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1. Probabilistic Background

Throughout this lecture, we assume the following framework:

• The triple (F ,F ,P) denotes a probability space over a set F ,
with σ-algebra F and probability measure P.

• The stochastic process W : R+
0 × F → R denotes a standard

Wiener process over (F ,F ,P), i.e., we have:

• The process satisfies W (0, ω) = 0 for all ω ∈ F .
• For every ω ∈ F the path W (·, ω) is continuous.
• For every 0 ≤ s ≤ t the random variable W (t, ·)−W (s, ·) has

a Gaussian distribution with mean 0 and variance t − s.
• The process W has independent increments, i.e., the m

random variables W (tk , ·)−W (tk−1, ·) for k = 1, . . . ,m are
independent, for any 0 ≤ t0 < . . . < tm.
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Random Variables

Recall that a random variable X is a mapping X : F → R which is
measurable with respect to F . Its expected value is defined as

E(X ) =

∫
F
X dP ,

and its variance via

V(X ) = E
(
X 2
)
− E(X )2 .

Furthermore, if the random variables X and Y are independent,
then we have

E(XY ) = E(X ) · E(Y ) .

Throughout, we always assume that the indicated integrals exist
and are finite.
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Random Variables with Finite Second Moment

It will turn out to be very useful in the following to consider
random variables in a Hilbert space setting. For this, let G ⊂ F
denote a σ-algebra. We consider the set of all G-measurable
random variables with finite second moment, i.e., we consider

L2(P,G) =

{
X : F → R

∣∣∣∣ X is G-measurable,

∫
F
X 2 dP <∞

}
This space is a Hilbert space with norm and inner product given by

‖X‖L2(P,G) =

√∫
F
X 2 dP and (X ,Y )L2(P,G) =

∫
F
XY dP ,

and will be central for the definition of the stochastic integral. For
the special case G = F we use the abbreviation

L2(P) = L2(P,F) .
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Conditional Expectation

Let X : F → R denote a random variable, and let G ⊂ F denote a
σ-algebra. Then the conditional expectation E(X |G) is defined as
the (unique up to measure zero) random variable Y : F → R
which is measurable with respect to G, and which satisfies∫

G
X dP =

∫
G
Y dP for all G ∈ G .

If X ∈ L2(P), then one can show that the conditional expectation
E(X |G) is the orthogonal projection of X ∈ L2(P) onto the closed
subspace L2(P,G).

For example, if G = {∅,F}, then the conditional expectation of X
is the constant random variable E(X |G)(ω) ≡ E(X ).
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2. The Stochastic Ito Integral

We now turn our attention to the primary goal of this second
lecture: How can we define an integral of the form∫ T

S
f (τ, ω) dW (τ, ω)

for suitable stochastic processes f : R+
0 × F → R? This integral

should be a random variable over (F ,F ,P).

Remarks:

• Recall that it is impossible to define this integral pathwise for
fixed ω ∈ F in the Riemann-Stieltjes sense, since the paths of
the Wiener process are not of bounded variation.

• Our goal will be to start by defining the integral for simple
stochastic processes f first, and then to extend this definition
to a larger class of integrands via approximation in L2(P).
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Elementary Processes and Their Integral

Consider fixed times 0 ≤ S < T . We say that a stochastic process
f : [S ,T ]× F → R is elementary, if it is piecewise constant in the
following sense. There exists a partition

S = t0 < t1 < . . . < tn = T

as well as random variables ek : F → R such that

f (t, ω) = ek(ω) for all tk ≤ t < tk+1 and ω ∈ F ,

for all k = 0, . . . , n − 1. Then it is natural to define the integral
of f with respect to the Wiener process as the sum∫ T

S
f (t, ω) dW (t, ω) =

n−1∑
k=0

ek(ω) · (W (tk+1, ω)−W (tk , ω)) .
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An Illustrative Example

Suppose now that we would like to approximate the value of the
stochastic integral ∫ T

S
W (t, ω) dW (t, ω) .

