystems A and B. To make the point we need
consider only two observables of each system, called 1A, 2A, 1B, and 2B. We
can label the two eigenstates of each of these observers by a color: red (R)
or green (G). In each subsystem take the eigenstates of observable 1 to be
non-trivially different from those of observable 2 - i.e., |1R〉 is a superposi-
tion of |2R〉 and |2G〉 with both coefficients non-zero. To make the point it
suffices to take the symmetric case in which the values of the two coefficients
are the same, whether the observables 1 and 2 are associated with subsystem
A or subsystem B. To keep the notation from getting too cumbersome we
abbreviate the designation of a state of the form |1AR〉⊗|2BG〉 (for example)
simply to |1R, 2G〉.

Now consider the universe consisting of the pair of two-state systems char-
acterized by the density matrix |Ψ〉 〈Ψ| which projects on the (normalized)
state:

|Ψ〉 =
|2R, 2R〉 − |1R, 1R〉 〈1R, 1R | 2R, 2R〉√

1− 〈1R | 2R〉4
(32)

Clearly

p(1R, 1R) = | 〈1R, 1R |Ψ〉 |2 = 0 (33)

p(2G, 1G) = | 〈2G, 1G |Ψ〉 |2 = 0 (34)

p(1G, 2G) = | 〈1G, 2G |Ψ〉 |2 = 0 (35)

while

p(2G, 2G) = | 〈2G, 2G |Ψ〉 |2 =
(1− x)2x2

1− x2
= x2

1− x
1 + x

(36)
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where
x = 〈1R | 2R〉2 6= 0 (37)

The only important thing to note is that the first three of these probabili-
ties are zero and the fourth is non-zero, but I cannot resist noting that the
probability p(2G, 2G) happens to be maximum when x = 1/τ (where τ is

the golden mean, τ =
√
5+1
2

) in which case the values of all the probabilities
associated with the four pairs of subsystem observables are as in the follow-
ing lovely Table:

p 22 11 12 21
GG τ−5 τ−3 0 0
GR τ−4 τ−2 τ−1 τ−3

RG τ−4 τ−2 τ−3 τ−1

RR τ−1 0 τ−4 τ−4

The Hardy paradox consists of observing that the three 0 probabilities trans-
late into three conditional probabilities of unity:

p(1AG, 2BG) = 0⇒ p(2BG) = p(1AR, 2BG)⇒ p(1AR|2BG) = 1 (38)

p(1AR, 1BR) = 0⇒ p(1AR) = p(1AR, 1BG)⇒ p(1BG|1AR) = 1 (39)

p(2AG, 1BG) = 0⇒ p(1BG) = p(1BG, 2AR)⇒ p(2AR|1BG) = 1 (40)

From these unit conditional probabilities we conclude that 2BG requires 1AR,
that 1AR requires 1BG, and that 1BG requires 2AR. Therefore 2BG requires
2AR:

p(2AR|2BG) = 1 (41)

But this contradicts the fact (36) that

p(2AGm2BG) 6= 0 (42)

The conventional analysis of what’s wrong with this reasoning associates the
probabilities with the results of measurements. Thus the probability

p(1AR|2BG) = 1 (43)

appearing in (38) must actually be conditioned not only on getting G for a
measurement of 2B, but also on both measurements actually being performed.
We should therefore use the expanded form

p(1AR|2BG; 1A, 2B) = 1 (44)
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The second 2B is unnecessary, if we interpret 2BG to mean property 2B is
measured and found to have the value G. It might appear that the second
1A is also unnecessary, but this is incorrect. For the naive argument to go
through, the 1AR in (38) must mean exactly the same thing as it means in
(39) - namely, property 1A is measured and found to have the value R. But
the probability is not 1 that if 2B is measured and found to have the value G
then 1A is measured and found to have the value R. To get a probability of 1
we must also condition on subsystem 1A actually being measured. Therefore
we must rewrite (38)-(40) as

p(1AR|2BG; 1A) = 1

p(1BG|1AR; 1B) = 1 (45)

p(2AR|1BG; 2A) = 1

and the chain of reasoning following (40) breaks down.

This way out of Hardys paradox is not available to the Ithaca interpretation,
which insists that quantum mechanics should make sense as a description of
the objectively real correlations that exist in a universe consisting entirely
of the two two-state systems. In such a universe there are no measurements
- only correlations. The additional conditioning on an observable ”actually
being measured” has no meaning. In the Ithaca interpretation the fallacy
in the Hardy paradox can only be that the three ”conditional probabilities”
equal to unity in (38)-(40) have no meaning. It makes no sense to contem-
plate the probability that 1A is R given that 2B is G. The unconditional
value of an observable for a subsystem cannot be ”given” - only correlations
between subsystems have objective reality.

It therefore appears that the view of probability underlying the Ithaca inter-
pretation must be anti-Bayesian. At some fundamental level unconditional
joint objective probabilities have meaning, but certain conditional probabil-
ities have no meaning, because that upon which they are conditioned has
no objective reality. Only correlations - i.e., only joint distributions - have
objective reality.
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