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1 Overview: stochastic process

A. A stochastic process is a collection of random variables {Xt, t ∈ T}.

B. A sample path or realization of a stochastic process is the collection
of values assumed by the random variables in one realization of the
random process, e.g., the sample path x1, x2, x3, ...., when X1 = x1,X2 =
x2,X3 = x3, .... We may speak of the probability of a realization, and
we mean P (X1 = x1,X2 = x2,X3 = x3, ....), for example.

C. The state space is the collection of all possible values the random vari-
ables can take on, i.e., it is the sample space of the random variables.
For example, if Xi ∈ [0,∞) represent random times for all i, then the
state space of the stochastic process is [0,∞).

D. Often, the index set T is associated with time, sometimes even when
it does not actually represent time. In this description, the stochastic
process has a state that evolves in time. For example, the process may
start in state X1 = 3, then evolve to state X2 = 4, and much later enters
the state X100 = 340. The index set may also be associated with space,
for example T = R2 for the real plane.

E. Classifying stochastic processes.

Stochastic processes can be classified by whether the index set and state
space are discrete or continuous.

State Space
discrete continuous

Index discrete discrete time Markov chain (dtmc) not covered
Set continuous continuous time Markov chain (ctmc) diffusion process



1. Random variables of a discrete time process are commonly written
Xn, where n = 0,1,2, ....

2. Random variables of a continuous time process are commonly writ-
ten X(t), where t ∈ T , and T is often, though certainly not always
[0,∞).

F. Short history of stochastic processes illustrating close connection with
physical processes.

1. 1852: dtmc invented to model rainfall patterns in Brussels

2. 1845: branching process (type of dtmc) invented to predict the
chance that a family name goes extinct.

3. 1905: Einstein describes Brownian motion mathematically

4. 1910: Poisson process describes radioactive decay

5. 1914: birth/death process (type of ctmc) used to model epidemics

G. Relationship to other mathematics

1. mean behavior of the ctmc is described by ordinary differential
equations (ODEs)

2. diffusion processes satisfy stochastic differential equations (SDEs),
from stochastic calculus

2 Introduction to Discrete Time Markov Chain

(DTMC)

A. Definition: A discrete time stochastic process {Xn, n = 0,1,2, ...} with
discrete state space is a Markov chain if it satisfies the Markov prop-
erty.

P (Xn = in∣X0 = i0,X1 = i1, ....,Xn−1 = in−1) = P (Xn = in∣Xn−1 = in−1)
(1)

where ik for all k = 0,1, ..., n are realized states of the stochastic process.

B. Brief history
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1. Markov chain named after Andrei Markov, a Russian mathemati-
cian who invented them and published first results in 1906.

2. Andrey Kolmogorov, another Russian mathematician, generalized
Markov’s results to countably infinite state spaces.

3. Markov Chain Monte Carlo technique is invented by Metropolis,
Rosenbluth, Rosenbluth, Teller and Teller in 1953 in statistical
physics. Allows simulation/sampling from complicated distribu-
tions/models.

C. Definition: one-step transition probabilities pn,n+1ij

The one-step transition probability is the probability that the process,
when in state i at time n, will next transition to state j at time n + 1.
We write

pn,n+1ij = P (Xn+1 = j∣Xn = i) (2)

1. 0 ≤ pn,n+1ij ≤ 1 since the transition probabilities are (conditional)
probabilities.

2. ∑∞
j=0 p

n,n+1
ij = 1 since the chain must transition somewhere and

summing over all j is an application of the addition law for a set
of disjoint and exhaustive events.

D. Definition: time homogeneity

When the one-step transition probabilities do not depend on time, so
that

pn,n+1ij = pij (3)

for all n, then the one-step transition probabilities are said to be sta-
tionary and the Markov chain is also said to be stationary or time
homogeneous.

E. Definition: one-step transition matrix or transition matrix or
Markov matrix The one-step transition matrix, P , is formed by
arranging the one-step transition probabilities into a matrix:

P =
⎛
⎜⎜⎜
⎝

p00 p01 p02 ⋯
p10 p11 p12 ⋯
p20 p21 p22 ⋯
⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟
⎠

(4)
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1. P is a square matrix, possibly of infinite dimension if the state
space is countable.

2. The rows sum to 1, by properties of one-step transition probabil-
ities given above.

F. Examples

1. A simple weather forecasting model

Let Xi be an indicator random variable that indicates whether it
will rain on day i. The index set is T = {0,1,2, ...} It is discrete
and truly represents time. The state space is {0,1}. It is clearly
discrete.

Assume that whether it rains tomorrow depends only on whether
it is raining (or not) today, and no previous weather conditions
(Markov property).

Let α be the probability that it will rain tomorrow, given that it is
raining today. Let β be the probability that it will rain tomorrow,
given that it is not raining today.

The Markov matrix is

P = (α 1 − α
β 1 − β) (5)

2. A slightly more complex weather forecasting model

Suppose that you believe that whether it rains tomorrow is actu-
ally influences not only by whether it is raining today, but also
by whether it was raining yesterday. At first glance, it seems that
you cannot use a Markov chain model for this situation, since the
future depends on the present as well as the past. Fortunately,
by redefining the state space, and hence the future, present, and
past, one can still formulate a Markov chain.

Define the state space as the rain state of pairs of days. Hence,
the possible states are (0,0), indicating that it rained today and
yesterday, (0,1), indicating that it rained yesterday and did not
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rain today, (1,0), and (1,1), defined similarly.

In this higher order Markov chain, certain transitions are imme-
diately for- bidden, for one cannot be allowed to change the state
of a day when making a transition. So, for example, (0,0) cannot
transition to (1,0). As we move forward in time, today will be-
come yesterday, and the preceding transition suggests that what
was rain today became no rain when viewed from tomorrow. The
only transitions with non-zero probability are shown below, where
the order of states along the rows and columns of the matrix are
(0,0), (0,1), (1,0), (1,1).

P =
⎛
⎜⎜⎜
⎝

0.7 0.3 0 0
0 0 0.4 0.6

0.5 0.5 0 0
0 0 0.2 0.8

⎞
⎟⎟⎟
⎠

(6)

Note in the preceding, the probability of rain after two days of
rain is 0.7. The probability of rain after one day of rain followed
by one day of no rain is 0.4. The probability of rain after only one
day of rain is 0.5. Finally, the probability of rain after two days
of no rain is 0.2.

3. The random walk

A Markov chain whose state space is i = 0,±1,±2, .... is a random
walk if for some 0 < p < 1, where

pi,i+1 = p = 1 − pi,i−1 (7)

One useful application is to gambling models.

4. DNA models

Analogous DNA models can be formulated. Here the state space
for the simple, first-order model is {0,1,2,3}, where 0 may repre-
sent A, 1 may represent C, 2 may representG, and 3 may represent
T . The state space for the slightly more complex, second-order
model is {00,01,02,03,10,11, ...}, which has 42 possible states.
Higher order models are also possible, with a corresponding in-
crease in the number of states. While it might not seem intuitive
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why such a model could possibly describe a DNA sequence (think
human genome for instance), a little thought can suggest why it
might work better than an even simpler model. Suppose I ask
you to predict for me the 10th nucleotide in a sequence I have
just obtained for a gene in the human genome. You can come
up with some kind of prediction based on what you know about
nucleotide content of the human genome, but if I also told you the
9th nucleotide of the sequence, you may be able to make a better
prediction based on your knowledge not only about the nucleotide
content of the human genome, but knowledge about behavior of
segments of the sequences (codons), for example. Indeed, it is not
hard to show that a first order Markov chain often fits DNA se-
quence data better than a Independent and identically distributed
random variables model.

5. Automobile insurance

Suppose auto insurance costs are determined by the a positive
integer value indicating the risk of the policyholder, plus the car
and coverage level.

Each year, the policyholder’s state is updated according to the
number of claims made during the year.

Let si(k) be the state of a policyholder who was in state i and
made k claims last year. These are fixed numbers determined by
the insurance company. Randomness enters via the number of
claims made by a policyholder.