Since the paths of the Wiener process are continuous, both of the
following approximations of the integrand W via elementary
processes seem reasonable:

(L) For a partition S = t0 < . . . < tn = T , consider
ek(ω) = W (tk , ω) for all k , ω, i.e., evaluate the integrand at
the left endpoint of the partition interval.

(R) For a partition S = t0 < . . . < tn = T , consider
ek(ω) = W (tk+1, ω) for all k, ω, i.e., evaluate the integrand
at the right endpoint of the partition interval.
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An Illustrative Example
For sufficiently fine partitions, the resulting approximations AL(ω)
and AR(ω) should be close to each other, where

AL(ω) =
n−1∑
k=0

W (tk , ω) · (W (tk+1, ω)−W (tk , ω)) ,

AR(ω) =
n−1∑
k=0

W (tk+1, ω) · (W (tk+1, ω)−W (tk , ω)) .

Yet, regardless of the choice of partition they cannot get arbitrarily
close, which follows from the properties of the Wiener process:

E(AL) =
n−1∑
k=0

EW (tk) · E (W (tk+1)−W (tk)) = 0 ,

E(AR) =
n−1∑
k=0

E
(

(W (tk+1)−W (tk))2
)

︸ ︷︷ ︸
= tk+1−tk

= T − S � E(AL) !
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Specifying the Evaluation Point

The example indicates that when approximating a more general
integrand f using elementary functions, one has to specify at which
point t∗k ∈ [tk , tk+1] the integrand is being evaluated in the form

ek(ω) = f (t∗k , ω) for k = 0, . . . , n − 1 .

There are many possibilities, but two have proved to be useful:

• The Ito stochastic integral uses the choice

t∗k = tk for k = 0, . . . , n − 1 .

• The Stratonovich stochastic integral uses

t∗k =
tk + tk+1

2
for k = 0, . . . , n − 1 .

We will only consider the Ito version of the stochastic integral.
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Wiener Process Filtration and Adapted Processes

The approximation idea only works if we restrict the class of
admissible integrands f . Intuitively, one needs to make sure that
the random variable f (t, ·) depends only on the behavior of the
Wiener process W up to time t. More precisely, we need:

Definition (Wiener Process Filtration)

Let W denote a Wiener process over (F ,F ,P). For each t ≥ 0 we
define the σ-algebra Ft as the smallest σ-algebra Ft ⊂ F
generated by the random variables W (s, ·) for 0 ≤ s ≤ t. In other
words, Ft is the smallest σ-algebra Ft ⊂ F such that the random
variables W (s, ·) are Ft-measurable for every 0 ≤ s ≤ t.

Definition (Ft-Adapted Process)

A stochastic process f : R+
0 × F → R is called adapted to Ft if the

random variable f (t, ·) is Ft-measurable for all t.
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The Filtration Associated with a Wiener Process

One can think of the σ-algebra Ft as the history of the Wiener
process W up to time t. Note that we have

Fs ⊂ Ft for all 0 ≤ s ≤ t .

It can be shown that a random variable X is Ft-measurable if and
only if it is the pointwise almost everywhere limit of sums of
functions of the form

g1 (W (s1, ω)) · g2 (W (s2, ω)) · . . . · gm (W (sm, ω))

where g1, . . . , gm are bounded continuous functions and 0 ≤ sk ≤ t
for all k = 1, . . . ,m and m ∈ N. In other words, the random
variable X is Ft-measurable if its values can be decided from the
values of W (s, ·) for 0 ≤ s ≤ t.
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The Class of Admissible Integrands

After these preparations, we can now define the class of possible
integrands for the stochastic Ito integral.

Definition (Admissible Integrands)

Let 0 ≤ S < T be fixed reals. Then the set of admissible
integrands is defined as

V(S ,T ) = {f : [S ,T ]× F → R |f satisfies (i), (ii), (iii) below} ,

where

(i) the process f is B × F-measurable,

(ii) the random variable f (t, ·) is Ft-measurable for t ∈ [S ,T ],
i.e., the process f is Ft-adapted,

(iii) we have

E
(∫ T

S
f (t, ω)2dt

)
<∞ .
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The Class of Admissible Integrands

Remarks:

• The requirements (ii) and (iii) in the definition of V(S ,T ) can
be relaxed significantly. But for this introductory lecture we
stick to the above stricter situation.

