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Abstract

We have found that the usual measuring procedure for preselected and post-
selected ensembles of quantum systems gives unusual results. Under some
natural conditions of weakness of the measurement, its result consistently
defines a new kind of value for a quantum variable, which we call the weak
value. A description of the measurement of the weak value of a component
of a spin for an ensemble of preselected and postselected spin- 1

2
particles is

presented.

This paper will describe an experiment which measures a spin component of
a spin-1

2 , particle and yields a result which is far from the range of “allowed”
values. We shall start with a brief description of the standard measuring
procedure. Considering measurements on an ensemble of preselected and
postselected systems, we shall define a new concept: a weak value of a quan-
tum variable. And, finally, we shall describe the measurement of the weak
value on the example of a spin-1

2 , particle.

In quantum theory, the result of a measurement of a variable A which has dis-
crete eigenvalues ai must necessarily be one of those values. The Hamiltonian
of the standard measurement procedure[1,2] is

H = −g(t)qA (1)

where g(t) is a normalized function with a compact sup- port near the time
of measurement, and q is a canonical variable of the measuring device with
a conjugate momentum π. The initial state of the measuring device in the
ideal case has to be such that π is well defined. After the interaction (1) we
can ascertain the value of A from the final value of π ∶ A = δπ.

As a reasonable approximation for a real situation, we may take the initial
state of the measuring device as a Gaussian in the q (and consequently also
in the π) representation. For this case, the Hamiltonian (1) leads to the
transformation

e−i ∫ Hdte−π
2/4(∆π)2

∑
i

αi ∣A = ai⟩ = ∑
i

αie
−(π−ai)

2/4(∆π)2 ∣A = ai⟩ (2)

where ∑iαi ∣A = ai⟩ is the initial state of our system. If the spread of the π
distribution ∆π is much smaller than the differences between the ai, then,



after the interaction, we shall be left with the mixture of Gaussians located
around ai correlated with different eigenstates of A. A measurement of π
will then indicate the value of A.

In the opposite limit, where ∆π is much bigger than all ai, the final proba-
bility distribution will be again close to a Gaussian with the spread ∆π. The
center of the Gaussian will be at the mean value of A:

⟨A⟩ = ∑
i

∣αi∣
2ai

One measurement like this will give no information because ∆π ≫ ⟨A⟩; but
we can make this same measurement on each member of an ensemble of N
particles prepared in the same state, and that will reduce the relevant uncer-
tainty by the factor 1/

√
N , while the mean value of the average will remain

⟨A⟩. By enlarging the number N of particles in the ensemble, we can make
the measurement of ⟨A⟩ with any desired precision.

The outcome of the measurement is the average of the obtained values π of
the measuring devices. As we explained earlier, it will yield, for a sufficiently
large ensemble, the value ⟨A⟩. We now raise the question: Can we change
the above outcome by taking into account the values of π of only a part
of the original ensemble, performing a particular postselection? We may, of
course, achieve this rather trivially, by selecting only measuring devices with
large values of π which we can always find, since the original distribution of
π has nonvanishing tails. But suppose we allow only postselection performed
on the particles themselves; how then can we maximize the outcome for the
average of π? It might appear at first that the best method for this will be
to select all particles for which the final state corresponds to the eigenvalue
amax. But this is not the case. Surprisingly, we found that by making other
postselections we can obtain much bigger outcomes.

Indeed, we shall now show that the above measurements (with large ∆π,
when applied to preselected and postselected ensembles, may yield new values
which lie outside the “allowed” range, i.e., outside the interval [min(ai),max(ai)].
The procedure of the measurement is as follows. We start with a large en-
semble of particles prepared in the same initial state. Every particle interacts
with a separate measuring device, and then the measurement which selects
the final state is performed. Finally, we take into account only the “readings”
of the measuring devices corresponding to the postselected particles.
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Let us consider an ensemble of particles with an initial state ∣ψin⟩ and a final
state ∣ψf ⟩. At a time in between we switch on the interaction (1)where the
initial state of each of the measuring devices is

1
√

∆(2π)1/4
exp(−

q2

4∆2
)

After the postselection the state of the measuring device (up to a normaliza-
tion factor) is

⟨ψf ∣ e
−i ∫ Hdt ∣ψin⟩ exp(−

q2

4∆2
) ≅ ⟨ψf ∣ψin⟩ exp(iq

⟨ψf ∣A ∣ψin⟩

⟨ψf ∣ψin⟩
) exp(−

q2

4∆2
)

(3)
This formula is valid if the spread ∆ is sufficiently small[3]:

∆ ≪maxn
∣ ⟨ψf ∣ψin⟩ ∣

(∣ ⟨ψf ∣An ∣ψin⟩ ∣)1/n
(4)