Suppose the number of claims made by a policy holder is a Poisson
random variable with parameter λ. Then, the transition proba-
bilities are

pi,j = ∑
k∶si(k)=j

e−λ
λk

k!
(8)

Consider the following hypothetical table of si(k):
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Next state if
State Annual Premium 0 claims 1 claims 2 claims ≥ 3 claims

1 200 1 2 3 4
2 250 1 3 4 4
3 400 2 4 4 4
4 600 3 4 4 4

Suppose λ = 1. Using the above table we can compute the transi-
tion probability matrix

P =
⎛
⎜⎜⎜
⎝

0.37 0.37 0.18 0.08
0.37 0 0.37 0.26

0 0.37 0 0.63
0 0 0.37 0.63

⎞
⎟⎟⎟
⎠

(9)

3 Chapman-Kolmogorov Equations

A. Definition: n-step transition probabilities

pnij = P (Xn+k = j∣Xk = i) (10)

for n ≥ 0 and states i, j.

By analogy to the 1-step case, we can define n-step transition proba-
bility matrices P (n) = (pnij).

B. Result: Chapman-Kolmogorov equations

pn+mij =
∞
∑
k=0
pnikp

m
kj (11)

for all n,m ≥ 0 and for all states i, j.
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Proof:

pn+mij = P (Xn+m = j∣X0 = i)

=
∞
∑
k=0

P (Xn+m = j,Xn = k∣X0 = i)P (Xn = k∣X0 = i)

=
∞
∑
k=0

P (Xn+m = j∣Xn = k,X0 = i)

=
∞
∑
k=0

pmkjp
n
ik (12)

C. Additional Results:

1. Another compact way to write Chapman-Kolmogorov equations:

p(n+m) = P (n)P (m) (13)

2. By induction,
P (n) = P n (14)

D. Examples

1. Simple Forecasting Model

Suppose α = 0.7 and β = 0.4, so

P = (0.7 0.3
0.4 0.6

) (15)

What is the probability that it will still be clear in 4 days, given
that it is clear today? We need P 4.

P 2 = P ⋅ P = (0.61 0.39
0.52 0.48

) (16)

and

P 4 = P 2 ⋅ P 2 = (0.5749 0.4251
0.5668 0.4332

) (17)

The entry we seek is p411 = 0.5749, so there is approximately a 57%
chance that it will be clear in 4 days.
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2. More Complex Forecasting Model

Now, compute the probability that it will rain on Saturday given
that it rained today Thursday and didn?t rain yesterday Wednes-
day.

P (2) = P 2 =
⎛
⎜⎜⎜
⎝

0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

⎞
⎟⎟⎟
⎠
×
⎛
⎜⎜⎜
⎝

0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

⎞
⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

0.49 0.12 0.21 0.18
0.35 0.20 0.15 0.30
0.20 0.12 0.20 0.48
0.10 0.16 0.10 0.64

⎞
⎟⎟⎟
⎠

(18)

4 Unconditional probabilities

In order to compute unconditional probabilities, like “What is the probability
it will rain on Tuesday?”, we’ll need to define the initial state distribution.
A Markov chain is fully specified once the transition probability matrix and
the initial state distribution have been defined.

A. Definition: initial state distribution

The initial state distribution is a probability distribution defined over
the first state of the chain X0.

P (X0 = i) = αi (19)

for all i = 0,1, ...

B. Now we can compute unconditional probabilities.

1. Computing probability of state j at particular time n:

P (Xn = j) =
∞
∑
i=0
P (Xn = j∣X0 = i)P (X0 = i) =

∞
∑
i=0
pnijαi (20)
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2. Computing probability of a chain realization:

P (X0 = i0,X1 = i1, ...,Xn = in)
= P (X0 = i0)P (X1 = i1∣X0 = i0)P (X2 = i2∣X0 = i0,X1 = i1)
⋯P (Xn∣X0 = i0,Xn−1 = in−1) (21)

The Markov property allows us to simplify

P (X0 = i0,X1 = i1, ...,Xn = in)
= P (X0 = i0)P (X1 = i1∣X0 = i0)P (X2 = i2∣X1 = i1)
⋯P (Xn∣Xn−1 = in−1) (22)

and finally we obtain

P (X0 = i0,X1 = i1, ...,Xn = in) = αi0pi0i1pi1i2⋯pin−1in (23)

C. Example. Using the simple weather forecasting model, what is the
probability that it will rain on Monday given that there was a 90%
chance or rain today?

P (X4 = 1) = α0p
4
01+α1p

4
11 = 0.10×0.4251+0.90×0.4332 = 0.43239 (24)

5 Irreducible chains

A. Introduction: classification of states

Note, define the 0-step transition probabilities as follows

p0ij =
⎧⎪⎪⎨⎪⎪⎩

1 i = j
0 i ≠ j

(25)

1. Definition: State j is said to be accessible from state i if pnij > 0
for some n ≥ 0.

2. Definition: Two states i and j are said to communicate if they
are accessible to each other, and we write i↔ j.

a. The relation of communication is an equivalence relation, i.e.,

- Reflexive: i↔ i because p0ii = 1.

10



- Communicative: If i↔ j then j ↔ i

- Transitive: If i↔ j and j ↔ k, then i↔ k.

b. This equivalence relation divides the state space of a Markov
chain into non-overlapping classes.

3. Definition: A class property is a property of the state that if true
of one member in a class, is true of all members in that class.

B. Definition: A Markov chain is irreducible if there is only one equiva-
lence class of states, i.e., all states communicate with each other.

C. Examples:

1. The Markov chain with transition probability matrix

P =
⎛
⎜
⎝

1
2

1
2 0

1
2

1
4

1
4

0 1
3

2
3

⎞
⎟
⎠

(26)

is irreducible.

2. The Markov chain with transition probability matrix

P =
⎛
⎜⎜⎜
⎝

1
2

1
2 0 0

1
2

1
2 0 0

1
4

1
4

1
4

1
4

0 0 0 1

⎞
⎟⎟⎟
⎠

(27)

has three classes {0,1} and {2} and {3} and is not irreducible.

D. 1. Definition: A transition probability matrix P is regular if there
exists an n, such that P n has strictly positive entries, i.e., pnij > 0
for all i, j ≥ 0.

2. Claim: a Markov chain with a regular transition probability ma-
trix is irreducible.

Note that for the n where P n > 0, pnij > 0 for all i, j ≥ 0, hence all
states i in the state space communicate with all other states j.

3. Method: One way to check for irreducible Markov chains is to
roughly calculate P 2, P 4, P 8, .... to see if eventually all entries are
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strictly positive. Consider, the 3×3 matrix from the first example
above.

P =
⎛
⎜
⎝

1
2

1
2 0

1
2

1
4

1
4

0 1
3

2
3

⎞
⎟
⎠

First, encode entries as + or 0 and call this encoded matrix Q.

Q =
⎛
⎜
⎝

+ + 0
+ + +
0 + +

⎞
⎟
⎠

(28)

Then,

Q2 =
⎛
⎜
⎝

+ + +
+ + +
+ + +

⎞
⎟
⎠

(29)

Therefore, the Markov matrix P is irreducible.

6 Recurrence and transience

Let fi be the probability that starting in state i, the process reenters state i
at some later time n > 0. Note, this concept is related but different from the
concept of accessibility. In the example below, 0 ↔ 1, but the chain is not
guaranteed to return to 0 if it starts there,so f0 < 1.

P =
⎛
⎜
⎝

0 1
2

1
2

1
2

1
2 0

0 0 1

⎞
⎟
⎠

(30)

A. Definitions related to recurrence and transience.

1. Definition: If fi = 1, then the state i is said to be recurrent.

2. Definition: We define the random variable Ri to be the first
return time to recurrent state i

Ri = min
n≥1

{Xn = i∣X0 = i} (31)

3. Definition: A recurrent state is positive recurrent if it recurs with
finite mean time, i.e., E[Ri] <∞.
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4. Definition: In contrast, a recurrent state is null recurrent if it
recurs only after an infinite mean wait time, i.e., E[Ri] =∞.

Note: Null recurrent states can only occur in infinite state Markov
chains, for example the symmetric random walks in one and two
dimensions are null recurrent.

5. Definition: State i is said to be an absorbing state if pii = 1. An
absorbing state is a special kind of positive recurrent state.

Absorption is the process by which Markov chains absorb when
absorbing states are present.

6. Definition: If fi < 1, then the state i is a transient state.

B. Claims and results related to recurrence and transience.

1. Claim: A recurrent state will be visited infinitely often.

Suppose the recurrent state i is visited only T <∞ times. Since T
is the last visit, there will be no more visits to state i after time
T . This is a contradiction since the probability that i is visited
again after time T is fi = 1.

2. Claim: The random number of times a transient state will be
visited is finite and distributed as a geometric random variable.