• Under the assumptions given in the definition, the set V(S ,T )
has a Hilbert space structure with the inner product

(f , g)V(S,T ) = E
(∫ T

S
f (t, ω)g(t, ω) dt

)
.

• If f ∈ V(S ,T ) is an elementary process, i.e., if we have

f (t, ω) = ek(ω) for all tk ≤ t < tk+1 and ω ∈ F ,

then ek has to be measurable with respect to Ftk .
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Definition of the Ito Integral

We can finally turn our attention to the definition of the Ito
integral. For any integrand f ∈ V(S ,T ), this integral will be
denoted by

I[f ](ω) =

∫ T

S
f (t, ω) dW (t, ω) , and I[f ] ∈ L2(P) .

The definition proceeds in three steps:

(1) If f ∈ V(S ,T ) is an elementary process, define

I[f ](ω) =
n−1∑
k=0

ek(ω) · (W (tk+1, ω)−W (tk , ω)) .

(2) Show that the following Ito isometry holds:

‖I[f ]‖L2(P) = ‖f ‖V(S ,T ) for all elementary f ∈ V(S ,T ) .
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Definition of the Ito Integral

(3) Use the density of elementary processes in V(S ,T ) with
respect to the norm ‖ · ‖V(S,T ) and the Ito isometry to extend
the integral to all of V(S ,T ).
More precisely, one can show that for every f ∈ V(S ,T ) there
exists a sequence of elementary processes fn ∈ V(S ,T ) such
that ‖f − fn‖V(S ,T ) → 0 as n→∞. Then define

I[f ] = lim
n→∞

∫ T

S
fn(t, ω) dW (t, ω) in L2(P) .

Remarks:

• Notice that in contrast to the deterministic integral, one
actually obtains a one-to-one correspondence between the
integrand f and the stochastic Ito integral I[f ].

• The Ito isometry relies heavily on the properties of W
and V(S ,T ).
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Proof of the Ito Isometry

We briefly sketch the proof of the Ito isometry, which makes use of
the abbreviation ∆Wj = W (tj+1)−W (tj). Then one has:

• The central identity is given by

E (eiej∆Wi∆Wj) =

{
0 for i 6= j

E
(
e2
i

)
(ti+1 − ti ) for i = j

To see that this expression vanishes for i < j , one just has to
note that since ei is Fti -measurable, ej is Ftj -measurable, and
∆Wi is Fti+1-measurable, the inequality ti+1 ≤ tj shows that
eiej∆Wi is Ftj -measurable. But ∆Wj is independent of Ftj

and has mean zero, which implies the first part of the identity.
On the other hand, for i = j one obtains

E
(
e2
i (∆Wi )

2
)

= E
(
e2
i

)
E (∆Wi )

2 = E
(
e2
i

)
(ti+1 − ti ) .
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Proof of the Ito Isometry

• Recalling that∫ T

S
f (t, ω) dW (t, ω) =

n−1∑
i=0

ei (ω) (W (ti+1, ω)−W (ti , ω)) ,

the central identity from the previous slide then implies

E

((∫ T

S
f (t, ω)dW (t, ω)

)2
)

=
n−1∑
i ,j=0

E (eiej∆Wi∆Wj)

=
n−1∑
i=0

E
(
e2
i

)
(ti+1 − ti )

= E
(∫ T

S
f (t, ω)2dt

)
,

and this completes the proof. 2
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Properties of the Ito Integral I

• Linearity: For α1, α2 ∈ R and f1, f2 ∈ V(S ,T ) we have∫ T

S
(α1f1(t, ω) + α2f2(t, ω)) dW (t, ω) =

α1

∫ T

S
f1(t, ω)dW (t, ω) + α2

∫ T

S
f2(t, ω)dW (t, ω) .

