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Abstract

A new interpretation of quantum mechanics is proposed according to which
precedence, freedom and novelty play central roles. This will be based on a
modification of the postulates for quantum theory(see Theory #1 discussed
below). We argue that quantum mechanics is uniquely characterized as the
probabilistic theory in which individual systems have maximal freedom in
their responses to experiment, given reasonable axioms for the behavior of
probabilities in a physical theory. Thus, to the extent that quantum systems
are free(see Free Will Theorem discussion below)), there is a sense in which
they are maximally free.

We also propose that laws of quantum evolution arise from a principle of
precedence according to which the outcome of a measurement on a quantum
system is selected randomly from the ensemble of outcomes of previous in-
stances of the same measurement on the same quantum system. This implies
that dynamical laws for quantum systems can evolve as the universe evolves,
because new precedents are generated by the formation of new entangled
states.

1 Introduction

We are used to thinking that the laws of physics are deterministic and that
this precludes the occurrence of genuine novelty in the universe. All that
happens is rearrangements of elementary particles with unchanging proper-
ties by unchanging laws.

But must this really be the case? We need determinism only in a limited
set of circumstances, which is where an experiment has been repeated many
times. In these cases we have learned that it is reliable to predict that when
we repeat an experiment in the future, which we have done many times in
the past, the probability distribution of future outcomes will be the same as
observed in the past.

Usually we take this to be explained by the existence of fundamental timeless
laws which control all change. But this could be an over-interpretation of the
evidence. What we need is only that there be a principle that measurements
which repeat processes which have taken place many times in the past yield



the same outcomes as were seen in the past. Such a principle of precedence
would explain all the instances where determinism by laws works without
restricting novel processes to yield predictable outcomes. There could be
at least a small element of freedom in the evolution of novel states without
contradicting the application of laws to states which have been produced
plentifully in the past.

But are there any truly novel states in nature?

It is fair to say that classical mechanics precludes the existence of genuine
novelty, because for certain all that happens is the motion of particles un-
der fixed laws. But quantum mechanics is different, in two ways. First, in
quantum mechanics does not give unique predictions for how the future will
resemble the past. It gives from past instances only a statistical distribution
of possible outcomes of future measurements.

Second, in quantum physics there is the phenomena of entanglement which
involves novel properties shared between subsystems which are not just prop-
erties of the individual subsystems. The free will theorem of Conway and
Kochen(discussed below as Free Will Theorem) tells us that in these cases
systems respond to measurements in a way that can be considered free, in
the sense that the result of an individual measurement on elements of an
entangled system could not be predicted by any knowledge of the past.

An entangled state can be novel in that it can be formed from a composition
of subsystems into a state never before occurring in the prior history of the
universe. This is common for example in biology where natural selection
can give rise to novel proteins and sequences of nucleic acids which almost
certainly, due to the combinatorial vastness of the number of possibilities,
have not existed before.

There is then the possibility that novel states can behave unpredictability be-
cause they are without precedent. Only after they have been created enough
times to accumulate ample precedent would the behavior of these novel states
become lawful.

Hence we can have a conception of law which is sufficient to account for the
repeatability of experiments, without restricting novel states from being free
from constraints from deterministic laws. In essence the laws evolve with
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the states. The first several iterations of a novel state are not determined by
any law. Only after sufficient precedent has been established does a law take
hold, and only for statistical predictions. Individual outcomes can be largely
unconstrained.

Quantum physics allows this possibility because the generic single measure-
ment is not determined by quantum dynamics. Only if the system is prepared
in an eigenstate of the measurement being made is the result determined. But
these require fine tuning and are hence non-generic. Otherwise quantum dy-
namics is stochastic so that no outcome of a single generic observation can
disagree with predictions of quantum mechanics.

There are aspects of measurements that are not predicted by quantum me-
chanics which offer scope for genuine novelty and freedom from deterministic
evolution. Imagine a double slit experiment with a very weak source of pho-
tons. The measurement gives a sequence of positions to which the photons
fall on the screen, x1, x2, ....., xN . Each individual photon can end up any-
where on the screen. Quantum mechanics predicts the overall statistical
ensemble that accumulates after many photons, ρ(x). But it does not, for
example, restrict the order by which they fall. Quantum mechanics is equally
consistent with a record in which the xi

′s are permuted, from one random
sequence to another.

Macroscopic outcomes could depend on the order of positions, for example,
if someone chooses to make a career in science or politics based on whether
the 13th photon falls to the left or right side of the screen.

The basic idea of the formulation of quantum theory proposed here is that

1. Systems with no precedents have outcomes not determined by prior
law.

2. When there is sufficient precedence the outcome of an experiment is
determined by making a random selection from the ensemble of prior
cases.

3. The outcome of measurements on systems with no or few precedents is
as free as possible, in a sense that needs to be defined precisely.

Stated more carefully these become the principles of this approach to quan-
tum theory, to be specified below.
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This proposal is a twist on the real ensemble interpretation (Theory #2 dis-
cussed below). The principle proposed in the real ensemble interpretation is
that whenever probabilities appear in quantum physics they must be relative
frequencies within ensembles every element of which really exists.

In the original version of this idea the ensemble associated with a quantum
state exists simultaneously with it. In the new version the ensembles exist
in the past of the process they influence.

How much precedence is necessary to turn freedom into deterministic dy-
namics? There must for each system be an answer to this question.

If the first instance of a measurement made on a novel state is undeter-
mined, but the probabilities for outcomes of a measurement with a great
deal of precedence is tightly determined, there is, for any system, a num-
ber of distinct prior preparations whose statistical distributions of outcomes
must be measured to determine, as well as can be done, the distributions of
outcomes of measurements made on future iterations of that system. This is
the number of degrees of freedom of the system, to be denoted K below(this
follows from Theory #1 and Theory #3 discussed below). There is also the
dimension or capacity of the system which is the number, N , of outcomes
that can be distinguished by measurements on the system (Theories #1 and
#3). These numbers and their relation must play a crucial role because they
determine when there is sufficient precedent for future cases to be determined
as possible.

We show below that there is a precise sense in which quantum kinematics is
specified by requiring that K be as large as possible, given N , consistent with
a small set of reasonable general axioms. This means that there is the max-
imal amount of information needed per distinguishable outcome to predict
the statistical distribution of outcomes for any experiment. As a result, we
can say that the responses of quantum systems to individual measurements
are maximally free from the constraints of determinism from prior cases.

To formulate this idea precisely, we can make use of an axiomatic formulation
of quantum theory, given by Theory #1 below, which is based on Theory #3
ideas. These theories give four axioms for how probabilities for outcomes
behave when systems are combined into composite systems, or subsystems
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are projected out of larger systems and proves that they imply quantum me-
chanics or classical probability theory. To these we will add a new, fifth,
axiom which picks out the quantum case. These five postulates define the
kinematics of quantum systems.

The hard work needed to show this has already been done by Theory #1.
The observation that these five postulates determine quantum theory is a
trivial consequence of the earlier work.

Informally stated these five postulates are

1. The state of a composite system is characterized by the statistics of
measurements on the individual components.

2. All systems that effectively carry the same amount of information have
equivalent state spaces.

3. Every pure state of a system can be transformed into every other by a
reversible transformation.

4. In systems that carry one bit of information, all measurements which
give non- negative probabilities are allowed by the theory.

5. Quantum systems are maximally free, in that a specification of their
statistical state, sufficient for predicting the probabilities for outcome of
any future measurement, requires the maximal amount of information,
relative to the number of outcomes of an individual measurement.

To these we add a postulate about quantum dynamics. This is the principle
of precedence, which, informally stated, says

Principle of precedence: When a quantum process terminating in
a measurement has many precedents, which are instances where an
identically prepared system was subject to the same measurement in
the past, the outcome of the present measurement is deter- mined by
picking randomly from the ensemble of precedents of that measurement.

We first review the Free Will Theorem and the three earlier theories and
then give a brief sketch of the new interpretation of quantum mechanics, by
giving more precise statements of these postulates.
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2 Free Will Theorem

2.1 Introduction

Do we really have free will, or, as a few determined folk maintain, is it all an
illusion? We don’t know, but will prove here that if indeed there exist any
experimenters with a modicum of free will, then elementary particles must
have their own share of this valuable commodity.

”I saw you put the fish in!” said a simpleton to an angler who had used a
minnow to catch a bass. Our reply to an analogous objection would be that
we use only a minuscule amount of human free will to deduce free will not
only of the particles inside ourselves, but all over the universe.

To be more precise, what we will show is that the particles’ response(more
precisely still, the universe’s response in the neighborhood of the particles) to
a certain type of experiment is not determined by the entire previous history
of that part of the universe accessible to them. The free will we assume
is just that the experimenter can freely choose to make any one of a small
number of observations. In addition, we make three physical assumptions in
the form of three simple axioms.

The fact that they cannot always predict the results of future experiments
has sometimes been described just as a defect of theories extending quantum
mechanics. However, if our physical axioms are even approximately true,
the free will assumption implies the stronger result, that no theory, whether
it extends quantum mechanics or not, can correctly predict the results of
future spin experiments. It also makes it clear that this failure to predict is
a merit rather than a defect, since these results involve free decisions that
the universe has not yet made.

2.1.1 Stating the theorem

We proceed at once to describe our axioms. There exist particles of total spin
1 upon which one can perform an operation called measuring the square of
the component of spin in a direction w which always yields one of the answers
0 or 1.

On measuring squared spins. Our assertion that Sx2, Sy2, Sz2 must take
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the values 1, 0, 1 in some order may surprise some physicists, who expect sen-
tences involving definite values for Sx, Sy, Sz to be meaningless, since these
operators do not commute. However, for a spin 1 particle their squares do
commute.

We can envisage measuring S2
x, S

2
y , S

2
z by an electrical version of the Stern-

Gerlach experiment, by interferometry that involves coherent recombination
of the beams for Sx = +1 and Sx =?1, or finally by a spin-Hamiltonian type
of experiment that measures an expression of the form aS2

x + bS2
y + cS2

z . An
example of a spin 1 system is an atom of orthohelium.

We will write w → i (i = 0 or 1) to indicate the result of this operation.
We call such measurements for three mutually orthogonal directions x, y, z a
triple experiment for the frame (x, y, z).

The SPIN axiom: A triple experiment for the frame (x, y, z) always yields
the outcomes 1, 0, 1 in some order.

We can write this as: x → j, y → k, z → l, where j, k, l are 0 or 1 and
j + k + l = 2.

It is possible to produce two distantly separated spin 1 particles that are
twinned, meaning that they give the same answers to corresponding ques-
tions.

To produce a twinned pair of spin 1 particles, one forms a pair in the singleton
state, i.e., with total spin 0. An explicit description of this state is

|Saw = 1〉
∣∣Sbw = −1

〉
+ |Saw = −1〉

∣∣Sbw = 1
〉
− |Saw = 0〉

∣∣Sbw = 0
〉

This state is independent of the direction w. We remark that Saw(= Sw ⊗ I)
and Sbw′(= I ⊗ Sw?) are commuting operators for any directions w and w?.

Such singleton states have been achieved experimentally for two spin 1/2
particles separated by more than 10 km. Presumably a similar singleton
state for distantly separated spin 1 particles will be attained eventually with
sufficient technology.