Consider a chain that starts in state i. Then, with probability 1−
fi ≥ 0, the chain will never re-enter state i again. The probability
that the chain visits state i n more times is

P (n visits) = fni (1 − fi) (32)

where we recognize the pmf1 of a Geometric distribution. The
expectation of the Geometric distribution is finite.

3. Theorem: State i is recurrent if ∑∞
n=1 p

n
ii = ∞ and transient if

∑∞
n=1 p

n
ii <∞.

Proof:

1a probability mass function (pmf) is a function that gives the probability that a
discrete random variable is exactly equal to some value.
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Let

In =
⎧⎪⎪⎨⎪⎪⎩

1 if Xn = i
0 if Xn ≠ i

(33)

indicate whether the chain is in state i at the nth time point.
Then

∞
∑
n=1

In

is the total number of visits to state i after chain initiation. Take
the expectation,

E [
∞
∑
n=1

In] =
∞
∑
n=1

E(In∣X0 = i)

=
∞
∑
n=1

P (Xn = i∣X0 = i)

=
∞
∑
n=1

pnii (34)

4. Corollary: If state i is recurrent and j communicates with i, then
j is recurrent.

Proof:

Because i and j communicate, there exist m and n such that

pmij > 0 , pnji > 0 (35)

By Chapman-Kolmogorov,

pm+k+njj ≥ pnjipkiipmij (36)

Sum over all possible k

∞
∑
k=1

pm+k+njj ≥ pnjipmij
∞
∑
k=1

pkii =∞ (37)

5. Claim: Recurrence (positive and null) and transience are class
properties. This result is an obvious consequence of the above
Corollary.
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6. Claim: All states in a finite-state, irreducible Markov chain are
recurrent. Because some states in a finite-state Markov chain must
be recurrent, in fact all are recurrent since there is only one equiva-
lence class in an irreducible Markov chain and recurrence is a class
property.

7. Claim: Not all states can be transient in a finite-state Markov
chain. Suppose there are N states in the state space of a finite-
state Markov chain. Let Ni be the finite number of visits to state
0 ≤ i ≤ N − 1. Then after ∑N−1i=1 Ni steps in time, the chain will not
be able to visit any state i = 0, ...,N − 1, a contradiction.

C. Examples:

1. Determine the transient states in the following Markov matrix.

⎛
⎜⎜⎜
⎝

0 0 1
2

1
2

0.35 0 0 0
0 1 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠

(38)

Verify that all states communicate, therefore, all states must be
recurrent and the chain is irreducible.

2. Determine the transient, recurrent, and absorbing states in the
following Markov matrix.

⎛
⎜⎜⎜
⎝

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2

1
2 0

0 0 1
2

1
2 01

4
1
4 0 0 1

2

⎞
⎟⎟⎟
⎠

(39)

This chain consists of three classes {0,1}, {2,3}, and {4}. The
first two classes are recurrent. The last is transient.

3. Suppose the transition probability matrix were modified as

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2

1
2 0

0 0 1
2

1
2 0

1
4

1
4 0 0 1

2

⎞
⎟⎟⎟⎟⎟⎟
⎠

(40)

Then, there are four classes {0}, {1}, {2,3}, and {4} and the first
two are recurrent absorbing states.
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7 Periodicity of Markov chain

A. Definition: The period of state i is the greatest common divisor of
all n such that pnii > 0. In other words, if we consider all the times at
which we could possibly be in state i, then the period is the greatest
common divisor of all those times.

If the state i can be revisited at any time, then the period is 1.

If the state i can be revisited every two time points, then the period is
2.

If the state i can never be revisited (i.e., diagonal entry in that ith row
is 0), the the period is defined as 0.

B. Definition: A Markov chain is aperiodic if every state has period 0 or
1.

C. Example:

Confirm the period of the following chain is 3.

P =
⎛
⎜
⎝

0 0 1
1 0 0
0 1 0

⎞
⎟
⎠

(41)

8 Ergodicity

A. Definition: A state is ergodic if it is positive recurrent and aperiodic.

B. Claim: Ergodicity is a class property.

C. Definition: A Markov chain is ergodic if its states are aperiodic and
positive recurrent.

9 Example

Random walk on the integers with transition probabilities:

pi,i+1 = p = 1 − pi,i−1 (42)
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All states communicate with each other, therefore all states are either
recurrent or transient. Which is it?

Focus on state 0 and consider ∑∞
n=1 p

n
00. Clearly,

p2n00 = 0 , n = 1,2, ..... (43)

because we cannot return to 0 with an uneven number of steps.

Furthermore, we can only return to 0 in 2n steps if we take n steps
away and n steps toward, so

p2n00 = (2n

n
)pn(1 − p)n (44)

Employing the Stirling approximation

n! ∼ nn+1/2e−n
√

2π (45)

where an ∼ bn if limn→∞
an
bn

= 1. Therefore,

p2n00 ∼
[4p(1 − p)]n√

πn
(46)

By definition of ∼, it is not hard to see that ∑∞
n=1 p

n
00 will only converge

if
∞
∑
n=1

[4p(1 − p)]n√
πn

<∞ (47)

But 4p(1 − p) < 1 except when p = 1
2 . Thus, if p = 1

2 , then ∑∞
n=1 p

n
00 =∞

and the chain is recurrent, otherwise ∑∞
n=1 p

n
00 < ∞ and the chain is

transient.

One may also show that the symmetric random walk in two dimensions
is recurrent. However, all random walks in more than 2 dimensions are
transient.
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10 First-Step Analysis

A. Preliminaries

We discuss first-step analysis for finite-state discrete time Markov chains
{Xn, n ≥ 0}. Label the finite states 0,1,2, ...,N − 1. There a total of N
states.

Generically, the technique of first-step analysis can be used to solve
many complex questions regarding time homogeneous Markov chains.
It solves the problem by breaking the process into what happens in
the first step and what happens in all the remaining steps. Because
stationary Markov chains are memoryless (the future is independent
of the past) and probabilistically constant in time, the future of the
chain after the first step is probabilistically identical to the future of
the chain before the first step. The result is a set of algebraic equations
for the unknowns we seek.

First-step analysis, in its simplest form, answers questions about ab-
sorption into absorbing states. Therefore, suppose S = {S0, S1, ...., SN−r−1}, r ≤
N are all the absorbing states in a Markov chain. Based on our under-
standing of recurrence and transience, it is clear that the chain must
ultimately end up in one of the absorbing states in S. There are details
we may wish to know about this absorption event.

1. Definition: The time to absorption Ti is the time it takes to enter
some absorbing state in S given the chain starts in state i.

Ti = min
n≥0

{Xn ≥ r∣X0 = i} (48)

2. Definition: The hitting probability for state Si ∈ S is the prob-
ability that a Markov chain enters state Si before entering any
other state in S.

Uik = P (XTi = k∣X0 = i) (49)

In addition, remember our trick for answering the question “What is
the probability that the Markov chain enters a state or group of states
before time n?” Often, while the original Markov chain may not have
any absorbing states (i.e., S = ∅), questions about the Markov chain
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can be reformulated as questions about absorption into particular states
or groups of states. In this case, one constructs a novel Markov chain
where certain states are converted into absorbing states.

B. Technique: Finding the probability that a Markov Chain has entered
(and perhaps left) a particular set of states A by time n.

1. Construct a new Markov chain with modified state space transi-
tion probabilities

qij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if i ∈ A , j = i
0 if i ∈ A , j ≠ i
pij otherwise

(50)

The new Markov chain has transition probability matrix Q− (qij)
and be- haves just like the original Markov chain until the state
of the chain enters set A . Therefore, both chains will have the
same behavior with respect to the question.

2. Example. Suppose a person receives 2 (thousand) dollars each
month. The amount of money he spends during the month is
i = 1,2,3,4 with probability Pi and is independent of the amount
he has. If the person has more than 3 at the end of a month, he
gives the excess to charity. Suppose he starts with 5 after receiving
his monthly payment (i.e. he was in state 3 right before the first
month started). What is the probability that he has 1 or fewer
within the first 4 months? We will show that as soon as Xj ≤ 1,
the man is at risk of going into debt, but if Xj > 1 he cannot go
into debt in the next month.

Let Xj ≤ 3 be the amount the man has at the end of month j.

The original Markov chain matrix is infinite, which makes the
analysis a little tricky.