In the π representation, the state of the measuring device is approximately

exp

⎡
⎢
⎢
⎢
⎢
⎣

−∆2 (π −
⟨ψf ∣A ∣ψin⟩

⟨ψf ∣ψin⟩
)

2⎤
⎥
⎥
⎥
⎥
⎦

(5)

The standard interpretation of this outcome of the measuring device is that
the measured value of A is

⟨ψf ∣A ∣ψin⟩

⟨ψf ∣ψin⟩

This is the weak value of A for this preselected and postselected ensemble:

Aw ≡
⟨ψf ∣A ∣ψin⟩

⟨ψf ∣ψin⟩
(6)

The uncertainty of π for each of the measuring devices much bigger than the
measured value; i.e.,

∆π =
1

2∆
≫ Aw

[see Eq. (4)]. However, for an ensemble of N such devices, the uncertainty
of the average of π is decreased by the factor of 1/

√
N . Therefore, if N

is sufficiently large, then (1/
√
N)∆π ≪ Aw and the value of Aw can be
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ascertained with arbitrary accuracy. As we see from the definition (6). Aw
is not bounded by the minimal and the maximal eigenvalues of A[4].

One may wonder how a superposition of shifts, all smaller than amax leads
to a shift which is much larger than amax. We shall demonstrate this by
proving a mathematical identity which corresponds to the type of experiment
considered in the present note (see also Aharonov et al.[5]).

For all functions f(q) which tend to zero faster than exponential, f(q) <

exp (− ln α2∣q∣), the following equality can be made valid with any precision
by our taking N large enough[6]:

N

∑
−N

cne
iqn/Nf(q) ≅ eiαqf(q) (7)

where

cn =
N !

n!(N − n)!
(

1 − α2

4
)

N

(
1 + α

1 − α
)
n/2

The Fourier transform of this equation exhibits the property described above:
For function f̃(π) [the Fourier transform of f(q)] the superposition of shifts,
which are all smaller than 1, is equivalent to a shift by the arbitrarily large
value α, i.e.,

N

∑
−N

cnf̃(π − n/N)) ≅ f̃(π − α) (8)

We shall now describe an experiment that measures the weak value of the z
component of a spin-1

2 particle and yields an arbitrarily large result for it. A
version of this experiment can, we believe, be performed in the laboratory.

We start with a beam of particles moving in the y direction with a well-
defined velocity. The particles are initially well localized in the xz plane and
have their spins pointed in a direction ξ̂. We choose ξ̂ in the xz plane with
an angle α between ξ̂ and x̂ (Fig. 1).
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Figure 1: The experimental device for measurement of the weak value of σz. The beam of
particles with the spin pointed in the direction ξ̂ passes through an inhomogeneous (in the
z direction) weak magnetic field and is split by the strong magnet with an inhomogeneous
field in the x direction. The beam σx = 1, comes toward the screen and the deflection
of the spot on the screen in the z direction is proportional to the weak value of σz:
σzw = (δzp0µ/l)(∂Bz/∂z)−1.

The prepared beam comes through a Stern-Gerlach device which measures
the spin weakly in the z direction. The prepared beam comes through a
Stern-Gerlach device which measures the spin weakly in the z direction.
The requirement of weakness is fulfilled by our making the gradient of the
magnetic field sufficiently small. The motion of the beam changes, therefore,
only slightly. This weak measurement causes the spatial part of the wave
function to change into a mixture of two slightly shifted functions in the pz
representation, correlated to the two values of σz. We then pass the particles
through another, normal, Stern-Gerlach device which splits them into two
beams corresponding to the two values of σx. We keep only the beam with
σx = 1, which continues to move freely towards a screen placed in front of
it. The screen is placed sufficiently far so that the displacement in the ẑ
direction due to the average momentum pz acquired during the above weak
interaction will be larger than the initial uncertainty ∆z. On the screen we
shall obtain a wide spot whose displacement in the direction ẑ is measured.
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This displacement will yield the weak value of σz:

σz,w =
⟨↑x∣σz ∣↑ξ⟩

⟨↑x ∣ ↑ξ⟩
= tan 1

2α (9)

A brief mathematical description of this experiment follows. The particles
have mass m, magnetic moment µ, an average momentum p0 in the y direc-
tion. Their initial state is

∣ψin⟩ = ∆−3/2(2π)−3/4e−x
2/4∆2

e−z
2/4∆2

e−y
2/4∆2

e−ip0y(cos (α/2) ∣↑x⟩+sin (α/2) ∣↓x⟩)
(10)