A symmetrical form of the TWIN axiom would say that if the same triple
x, y, z were measured for each particle, possibly in different orders, then the
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two particles’ responses to the experiments in individual directions would be
the same. For instance, if measurements in the order x, y, z for one particle
produced x → 1, y → 0, z → 1, then measurements in the order y, z, x for
the second particle would produce y → 0, z → 1, x→ 1. Although we could
use the symmetric form for the proof of the theorem, a truncated form is all
we need, and will make the argument clearer:

The TWIN axiom: For twinned spin 1 particles, if the first experimenter
A performs a triple experiment for the frame (x, y, z), producing the result
x → j, y → k, z → l while the second experimenter B measures a single
spin in direction w, then if w is one of x, y, z, its result is that w → j, k, or l,
respectively.

The FIN axiom: There is a finite upper bound to the speed with which
information can be effectively transmitted.

This is, of course, a well-known consequence of relativity theory, the bound
being the speed of light. We will discuss the notion of information later in
addition we will also give precise meaning we will give to effectively later. (It
applies to any realistic physical transmission.)

FIN is not experimentally verifiable directly, even in principle (unlike SPIN
and TWIN).

Digression on the operational meanings of various terms. Our uses
of the terms spin 1 particle and squared spin in direction w seem to refer to
certain theoretical concepts. But we only use them to refer to the locations
of the spots on a screen that are produced by suitable beams in the above
kinds of experiment.

Thus our axioms, despite the fact that they derive from the theories of quan-
tum mechanics and relativity, actually only refer to the predicted macroscopic
results of certain possible experiments. Our dismissal of hidden variable the-
ories is therefore much stronger than the previous ones that presuppose quan-
tum mechanics. From a logical point of view this is very important, since any
use of quantum mechanical terminology necessarily makes it unclear exactly
what is being assumed.

Continuing:
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Its real justification is that it follows from relativity and what we call effec-
tive causality, that effects cannot precede their causes.

We remark that we have made some tacit idealizations in the above prelimi-
nary statements of our axioms, and will continue to make them in the initial
version of our proof. For example, we assume that the spin experiments can
be performed instantaneously, and in exact directions. In later sections, we
show how to replace both assumptions and proofs by more realistic ones that
take account of both the approximate nature of actual experiments and their
finite duration.

In our discussion, we will suppose for simplicity that the finite bound is the
speed of light, and use the usual terminology of past and future light-cones,
etc. To fix our ideas, we will suppose the experimenter A to be on Earth,
while experimenter B is on Mars, at least 5 light-minutes away. We are now
ready to state our theorem.

The Free Will Theorem (assuming SPIN, TWIN, and FIN)

If the choice of directions in which to perform spin 1 experiments is not
a function of the information accessible to the experimenters, then the
responses of the particles are equally not functions of the information
accessible to them.

Why do we call this result the Free Will theorem? It is usually tacitly as-
sumed that experimenters have sufficient free will to choose the settings of
their apparatus in a way that is not determined by past history. We make
this assumption explicit precisely because our theorem deduces from it the
more surprising fact that the particles’ responses are also not determined by
past history. Thus the theorem asserts that if experimenters have a certain
property, then spin 1 particles have exactly the same property. Since this
property for experimenters is an instance of what is usually called free will,
we find it appropriate to use the same term also for particles.

We remark that the Free Will assumption, that the experimenters’ choice of
directions is not a function of the information accessible to them, has allowed
us to make our theorem refer to the world itself, rather than merely to some
theory of the world. However, later we will also produce a modified version
that invalidates certain types of theory without using the free will assump-
tion.

9



One way of blocking no-go theorems that hidden variable theories have pro-
posed is contextuality - that the outcome of an experiment depends upon
hidden variables in the apparatus. For the triple experiment in SPIN, con-
textuality allows the particles spin in the z direction (say) to depend upon
the frame (x, y, z). However, since the particle’s past history includes all its
interactions with the apparatus, the Free Will theorem closes that loophole.

2.2 The Proof

We proceed at once to the proof. We first dispose of a possible naive suppo-
sition - namely that the squared spin θ(w) in direction w already exists prior
to its measurement. If so, the function θ would be defined on the unit sphere
of directions, and have the property

(i) that its values on each orthogonal triple would be 1, 0, 1 in some order.

This easily entails two further properties:

(ii) We cannot have θ(x) = θ(y) = 0 for any two perpendicular directions
x and y;

(iii) for any pair of opposite directions w and ?w, we have θ(w) = θ(−w).
Consequently, θ is really defined on ±-directions.

We call a function on a set of directions that has all three of these properties
a 101-function. However, the above naive supposition is disproved by the
Kochen-Specker paradox for Peres’ 33-direction configuration, namely:

Lemma: There is no 101-function for the ±33 directions of Figure 1.

Figure 1: The ±33 directions are defined by the lines joining the center of
the cube to the ±6 mid-points of the edges and the ±3 sets of 9 points of
the 3× 3 square arrays shown inscribed in the incircles of its faces.
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Since this merely says that a certain geometric combinatorial puzzle has no
solution. We give a short proof below.

Figure 2: Spin assignments for Peres’ 33 directions

Consider Figure 2 above and assume that a 101-function θ is defined on these
±33 directions. If θ(W ) = i, we write W → i. The orthogonalities of the
triples and pairs used below in the proof of a contradiction are easily seen
geometrically. For instance, in Figure 2, B and C subtend the same angle at
the center O of the cube as do U and V, and so are orthogonal. Thus A,B,C
form an orthogonal triple. Again, since rotating the cube through a right
angle about OZ takes D and G to E and C, the plane orthogonal to D passes
through Z,C,E, so that C,D is an orthogonal pair and Z,D,E is an orthogonal
triple. We will write wlog to mean without loss of generality.

The orthogonality of X,Y, Z implies X → 0, Y → 1, Z → 1 (wlog)

The orthogonality of X, A implies A→ 1 and similarly A′ → 1

The orthogonality of A, B, C implies B → 1, C → 0 (wlog) and
similarly B′ → 1, C ′ → 0

The orthogonality of C, D implies D → 1 and similarly D′ → 1

The orthogonality of Z, D, E implies E → 0 and similarly E ′ → 0

The orthogonality of E, F and E, G implies F → 1, G→ 1 and similarly
F ′ → 1, G′ → 1

11



The orthogonality of F, F’, U implies U → 0

The orthogonality of G, G’, V implies V → 0

and since U is orthogonal to V , this is a contradiction that proves the Lemma.

Deduction of The Free Will Theorem

We consider experimenters A and B performing the pair of experiments de-
scribed in the TWIN axiom on separated twinned particles a and b, and
assert that the responses of a and b cannot be functions of all the informa-
tion available to them.

The contrary functional hypothesis is that particle a′s response is a function
θa(α) of the information α available to it.

In the first instance, we shall suppose that this information is determined
by the triple x, y, z together with the information α′ that was available just
before the choice of that triple, and so is independent of x, y, z. So we can
express it as a function

θa(x, y, z;α′) = {x→ j, y → k, z → l}

[Here and later we use the fixed symbol θa for this function, despite a change
of its variables (here from α to x, y, z;α′)].

We refine this notation to pick out any particular one of the three answers
by adjoining a question-mark to the appropriate one of x, y, z; thus:

θa(x?, y, z;α′) = j

θa(x, y?, z;α′) = k

θa(x, y, z?;α′) = l

Under a similar supposition for we express bs responses as a function

θb(w; β′) = {w → m}

of the direction w and the information β′ available to b before w was chosen,
and again, we write this alternatively as

θb(w?; β′) = m
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The TWIN axiom then implies that

thetab(w?; β′) =


θa(x?, y, z;α′) if w = x

θa(x, y?, z;α′) if w = y

θa(x, y, z?;α′) if w = z

(?)

The Free Will assumption now implies that for each direction w and triple
of orthogonal directions x, y, z chosen from our set of ±33, there are values
of α′ and β′ for which every one of the functions in (?) is defined, since it
entails that the experimenters can freely choose an x, y, z and w to perform
the spin 1 experiments.

Now we defined α′ so as to be independent of x, y, z, but it is also independent
of w, since there are coordinate frames in which B′s experiment happens later
than A′s. Similarly, β′ is independent of x, y, z as well as w.

Now we fix α′ and β′ and define

θ0(w) = θb(w?; β′)

and find that

θa(x?, y, z;α′) = θ0(x)

θa(x, y?, z;α′) = θ0(y)

θa(x, y, z?;α′) = θ0(z)

Thus θ0 is a 101-function on the ±33 directions, in contradiction to the
Lemma. So we have proved the theorem under the indicated suppositions.

However, one of the particles responses, say a′s, might also depend on some
further information bits that become available to it after x, y, z is chosen.
If each such bit is itself a function of earlier information about the universe
(and x, y, z) this actually causes no problem, as we show in the next section.

We are left with the case in which some of the information used (by a, say)
is spontaneous, that is to say, is itself not determined by any earlier infor-
mation whatever. Then there will be a time t0 after x, y, z are chosen with
the property that for each time t < t0 no such bit is available, but for every
t > t0 some such bit is available.
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But in this case the universe has taken a free decision at time t0, because
the information about it after t0 is, by definition, not a function of the in-
formation available before t0! So if a′s response really depends on any such
spontaneous information-bit, it is not a function of the triple x, y, z and the
state of the universe before the choice of that triple.

This completes the proof of the Free Will theorem, except for our ascription
of the free decision to the particles rather than to the universe as a whole.
We discuss this and some other subtleties in later sections after noting the
following variant.

2.3 The Free State Theorem

As we remarked, there is a modification of the theorem that does not need the
Free Will assumption. Physical theories since Descartes have described the
evolution of a state from an initial arbitrary or free state according to laws
that are themselves independent of space and time. We call such theories
with arbitrary initial conditions free state theories.

The Free State theorem (assuming SPIN, TWIN, FIN)

No free state theory can exactly predict the results of twinned spin 1
experiments for arbitrary triples x, y, z and vectors w. In fact it cannot
even predict the outcomes for the finitely many cases used in the proof.

This is because our only use of the Free Will assumption was to force the
functions θa and θb to be defined for all of the triples x, y, z and vectors
w from a certain finite collection and some fixed values α′ and β′ of other
information about the world. Now we can take these as the given initial
conditions.

We will see that it follows from the Free State theorem that no free state
theory that gives a mechanism for reduction, and a fortiori no hidden variable
theory (such as Bohm’s) can be made relativistically invariant.

3 Information

Readers may be puzzled by several problems. In the first place, was it legal to
split up information in the way we did in the proof? To justify this, we shall
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use the standard terminology of information theory, by identifying the truth
value of each property of the universe5 with a bit of information. Digression
on On Properties We will describe the state of the universe or any system
in it by means of properties. The more usual description in terms of values
of physical quantities such as energy, angular momentum, etc. can always
be reduced to a set of properties, such as the energy E lies in the interval
(E1, E2). We prefer the more primitive notion of property, because it avoids
the possible problematic use of the continuum of real numbers in favor of 1
and 0 (or yes and no), which is more likely to correspond to ultimate facts
about the world. More importantly, we have in mind allowing properties
that are more general than allowed by values of physical quantities.