P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋱ ⋱ ⋱ ⋱
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋯ 0 P4 P3 P2 P1 0

⋯ 0 P4 P3 P2 P1

⋯ 0 P4 P3 P2 + P1

⎞
⎟⎟⎟⎟⎟⎟
⎠

(51)
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To answer the question, we would define the modified Markov
chain

Q′ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ 0 1 0 0 0
⋯ 0 0 1 0 0
⋯ 0 P4 P3 P2 P1

⋯ 0 0 P4 P3 P2 + P1

⎞
⎟⎟⎟⎟⎟⎟
⎠

(52)

but we can’t work with an infinite matrix. To proceed, we note
that if we start with Xj > 1, then we can only enter condition
Xj ≤ 1 by entering state 0 or 1. For example, the worst state > 1
the man can be in the previous month is 2. He then earns 2 and
spends, at most, 4 with probability P4, to end up, at worst, with
0. In short, we claim that states {....,−2,−1} are inaccessible in
the modified Markov chain, so we can ignore them to get a finite
and workable matrix

Q =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
P4 P3 P2 P1

0 P4 P3 P2 + P1

⎞
⎟⎟⎟
⎠

(53)

Suppose Pi = 1
4 for all i = 1,2,3,4. We compute Q4 for the first

four months

Q4 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
93
256

129
256

13
256

21
256

36
256

165
256

21
256

34
256

⎞
⎟⎟⎟
⎠

(54)

The man started in state 3. The probability he ends in state
≤ 1 by the 4th month is 36

256 +
165
256 =

201
256 ≈ 0.79, where we sum the

probability that he first goes to state ≤ 1 via 0 ( 36
256) or via 1 (165

256).

C. Standard form of Markov matrix.

Assume that of the N states 0,1, ..., r − 1 are transient and states
r, ...,N − 1 are absorbing. If the states are currently not in this or-
der, one can re-order and re-number them, so that they are.

With this ordering of the states, the Markov matrix is in the standard
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form, which can be written as

P = (Q R
0 I

) (55)

where we have split P into 4 submatrices: Q is an r × r matrix, R is
an r ×N − r matrix, 0 is an N − r × r matrix filled with 0’s and I is
an N − r ×N − r identity matrix. An identity matrix is a matrix with
1’s along the diagonal and 0’s elsewhere, for example the 2× 2 identity
matrix is

P = (1 0
0 1

)

D. Time Until Absorption.

(System-of-equations solution)

1. Sub-Questions: many similar questions exist that can be answered
in the same mathematical framework.

a. How long (many steps) before absorption (to any absorbing
states)?

b. If you win $5 every time transient state k is visited, how
much money do you expect to win before the game is over
(absorption)?

2. Preliminaries

a. Let g(j) be a random function that maps each state to some
value.

Let

wi = E [
Ti−1
∑
n=0

g(Xn)∣X0 = i] (56)

be the expected value of the sum of g(j) over all transient
states prior to absorption. To facilitate later derivation, we
define g(l) = 0 for all absorbing states l ≥ r.

b. Let g(l) = 1 for all transient states l. Then wi is the expected
time until absorption given the chain starts in state i.

c. Let g(l) = δlk which is 1 for transient state k and otherwise
0. Then wi is the expected number of visits to state k before
absorption. Later we call this Wik.
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d. Let g(l) be the dollar amount you win or lose for each state of
the chain. Then wi is the expected amount of your earnings
until absorption of the chain.

3. Derivation

wi = E [
T−1
∑
n=0

g(Xn)∣X0 = i] (by definition)

= E [
∞
∑
n=0

g(Xn)∣X0 = i] , (g(Xn) = 0 for n ≥ T )

= E [g(X0) +
∞
∑
n=1

g(Xn)∣C0 = i]

= g(i) +
∞
∑
n=1

E[g(Xn)∣X0 = i] , (expectation of sums)

= g(i) +
∞
∑
n=1

N−1
∑
j=0

g(j)P (Xn = j∣X0 = i) (definition of expectation)

= g(i) +
∞
∑
n=1

N−1
∑
j=0

N−1
∑
l=0

g(j)P (Xn = j∣X0 = i,X1 = l)pil

= g(i) +
∞
∑
n=1

N−1
∑
j=0

N−1
∑
l=0

g(j)P (Xn = j∣X1 = l)pil Markov property

= g(i) +
N−1
∑
l=0

pil
∞
∑
n=1

N−1
∑
j=0

g(j)P (Xn = j∣X1 = l) rearrange sums

(57)

Re-index the remaining portion of the Markov chain {X1,X2, ...}
to start from 0 to make the next step more obvious. For example,
define Yi−1 = Xi for all i = 1,2, ... After that, we back out of the
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sums, reversing the arguments above.

wi = g(i) +
N−1
∑
l=0

pil
∞
∑
m=0

N−1
∑
j=0

g(j)P (Ym = j∣Y0 = l)

= g(i) +
N−1
∑
l=0

pil
∞
∑
m=0

E[g(Ym)∣Y0 = l]

= g(i) +
N−1
∑
l=0

pilE [
∞
∑
m=0

g(Ym)∣Y0 = l]

= g(i) +
N−1
∑
l=0

pilE [
T−1
∑
m=0

g(Ym)∣Y0 = l]

= g(i) +
N−1
∑
l=0

pilwil (58)

(Matrix solution)

1. Preliminaries. Expected “time” before absorption: We
use wi to denote the expectation of random variables defined
on the time and transient states visited before absorption.

wi = E [
Ti−1
∑
n=0

g(Xn)∣X0 = i] (59)

Let Wik be the expected number of visits to the transient state
k before absorption given that the chain started in state i. In
other words, Wik is a special case of wi when

g(l) = δlk (60)

We can arrange the Wik into an r × r matrix called W .

Similarly, let W n
ik be the expected number of visits to the

transient state k through time n (which may or may not pre-
cede absorption), given that the chain started in state i. In
other words, W n

ik is given by an equation similar to that of wi,
namely

W n
ik = E [

n

∑
m=0

g(Xm)∣X0 = i] (61)

We can arrange the W n
ik into an r × r matrix called W n.
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Please note that as n → ∞, n will eventually be certain to
exceed absorption time Ti. Since we defined g(l) = 0 for all
absorbing states l ≥ r, then W n →W as n →∞. We will use
this fact later.

2. Lemma. W = (I − Q)−1 where Q is the submatrix in the
standard Markov chain defined above and W is constructed
from elements Wik as described above.

Proof:

One can perform a derivation similar to the one above to
obtain equations for W n

ik

W n
ik = δik +

r−1
∑
j=0
pijW

n−1
jk (62)

In matrix form, this equation is

W n = I +QW n−1 (63)

where I is an identity matrix.

Let n →∞. On both sides of this equation, W n,W n−1 →W ,
so we obtain

W = I +QW (64)

which we can solve to find W .

W = I +QW
W −QW = I
IW −QW = I (multiplication by identity)

(I −Q)W = I (distributive rule)

IW = (I −Q)−1I (definition of inverse)

W = (I −Q)−1 (multiplication by identity) (65)
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E. Hitting Probabilities.

(System-of-equations solution)

1. Derivation:

Consider what can happen in the first step and what happens to
the target after the first step has been taken. The table is simply

Possible first step (j) Probability What’s the target from here?
j = k pik P (XTi = k∣X0 = i,X1 = k) = 1

j ≠ k, j = r, ...,N − 1 pij P (XTi = k∣X0 = i,X1 = j) = 0
j − 1, ...., r pij P (XTi = k∣X0 = i,X1 = j) = Ujk

an application of the law of total probability, where we consider
all possible outcomes of the first step. Repeating the above table
in mathematical equations, we have

Uik =
N−1
∑
n=0

P (XTi = k,X1 = j∣X0 = i) i = 0, ..., r − 1

=
N−1
∑
n=0

P (XTi = k∣X0 = i,X1 = j)P (X1 = j∣X0 = i)

=
N−1
∑
n=0

P (XTi = k∣X1 = j)pij

= pik + 0 +
r−1
∑
j=0
pijUjk (66)

The key ingredient is to recognize that P (XTi = k∣X1 = j) =
P (XTi = k∣X0 = j) because of the Markov property and time ho-
mogeneity.
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2. Example: Rat in a Maze

The matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
2

1
2 0 0 0 0 0 0

1
3 0 0 1

3 0 0 0 1
3 0

1
3 0 0 1

3 0 0 0 0 1
3

0 1
4

1
4 0 1

4
1
4 0 0 0

0 0 0 1
3 0 0 1

3
1
3 0

0 0 0 1
3 0 0 1

3 0 1
3

0 0 0 0 1
2

1
2 0 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(67)

We seek equations for Ui7, the probability that the mouse will eat
food in compartment 7 before being shocked in compartment 8
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given that it starts in compartment i.