• Additivity: For 0 ≤ S < T < U and f ∈ V(S ,U) we have∫ U

S
f (t, ω)dW (t, ω) =∫ T

S
f (t, ω)dW (t, ω) +

∫ U

T
f (t, ω)dW (t, ω)
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Properties of the Ito Integral II

• Measurability: The stochastic integral
∫ T
S f (t, ω)dW (t, ω) is

measurable with respect to FT .

• Continuity: There exists an Ft-adapted stochastic process J
which is continuous with respect to t and which satisfies

P
(
J(t, ω) =

∫ t

S
f (τ, ω)dW (τ, ω)

)
= 1 .

• Approximation: If f , fn ∈ V(S ,T ) satisfy ‖f − fn‖V(S ,T ) → 0
as n→∞, then∫ T

S
f (t, ω)dW (t, ω)

L2(P)
= lim

n→∞

∫ T

S
fn(t, ω)dW (t, ω) .
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Properties of the Ito Integral III

• Expected Value: For all f ∈ V(S ,T ) we have

E
(∫ T

S
f (t, ω)dW (t, ω)

)
= 0 .

• Variance: For all f ∈ V(S ,T ) we have

V
(∫ T

S
f (t, ω)dW (t, ω)

)
= E

(∫ T

S
f (t, ω)2dt

)
.

In other words, the Ito isometry is valid on all of V(S ,T ).

• Martingale Property: For a suitable process f : R+
0 × F → R

define Mt(ω) =
∫ t

0 f (τ, ω)dW (τ, ω) for all t ≥ 0. Then

E (Mt |Fs ) = Ms for all 0 ≤ s ≤ t .
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Properties of the Ito Integral IV

• Martingale Inequalities: Define Mt(ω) =
∫ t

0 f (τ, ω)dW (τ, ω)
for all t ≥ 0 as before, and assume without loss of generality
that M is continuous with respect to t. Then for all λ,T > 0
we have

P

(
sup

0≤t≤T
|Mt | ≥ λ

)
≤ 1

λ2
· E
(
M2

T

)
=

1

λ2
· E
(∫ T

0
f (s, ω)2 ds

)
,

as well as

E

(
sup

0≤t≤T
M2

t

)
≤ 4E

(
M2

T

)
= 4E

(∫ T

0
f (s, ω)2 ds

)
.
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Properties of the Ito Integral V

• Gaussianity: If the integrand function f is deterministic, i.e.,
if f is independent of ω, then the stochastic integral∫ T

S
f (t)dW (t, ω) is a Gaussian random variable

with

mean 0 and variance

∫ T

S
f (t)2dt .

If the integrands depends on ω, then in general the Ito
integral is not a Gaussian random variable.
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A First Example

We now demonstrate how the properties of the Ito integral can be
used to show that∫ T

0
W (t, ω)dW (t, ω) =

W (T , ω)2

2
− T

2
.

The idea is to approximate the integral by elementary processes
in V(0,T ). For this, let 0 = t0 < . . . < tn = T denote a
partition P of [0,T ] and consider the elementary process

fP(t, ω) =
n−1∑
k=0

W (tk , ω) · χ[tk ,tk+1)(t) ,

where χA(t) denotes the characteristic function of a set A.
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A First Example

First we need to show that as max(tk+1 − tk)→ 0, the elementary
function fP converges to the Wiener process in V(0,T ). This can
be seen as follows:

‖fP −W ‖2
V(0,T ) = E

(
n−1∑
k=0

∫ tk+1

tk

(W (tk , ω)−W (s, ω))2 ds

)

=
n−1∑
k=0

∫ tk+1

tk

E
(

(W (s, ω)−W (tk , ω))2
)
ds

=
n−1∑
k=0

∫ tk+1

tk

(s − tk) ds =
n−1∑
k=0

(tk+1 − tk)2

2

→ 0 as long as max(tk+1 − tk)→ 0 .