Which properties do we allow? In classical particle physics the set of prop-
erties is often identified with a Boolean algebra of (Borel) subsets of a phase
space, whereas in quantum mechanics this is replaced by a lattice of pro-
jection operators on Hilbert space. Perhaps we should also make some such
restriction?

No! Our theorem would be weakened, rather than strengthened, by any such
restriction. Also, it is important that we make no theoretical assumptions
about properties, because we don’t want our theorem to depend on any phys-
ical theory. Our theorem will only be a statement about the real world, as
distinct from some theory of the world, if we refuse to limit the allowed prop-
erties in any way. So the answer is: we must allow every possible property!

Continuing:

These truth values are then simply information, which therefore can as usual
be thought of as a set of bits. We emphasize that we do not assume any
structure on the set of properties or put any restriction on the simultaneous
existence of properties. The only aspect of information that we use is that it
consists of set of bits of information, which we can partition in various ways.

Not all information in the universe is accessible to a particle a. In the light
of FIN, information that is space-like separated from a is not accessible to
a. The information that is accessible to a is the information in the past light
cone of a.

We redefine α′ to be all the information used by a that is independent of
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x, y, z, and show that in fact any information-bit used by a is a function of α′

and x, y, z. For when x, y, z are given, any information-bit i(x, y, z;α′) that is
a function of x, y, z (and maybe some of the earlier information independent
of x, y, z and so in α′) is redundant, and can be deleted from the arguments
of the function θa. To see this, observe that experimenter A need use only
certain orthogonal triples

(x1, y1, z1), (x2, y21, z2), ........., (x40, y40, z40)

namely the 16 orthogonal triples inside the Peres configuration together with
the 24 that are obtained by completing its 24 remaining orthogonal pairs.

Then the information bit i(x, y, z;α′) will be one of the particular bits

i(x1, y1, z1;α′), i(x2, y21, z2;α′), ........., i(x40, y40, z40;α′)

corresponding to these, and since these bits are not functions of the variables
x, y, z, they are part of the information α′.

Another way to say this is that we are replacing the original function θa by
a new function

θ′a(x, y, z;α′) = θa(x, y, z;α′, ....., i(x, y, z;α′), ....)

obtained by compounding it with the functions i for each such bit.

3.1 The prompter-actor problem

Any precise formulation of our theorem must cope with a certain difficulty
that we can best describe as follows. It is the possibility that spin experiments
performed on twinned particles a and b might always cause certain other
particles a′ and b′ to make free decisions(our proof dealt with such decisions
in the discussion of spontaneous information) of which the responses of a and
b are functions. In this context, we may call a′ and b′ promptons, a and b
actons.

There is obviously no way to preclude this possibility, which is why we said
that more precisely, it is the universe that makes the free decision in the
neighborhood of the particles. However, we don’t usually feel the need for
such pedantry, since the important fact is the existence of the free decision
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and that it is made near a and b. Let us remind the reader that even the
spin 1 particles a and b are already theoretical constructs, and there is no
point in further multiplication of theoretical entities. We are really talking
of spots on a screen, rather than any kind of particle(we discussed this point
earlier in the digression about the operational meanings of various terms.

4 The Consistency Problem for Spin Exper-

iments

It cannot be denied that our axioms in combination have some paradoxical
aspects. One might say that they violate common sense, because a and b
must give the same answers to the same questions even though these answers
are not defined ahead of time. But does that mean that the axioms are logi-
cally inconsistent? This is by no means a trivial question. Indeed, quantum
mechanics and general relativity have been mutually inconsistent for most
of their joint lifetime, an inconsistency that heterotic string theory resolved
(with great difficulty) only by changing the dimension of space-time!

Even the consistency of quantum mechanics with special relativity is some-
what problematic. Indeed many people have concluded that when the reduc-
tion of the state vector as given by von Neumanns Projection Rule is added,
paradoxes of the EPR kind contradict relativistic invariance. So might our
axioms actually be inconsistent? No! We can show this using what we shall
call a Janus model, a notion that will at the same time help elucidate some
puzzling phenomena. Before we do that, we illustrate the idea by giving a
Janus model for an artificially simple construction we call hexagonal physics.

4.1 A hexagonal universe

The space-time of this physics is a hexagonal tessellation of the plane, with
time increasing vertically. An experimenter who is in a given hexagon on
day t can only be in one of the two hexagons that abut it from above on day
t+ 1, the choice between these two hexagons being left to the experimenter’s
free will as shown in Figure 3.
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Figure 3: Free will in a hexagonal universe

We suppose that each hexagon has a spin whose value 0 or 1 can be deter-
mined by an experimenter upon reaching that hexagon at a given day, but
not before. This is the analogue of the FIN axiom.

The only other physical law is that the sum of the spins of three hexagons
arranged as in Figure 3 is even (i.e. 0 or 2), which is the analogue of SPIN
(and, as we shall see, also of TWIN, since it relates the spins of remote
hexagons on the same day).

Are these axioms consistent with each other and with the experimenters’
limited amount of free will? We can show that the answer is yes by intro-
ducing an agent, Janus, who will realize them. His realization will also show
that the response of the particles is not a function of past history in this
little universe, showing that they also exhibit a limited amount of free will
according to our definition.

Let us imagine for instance, that two physicists, A and B, both start at the
lowest hexagon of Figure 4 on day 0, and that they never happen to perform
their experiments at the same instant.

Figure 4:

18



Janus freely decides the result of the first experiment on any given day, and
then uses the SPIN axiom to fill in the results for the other hexagons on that
day. For example, if on day 5, A and B are at the far left and right hexagons
of Figure 5 respectively, and the outcome for A on day 5 is 1, then Janus fills
in the other hexagons for day 5 uniquely as in Figure 5 to fulfill the SPIN
axiom.

Figure 5:

The fact that Janus decides on the outcome only at the time of the first ex-
periment on a given day shows that indeed neither experimenter can predict
the result of an experiment before that day. SPIN is also obeyed since Janus
uses it to fill in the rest of the hexagons for that day.

Note that in his realization of hexagonal physics, the speed with which Janus
transmits information is not restricted by our analogue of FIN. Although
this may seem peculiar, it does not contradict the fact that FIN holds in the
model. It is analogous to the standard way of establishing the consistency
of non-Euclidean geometry by constructing a model for hyperbolic geometry
(which denies the parallel axiom) inside Euclidean geometry (for which that
axiom is true). We have also been greatly influenced by the analogous use by
others of the Axiom of Choice to construct a model for set theory in which
that axiom does not hold.

Also, Janus need not respect the visible left-right symmetry of hexagonal
physics. Suppose, for instance that A always moves left, B always moves
right, and that they agree to perform their experiments exactly at noon on
each day. Then Janus might either use his left face by freely deciding the
outcome for A and using SPIN to compute the outcome for B, or use his
right face to do the reverse.

If one reader were to mimic Janus by freely choosing (or throwing a coin)
to determine the spin of either all the leftmost hexagons in Figure 4 or all
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the rightmost ones, and then use SPIN to fill in the rest, then subsequent
readers would not be able to decide which choice the first reader made. We
can say that this kind of physics has left-right symmetry even though none
of the Janus constructions do. Thus, the Janus models show the consistency
of this physics, but cannot be the explanation for the physics, since there is
both a left and a right Janus model.

Physics often enunciates the principle that scientific theories should ideally
have all the symmetries of the facts they explain. Since hexagonal physics
has the left-right reflection that its Janus models do not share, they violate
this principle. In our view, models that violate this principle are discredited
as explanations, but they do have a proper use, which is to provide consis-
tency proofs.

Logicians are accustomed to the fact that assertions inside a model often
differ from those outside it. For example, the straight lines in Poincare’s
model for hyperbolic geometry are actually circular arcs, while the sets with-
out choice functions inside some models for set theory actually do have choice
functions outside it.

In a similar way, since Janus is not himself part of the physics he realizes,
he is not himself subject to its laws. His very name might already have
suggested that we need no longer believe in him!

4.2 Consistency of our axioms for spin experiments

There is a similar Janus model that establishes the consistency of the real
axioms SPIN, TWIN, FIN, together with the Free Will assumption. Janus
chooses a coordinate frame and decides his response to the twinned spin-1
experiments of A and B in the order they happen in this frame. How does
he do this? The answer is that he uses a truly random coin, or his own free
will (!) to produce the outcome 0 or 1, unless this value is already forced by
SPIN and TWIN, (i.e., z → 0 forces y → 1, x→ 1, while y → 1 forces z → 0,
and x → j for either experimenter forces x → j for the other). Clearly, it
is always possible to obey SPIN and TWIN, and the Free Will assumption
holds since neither the decisions of the experimenters nor Januss answers are
determined ahead of time.

20



The possible responses produced by this method are Lorentz invariant, de-
spite the fact that Janus’s method manifestly is not. The image of Janus’s
method under a Lorentz transformation is of course the analogous method
for the image coordinate frame. Since Janus’s method is causal, this shows
that the phenomena appear to be causal from every coordinate frame. The
technical language discussed later describes this by saying they are effectively
causal. It is obvious that the inhabitants of a given Janus model cannot trans-
mit information backward in time, so by symmetry they cannot effectively
transmit information superluminally - in other words, FIN holds in the Janus
model. (See the discussion of effective notions later).

5 The Consistency of Free Will with Quan-

tum Mechanics

In 1952, David Bohm produced a well-known model for quantum mechan-
ics (including von Neumanns Projection Rule). This is contentious because
Bohm’s construction (as in fact he was well aware) does not share the rel-
ativistic invariance of the physics it explains. This means that in our lan-
guage it must only be what we have called a Janus model, rather than the
real explanation of the behavior of the world, since its images under Lorentz
transformations are different equally good explanations. The Free Will the-
orem shows in fact that this construction cannot be made relativistic.

Nevertheless, Bohms construction was a great achievement, because it is a
Janus model that establishes the consistency of quantum mechanics, includ-
ing the Projection Rule. In fact we can modify it so as to prove below the
strong result that these are also consistent with the free will of particles.

5.1 Exorcising determinism

The main point of hidden variable theories has perhaps been to restore deter-
minacy to physics. Our Free Will theorem is the latest in a line of argument
against such theories. However, the situation is not as simple as it seems,
since the determinacy of such theories can be conjured out of existence by a
simple semantic trick.

For definiteness we shall refer to Bohm’s theory, which is the best known
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and most fully developed one, although the trick is quite general. According
to Bohm, the evolution of a system is completely determined by certain real
numbers (his hidden variables), whose initial values are not all known to us.

What we do know about these initial values may be roughly summed up by
saying that they lie in a set S0 (more precisely, they will also have a prob-
ability distribution P0, which we temporarily ignore). An experiment might
conflict with some of the initial values, and so enable us to shrink the set S0,
say to St at time t. The exorcism trick is just to regard the whole set St of
current possibilities, rather than any supposed particular point of S0, as all
that actually exists at time t.

On this view, as t increases, St steadily shrinks, not, as Bohm would say,
because we have learned more about the position of the initial point, but
perhaps because the particles have made free choices. In the more precise
version(later), the probability distribution P0 on the set S0 will be succes-
sively refined to more and more concentrated distributions Pt as the time t
increases.