The Hamiltonian of the weak interaction is

H1 = (11)

where g(y − yi) has a compact support at the location of the weak Stern-
Gerlach device, which is arranged such that (m/p0) ∫ g(y)dy = 1. It is, in-
deed, essentially a Hamiltonian of the von Neumann type [see Eq. (1)l. Since
y ≅ (p0/m)t, g(y−yi) is effectively a function of time (we arrange the momen-
tum in the y direction such that p0 ≫ ∆py = 1/2∆; the canonical variable q of
Eq. (1) is, here, µ(∂Bz/∂z)z. The change in the momentum in the z direction
during the interaction is δpz = µ(∂Bz/∂z)σz. For our ensemble of preselected
and postselected particles, we shall see that δpz = µ(∂Bz/∂z) tan (α/2). The
necessary requirement of the weakness of the interaction [see Eq. (4)] is

µ ∣
∂Bz

∂z
∣max [∣tan

α

2
∣ ,1] ≪ ∆pz =

1

2∆
(12)

The Hamiltonian of the second Stern-Gerlach device, which selects the par-
ticles with σx = 1, is

H2 = −µ
∂Bx

∂x
xσxg(y − y2) (13)

The requirement for the splitting of the beam is µ∣∂Bx/∂x∣ ≫ ∆px = 1/2∆. If
the angle α between the directions of spin in the initial and the final states
is close to π, then the requirement has to be stronger, i.e.,

exp(−2∆2µ2 ∣
∂Bx

∂x
∣

2

) ≪ cot2 (α/2)

The direction of the beam with σx = 1 is µ(∂Bx/∂x)x̂ + p0ŷ. The screen is
placed at the distance l such that

lµ

p0

∣
∂Bz

∂z
tan

α

2
∣ ≫ ∆
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The wave function of the particle in the z representation, before the collapse
on the screen, is approximately

exp [−∆2 (
p0

l
)

2

(z −
lµ

p0

∂Bz

∂z
tan

α

2
)

2

] (14)

The measured value of the spin component corresponding to this wave func-
tion is tan (α/2). A rough estimate for the numberN of particles in the initial
beam necessary for our obtaining accuracy of 1/M is N ≅M3/ cos2 (α/2).

In the above description we have not, so far, taken into account the influence
of ∂Bx/∂x and ∂By/∂y which cannot both vanish since divB. In a standard
Stern-Gerlach experiment, one takes care of this problem by adding a large
constant magnetic field in the direction of the measured component of the
spin. It is interesting to note that the same method can be used in our weak
measurement. The strong magnetic field in the z direction will, of course,
rotate the direction of the spin and, therefore, during the interaction (11) we
have to calculate the weak value sandwiched not between the states ∣↑ξ⟩ and
∣↑x i⟩ [see Eq. (6)l, but between the rotated states. It turns out, however,
that if we arrange the magnetic field in the z direction, such that it rotates
the spin during the interaction by 2nπ, then the weak value of σz, during the
whole period of the interaction does not change.

Another striking aspect of this experiment becomes evident when we consider
it as a device for measuring a small gradient of the magnetic field ∂Bz/∂z.
Our choosing α close to π yields a tremendous amplification. Indeed, any
weak coupling with the spin of the particles from our preselected and posts-
elected ensemble will be amplified by the factor [cos (α/1)]−1.
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⟨ψf ∣ e
−i ∫ Hdt ∣ψin⟩ e

−q2/4∆2

=
∞

∑
n=0

(iq)n

n!
⟨ψf ∣A

n ∣ψin⟩ e
−q2/4∆2

≅ ⟨ψf ∣ψin⟩ (1 +
iq ⟨ψf ∣A ∣ψin⟩

⟨ψf ∣ψin⟩
) e−q

2/4∆2

≅ ⟨ψf ∣ψin⟩ exp(iq
⟨ψf ∣A ∣ψin⟩

⟨ψf ∣ψin⟩
)e−q

2/4∆2
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eiqReAw exp(−
1

4∆2
(q2 + 2∆2ImAw)2)
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N

∑
n=−N

N !

n!(N − n)!
(

1 − α2

4
)

N

(
1 + α

1 − α
)
n/2

eiqn/N

= (
1 + α

2
eiq/2N +

1 − α

2
e−iq/2N)

2N

= [cos (q/2N) + iα sin (q/2N)]2N

= [1 − (1 − α2) sin2 (q/2N)]Nei2Nφ

where tanφ = α tan (q/2N). For f(q) < exp (− lnα2∣q∣), we obtain

lim
N→∞

N

∑
n=−N

cne
iq/2Nf(q)

= lim
N→∞

[1 − (1 − α2) sin2 (q/2N)]Nei2Nφf(q)

= eiαqf(q)

This proves the statement in the text (7).
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