Probabilistic Background The Stochastic Ito Integral The Stochastic Chain Rule Stochastic Differential Equations

A First Example

Finally we need that for max(tk+1 − tk)→ 0, the integral of the
elementary function fP converges to (W (T )2 − T )/2 in L2(P),

since I[fP ]→
∫ T

0 W (t, ω)dW (t, ω). This follows from

W (T )2 =
n−1∑
k=0

(
W (tk+1)2 −W (tk)2

)
=

n−1∑
k=0

(W (tk+1)−W (tk))2

︸ ︷︷ ︸
→ T

+ 2
n−1∑
k=0

W (tk) (W (tk+1)−W (tk))︸ ︷︷ ︸
= I[fP ]→

∫ T
0 W (t,ω)dW (t,ω)
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Comments on the Ito Integral

• For integrands f which are adapted stochastic processes with
a certain integrability condition, it is possible to define the
stochastic Ito integral

∫ T
S f (t, ω) dW (t, ω) with respect to the

Wiener process as a random variable in L2(P).

• The stochastic integral can not be defined path-wise, i.e., for
fixed ω. It is constructed via a limit process in L2(P).

• Ito integration establishes a one-to-one correspondence
between the integrand and the integral.

• The notion of the integral discussed here is inadequate for the
vector-valued case, i.e., if one would like to integrate with
respect to multi-dimensional Brownian motion. For this, the
condition (ii) in the definition of V(S ,T ) has to be weakened.
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3. The Stochastic Chain Rule

Just as in the deterministic setting, stochastic integrals are usually
not computed through their definition, but by means of an
associated stochastic Ito calculus. Such a calculus should involve
versions of a change of variable formula and integration by parts.
For this, it is convenient to introduce the following notion.

Definition (Ito Processes)

A stochastic process X (t, ω) is called Ito process, if it satisfies an
integral equation of the form

X (t, ω) = X (0, ω) +

∫ t

0
u(s, ω)ds +

∫ t

0
v(s, ω)dW (s, ω) ,

for suitable adapted stochastic processes u and v . If X is an Ito
process, the above integral identity is generally abbreviated as

dX (t) = udt + vdW (t) .
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Gaussian Ito Processes

In general, Ito processes are not Gaussian processes. There is,
however, one special case in which this is true.

Lemma (Gaussian Ito Processes)

Let X (t, ω) be an Ito processes satisfying dX (t) = udt + vdW (t)
and assume that both u and v are deterministic functions of t.
Furthermore, assume that X (0, ω) ≡ X0 is constant, i.e., we have

X (t, ω) = X0 +

∫ t

0
u(s)ds +

∫ t

0
v(s)dW (s, ω) .

Then X is a Gaussian process with independent increments and

E(X (t)) = X0 +

∫ t

0
u(s)ds and V(X (t)) =

∫ t

0
v(s)2ds .
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Stochastic Chain Rule

Theorem (Stochastic Chain Rule, Ito’s Formula)

Let X be an Ito process with dX (t) = udt + vdW (t), and
let g(t, x) denote a C 2-function. Then the process

Y (t, ω) = g(t,X (t, ω))

is again an Ito process and we have

dY (t) =
∂g

∂t
(t,X (t))dt +

∂g

∂x
(t,X (t))dX (t)

+
1

2

∂2g

∂x2
(t,X (t)) · (dX (t))2 ,

where (dX (t))2 is computed using the rules dW (t) · dW (t) = dt
and dt · dt = dt · dW (t) = dW (t) · dt = 0.
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Stochastic Chain Rule

Remarks:

• Notice that Ito’s formula can be written equivalently in the
following form

dY (t) =

(
∂g

∂t
(t,X ) + u · ∂g

∂x
(t,X ) +

v2

2
· ∂

2g

∂x2
(t,X )

)
dt

+ v · ∂g
∂x

(t,X )dW (t) ,

where we omitted the argument from the Ito process X .