Bohm’s theory so exorcised, has become a non-deterministic theory, which,
however, still gives exactly the same predictions! In fact, the exorcised form
of Bohm’s theory is consistent with our assertion that particles have free
will. We need only suppose once again that a Janus uses appropriate truly
random devices to give the probability distributions Pt. If he does so, then
the responses of the particles in our spin experiments, for instance, will not
be determined ahead of time, and so they will be exhibiting free will, in our
sense.

As it stands, Bohm’s theory visibly contradicts FIN. But since the effects it
produces are just those of quantum mechanics, they are in fact Lorentz in-
variant. The exorcised form of Bohm’s theory therefore performs the service
of proving the consistency of quantum mechanics (including the Projection
Rule) with FIN and the Free Will property of particles.

6 Relativistic Forms of Concepts

The usual formulations of causality and transmission of information involve
the intuitive notions of space and time. Since our axiom FIN is a consequence
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of relativity, we must analyze these ideas so as to put them into relativistically
invariant forms, which we shall denote by prefixing the adjective effective.

(i) Effective causality. The notion of causality is problematic even in clas-
sical physics, and has seemed even more so in relativity theory. This is
because a universally accepted property of causality is that effects never
precede their causes, and in relativity theory time order is coordinate-
frame dependent.

A careful analysis, however, shows that the proper relativistic notion of
causality is really no more problematic than the classical one. This is
because all we have the right to demand is that the universe should ap-
pear causal from every coordinate frame. We call this propertyeffective
causality.

The Janus models that explained our twinned spin experiments are
causal, and therefore show that the phenomena are compatible with
effective causality. (The same is true of the spin EPR experiment.)

The situation is admittedly odd, since what is a cause in the Janus ex-
planation for one frame becomes an effect in that for another. However,
effective causality has the following nice properties:

(1) No observer can distinguish it from real causality (whatever that
means).

(2) By definition, it is Lorentz invariant.

(3) It is the strongest possible notion of causality that is Lorentz
invariant.

(4) It is provably compatible with SPIN,TWIN,FIN, and the Free Will
assumption.

(ii) Effective transmission of information. There is a similar problem of
extending the notion of transmission of information to the relativistic
case.

Obviously, we cannot invariantly say that information is transmitted
from a to b if a and b are space-like separated, since then b is earlier
than a in some coordinate frames. If information is really transmitted
from a to b, then this will appear to be so in all coordinate frames,
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which we shall express by saying that information is effectively trans-
mitted from a to b.

Many physicists believe that some kinds of information really are trans-
mitted instantaneously. We will discuss the fallacious argument that
suggests this in the next section.

(iii) Effective semi-localization A similar definition can help us understand
where the free will decision we have found is exercised. We shall say
that a phenomenon is effectively located in a certain (not necessarily
connected) region of space-time just when this appears to be so in every
coordinate frame.

Then it is clear that we cannot describe the outcome 00 or 11 to one of
our twinned spin 1 experiments as having been determined near a, since
in some frames it was known earlier near b. We can, however, say that
choice of 00 or 11 is effectively located in some neighborhood of the
pair a, b (i.e., a pair of neighborhoods about a and b). We encapsulate
the situation by describing the decision as effectively semi-localized.

As we already remarked in the Introduction, our assertion that the particles
make a free decision is merely a shorthand form of the more precise state-
ment that the Universe makes this free decision in the neighborhood of the
particles.

It is only for convenience that we have used the traditional theoretical lan-
guage of particles and their spins. The operational content of our theorem,
discussed in the digression on operational meaning of various terms earlier, is
that real macroscopic things such as the locations of certain spots on screens
are not functions of the past history of the Universe. From this point of
view it would be hard to distinguish between the pair of statements itali-
cized above.

We summarize our other conclusions:

(1) What happens is effectively causal.

(2) No information is effectively transmitted in either direction between a
and b.
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(3) The outcome is effectively semi-localized at the two sites of measure-
ment.

Our definitions of the effective notions have the great advantage of making
these three assertions obviously true. Although they are weaker than one
might wish, it is also obvious that they are in fact the strongest assertions of
their type that are relativistically invariant.

Warning - effective so-and-so, although it is relativistically invariant, is not
the same thing as invariant so-and-so. It would be inappropriate, for in-
stance, to describe the Janus explanations of our twinned spin experiments
as invariantly causal, since what is a cause in one frame becomes an effect
in another. The effective notions are more appropriately described as the
invariant semblances of the original ones. Effective causality, although it is
indeed a relativistically invariant notion, is not invariant causality - it has
merely the appearance of causality from every coordinate frame.

We close this section by emphasizing the strange nature of semi-localization.
We might say that the responses of the particles are only semi-free; in a
manner of speaking, each particle has just half a mind, because it is yoked
to the other. However, we continue to call their behavior free in view of the
ironic fact that it is only this yoking that has allowed us to prove that they
have any freedom at all!

What happens is paradoxical, but the Janus models, even though we don’t
believe them, show that it is perfectly possible; and experiments that have
actually been performed confirm it. So we must just learn to accept it, as we
accepted the earlier paradoxes of relativity theory.

7 On Relativistic Solecisms

Many physicists believe that certain kinds of information (quantum informa-
tion or phase information) really are transmitted instantaneously. Indeed,
this might almost be described as the orthodox view, since it follows from a
(careless) application of the standard formalism of quantum mechanics.

We shall explain the fallacious argument that leads to this conclusion for
the spin EPR case of a pair A,B of spin 1/2 particles in the singleton state
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∣∣↑Az 〉 ∣∣↓Bz 〉− ∣∣↓Az 〉 ∣∣↑Bz 〉. It says that when the measurement of A in direction z
yields spin up, the state is changed by applying the projection operator Pz⊗ I
to the singleton state, which annihilates the second term, so that the state
becomes

∣∣↑Az 〉 ∣∣↓Bz 〉 , in which B is spin down.

The word becomes in this statement is then misinterpreted to mean changes
at the instant of measurement, even though this is, of course, relativistically
meaningless. However, all that is really asserted is that if this measurement
finds A to be spin up, then if and when a similar measurement is also per-
formed on B, B will be found to be spin down.

The assertion that B is spin down (made after A has been found to be spin
up) is grammatically incorrect. We call it a relativistic solecism. It is impor-
tant to avoid making such mistakes, since they can lead to genuine errors of
understanding. How can we do so?

One easy trick is to use the correct tense for such assertions, which is often
the future perfect (will have). A grammatically correct version is that if and
when both measurements have been performed, they will have found that A
was spin up if and only if they will have found B to be spin down. This is a
Lorentz invariant way of stating exactly the same facts.

Figure 6 describes the situation.

Figure 6: A concludes what B will have found

An observer C whose past light cone contains both experiments can legiti-
mately say that A found spin up, B spin down. However, A can only say
that if the B measurement has been performed, it will have found spin down.
In this, the will looks forward from A to C, while the have looks backward
from C to B.
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Notice that this makes no mention of the relativistically non-existent notion
of instantaneity, and that (consequently) it works equally well for frames in
which the B measurement precedes the A one. In fact, it is independent of
frame. The avoidance of relativistic solecisms is a valuable habit to cultivate!

7.1 A Modest proposal

This line of thought naturally leads us to recommend our Modest Proposal for
the interpretation of states in quantum mechanics. According to this, what
is usually called the state is merely a predictor (with probabilities) of what
will happen if various experiments are performed(we note that despite the
commonly held view among physicists that the ray in Hilbert space contains
more information than probabilities of outcomes, Gleason’s theorem shows
that we can uniquely characterize rays by these probabilities). Even when
the prediction is that some assertion has probability 1, that assertion is still
contingent on the appropriate experiment being performed.

Thus if a triple experiment has found x → 1, y → 1, z → 0, we certainly
know that S2

x = S2
y = 1, but many physicists would say that we also know

S2
w = 1 for any other direction w perpendicular to z (since the probability

predicted for this assertion is 1). More modestly, we would say only that if
a measurement is made in direction w, it will find S2

w = 1.

To say, in these circumstances, that S2
w is already 1, is, in our view, to be

guilty of a simple confusion. After all, one does not say that an astronomical
event like an eclipse has already happened as soon as it has been predicted
with certainty.

We revert to the spin EPR case discussed above, supposing that a measure-
ment of A at time t produces spin up, giving

∣∣↑Ax 〉 ∣∣↓Bz 〉 for the state of the
pair, and

∣∣↓Bz 〉 for the state of B. Then we allow ourselves to say that A is
spin up, since the measurement has actually been performed, but not that
B is spin down at time t.

If the appropriate measurement of B is actually performed at time t, it of
course produces spin down. But (supposing that A and B are 5 light-minutes
apart), it will equally produce spin down if it is instead performed 1 minute
hence, at time t+ 1, while if it was performed already at time t?1, it already
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did produce that answer. Nothing about B changed at time t.

Those who would say more might not make any mistaken predictions, but
their opinions about what happens are not consistent with relativity theory,
unlike our more modest ones. As with our discussion of effective notions,
careful speech pays off - our assertions are obviously both true and relativis-
tically invariant, while stronger ones are not.

8 The Free Will Theorem is Robust

Our first versions of SPIN and TWIN were tacitly idealized; we now remove
some of this idealization. In practice, we expect to find deviations from these
axioms, for instance because the vectors x, y, z will only be nominally, or ap-
proximately, orthogonal, rather than exactly so; similarly w will at best be
only only nominally parallel to one of them, and again, the twinned pair
might only be nominally in the singlet state. Also, the two theories of quan-
tum mechanics and special relativity from which we derived our axioms,
might only be approximately true. In fact, general relativity is already a
more exact theory than special relativity. However, we may safely assume:

SPIN’: If we observe the squared spin in three nominally orthogonal direc-
tions, then the probability of a canonical outcome (i.e., j, k, l are 1, 0, 1 in
some order) is at least 1− εs.

TWIN’: If w, nominally in the same direction as x or y or z, yields the value
m, then the probability that m equals the appropriate one of j, k, l is at least
1− εt.

Then following the argument of the theorem, we define a function θ1(w) of
direction that behaves like a 101-function in all but a proportion 3εt + εs of
cases. For if w is nominally the same as y (say), we deduce as before that

θa(x, y?, z;α′) = k =εt m = θb(w?; β′)

where =εt means is equal to except in a proportion ε of cases..

Now if we fix on any possible values for α′ and β′ (which exist by the Free
Will assumption) and define θ1(w) to be θb(w?; β′), we find

(θ1(x), θ1(y), θ1(z)) =3εt (j, k, l) =εs 1, 0, 1
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in some order.

But the Lemma shows in fact that any function of direction must fail to
have the 101-property for at least one of 40 particular orthogonal triples (the
16 orthogonal triples of the Peres configuration and the triples completed
from its remaining 24 orthogonal pairs), so we have a contradiction unless
3εt + εs ≥ 1/40.

How big may we expect the epsilons to be? I am not an experimentalist,
but believe that the errors in angle will dominate the other errors, so that
the upper bounds we shall obtain by estimating them conservatively can be
relied upon.

Let us assume that x, y, z make angles α, β, γ with each other in cyclic order.
We can now use the standard quantum mechanical techniques given below
to determine upper bounds for the epsilons..