U07 = 1
2U17 + 1

2U27

U17 = 1
3U07 + 1

3U37 + 1
3

U27 = 1
3U07 + 1

3U37 + 1
3 × 0

U37 = 1
4U17 + 1

4U27 + 1
4U47 + 1

4U47

U47 = 1
3 +

1
3U37 + 1

3U67

U57 = 1
3U37 + 1

3U67 + 1
3 × 0

U67 = 1
2U47 + 1

2U57

U77 = 1

U87 = 0 (68)

3. Example: Return to 0 in a random walk.

We are interested in determining the probability that the drunkard
will ever return to 0 given that he starts there when p > 1

2 . While
there are no absorbing states in this chain, we can introduce one in
order to answer the question. Let 0 become an absorbing state as
soon as the drunkard takes his first step. Then, we are interested
in the hitting probability of state 0.

Consider the first step. He moves to 1 or -1. First we deal with
-1, by showing that he must return to 0 from -1.

Define the random variable

Yi =
⎧⎪⎪⎨⎪⎪⎩

1 with probability p

−1 with probability 1 − p
(69)

which has mean E[Yn] = 2p− 1. When p > 1
2 , then E[Yn] > 0. The

Strong Law of Large Numbers implies

∑ni=1 Yi
n

→ 2p − 1 > 0

Thus, Xn = ∑ni=1 Yi > 0, which implies if Xi = −1, the chain must
eventually return through 0 to the positive numbers.
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Now assume the first move was to 1. What is the probability of
return to 0. Well, condition on all possible second steps gives

U10 = pU20 + (1 − p)U00 = pU2
10 + 1 − p (70)

which is a quadratic equation with roots

U10 = 1 or U10 =
1 − p
p

(71)

Thus, the unconditional probability of hitting 0 is

p
1 − p
p

+ 1 − p = 2(1 − p) (72)

Similarly, when p < 1
2 , we have U∗

00 = 2p and in general

U∗
00 = 2 min (p,1 − p) (73)

(Matrix solution)

1. Lemma: U =WR

Proof:

P 2 = (Q R
0 I

) × (Q R
0 I

) = (Q
2 R +QR

0 I
) (74)

and, in general,

P n = (Q
n (I +Q +Q2 +⋯ +Qn−1)R

0 I
) (75)

Now we consider n→∞.

The following paragraph is a rough argument for complete-
ness, but not necessary for the proof. The matrix Qn consists
of n-step transition probabilities pnij where i and j are tran-
sient states. The chain will ultimately absorb into one of the
absorbing states, so as n gets large, the probability of transi-
tioning to a transient state after n steps goes to 0 and Qn → 0.

It is the upper right quadrant that interests us most. There
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we find a matrix series. Suppose there is a matrix V n which
equals the nth series, i.e.,

V n = 1 +Q +Q2 +⋯ +Qn (76)

Then we have

V n = 1+Q+Q2+⋯+Qn = I+Q(1+Q+Q2+⋯+Qn−1 = I+QV n−1

(77)
This equation looks familiar. In fact, we argued that W n

satisfies such an equation, and therefore we conclude that
V n = W n and in the limit, the upper right quadrant goes
to WR.

All together

P∞ = (0 WR
0 I

) (78)

After absorption time T , the chain is in an absorbing state
and there is no further change in the state, thus

Uik = P (XT = k∣X0 = i) = P (X∞ = k∣X0 = i) = P∞
ij = (WR)ik

(79)
Thus,

U =WR (80)

11 Limiting Distribution

Consider the Markov matrix

P = (0.7 0.3
0.4 0.6

) (81)

and examine the powers of the Markov matrix

P 2 = (0.61 0.39
0.52 0.48

)

P 4 = (0.5749 0.4281
0.5668 0.4332

)

P 8 = (0.572 0.428
0.570 0.430

)
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One should observe that the matrix rows become more and more similar.

For example, both p
(8)
00 and p

(8)
10 are very similar. As time progresses (here,

by the 00 10 time we have taken 8 time steps), the probability of moving into
state 0 is virtually independent of the starting state (here, either 0 or 1).

Indeed, it turns out that under certain conditions the n-step transition prob-
abilities

pnij → πj (82)

approach a number, we’ll call πj, that is independent of the starting state i.

Another way to say this is that for n sufficiently large, the probabilistic
behavior of the chain becomes independent of the starting state, i.e.,

P (Xn = j∣X0 = i) = P (Xn = j) (83)

A. 1. Theorem: For irreducible, ergodic Markov chain, the limit limn→nifty pnij
exists and is independent of i. Let

πj = lim
n→nifty

pnij (84)

for all j ≥ o. In addition, the πj are the unique, nonnegative
solution of

πj =∑
i=0
πipij ,

∞
∑
j=0
πj = 1 (85)

Proof is given in Karlin and Taylor’s A First Course in Stochastic
Processes.

2. Matrix equation for π = (π0, π1, π2, ....) is π = πP .

3. Pseudo-proof:

Suppose that the limit mentioned in the above theorem exists for
all j. By the law of total probability, we have

P (Xn+1 = j) =
∞
∑
i=0
P (Xn+1 = j∣Xn = i)P (Xn = i)

=
∞
∑
i=0
pijP (Xn = i)
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Let n → ∞ on both sides. If one can bring the limit inside the sum,
then

πj =∑
i=0
πipij

which is the equation claimed in the theorem.

B. Stationary Distribution.

1. Definition: stationary distribution

If there exist πj that satisfy πj = ∑j pijπi and ∑i πi = 1, the
πj is called a stationary distribution. However, be clear that if
limn→∞ pnij ≠ πj, then it is not a limiting distribution. Some points:

a. The limiting distribution does not exist for periodic chains.

b. A limiting distribution is a stationary distribution.

c. Neither the limiting distribution nor the stationary distribu-
tion need exist for irreducible, null recurrent chains.

2. Fundamental result.

Lemma: If the irreducible, positive recurrent chain is started
with initial state distribution equal to the stationary distribution,
then P (Xn = j) = πj for all future times n.

Proof: (by induction)

Show true for n = 1.

P (x1 = j) =∑
i

pijπi = πj (by limiting distribution equation).

Assume it is true for n − 1, so P (Xn−1 = j) = πj,

Show true for n.

P (Xn = j) =∑
i

P (Xn = j∣XN−1 = i)P (Xn−1 = i)

=∑
i

pijπi , (by induction hypothesis).

= πj (by limiting distribution equation). (86)
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C. Long-Run Proportion.

Claim: πj is the long-run proportion of time the process spends in
state j.

Proof (for aperiodic chains):

Recall that if a sequence of numbers a0, a1, a2, .... converges to a, then
the sequence of partial averages

sm = 1

m

m−1
∑
j=0

aj

also converges to a.

Consider the partial sums
1

m

m−1
∑
k=0

pkij

In the limit, as m→∞, these partial sums converge to πj. But recall

=
m−1
∑
k=0

E[1{Xk = j}∣X0 = i]

= E [
m−1
∑
k=0

1{Xk = j}∣X0 = i]

= E[# time steps spent in state j]

Here, we have used 1{Xk = j} is the indicator function that is 1 when
Xk = j and 0 otherwise. Therefore, the partial sums created above
converge to the proportion of time the chain spends in state j.

D. Examples.

1. Weather.

Recall the simple Markov chain for weather (R = rainy, S = sunny)
with transition matrix

P =
R S

R
S

∥ α 1 − α
β 1 − β ∥ (87)
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To find the limiting distribution, we must solve the following equa-
tions

πR = πRpRR + πSpSR = απR + βπS
πS = πRpRS + πSpSS = (1 − α)πR + (1 − β)πS (88)

with solution

πR = β

1 + β − α
, πR = 1 − α

1 + β − α
(89)

2. Two-Day Weather Model.

P =

0 = (R,R) 1 = (R,S) 2 = (S,R) 3 = (S,S)
0 = (R,R)
1 = (R,S)
2 = (S,R)
3 = (S,S)

XXXXXXXXXXXXXXXXXX

α 1 − α 0 0
0 0 β 1 − β
α 1 − α 0 0
0 0 β 1 − β

XXXXXXXXXXXXXXXXXX
(90)

To find the limiting distribution, we must solve the following equa-
tions

π0α + π2α = π0
π0(1 − α) + π2(1 − α) = π1

π1β + π3β = π2
π1(1 − α) + π3(1 − β) = π3 (91)

The solutions that satisfy these limiting distribution equations are

π0 =
αβ

1 + β − α

π1 =
β(1 − α)
1 + β − α

π2 =
β(1 − α)
1 + β − α

π3 =
(1 − α)(1 − β)

1 + β − α
(92)

Therefore, this is the limiting distribution for this Markov chain.
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What is the long-run probability of rain?