• While the formula reduces to the classical chain rule in the
deterministic case v ≡ 0, the stochastic version introduces an
additional term which depends on ∂2g/∂x2.
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Stochastic Chain Rule

• Ito’s formula is basically proved by assuming that u and v are
elementary processes with respect to the same partition of the
underlying interval, and using a Taylor approximation on each
of the subintervals. Among other things, this leads to terms of
the form

n−1∑
k=0

v(tk)2 · ∂
2g

∂x2
(tk ,X (tk)) · (W (tk+1)−W (tk))2

One can show that in the space L2(P), this random variable
converges to ∫ t

0
v(s)2 · ∂

2g

∂x2
(s,X (s, ω))ds

as max(tk+1 − tk)→ 0, which accounts for the extra term.
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Example:

∫ T

0

W (t, ω)dW (t, ω)

From the deterministic theory we guess that the integral should
include a term of the form W (T )2/2. Thus, we consider

dX (t) = 0dt + 1dW (t) and g(t, x) =
x2

2
.

For Y (t) = g(t,X (t)) = W (t)2/2 Ito’s formula then implies

dY (t) =

 ∂g

∂t︸︷︷︸
=0

+ u · ∂g
∂x︸ ︷︷ ︸

=0

+
v2

2
· ∂

2g

∂x2︸ ︷︷ ︸
=1/2

 dt + v · ∂g
∂x

dW (t)︸ ︷︷ ︸
=W (t)dW (t)

,

which furnishes

W (T )2

2
=

T

2
+

∫ T

0
W (t, ω) dW (t, ω) .
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Example:

∫ T

0

t dW (t, ω)

From the deterministic theory we guess that the integral should
include a term of the form T ·W (T ). Thus, we consider

dX (t) = 0dt + 1dW (t) and g(t, x) = tx .

For Y (t) = g(t,X (t)) = t ·W (t) Ito’s formula then implies

dY (t) =

 ∂g

∂t︸︷︷︸
=W (t)

+ u · ∂g
∂x︸ ︷︷ ︸

=0

+
v2

2
· ∂

2g

∂x2︸ ︷︷ ︸
=0

 dt + v · ∂g
∂x

dW (t)︸ ︷︷ ︸
=t dW (t)

,

which furnishes

T ·W (T ) =

∫ T

0
W (t, ω) dt +

∫ T

0
t dW (t, ω) .



Probabilistic Background The Stochastic Ito Integral The Stochastic Chain Rule Stochastic Differential Equations

Generalizations of Ito’s Formula

Ito’s formula can be generalized in a number of ways to cover the
case of vector-valued processes X (t, ω) and vector-valued Brownian
motions B(t, ω). We only mention one such generalization.

Theorem (Ito’s Formula for Multiple Ito Processes)

Let Xk , k = 1, . . . , d , denote a family of Ito processes with respect
to the same Wiener process, given by dXk(t) = ukdt + vkdW (t),
and let g(t, x1, . . . , xd) denote a C 2-function. Then the process
Y (t, ω) = g(t,X1(t, ω), . . . ,Xd(t, ω)) is an Ito process with

dY (t) =
∂g

∂t
dt +

d∑
k=1

∂g

∂xk
dXk(t) +

1

2

d∑
k,`=1

∂2g

∂xk∂x`
dXk(t)dX`(t),

where dXk(t)dX`(t) = vkv`dt, and the partial derivatives of g are
evaluated at (t,X1(t, ω), . . . ,Xd(t, ω)).
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Stochastic Integration by Parts

Specifically for g(t, x1, x2) = x1 · x2 one obtains the stochastic
version of integration by parts.

Theorem (Stochastic Integration by Parts Formula)

Let X1,X2 denote two Ito processes with respect to the same
Wiener process, given by dXk(t) = ukdt + vkdW (t) for k = 1, 2.
Then their product X1 · X2 is again an Ito process and we have

d (X1(t) · X2(t)) = X1dX2 + X2dX1 + v1v2dt .

Notice in particular that if either X1 or X2 is an Ito process with
paths of bounded variation, then the classical deterministic
integration by parts formula holds.