Suppose we make a sequence of measurements of properties with correspond-
ing projections P1, ..., Pn on a system in a pure state φ. Then the probability
that the properties all hold is

〈Pn · · ·P1φ, Pn · · ·P1φ〉 = 〈φ, P1 · · ·Pn · · ·P1φ〉 = tr(P1 · · ·Pn · · ·P1Pφ)

where Pφ is the projection onto the ray of φ. This becomes tr(P1 · · ·Pn · · ·P1ρ)
if the system is in a mixed state given by the density operator ρ.

In our case, for SPIN’ we have n = 3 and ρ = I/3, since we give equal weight
to each of the properties Px, Py, Pz that the squared spin is 0 in the nominal
directions x, y, z. The the probability of 000 for Px, Py, Pz is

tr(PxPyPzPyPxI/3) = tr(|x〉 〈x| |y〉 〈y| |z〉 〈z| |y〉 〈y| |x〉 〈x|)/3

=
1

3
cos2 α cos2 γ

Similarly, the probability of 010 is

tr(Px(I−Py)Pz(I−Py)PxI/3) = (cos2 β+cos2 α cos2 γ−2 cosα cos β cos γ)/3

We thus obtain as the sum of five such expressions:

(2 cos2 α + 2 cos2 β + 2 cos2 γ − 4 cosα cos β cos γ + cos2 α cos2 γ)/3
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for the probability of a noncanonical result when we observe directions x, y, z
in that order. If α, β, γ are all in the interval [π/2− δ, π/2 + δ], this gives

εs ≤ (6δ2 + 4δ3 + δ4)/3

Again, if w makes an angle φ with one of x, y, z, then the probability for the
non-canonical result01 or 10 is 2(sin2 φ)/3, so if φ is in the interval [−δ, δ],
then εt ≤ 2δ2/3. Thus,

3εt + εs ≤ 4δ2 + (4δ3 + δ4)/3

which is ≤ 1/800 if δ ≤ 1 degree. Also, for TWIN’, we have n = 2 and
ρ = I/3. Observations of a spin 1 particle (or two twinned particles) in two
directions w,w′ at angle φ give outcomes 10 or 01 with probability

tr(Pw(I − Pw′)PwI/3) + tra((I − Pw)Pw′(I − Pw)I/3) =
2

3
sin2 φ

All of this means that the non-canonical observations 000, 100, 010, 001, 111
for SPIN and 01, 10 for TWIN can be expected to occur less than once in 800
experiments, rather than at least once in every 40 experiments, as implied by
the functional hypothesis. A more reasonable bound for δ might be 1 minute,
giving the upper bound 1/2900000 for the probability of these non-canonical
results.

We remarked above that the change from special to general relativity made
no difference to our results - now is a good time to explain why. The main
difference between the two theories is that in a curved space-time one should
replace same direction by directions related by parallel transport in the TWIN
axiom. However, near the solar system, the curvature of space-time is so
small that it was extremely hard even to detect, so that any additional an-
gular errors caused by the special relativistic approximation will be utterly
negligible compared to the 1 degree or 1 minute we have assumed.

The same comment applies to the possible replacement of either general
relativity or quantum mechanics by some putatively more accurate theory,
provided this preserves the truth of SPIN’ and TWIN’ for some sufficiently
small epsilons.
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9 Historical remarks

In the 1960s the KochenSpecker (K-S) paradox and the Bell Inequality ap-
peared independently, both showing that certain types of hidden variable
theories are at variance with the predictions of quantum mechanics. The
K-S paradox showed that the so-called non-contextual hidden variable theo-
ries are impossible, while the Bell Inequality implied instead that those that
satisfy Bell locality are impossible. In the 1970s, Kochen showed via an EPR-
type twinning experiment for two spin 1 particles that in fact Bell locality
implied the non-contextuality condition.

The advantage of the K-S theorem over the Bell theorem is that it leads to an
outright contradiction between quantum mechanics and the hidden variable
theories for a single spin experiment, whereas the Bell theorem only produces
the wrong probabilities for a series of experiments. It has not been possible
to derive a version of the Free Will theorem from Bells inequalities.

The (untwinned) K-S paradox is very robust. There have also been improve-
ments on the number of directions needed for the K-S theorem. The original
version used 117 directions. The smallest known at present is a 31-direction
set. Subsequently, Peres found the more symmetric set of 33 that we have
used here because it allows a simpler proof than the 31-direction one.

In 1989, Greenberger, Horne and Zeilinger gave a new version of Kochen’s
1970’s form of the K-S paradox. They use three spin 1/2 particles in place
of our two spin 1 ones, and show that the Bell locality assumption leads to
an outright contradiction to quantum predictions, without probabilities. We
could prove the Free Will theorem using GHZ’s spin 1/2 triplets instead of
our spin 1 twins. The advantages of doing so are

(i) It shows that spin 1/2 particles are just as much free agents as are our
spin-1 ones.

(ii) The argument leading to a contradiction is simpler.

(iii) A version of the experiment has actually been carried out.

Nevertheless, we have given the twinned spin 1 version for the following
reasons:
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(i) The twinned spin 1 experiment was suggested by Kochen already in
the 1970’s.

(ii) Conceptually, it is simpler to consider two systems instead of three.

(iii) The K-S argument in its present version with 33 directions is now also
very simple.

(iv) An experiment with particles remote enough to verify the Free Will
theorem will probably be realized more easily with pairs than with
triples.

The experiments we described in discussing our theorem are so far only
gedanken-experiments. This is because our Free Will assumption requires
decisions by a human observer, which current physiology tells us takes a
minimum of 1/10 of a second. During such a time interval light will travel
almost 20, 000 miles, so the experiment cannot be done on Earth.

It is possible to actually do such experiments on Earth if the human choices
are replaced by computer decisions using a pseudo-random generator, as has
already been done for the EPR spin experiment - and suggested for the GHZ
experiment.

This delegation of the experimenter’s free choice to a computer program, still
leads to a Free Will theorem if we add the assumption that the particles are
not privy to the details of the computer program chosen. Note however that
replacing the human choice by a pseudo-random number generator does not
allow us to dispense with the Free Will assumption since free will is used in
choosing this generator! The necessity for the Free Will assumption is evi-
dent, since a determined determinist could maintain that the experimenters
were forced to choose the computer programs they did because these were
predetermined at the dawn of time.

10 The Theory of Ghirardi, Rimini and We-

ber

Ghirardi, Rimini and Weber have proposed a theory [GRW] that attempts
to explain the reduction of the state in quantum mechanics by an underly-
ing mechanism of stochastic hits. Their theory, as it stands, is visibly not
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relativistically invariant, but they hope to find a relativistic version. We
quote:

It is appropriate to stress two facts: the problem is still an open and
a quite stimulating and difficult one. However there seems to be some
possibility of carrying it on consistently.

The Free Will theorem shows that this hope cannot be realized, if we reject
as fantastic the possibility that the hits that control the particles’ behavior
also completely determine the experimenters’ actions.

This is because the response of particle a, say(or perhaps the possible free
decision (prompton) at an earlier time t0 that prompted this response-see
earlier proof of the theorem.), may depend only on hits in its past light cone,
which (if they physically exist) have already been incorporated in the infor-
mation α and β accessible to it. However, our proof of the Free Will theorem
shows that the particles response is not a function of this information.

Because the argument is rather subtle, we re-examine the relevant part of
the proof in detail.

Let α0 be the information from the hits that influences the behavior of par-
ticle a. Then by FIN, α0 cannot depend on the direction w since in some
frames this direction is only determined later. It may depend on x, y, z, but,
as our earlier discussion, we can write it as a function of x, y, z, and the
information α′0 contained in it that is not a function of x, y, z.

Similarly the information β0 from the hits that influence particle b′s behavior
must already be independent of x, y, z, and can be written as a function of w
and the information β′0 it contains that is not a function of w. We see that
this hit information α′0 and β′0 causes no problems - it is just a part of the
information α′ and β′ already treated in our proof.

Not only does this cover classically correlated information, such as signals
from Alpha Centauri, but it also shows that subtle non-local correlations
between the hits at a and b cannot help. We can even let both particles
be privy to all the information in α′ and β′. The only things we cannot do
are to let a be influenced by w or b by x, y, z (so breaking FIN), or to let
the hits that control the particles’ behavior also completely determine the
experimenters’ choice of directions, contradicting our Free Will assumption.
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10.1 Randomness can’t help

The problem has been thought to lie in determinism:

Taking the risk of being pedantic, we stress once more that from our
point of view the interest of Gisin’s theorem lies in the fact that it proves
that if one wants to consider nonlinear modifications of quantum me-
chanics one is forced to introduce stochasticity and thus, in particular,
the dynamics must allow the transformations of ensembles correspond-
ing to pure cases into statistical mixtures.

However, our argument is valid whether the hits are strictly determined (the
case already covered by Gisin) or are somehow intrinsically stochastic. In
either case, the GRW theory implies that the reduction is determined by the
hits and so contradicts the Free Will theorem.

To see why, let the stochastic element in a putatively relativistic GRW theory
be a sequence of random numbers (not all of which need be used by both
particles). Although these might only be generated as needed, it will plainly
make no difference to let them be given in advance. But then the behavior
of the particles(or of the appropriate promptons) in such a theory would
in fact be a function of the information available to them (including this
stochastic element) and so its explanation of our twinned spin experiment
would necessarily involve superluminal transmission of information between a
and b. From a suitable coordinate frame this transmission would be backward
in time, contradicting causality.

It is true that particles respond in a stochastic way. But this stochasticity
of response cannot be explained by putting a stochastic element into any
reduction mechanism that determines their behavior, because this behavior
is not in fact determined by any information (even stochastic information!)
in their past light cones.

10.2 Summary

We can summarize the argument by saying first, that the information (whether
stochastic or not) that the hits convey to a and b might as well be the same,
so long as it is not to break FIN by telling b about x, y, z or a about w, and
second, that then it might as well have been given in advance. Of course it
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is possible to let the particles’ behavior be a function of promptons, but this
merely passes the buck - even if we call these promptons hits, they must be
of a kind that cannot be determined by previous history, even together with
stochastic information.

The same argument shows, again assuming the experimenters’ free will, that
no relativistically invariant theory can provide a mechanism for reduction,
because that would determine a particles behavior, contradicting the fact
that it is still free to make its own decision. Moreover, we have seen that
the Free Will assumption is not needed for free state theories: relativistically
invariant theories that purport to provide answers at least to all our proposed
triple experiments cannot also provide a mechanism for reduction.

This prevents not only GRW, but any scientific theory of this traditional free
state type, from providing a relativistically invariant mechanism for reduc-
tion, even without the Free Will assumption. The theories that purport to
do so must deny one of SPIN, TWIN, FIN.

We remark that Albert and Vaidman [AV] have made another objection
to GRW - that its explanation of the Stern-Gerlach experiment does not
produce sufficiently fast reduction. Ghirardis response places part of the re-
duction quite literally in the eye of the beholder, which however leads to the
concordance problem of the next section (in its acute form).

11 Philosophical Remarks Related to the Free

Will Theorem

11.1 On Free Will

Let us first discuss the Free Will assumption itself. What if it is false, and
the experimenter is not free to choose the direction in which to orient his
apparatus? We first show by a simple analogy that a universe in which every
choice is really Hobson’s choice is indeed logically possible. Someone who
takes a friend to see a movie he has himself already seen experiences a kind
of determinacy that the friend does not. Similarly, if what we are experienc-
ing is in fact a second showing of the universe movie, it is deterministic even
if the first showing was not.
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It follows that we cannot prove our Free Will assumption - determinism,
like solipsism, is logically possible. Both the non-existence of free agents in
determinism and the external world in solipsism are rightly conjured up by
philosophers as consistent if unbelievable universes to show the limits of what
is possible, but we discard them as serious views of our universe.