π0 + π2 =
αβ + (1 − α)β

1 + β − α
= πR (93)

3. Genetics.

Consider a population of diploid organisms (like you and me; ev-
eryone carries two copies of every gene) and a particular gene for
which there are two possible variants A and a. Each person in
the population has one of the pair of genes (genotypes) in the
following table. Suppose the proportions of these gene pairs in
the population at generation n are given below. Because no other

Genotype Proportion
AA pn
Aa qn
aa rn

combinations are possible, we know pn+qn+rn = 1. A fundamental
result from genetics is the Hardy-Weinberg Equilibrium. It says
that when

a. mates are selected at random,

b. each parent randomly transmits one of its genes to each o?spring,
and

c. there is no selection,

then the genotype frequencies remain constant from generation to
generation, so that

pn+1 = pn = p
qn+1 = qn = q
rn+1 = rn = r (94)

for all n ≥ 0.

Under Hardy-Weinberg Equilibrium, the following identities are
true

p = (p + q
2
)
2

, r = (r + q
2
)
2

(95)
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To prove these equations, note that the probability of generating
genotype AA in the next generation is just the probability of in-
dependently selecting two A genes. The probability of selecting
an A gene is

P (A) = P (pass on A∣parent is AA)P (parent is AA)
P (pass on A∣parent is Aa)P (parent is Aa)

= 1 × p × 1

2
× q (96)

Therefore, the probability of AA in next generation is

(p + q
2
)
2

Finally, since the genotype frequencies are not changing across
generations, the first equation is proven. The second equation can
be shown in a similar fashion.

Now, construct the following Markov chain. Suppose that the
chain starts with one individual of arbitrary genotype. This parent
gives birth to one o?spring, which in turn gives birth to another
o?spring. The state space consists of the three possible genotypes
AA,Aa, aa of the long chain of offspring resulting from the original
parent. The Markov matrix is given by

P =

AA Aa aa

AA
Aa
aa

XXXXXXXXXXXXXX

p + q
2 r + q

2 0
1
2
(p + q

2
) 1

2
1
2
(r + q

2
)

0 p + q
2 r + q

2

XXXXXXXXXXXXXX

(97)

The limiting distribution of this process is π = (p, q, r). To show
this, we need only show that π satisfies the two equations from
the theorem.

By definition
p + q + r = 1 (98)
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In addition, we must have

p = p(p + q
2
) + q

2
(p + q

2
) = (p + q

2
)
2

r = r (r + q
2
) + q

2
(r + q

2
) = (r + q

2
)
2

(99)

but by the Hardy-Weinberg equilibrium, these equations are true
and the result is proven.

E. Techniques.

1. Determining the rate of transition between classes of states.

a. If you want to calculate the rate of transition from state i to
j in the long-run, you need to calculate

P (Xn = i,Xn=1 = j) = P (Xn+1 = j∣Xn = i)P (Xn = i) = pijπi
(100)

where n is sufficiently long that the long-run behavior of
the chain applies (independence from initial state has been
achieved).

b. Suppose you have a Markov chain with two subsets of states,
those that are Good (subsetG) and those that are Bad (subset
B).

To calculate the rate of transition from Good states to Bad
states, we merely sum over all possible combinations of good
and bad states (the combinations are disjoint).

P (Xn ∈ G,Xn+1 ∈ B) =∑
i∈G
∑
j∈B

pijπi (101)

c. Example 1: Verify that the proposed stationary distribution
for the two- day weather model are the rates of transition,
such that π0 = P (Xn−1 = R,Xn = R), etc.

d. Example 2: Suppose a manufacturing process changes state
according to a Markov chain with transition probability ma-
trix

P =
⎛
⎜⎜⎜
⎝

1
4

1
4

1
2 0

0 1
4

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4 0 1

2

⎞
⎟⎟⎟
⎠

(102)
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Suppose further that states 0 and 1 are running states, but
states 2 and 3 are down states. What is the breakdown rate?

We seek the rate at which the system transitions from states
0 or 1 to states 2 or 3

P (Xn+1 = 2∪Xn+1 = 3∣Xn = 0∪Xn = 1) = P (Xn+1 ∈ B∣Xn ∈ G)
(103)

where B = {2,3} and G = {0,1}. First, we need the limiting
distribution that satisfies the equations

1
4π0 +

1
4π1 +

1
2π2 = π0

1
4π1 +

1
2π2 +

1
4π3 = π1

1
4π0 +

1
4π1 +

1
4π2 +

1
4π3 = π2

1
4π0 +

1
4π1 +

1
2π3 = π3 (104)

and has solution

π0 = 3
16 , π1 = 1

4 , π2 = 7
24 , π3 = 13

48 (105)

The breakdown rate is

P (Xn+1 ∈ B∣Xn ∈ G) = π0p02 + π0p03 + π1p12 + π1p03

= 3

16
(1

2
+ 0) + 1

4
(1

2
+ 1

4
)

= 9

32
(106)

2. Average cost/earning per unit time.

Suppose there is a cost or a reward associated with each state
in the Markov chain. We might be interested in computing the
average earnings or cost of the chain over the long-run. We do so
by computing the average long-term cost/value per time step.

a. Proposition: Let {Xn, n ≥ 0} be an irreducible Markov chain
with stationary distribution πj, j ≥ 0 and let r(i) be a bounded
function on the state space. With probability 1

lim
N→∞

∑Nn=0 r(Xn)
N

=
∞
∑
j=0
r(j)πj (107)
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Proof: Let aJ(N) be the amount of time the Markov chain
spends in state j up until time N . Then,

N

∑
n=1

r(Xn) =
∞
∑
j=0
aj(N)r(j) (108)

But,
aj(N)
N → πj, thus the result follows by dividing by N and

letting N →∞.

b. Example: Suppose in the manufacturing example above that
state 0 is highly productive, producing 100 units per day, state
1 is somewhat productive, producing 50 units per day, state 2
is somewhat costly, costing the equivalent of -10 units per day
and state 3 is very costly, costing -20 units per day. What is
the average daily earnings?

In this case,

r(0) = 100 , r(1) = 50 , r(2) = −10 , r(3) = −20

and the answer is

3

∑
i=0
r(i)πj =

100 × 3

16
+ 50 × 1

4
+ 14 × (−10)

48
+ 13 × (−20)

48
= 22.92

12 Basic Limit Theorem of Markov Chains

A. Definition: The first return time of a Markov chain is

Ri = min
n≥1

{Xn = i} (109)

the first time the chain enters state i.

B. Let fnii be the probability distribution of the first return time, hence

fnii = P (Ri = n∣X0 = i) (110)

For recurrent states, the chain is guaranteed to return to state i: fi =
∑n fnii = 1.

For transient states, this is not a probability distribution since∑n fnii < 1
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C. The mean duration between visits to recurrent state i is given by

mi = E[Ri∣X0 = i] =
∞
∑
n=1

nfnii (111)

D. Definition: State i is said to be positive recurrent if mi < ∞. Oth-
erwise, it is null recurrent. The distinction is only possible for infinite
state Markov chains. All recurrent states in a finite state Markov chain
are positive recurrent.

E. Theorem: Consider a recurrent, irreducible, aperiodic Markov chain.
Then,

lim
n→∞

pnii =
1

∑∞
n=0 nf

n
ii

= 1

mi

(112)

and limn→∞ pnji = limn→∞ pnii for all states j.

Justification: The MC returns to state i on average every mi steps.
Therefore, it spends, on average, one in every mi time steps in state i.
The long-run proportion of time spent in i is

πi =
1

mi

(113)

Of course, limn→∞ pnii = limn→∞ pnji = πi for irreducible, ergodic Markov
chains. This “justification” fails to show that the above result also
applies to null recurrent, irreducible, aperiodic Markov chains (i.e., not
quite ergodic Markov chains).

F. Lemma: The theorem applies to any aperiodic, recurrent class C.

Proof: Because C is recurrent, it is not possible to leave class C once
in one of its states. Therefore, the submatrix of P referring to this
class is the transition probability matrix of an irreducible, aperiodic,
recurrent MC and the theorem applies to the class.