Probabilistic Background The Stochastic Ito Integral The Stochastic Chain Rule Stochastic Differential Equations

4. Stochastic Differential Equations

In the final part of this lecture we finally turn our attention to
stochastic differential equations, which are equations of the form

dX = b(t,X )dt + σ(t,X )dW (t)

where b and σ are sufficiently regular functions. We say that a
stochastic process X (t, ω) is a solution of the above stochastic
differential equation with initial condition X (0, ω) = X0(ω) if

X (t, ω) = X0(ω) +

∫ t

0
b(s,X (s, ω))ds

+

∫ t

0
σ(s,X (s, ω))dW (s, ω)

for “suitable” t ≥ 0. Under fairly natural conditions, such
equations always have unique solutions.
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Existence and Uniqueness of Solutions

Theorem (Existence and Uniqueness of Solutions of SDEs)

For measurable functions b and σ consider the SDE

dX = b(t,X )dt + σ(t,X )dW (t)

with |b(t, x)|+ |σ(t, x)| ≤ C (1 + |x |) ,
|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x − y | ,

for all t ∈ [0,T ] and x , y ∈ R. Furthermore, let X0(ω) denote a
square-integrable random variable which is independent of W (t)
for all t ≥ 0. Then the above equation has a unique t-continuous
solution X (t, ω) for t ∈ [0,T ]. This solution is Ft-adapted and

E
(∫ T

0
|X (t, ω)|2 dt

)
<∞ .
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Remarks and Generalizations

• The existence and uniqueness result can be proved via Picard
iteration, similarly to the deterministic situation. The
necessary solution estimates make use of the martingale
inequalities mentioned as one of the properties of the
stochastic integral.

• An analogous existence and uniqueness theorem holds in the
vector-valued case X (t, ω) ∈ Rn for equations of the form

dX = b(t,X )dt +
m∑

k=1

σk(t,X )dWk(t) ,

where the Wiener processes W1, . . . ,Wm are independent.
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Remarks and Generalizations

• One can think of the stochastic differential equation

dX = b(t,X )dt + σ(t,X )dW (t)

as being a perturbation of the deterministic equation

Ẋ = b(t,X ) .

This latter equation is perturbed by additive noise if σ does
not depend on X , and it is perturbed by multiplicative noise
if σ does depend explicitly on X .
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A Noisy Population Growth Model

As a first example we consider the noisy population growth model

dZ = aZdt + bZdW (t) with Z (0, ω) = Z0 ∈ R

where a and b are real constants. This is the usual deterministic
exponential growth model perturbed by multiplicative white noise.

To find the solution, we use the intuition from the deterministic
situation to suggest that the solution might involve the term

eαt+βW (t,ω) for certain α, β ∈ R .

Therefore, it seems natural to apply Ito’s formula to the Ito
process X (t, ω) = W (t, ω) which satisfies dX = 0dt + 1dW (t),
and the nonlinearity g(t, x) = exp(αt + βx).
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A Noisy Population Growth Model

For Y (t, ω) = g(t,X (t, ω)) = eαt+βW (t,ω) Ito’s formula implies

dY (t) =

 ∂g

∂t︸︷︷︸
=αY

+ u · ∂g
∂x︸ ︷︷ ︸

=0

+
v2

2
· ∂

2g

∂x2︸ ︷︷ ︸
=β2Y /2

 dt + v · ∂g
∂x

dW (t)︸ ︷︷ ︸
=βYdW (t)

,

which shows that Y (t, ω) solves the stochastic differential equation

dY =

(
α +

β2

2

)
Ydt + βYdW (t) .

Comparing this with the form of the noisy population growth
model furnishes

Z (t, ω) = Z0 · e
(
a− b2

2

)
t+bW (t,ω)
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A Noisy Population Growth Model

• Note that due to

Z (t, ω) = Z0 +

∫ t

0
aZ (s, ω)ds +

∫ t

0
bZ (s, ω)dW (s, ω)

and the properties of the Ito integral we have

E (Z (t)) = Z0 · eat for all t ≥ 0 .

• The typical path behavior deviates from the deterministic
case. For almost all paths of the Wiener process we have

lim
t→∞

W (t, ω)

t
= 0 ,

which means that typical paths of Z satisfy

Z (t, ω) = Z0e

(
a− b2

2

)
t+bW (t,ω) ∼ Z0e

(
a− b2

2

)
t

for t →∞ .
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A Noisy Population Growth Model

• One can also determine the variance of the solution
process Z (t, ω). Note that we have

Z (t, ω)2 = Z 2
0 · e(2a−b2)t+2bW (t,ω) ,

and as before this implies

d
(
Z 2
)

=

((
2a− b2

)
+

(2b)2

2

)
Z 2dt + 2bZ 2dW (t) ,

and therefore

E
(
Z (t)2

)
= Z 2

0 · e(2a+b2)t for all t ≥ 0 .