It is hard to take science seriously in a universe that in fact controls all the
choices experimenters think they make. Nature could be in an insidious con-
spiracy to confirm laws by denying us the freedom to make the tests that
would refute them. Physical induction, the primary tool of science, disap-
pears if we are denied access to random samples. It is also hard to take
seriously the arguments of those who according to their own beliefs are de-
terministic automata!

We have defined free will to be the opposite of determinism despite the fact
that since Hume some philosophers have tried to reconcile the two notions -
a position called compatibilism. In our view this position arose only because
all the physics known in Hume’s day was deterministic, and it has now been
outmoded for almost a century by the development of quantum mechanics.

However, for the purposes of this discussion, we can bypass this hoary dis-
cussion, simply by saying that the only kind of free will we are discussing,
for both experimenters and particles, is the active kind of free will that can
actually affect the future, rather than the compatibilists’ passive variety that
does not.

11.2 Free versus Random?

Although we find ourselves unable to give an operational definition of either
free or random, we have managed to distinguish between them in our context,
because free behavior can be twinned, while random behavior cannot (a
remark that might also interest some philosophers of free will). Ghirardi
remarked that it follows from Gisin’s theorem that their hits must involve a
stochastic element in order to make the GRW theory relativistically invariant.
We have shown that what the hits really need is some freedom (to be precise,
that they must be at least semi-free). It is for reasons including these that
we prefer to describe our particles’ behavior as free rather than random,
stochastic, or indeterminate.
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11.3 Interpretation of Quantum Mechanics

We next describe our own thoughts on the interpretation of Quantum Me-
chanics, which have been informed by the Free Will theorem even when not
strictly implied by it.

We first dismiss the idea, still current in popular accounts although long
discounted by most physicists, that a conscious mind is necessary for reduc-
tion. It should suffice to say that there has never been any evidence for this
opinion, which arose only from the difficulty of understanding the reduction,
but has never helped to solve that problem. The evidence against it is the
obvious Concordance Problem - if reduction is in the mind of the observer,
how does it come about that the reductions produced by different observers
are the same? This problem is particularly acute for our proposed type of
experiment, in which the fact that one observer is on Earth and the other on
Mars causes relativistic difficulties.

Von Neumann’s Cut Theorem has sometimes been used to support this belief,
since it shows that any single observer can explain the facts by imagining he
performs the reduction, but used in the other direction it actually proves that
there can be no evidence for this belief, since the facts are equally explained
by supposing the cut takes place outside him. The belief is akin to solipsism
and has the same drawbacks - it does not respect the symmetry that the
facts are invariant under interchange of observers.

11.4 Textural Tests

What, then, causes the reduction to take place? The Cut Theorem shows
that current quantum mechanics, being linear, cannot itself decide this ques-
tion. We believe that the reduction is a real effect that will only be explained
by a future physics, but that current experiments are already informative.
Every experimentalist knows that it is in fact extremely difficult to maintain
coherence - it requires delicate experiments like those of Mach-Zehnder inter-
ferometry. Consideration of such experiments has led us to believe that the
criterion that decides between wave-like and corpuscular behavior is what we
may call the texture of the surroundings. Roughly speaking, only sufficiently
smooth textures allow it to behave as a wave, while rough ones force it to
become a particle.
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Exactly what this means depends on the circumstances in a way that we do
not pretend to understand. Thus in the interferometric context, the half-
silvered beam-splitters permit wave-like behavior, so count as smooth, while
detectors force the collapse to a particle, i.e., are rough.

However, the Free Will Theorem tells us something very important, namely
that although a rough texture forces some decision to be made, it does not
actually choose which decision that is. We may regard such a texture as a
tribunal that may require a particle to answer, but may not force it to make
any particular answer. A future theory may reasonably be expected to de-
scribe more fully exactly which textures will cause reductions, but the Free
Will Theorem shows that no such theory will correctly predict the results of
these reductions:

Textural tests may demand but not command.

11.5 Closing remarks

It is our belief that the assumptions underlying the earlier disproofs of hid-
den variables remain problematic. They involve questionable notions such as
elements of reality, counterfactual conditionals, and the resulting unphysical
kinds of locality. Indeed, in his careful analysis of these theories, Redhead
produces no fewer than ten different varieties of locality.

One advantage of the Free Will theorem is that by making explicit the nec-
essary Free Will assumption, it replaces all these dubious ideas by a simple
consequence, FIN, of relativity. A greater one is that it applies directly to the
real world rather than just to theories. It is this that prevents the existence
of local mechanisms for reduction.

The world it presents us with is a fascinating one, in which fundamental
particles are continually making their own decisions. No theory can predict
exactly what these particles will do in the future for the very good reason
that they may not yet have decided what this will be! Most of their deci-
sions, of course, will not greatly affect things - we can describe them as mere
ineffectual flutterings, which on a large scale almost cancel each other out,
and so can be ignored. I strongly believe, however, that there is a way our
brains prevent some of this cancellation, so allowing us to integrate what
remains and producing our own free will.
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The mere existence of free will already has consequences for the philosophy
of general relativity. That theory has been thought by some to show that the
flow of time is an illusion. We quote only one of many distinguished authors
to that effect: The objective world simply is, it does not happen (Hermann
Weyl). It is remarkable that this common opinion, often referred to as the
block universe view, has come about merely as a consequence of the usual
way of modeling the mathematics of general relativity as a theory about the
curvature of an eternally existing arena of space-time. In the light of the
Free Will theorem this view is mistaken, since the future of the universe is
not determined. Theodore Roosevelt’s decision to build the Panama Canal
shows that free will moves mountains, which implies, by general relativity,
that even the curvature of space is not determined. The stage is still being
built while the show goes on.

Einstein could not bring himself to believe that God plays dice with the world,
but perhaps we could reconcile him to the idea that God lets the world run
free.

12 Theory #1- Information-theoretic postu-

lates for quantum theory

12.1 Introduction

By all standards, quantum theory is one of the most successful theories
of physics. It provides the basis of particle physics, chemistry, solid state
physics, and it is of paramount importance for many technological achieve-
ments. So far, all experiments have confirmed its universal validity in all
parts of our physical world. Unfortunately, quantum theory is also one of
the most mysterious theories of physics.

In the text books, quantum theory is usually introduced by stating sev-
eral abstract mathematical postulates: States are unit vectors in a complex
Hilbert space; probabilities are given by the Born rule; the Schrodinger equa-
tion describes time evolution in closed systems, to name just some of them.
As many students recognize - and experienced researchers over years of use
sometimes tend to forget - these postulates seem arbitrary and do not have a
clear meaning. It is true that they work very well and are in accordance with
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experiments, but why are they true? How come that nature is described by
these counterintuitive laws of complex Hilbert spaces?

What at first sight seems to be a physically vacuous, philosophical question
is in fact of high relevance to theoretical physics, in particular for attempts
to generalize quantum theory. There have been several attempts in the past
to construct natural modifications of quantum theory - either to set up ex-
perimental tests of quantum physics, or to adapt it in a way which allows for
easier unification with general relativity. However, modification of quantum
theory turned out to be a surprisingly difficult task.

A historical example is given by Weinberg’s non- linear modification of quan-
tum theory. Only a few months after his proposal was published, Gisin
demonstrated that the resulting theory has an unexpected poisonous prop-
erty: it allows for superluminal signaling. It can be shown in general that
other proposals of this kind must face similar fate. It seems as if the usual
postulates of quantum theory are intricately intertwined, in a way such that
modification of one postulate makes the combination of the others collapse
into a physically meaningless - or at least problematic - theory.

In this section, we propose a way to overcome this situation: we consider four
natural information-theoretic postulates that have a clear physical meaning,
which when taken together, turn out to be equivalent to the usual postulates
of quantum theory. In particular, these postulates do not refer to complex
numbers, Hilbert spaces, or operators, but use only notions which make sense
in terms of classical probability. They can loosely be stated as follows:

1. The state of a composite system is characterized by the statistics of
measurements on the individual components.

2. All systems that effectively carry the same amount of information have
equivalent state spaces.

3. Every pure state of a system can be transformed into every other by
continuous reversible time evolution.

4. In systems that carry one bit of information, all measurements which
give non-negative probabilities are allowed by the theory.

Below, we show how to derive the usual formalism of quantum theory from
these postulates. Surprisingly, the complex numbers and Hilbert spaces pop
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out even though they are not mentioned in the postulates. This will also al-
low us to gain a better understanding of the usual quantum formalism, and
resolve some of the mystery around ad hoc postulates like the Born rule.

Our result suggests an obvious method to obtain natural modifications of
quantum theory: drop one of the postulates that we propose, and work out
mathematically what the resulting set of theories looks like. In contrast to the
usual formulation of quantum theory, we know for sure that the resulting al-
ternative theories exist and are consistent - for example, they do not allow for
superluminal signaling as in Weinberg’s approach. In a way, those theories
are quantum theory’s closest cousins : they are not necessarily formulated in
terms of Hilbert spaces, but they are physically and conceptually as close to
quantum theory as possible.

As the simplest possible modification, suppose we drop the word continuous
from Postulate 3 - that is, we allow for discrete reversible time evolution.
Unsurprisingly, another solution in addition to quantum theory appears: in
this additional theory, states are (discrete) probability distributions, and re-
versible time evolution is given by permutations of outcomes. This is exactly
classical probability theory in the discrete case. It turns out to be the unique
additional solution in this case.

This modern approach to reconstruction was pioneered by Hardy (see The-
ory #2). Clearly, the attempt to axiomatize quantum theory dates back
much further, including attempts by Birkhoff and von Neumann, Mackey, or
Ludwig. From a more mathematical angle, there has been extensive work on
classifying the state spaces of operator algebras.

Every axiomatization has its own benefits. We think that the main advan-
tage of this work - as described below - is its parsimony : our postulates
are rather weak, possibly even close to optimal. Thus, one may expect that
dropping one or two of the postulates will allow us to discover other theories
that share many interesting features with quantum theory, but still describe
a different kind of physics.
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12.2 What do we mean by quantum theory?

When talking about axiomatizing quantum theory, there is sometimes con-
fusion about what we actually mean by it. The term quantum theory arouses
association with many different aspects of physics that are usually treated in
quantum mechanics text books, such as particles, the hydrogen atom, three-
dimensional position and momentum space and many other things.

However, a more careful definition should apply here. As an analogy, consider
the theory of statistical mechanics. This theory consists of an application of
probability theory to mechanics, which means in particular that abstract
probability theory can be studied detached from statistical physics - and this
has been done in mathematics for a very long time.

Similarly, we can consider quantum mechanics to be a combination of an
abstract probabilistic theory - quantum theory - and classical mechanics.
Abstract quantum theory can be studied detached from its mechanical real-
ization; the main difference to the previous example lies in the historical fact
that the development of quantum mechanics preceded that of abstract quan-
tum theory. In this terminology, we understand by emphquantum theory the
statement that

• states are vectors (or density matrices) in a complex Hilbert space

• probabilities are computed by the Born rule or the trace rule

• the possible reversible transformations are the unitaries,

• measurements are described by projection operators, and thus observ-
ables are given by self-adjoint matrices.