G. Lemma: The equivalent result for a periodic chain with period d is

lim
n→∞

pndii = d

mi

(114)
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and

lim
n→∞

1

n

n−1
∑
l=0
plii = πi =

1

mi

(115)

lim
n→∞

1

n

n−1
∑
l=0
plki = πi =

1

mi

for all states k ≠ i (116)

H. Finding Patterns in Markov-Chain Generated Data

1. General Solution.

Consider a Markov chain {Xn, n ≥ 0} with transition probabilities
pij. Suppose X0 = r. What is the expected time until pattern
i0, i1, ..., ik observed in the Markov chain realization?

Let

N(i1, ..., ik) = min{n ≥ k ∶Xn−k+1 = i1, .....,Xn = ik} (117)

Note that if r = ii, we cannot count r as part of the matching
pattern. Given this definition, we seek

E[N(i1, ..., ik)∣X0 = r] (118)

Define a k-chain from the original Markov chain {Xn, n ≥ 0}.

Zn = (Xn−k+1,Xn−k+2, ......,Xn) (119)

and let π(j1, ..., jk) be the stationary probabilities of this k-chain.
We know

π(j1, ..., jk) = πj1pj1j2pj2j3⋯pjk−1jk (120)

by our work with long-run unconditional probabilities. Our new
results indicate

mi1i2⋯ik =
1

π(i1, ..., ik)
(121)

We need to consider whether or not there is an overlap in the pat-
tern.

Definition: Pattern i1, ..., ik has overlap of size j < k if (ik−j+1, ik−j+2, ..., ik) =
(i1, ..., ij) for j < k.
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Case 1: no overlap.

E[Zn = (i1, ..., ik)∣Z0 = (i1, ..., ik)] = E[N(i1, ..., ik)∣X0 = ik]

= 1

π(j1, ..., jk)
(122)

but
E[N(i1, ..., ik)∣X0 = ik] =Wiki1 +E[A(i1)] (123)

where A(i1) is the number of steps required to match the pattern
given that i1 has currently been matched and the Wiki1 are the
expected wait times until absorption into state i1 from ik, in this
case it is the expected time until state i1 is first hit given the
chain starts in ik. The above equation, gives us an expression for
E[A(i1)], which we utilize in

E[N(i1, ..., ik)∣X0 = r] =Wri1 +E[A(i1)]

=Wri1 +
1

π(i1, ..., ik)
−Wiki1 (124)

Case 2: overlap. Let the largest overlap have length s. Suppose
we have just matched the pattern. Then we are s steps into a
potential new match. We have,

E[N(i1, ..., ik)∣X−s+1 = i1,X−s+2 = i2, ....,X0 = is] =
1

π(i1, ..., ik)
= E[A(i1, ..., is)]

(125)

In addition, because N(i1, ..., ik) = N(i1, ..., is) + A(i1, ..., is), we
have

E[N(i1, ..., ik)∣X0 = r] = E[N(i1, ..., is)∣X0 = r]+E[A(i1, ..., is)∣X0 = r]
(126)

but

E[A(i1, ..., is)∣X0 = r] = E[A(i1, ..., is)]

= 1

π(i1, ..., ik)
(127)

One then repeats the whole procedure for pattern i1, ..., is until a
pattern with no overlaps is found and procedure 1 can be applied.
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2. Example: pattern matching.

What is the expected time before the pattern 1,2,3,1,2,3,1,2 is
achieved given X0 = r? The maximum overlap is of length s = 5.

E[N(1,2,3,1,2,3,1,2)∣X0 = r] = E[N(1,2,3,1,2)∣X0 = r]

+ 1

π(1,2,3,1,2,3,1,2)
E[N(1,2,3,1,2)∣X0 = r] = E[N(1,2)∣X0 = r]

+ 1

π(1,2,3,1,2)

E[N(1,2)∣X0 = r] =Wr1 +
1

πi(12)
−W21 (128)

Working our way back up the equalities and substituting in ex-
pressions for π(⋅) we have

E[N(1,2)∣X0 = r] =Wr1 +
1

π1p12
−W21

+ 1

π1p212p23p31
+ 1

π1p312p
2
23p

2
31

(129)

3. Special case: iid random variables.

If the Markov chain is generated by iid random variables, then the
transition probabilities are

pij = P (Xn = j∣Xn−1 = i) = P (Xn = j) = pj (130)

i.e., all rows of the transition probability matrix are identical.

In this case, the time between visits to a state i is a geometric
random variable with mean Wii = 1

pi
. In this special case, the

expected time to the above pattern is

E[N(1,2,3,1,2,3,1,2)∣X0 = r] =
1

p1p2
+ 1

p21p
2
2p3

+ 1

p31p
3
2p

2
3

(131)
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13 Reversed and Time-Reversible Markov Chains

A. A chain whose initial state distribution is equal to its stationary distri-
bution or a chain that has run an infinite amount of time is said to be
a “stationary Markov chain.” It is said to have reached “stationarity.”

B. Note, a time inhomogeneous Markov chain cannot reach stationarity.
Only time homogeneous chains can run at stationarity.

C. The reversed Markov chain.

1. Definition: Assume we have a stationary, ergodic Markov chain
with transition probability matrix P and stationary distribution
πi. Consider the chain in reverse, for exampleXm+1,Xm,Xm−1,Xm−2, ...
This is called the reversed chain.

2. Claim: The reversed chain is also a Markov chain.

Proof: The result is trivially realized. Consider a portion of the
forward Markov chain

...,Xm−2,Xm−1,Xm,Xm+1,Xm+2,Xm+3, ...

and suppose that Xm+1 is the present state. Then, by the Markov
property for the forward chain, the future Xm+2,Xm+3, ... is inde-
pendent of the past ...,Xm−1,Xm. But independence is a symmet-
ric property, i.e., if X is independent of Y , then Y is independent
of X, therefore the past ...,Xm−1,Xm is independent of the future
Xm+2,Xm+3, ... In terms of the reversed chain, we then have that
the past is independent of the future:

P (Xm = j∣Xm+1 = i,Xm+2, ...) = P (Xm = j∣Xm+1 = i) ≡ qij (132)

3. Transition probabilities of the reversed Markov chain.

qij = P (Xm = j∣Xm+1 = i)

= P (Xm = j∣Xm+1 = i)
P (Xm+1 = i)

=
πjpji
πi

(133)

where we have used the fact that the forward chain is running at
stationarity.
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D. Time-Reversible Markov Chain

1. Definition: time reversible Markov chain.

An ergodic Markov chain is time reversible if qij = pij for all states
i and j.

2. Lemma: A Markov chain is time reversible if

πipij = πjpji (134)

for all states i and j. Proof is obvious.

3. Corollary: If a Markov chain is time-reversible, then the propor-
tion of transitions i→ j is equal to the proportion of j → i.

Proof: To see this, note that the time reversibility condition
given in the lemma is P (Xn = i,Xn+1 = j) = P (Xn = j,Xn+1 = i)
for any n sufficiently large that stationarity applies, but P (Xn =
i,Xn+1 = j) is the proportion of transitions that move i → j and
P (Xn = j,Xn+1 = i) is for transitions j → i. Thus, the result is
proved.

4. Lemma: If we can find πi with ∑∞
i=0 πi = 1 and πipij = πjpji for all

states i, j, then the process is reversible and πi is the stationary
distribution of the chain.

Proof: Suppose we have xi such that ∑∞
i=0 xi = 1. Then,

∞
∑
i=0
xipij =

∞
∑
i=0
xjpji = xj

∞
∑
i=0
pji = xj (135)

So, we have shown that the xj satisfy the equations defining a
stationary distribution and we are done.

5. Example: Consider a random walk on the finite set 0,1,2, ...,M .
A random walk on the integers (or a subset of integers, as in
this case) moves either one step left or one step right during each
timestep. The transition probabilities are

pi,i+1 = αi = 1 − pi,i−1
p0,1 = α0 = 1 − p0,0 (136)

pM,M = αM = 1 − pM,M−1
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We argue that the random walk is a reversible process. Consider
a process that jumps right from position 0 < i < M , then if it is
to jump right from i once again, it had to have jumped left from
i + 1 since there is only one way back to state i and that is via
i + 1. Therefore, for each jump right at i, there must have been
a jump left from i + 1. So, the fluxes (rates) left and right across
the i↔ i+1 boundary are equal. (Note, this argument is not fully
rigorous.)