This finally implies

V (Z (t)) = Z 2
0 · e2at ·

(
eb

2t − 1
)

for all t ≥ 0 .
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The Ornstein-Uhlenbeck Process

Our second example is the so-called Langevin equation

dZ = −aZdt + bdW (t) with Z (0, ω) = Z0 ∈ R

where a 6= 0 and b are real constants. This is a deterministic linear
equation perturbed by additive white noise, and its solution process
is called the Ornstein-Uhlenbeck process.

In the deterministic setting, equations of this type are solved by
moving the term −aZdt to the left, multiplying the equation by
the integrating factor eat , and integrating to obtain Z (t)eat on the
left-hand side. This suggests that in the stochastic case, it makes
sense to determine whether the process eat · Z (t, ω) is an Ito
process, i.e., apply Ito’s formula to X (t, ω) = Z (t, ω) with the
transformation g(t, x) = eat · x , where u = −aZ and v = b in the
representation dX = udt + vdW (t).
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The Ornstein-Uhlenbeck Process

For Y (t, ω) = g(t,X (t, ω)) = eatZ (t, ω) Ito’s formula implies

dY (t) =

 ∂g

∂t︸︷︷︸
=aeatZ

+ u · ∂g
∂x︸ ︷︷ ︸

=−aZ ·eat

+
v2

2
· ∂

2g

∂x2︸ ︷︷ ︸
=0

 dt + v · ∂g
∂x

dW (t)︸ ︷︷ ︸
=b·eatdW (t)

,

which shows that Y (t, ω) satisfies

Y (t, ω)− Y (0, ω)︸ ︷︷ ︸
= eatZ(t,ω)−Z0

=

∫ t

0
beasdW (s, ω) ,

and the Ornstein-Uhlenbeck process is therefore given by

Z (t, ω) = Z0 · e−at + b ·
∫ t

0
e−a(t−s)dW (s, ω)
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The Ornstein-Uhlenbeck Process

• Note that the explicit formula for the Ornstein-Uhlenbeck
process is exactly what one would obtain by applying the
standard deterministic variation of constants formula to the
Langevin equation.

• In contrast to the noisy population growth model discussed
before, the Ornstein-Uhlenbeck process fits into the category
of Gaussian Ito processes which was discussed at the
beginning of this section. Thus, the Ornstein-Uhlenbeck
process is a Gaussian process with independent increments.

• Due to the properties of the Ito integral we have

E (Z (t)) = Z0 · e−at for all t ≥ 0 .
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The Ornstein-Uhlenbeck Process

• One can also easily determine the variance of the
Ornstein-Uhlenbeck process Z (t, ω). Note that we have

V (Z (t)) = E
(
Z (t, ω)− Z0 · e−at

)2

= E
(
be−at ·

∫ t

0
easdW (s, ω)

)2

= b2e−2at · V
(∫ t

0
easdW (s, ω)

)
= b2e−2at ·

∫ t

0
e2asds .

This finally implies

V (Z (t)) =
b2

2a
·
(
1− e−2at

)
for all t ≥ 0 .



Probabilistic Background The Stochastic Ito Integral The Stochastic Chain Rule Stochastic Differential Equations

Thank You!

References:

• Bernt Oksendal: Stochastic Differential Equations: An
Introduction with Applications. Springer-Verlag, 2010.

• Ludwig Arnold: Stochastic Differential Equations: Theory and
Applications. Dover Publications, 2013.

• Lawrence C. Evans: An Introduction to Stochastic Differential
Equations. Online Lecture Notes, 2006.


	1. Probabilistic Background
	2. The Stochastic Ito Integral
	3. The Stochastic Chain Rule
	4. Stochastic Differential Equations