The classical mechanics part, on the other hand, determines the type of
Hilbert space to consider (such as L2(R3)), the choice of Hamiltonians H
which generate the time evolution, U(t) = exp(iHt), and the choice of initial
states of that time evolution. This conceptual distinction has proven particu-
larly useful in the development of quantum information theory. It seems that
this distinction was always implicit when expressing the desire to quantize
any classical physical theory, that is, to combine it with abstract quantum
theory.

Thus, since we are aiming for a reconstruction of abstract quantum theory,
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we will not refer to position, momentum, or Hamiltonians in this discussion.
Instead, we only use the notions of abstract probability theory: of events,
happening with certain probabilities, and of transformations modifying the
probabilities. Furthermore, we restrict our analysis to finite-dimensional sys-
tems: we argue that the main mystery is why to have a complex Hilbert
space at all. If this is understood in finite dimensions, it seems only a small
conceptual (though possibly mathematically challenging) step to guess the
correct infinite-dimensional generalizations.

Since we presuppose probabilities as given, we also do not address the ques-
tion where these probabilities come from. Hence we also ignore the question
about what happens in a quantum measurement, and all other interpreta-
tional mysteries encompassing the formulation of quantum theory. Instead,
we restrict ourselves to ask how the mathematical formalism of quantum the-
ory can be derived from simpler postulates, and what possible modifications
of it we might hope to find in nature. Summarizing:

Questions that we would like to address:

• How can we understand (that is, derive) the complex Hilbert space
formalism from simple assumptions on probabilities?

• What other probabilistic theories are conceptually closest to quantum
theory?

Questions that we do not address:

• What is probability?

• The measurement problem: What happens to a state during/after a
measurement?

• How can we interpret quantum mechanics?

In order to formulate our postulates, we work with a simple and general
framework encompassing all conceivable ways to formulate physical theories
of probability: this is the framework of generalized probabilistic theories.

43



12.3 Generalized Probabilistic Theories

Classical probability theory (abbreviated CPT henceforth) is used to describe
processes which are not deterministic. Classical probability theory (abbrevi-
ated CPT henceforth) is used to describe processes which are not determin-
istic. This is achieved by assuming a particular mathematical structure: a
probability space with a unique fixed probability measure, which is used to
assign probabilities to all random variables. The framework of generalized
probabilistic theories generalizes this approach in a simple way. We will now
give a brief introduction to this framework, built on general considerations
of what constitutes an experiment in physics.

In order to set up a common picture, we consider Figure 7

Figure 7: General experimental set up. From left to right there are the
preparation, transformation and measurement devices. As soon as the release
button is pressed, the preparation device outputs a physical system in the
state specified by the knobs. The next device performs the transformation
specified by its knobs (which in particular can be do nothing). The device on
the right performs the measurement specified by its knobs, and the outcome
(x or x̄) is indicated by the corresponding light.

as the model for what constitutes a physical experiment. This is just an
illustration: the events that we describe are arbitrary, and may as well be
natural processes that happen without human or technological intervention.

The main idea (Figure 1) is that physical systems can cause objective events -
for example clicks of detectors. We say that two systems are in the same state
ω if all outcome probabilities of all possible measurements are the same. In
order to test this empirically, we always assume that we can prepare a phys-
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ical system in a given state as often as we want. That is, we may think of a
preparation device which produces a physical system in a particular state.

12.3.1 A. States and measurements

Single outcomes of measurements are called effects, and are denoted by up-
percase letters such as E. The probability of obtaining outcome E, if mea-
sured on state ω, will be denoted E(ω). This way, effects become maps from
states to probabilities in [0, 1].

What can we say about the set of all possible states ω in which a given sys-
tem can be prepared? Suppose we have two preparation devices; one of them
prepares the system in some state ω, the other one prepares it in some state
φ. Then we can use these devices to construct a new device, which tosses a
coin, and then prepares either state ω with probability p ∈ [0, 1], or state φ
with probability 1− p. We denote this new state by

ω′ := pω + (1− p)φ

Clearly, if we apply a measurement on ω′, we get outcome E with probability

E(ω′) = pE(ω) + (1− p)E(φ)

Thus, by this construction, we see that states ω become elements of an affine
space(an affine space is what is left of a vector space after you’ve forgotten
which point is the origin), and effects E are affine maps. The set of all possi-
ble states - called the state space S - will be a subset of this affine space. We
have just seen that ω ∈ S and φ ∈ S imply pω + (1− p)φ ∈ S if 0 ≤ p ≤ 1;
that is, state spaces are convex sets(let S be a vector space over the real
numbers, or, more generally, some ordered field. This includes Euclidean
spaces. A set C in S is said to be convex if, for all x and y in C and all t in
the interval [0, 1], the point (1− t)x+ ty is in C. In other words, every point
on the line segment connecting x and y is in C).

In principle, state spaces can be infinite-dimensional (and in fact, in many
physical situations, they are). However, in this discussion, we will only
consider finite-dimensional state spaces. Then, states ω are determined by
finitely many coordinates, and we may use this to construct a more con-
crete representation of states. Denote the dimension of a state space S by
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d. Then, by choosing d affinely independent(an affine combination is a linear
combination in which the sum of the coefficients is 1 - just as members of a
set of vectors are linearly independent if none is a linear combination of the
others, so also they are affinely independent if none is an affine combination
of the others) effects E1, ..., Ed, the probabilities E1(ω), ..., Ed(ω) determine
ω uniquely. We now use the representation

ω =


1

E1(ω)
E2(ω)

...
Ed(ω)

 =


1
ω1

ω2
...
ωd

 ∈ S ⊂ (R)d+1 (1)

The choice of E1, ......., Ed is arbitrary, subject only to the restriction that
they are affinely independent. We call a set of effects with this property
fiducial, and we refer to E1(ω), ......., Ed(ω) as fiducial outcome probabilities.
The component ω0 := 1 has been introduced for calculational convenience:
it allows us to write the affine effects E as linear functionals on the larger
space (R)d+1. It will also turn out to be particularly useful in calculations
involving composite state spaces.

In the following, we will assume that state spaces S are topologically closed
and bounded, i.e. compact(a topological space is compact if every open cover
of X has a finite subcover. In other words, if X is the union of a family of
open sets, there is a finite subfamily whose union is X. A subset A of a topo-
logical space X is compact if it is compact as a topological space with the
relative topology (i.e., every family of open sets of X whose union contains
A has a finite subfamily whose union contains A). The extremal points of
the convex set S will be called pure states ; these are states ω which cannot
be written as mixtures pϕ+ (1− p)ϕ′ of other states ϕ 6= ϕ′ with 0 < p < 1.
It follows from the compactness of S that every state can be written as a
convex combination of at most d+ 1 pure states.

Measurements with n outcomes are described by a collection of n effects
E1, E2, ...., En with the property E1(ω) + E2(ω) + ... + En(ω) = 1 for all
states ω. This ex- presses the fact that outcome i happens with probability
Ei(ω), and the total probability is one. Note that two effects E and F can
only be part of the same measurement if E(ω) + F (ω) ≤ 1 for all states
ω. Sets of fiducial effects (as introduced above) do not necessarily have this
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property. A single effect E is always part of a measurement with two out-
comes E and Ē, where Ē(ω) := 1− E(ω).

Figure 8 gives some examples of convex state spaces.

Figure 8: Examples of convex state spaces: a) is a classical bit, b) and c)
are classical 3- and 4-level systems, d) is a quantum bit, e) is the projection
of a qubit, f) and g) are neither classical nor quantum. Note that quantum
n-level systems for n ≥ 3 are not balls.

First, consider a classical bit, which is described within CPT. We can think of
a coin which shows either heads or tails; in general, it can be in one of those
configurations with some probability. The probability p of showing heads de-
termines the state uniquely, since the tails probability must be 1− p. Thus,
p ∈ [0, 1] is a fiducial probability; recalling (1), we can represent states as
ω = [1, p]T . This yields a one-dimensional state space, with two pure states
[1, 0]T and [1, 1]T , corresponding to coins which deterministically show heads
or tails. It is depicted in Figure 8a.

Similarly, classical n−level systems have states which correspond to prob-
ability distributions p1, ......., pn. Since pn = 1 − (p1 + p2 + .... + pn−1),
the numbers p1, ......., pn−1 are fiducial outcome probabilities, yielding states
ω = [1, p1, ....., pn−1]T . Geometrically, the resulting state spaces are simplices.
They are depicted in Figure 8b) and c) for n = 2 and n = 3.

Quantum systems look very different: as it is well- known, states of quantum
2−level systems, i.e. qubits, can be parametrized by a vector ~r ∈ R3 with
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|~r| ≤ 1, such that every density matrix can be written ρ = (1 +~r ·~σ)/2, with
~σ = (σx, σy, σz) the Pauli matrices. Thus we can use the vector [1, r′x, r

′
y, r
′
z]
T

to represent states, where r′i := (1 + ri)/2 is the probability to measure spin
up in i−direction. This state space is the famous (slightly reparametrized)
Bloch ball, cf. Figure 8d).

Figure 8e) shows a state space which is a projection of the Bloch ball: it
corresponds to the effective state space that we obtain if, for some reason,
spin measurements in z−direction are physically impossible to implement,
with states ω = [1, r′x, r

′
y]
T . The square state space in Figure 8f) describes

a system for which there exist two independent effects, say X and Y , that
can yield probabilities X(ω) and Y (ω) in [0, 1] arbitrarily and independently
from each other. States will be of the form ω = [1, ωx, ωy]

T ,with ωx = X(ω)
and ωy = Y (ω).

Consider the two yes-no-measurements which correspond to the effects X
and Y ; we can interpret these as spin measurements in two orthogonal di-
rections, with yes-outcome X or Y for spin up, and no-outcome X̄ or Ȳ for
spin down. If we perform either one of these measurements on the state in
the square ω = (1, 1, 1), then we will get the yes-outcome with unit proba-
bility - and this is true for both measurements. If we consider the analogous
measurements on the circle state space, we see that the corresponding be-
havior becomes impossible: if one of the spin measurements yields outcome
yes with certainty, then the other spin measurement must give outcome yes
with probability 1/2. This follows from r2

x + r2
y ≤ 1.

Thus, the circle state space shows a form of complementarity, which is not
present in the square state space. As this example illustrates, the state space
of a physical system can tell us everything about its information-theoretic
properties. Given a description of the state space S, we can also determine
the set of all linear functionals which map states to the unit interval [0, 1],
that is, the candidates for possible effects. However, not all of them may
be possible to implement in physics: maybe some of them are forbidden,
similarly as superselection rules forbid some superpositions in quantum me-
chanics. Therefore, to every given state space SA, there is a set of allowed
effects which are interpreted as those that can actually be physically per-
formed.
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We introduce some notions which will be useful later: A set of states ω1, ...., ωn
is called distinguishable if there is a measurement with outcomes represented
by effects E1, ......., En, such that Ei(ωj) = δij, which is 1 if i = j and 0
otherwise. The interpretation is that we can build a device which perfectly
distinguishes the different states ωj. Given a physical system A, we define
the capacity NA as the maximal size of any set of distinguishable states
ω1, ...., ωn ∈ SA. A measurement which is able to distinguish NA states (that
is, as much as possible) will be called complete.