Since the process is time-reversible, we can obtain the stationary
distribution from the reversibility conditions

π0α0 = π1(1 − α1)
π1α1 = π2(1 − α2)

⋮ = ⋮
πiαi = πi+1(1 − αi+1)

⋮ = ⋮
πM−1αM−1 = πM(1 − αM) (137)

with solution

π1 =
α0π0
1 − α1

π2 =
α1α0π0

(1 − α2)(1 − α1)
(138)

⋮ = ⋮

Then use the condition ∑Mi=0 πi = 1 to find that

π0 = [1 +
M

∑
j=1

αj−1⋯α0

(1 − αj)⋯(1 − α1)
]
−1

(139)

6. Theorem: An ergodic MC with pij = 0 whenever pji = 0 is time
reversible if and only if any path from state i to state i has the
same probability as the reverse path. In other words,

pii1pi1i2⋯piki = piikpikik−1⋯pi1i (140)

for all states i, i1, ...., ik and integers k.
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Proof: Assume reversibility, then

πipij = πjpji
πkpkj = πjpjk (141)

πipik = πkpki

Using the first two equations we obtain an expression for

πi
πk

=
pjipkj
pjkPij

(142)

Another expression for this ratio is obtained from the third equa-
tion

πi
πk

= pki
Pik

(143)

Equating these two expressions for the ratio, we obtain

pijpjkPkj = pikpkjpji (144)

implying that the path i → j → k → i has the same probability as
the reverse path i → k → j → i. The argument given here can be
extended to arbitrary paths between arbitrary states.

To show the converse, we assume that

pii1pi1i2⋯pikjpji = pijpjikpikik−1⋯pi1i (145)

then sum over all possible intermediate states in the path

∑
ii,i2,...,ik

pii1pi1i2⋯pikjpji = ∑
ii,i2,...,ik

pijpjikpikik−1⋯pi1i (146)

p
(k+1)
ij pji = pijP (k+1)ji (147)

Now, let k → ∞, then the (k + 1)-step transition probabilities
converge to the limiting distribution and we obtain

πjpji = πipij (148)

which shows time reversibility.
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14 Markov Chain Monte Carlo

Let X be a discrete random vector with values xj, j ≥ 1 and pmf(probability
mass function) P (X = xj). Suppose we want to estimate θ = E[h(X)] =
∑∞
j=1 h(xj)P (X = xj).

If h(x) is difficult to compute, the potentially infinite sum on the right can
be hard to compute, even approximately, by slowly iterating over all possible
xj.

A. Monte Carlo Simulation: In Monte Carlo simulation, an estimate
of θ is obtained by generating X1,X2, ...,Xn as independent and iden-
tically distributed random variables from pmf P (X = xj). The Strong
Law of Large Numbers shows us that

lim
n→∞

n

∑
i=1

h(xi)
n

= θ (149)

So we as we generate X1,X2, ..., compute h(X1), h(X2), ... and average
the resulting numbers, that value will be a better and better approxi-
mation of θ as n grows large.

B. The Need for Markov Chain Monte Carlo: Suppose it is difficult
to generate iid Xi or that the pmf is not known and only bj are known
such that

P (X = xj) = Cbj (150)

where C is an unknown constant, i.e., you know the “pmf up to a
constant”.

To solve this problem we will generate the realization of a Markov chain
X1,X2, ...,Xn where the Xi are no longer iid, but come instead from a
Markov chain. A previous result we have shown indicates that

lim
n→∞

n

∑
i=1

h(Xi)
n

=
∞
∑
j=1
h(j)πj (151)

so if πj = P (X = xj), then the same average we computed in Monte
Carlo simulation will still be an estimate of θ. In other words, if we
could construct a Markov chain with stationary distribution πj = P (X =
xj) and we generated a realization X1,X2, ... of that Markov chain,
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evaluated h(⋅) at each state of the chain h(X1), h(X2), ... and computed
the average of these numbers, it will provide an estimate of θ.

C. Metropolis-Hastings Algorithm - A Special Implementation
of MCMC Assume ∑j≥1 bj <∞, then the following is a procedure for
generating a Markov Chain on the sample space of X with transition
probability matrix (tpm) P = (pij) matching the criteria above. The
Markov chain must be recurrent and irreducible so that the stationary
distribution exists and that stationary distribution should satisfy πj =
P (X = xj) so that the above estimation procedure works.

Let Q be any transition probability matrix of any irreducible Markov
chain on the state space of X. It has transition probabilities qij.

Suppose the current state of the P MC is Xn = i. Then, the algorithm
proceeds as follows:

1. Generate a random variable Y = j with probability qij according
to the Q MC.

2. Set the next state in the P MC to

Xn+1 =
⎧⎪⎪⎨⎪⎪⎩

j with probability αij

i with probability 1 − αij
(152)

where

αij = min{
πjqji
πiqij

,1} (153)

Note, that while we do not actually know πj, we know bj and we
have

πj
πi

=
bj
bi

(154)

Thus, we may compute

αij = min{
bjqji
biqij

,1} (155)

as a function of parameters that are all known.
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The above procedure induces the Markov chain with transition
probability matrix P and entries

pij =
⎧⎪⎪⎨⎪⎪⎩

qijαij j ≠ i
qii +∑k≠i qik(1 − αik) j = i

(156)

that defines how the realization X1,X2, ... is generated.

We need to confirm that this MC with matrix P has the appro-
priate stationary distribution. The chain will be time-reversible
with stationary distribution πj if ∑j πj = 1 (this is given since the
πj are a pmt) and

πipij = πjpji (157)

for all i ≠ j. But, according to the definitions of the transition
probabilities this condition is

πiqijαij = πjqjiαji (158)

Suppose

αij =
πjqji
πiqij

Then,

αji = min{
πiqij
πjqji

,1} = 1

Therefore, in this case,

πiqij
πjqji
πiqij

= πjqji = πjqjiαji (159)

since αji = 1. Thus, we have shown the condition when αij = πjqji
πiqij

.

It is straightforward to show the condition when αij = 1 also.

At this point, we have shown that the constructed Markov chain
has the desired stationary distribution πj. Thus, random vari-
ables X1,X2, ...,Xn generated according to this Markov chain will
provide an estimate of θ via the Monte Carlo estimation formula.
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D. Example:

Let L be the set of all permutations xj = (y1, y2, ..., yn) of the integers
(1,2, ..., n) such that ∑j jyj > a. We will use MCMC to generate X ∈ L
with pmt P (X = xj) uniform over all permutations in L. Because the
target pmf is uniform, we have that πs = 1

∣L∣ for all s ∈ L, where ∣L∣ is
the number of elements in the set L.

We first need to define an irreducible MC with tpm Q. We can do this
any way we would like. Define the neighborhood N(s) of an element s ∈
L as all those permutations which can be obtained from s by swapping
to numbers. For example (1,2,4,3,5) is a neighbor of (1,2,3,4,5), but
(1,3,4,2,5) is not. Define the transition probabilities as

qst =
1

∣N(s)∣
(160)

where ∣N(s)∣ is the number of permutations in the neighborhood of
s. Therefore, the proposed permutation is equally likely to be any
of the neighboring permutations. According the Metropolis-Hastings
procedure, we define the acceptance probabilities as

αst = min{∣N(s)∣
∣N(t)∣

,1} (161)

where the πs and the πt cancel because they are equal. Note, with this,
we are done constructing the transition probabilities pij.

What might be the advantage to developing such a procedure? It
may be very difficult to sample random permutations that meet the
criteria ∑j jyj > a, since very few of the n! permutations may satisfy
that criteria. The above procedure explores the permutation space in
a methodical way and insures, in the long run, that each permutation
in L is sampled with probability 1

∣L∣ .

Suppose, for example, that you are interested in computing E[∑nj=1 jyj]
for xj = (y1, ..., yn) ∈ L, that is the average value of ∑nj=1 jyj given that

∑nj=1 jyj > a. You sample X1,X2, ...,Xn from the above Markov chain
as follows
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1. Start in any state X0 = xi in L (any convenient one you can find).

2. Suppose the current state is Xn = xj.
3. Compute a list of permutations in the neighborhood N(xj) and

generate a random number, let’s say k, from the set {0, ...., ∣N(xj)∣}
to propose a new state from the Q chain. Suppose the kth member
of N(x0) is xl.

4. Compute αxjxl . Generate a random variable U ∼ Unif(0,1). If
U < αxjxl , then set Xn+1 = xl, otherwise set Xn+1 = xj.

5. Repeat N times to generate X0,X1, ....,XN , where N is big enough
to insure the estimate converges.

6. Compute h(X0), h(X1), ..., h(XN) and compute the estimate

θ̂ = 1

N

N

∑
n=1

h(Xn) (162)
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