For a quantum state space, NA equals the dimension of the underlying com-
plex Hilbert space. We also use the notation KA := dim(SA) + 1; this is the
dimension of the sur- rounding linear space that carries SA. For a qubit, for
example, we have NA = 2, but KA = 4. In quantum theory, KA = N2

A equals
the number of independent real parameters in a density matrix (dropping
normalization). In classical probability theory, we always have KA = NA.

12.3.2 B. Transformations

A transformation is a map T which takes a state to another state. Which
transformations are actually possible is a question of physics. However, there
are certain minimal assumption that every transformation must necessarily
satisfy in order to be physically meaningful in the context of convex state
spaces. First, transformations must respect probabilistic mixtures - that is,

T (pω + (1− p)ϕ) = pT (ω) + (1− p)T (ϕ)

This is because both sides of the equation can be interpreted as the result
of randomly preparing ω or ϕ (with probabilities p respectively 1 − p) and
applying the transformation T . Thus, transformations (from one system to
itself ) are linear maps which map a state space S into itself.

If both T and T ?1 are physically allowed transformations, we call T reversible.
The set of reversible transformations on a state space SA is a group GA. For
physical reasons, we assume that GA is topologically closed, hence a compact
group (it may be a finite group). A topological group is a group G together
with a topology on G such that the group’s binary operation and the group’s
inverse function are continuous functions with respect to the topology. A
topological group is a mathematical object with both an algebraic structure
and a topological structure. Thus, one may perform algebraic operations, be-
cause of the group structure, and one may talk about continuous functions,
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because of the topology. A compact group is a topological group whose
topology is compact. Compactness is not easy to describe precisely in an
intuitive manner; in some sense it says that the topology allows the space to
be considered as small (compactness is a kind of topological counterpart to
finiteness of sets), even though as a set it may be quite large. Moreover, more
intuitive characterizations of compactness are often dependent on additional
properties of the topological space to be valid; the following description as-
sumes the space is a metric space, so that ”closeness” of points has meaning.
Then compactness means that whenever one chooses infinitely many sample
points from the space, some of the samples must eventually get arbitrarily
close to at least one point of the space. This could be because some point
is itself sampled infinitely many times (as would necessarily happen if the
space were finite), but a more significant possibility is that the point itself is
not in the sample, but that any neighborhood of the point, however small,
does contain infinitely many sample points.

Reversible transformations map a state space bijectively(a map is called bi-
jective if it is both one-to-one and onto itself - hence they are symmetries of
the state space. For example, in quantum theory, reversible transformations
are the unitary conjugations, ρ 7→ UρU †. In the Bloch ball representation of
the qubit (as in Figure 8d)), these maps are represented as rotations, such
that the group of reversible transformations is isomorphic to SO(3).

However, as this example also shows, not all symmetries are automatically
allowed reversible transformations: a reflection in the Bloch ball is a symme-
try, but it is not an allowed transformation (in the density matrix picture, it
would correspond to an anti-unitary map).

In summary, for what follows, a physical system A is specified by three math-
ematical objects: the state space SA, the group of reversible transformations
GA (which is a compact subgroup of all symmetries of SA), and a set of phys-
ically allowed effects. The latter will not be given a particular notation, but
we assume that the set of allowed effects is topologically closed. For obvious
physical reasons, if E is an allowed effect and T ∈ GA, then E ◦ T is an
allowed effect; similarly, convex combinations of allowed effects are allowed.
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12.3.3 C. Composite systems

If we are given two physical systems A and B, we would like to define a
composite system AB which is also a physical system in the sense described
above, with its own state space SAB , group of reversible transformations
GAB , and set of allowed effects.

In contrast to quantum theory, the framework of general probabilistic theories
allows many different possible composites for two given systems A and B.
Every possible composite AB has a set of minimal physical assumptions that
it must satisfy:

• If ωA ∈ SA and ωB ∈ SB are two local states,then there is a distin-
guished state ωAωB ∈ SAB which is interpreted as the result of prepar-
ing ωA and ωB independently on the subsystems A and B.

• If EA and EB are local allowed effects on A and B, then there is a distin-
guished allowed effect EAEB on AB which is interpreted as measuring
EA on A and EB on B independently, yielding the total probability
that outcome EA happens on system A, and outcome EB happens on
system B.

• This intuition is mathematically expressed by demanding that

EAEB(ωAωB) = EA(ωA)EB(ωB)

where both EAEB and ωAωB are affine in both arguments. This also
formalizes the physical assumption that the temporal order of the local
preparations respectively measurements is irrelevant.

From the previous point, we can infer that we can represent independent local
preparations ωAωB and measurement outcomes EAEB by tensor products:

EAEB ≡ EA ⊗ EB , ωAωB ≡ ωA ⊗ ωB

Consider the joint state space SAB, which is contained in a linear space AB.
We have inferred that

A⊗B ⊆ AB

For the dimensions of these spaces, we obtain

KAKB ≤ KAB
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Now consider two different measurements (for simplicity with two outcomes)
EB, ĒB := 1B − EB and FB, F̄B := 1B − FB where 1B denotes the trivial
effect on system B which yields unit probability on every normalized state.
We can think of an agent Bob, holding system B, who may decide freely
(say, randomly in a way which is uncorrelated with A) whether to perform
measurement EB, ĒB or FB, F̄B.

Suppose that Alice (holding system A) performs some measurement after
Bob has chosen and performed his measurement on a bipartite state ωAB.
The marginal probability that she obtains (not knowing Bob’s outcome) is
the same in both cases:

EA ⊗ 1B(ωAB) = EA ⊗ EB(ωAB) + EA ⊗ ĒB(ωAB)

= EA ⊗ FB(ωAB) + EA ⊗ F̄B(ωAB)

The same holds with the roles of A and B reversed. We have recovered
the no-signalling property : Bob cannot send information to Alice merely by
choosing his local measurement (and vice versa). Moreover, we have proven
that Alice locally observes the reduced state ωA := IdA⊗1B(ωAB) (note that
IdA is a linear transformation, while 1B is a linear functional). This state is
uniquely characterized by the equation

EA(ωA) = EA ⊗ 1B(ωAB)

or all functionals (in particular, all allowed effects) EA.

For physically meaningful composites AB, we should demand that reduced
states ωA, ωB of all bipartite states ωAB ∈ SAB are valid local states them-
selves. Instead, we will demand something which is stronger and contains this
as a special case. Suppose that Alice and Bob share ωAB and Bob performs
a measurement and obtains outcome EB. Knowing this outcome leaves a
conditional state ωEB

A at Alices side, which by elementary probability theory
satisfies

EA(ωEB
A ) =

EA ⊗ EB(ωAB)

1A ⊗ EB(ωAB)
(2)

We demand that ωEB
A ∈ SA for all allowed effects EB and all ωAB ∈ SAB.

The reduced state ωA can be written

ωA = λωEB
A + (1− λ)ωĒB

A
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with λ = 1A ⊗ EB(ωAB); thus, ωA ∈ SA by convexity.

In some situations, this condition is automatically satisfied, namely if all
effects on A and B are allowed (recall that not all effects need to be physically
possible to implement; above, we have discussed that possibly only a subset
of effects might be physically allowed). The proof will also illustrate that the
cone of unnormalized states is a useful concept.

Lemma 1. Suppose that A and B are state spaces such that all effects are
allowed. Then, the inclusion of conditional states in the local state spaces
follows directly from the fact that the composite state space AB contains all
product states and effects.

Proof. Define the cone of unnormalized states A+ on A by

A+ := {λωA |ωA ∈ SA, λ ≥ 0}

Since 1A(λω) = λ for ω ∈ SA, a vector ω ∈ A+ is a normalized state, i.e.,
ω ∈ SA, iff 1A(ωA) = 1.

The cone of unnormalized effects is

A+ := {λEA |EA(ωA) ∈ [0, 1] for all ωA ∈ SA}

Since we have said that all effects are allowed, every linear map EA : A→ R
with EA(ω) ∈ [0, 1] is an allowed effect. The set A+ contains all multiples of
those. Both sets A+ and A+ are closed convex cones, where cones refers to
the fact that if x is in the set, then λx is also in the set for all λ ≥ 0.

It is now easy to see that A+ is the dual cone (A+)∗ of A+, where

(A+)∗ ≡ {E : A→ R |E(ω) ≥ 0 for all ω ∈ A+}

Since (A+)∗∗ = A+, we get also that A+ is the dual cone of A+; in other
words,

A+ = {ω ∈ A |E(ω) ≥ 0 for all E ∈ A+}
Recall the definition of the conditional state in (2). It follows directly from
this definition that EA(ωEB

A ) ≥ 0 for all allowed effects EA, hence for all
EA ∈ A+. But then, we must have ωEB

A ∈ A+. Since 1A(ωEB
A ) = 1, we get

ωEB
A ∈ SA. The same reasoning holds for B instead of A. �
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Our state spaces also carry a group of reversible transformations. If GA ∈ GA
is a reversible transformation on A, and GB ∈ GB one on B, it is physically
clear that we should be able to accomplish both transformations locally inde-
pendently; i.e., GA⊗GB ∈ GAB. We will assume that composite state spaces
satisfy this condition. One of our postulates below will be the postulate of
local tomography(quantum tomography or quantum state tomography is the
process of reconstructing the quantum state (density matrix) for a source of
quantum systems by measurements on the systems coming from the source).
This is an additional condition on composites AB which is sometimes, but
not always imposed in the framework of general probabilistic theories: It
states that

global states are uniquely determined by the statistics of local measure-
ment outcomes.

That is, if ωAB and ϕAB are global states in SAB, then EA ⊗ EB(ωAB) =
EA ⊗ EB(ϕAB) implies that ωAB = ϕAB. But the part of AB which is seen
by product effects EA ⊗EB is exactly A⊗B. That is, the postulate of local
tomography is equivalent to AB = A⊗B, and thus to

KAB = KAKB

Thus, we get some kind of tensor product rule for composite state spaces,
including 1AB = 1A ⊗ 1B. Note that this is not as strong as the tensor
product rule of quantum theory (which specifies the global states uniquely,
giving the local Hilbert spaces). Classical probability theory satisfies this
rule as well. Suppose that A is a classical bit, and B is a classical 3−level
system. Then the composite AB is classical 6−level system, i.e. KAB = 6,
while KA = 2 and KB = 3. We get KAB = KAKB, which is equivalent to
local tomography.

To see that we are still far beyond quantum theory, suppose that A and B
are both the square state space from Figure 8f). Then, define the global state
space SAB as the set of all vectors x ∈ AB with EA ⊗ EB(x) ∈ [0, 1] for all
effects EA and EB, and 1A ⊗ 1B(x) = 1 (normalization). It turns out that
this state space contains so-called PR-box states that violate the Bell-CHSH
inequality by more than any quantum states. The set of states SAB itself
turns out to be the eight-dimensional no-signalling polytope(in elementary
geometry, a polytope is a geometric object with flat sides, which exists in
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any general number of dimensions) for two parties with two measurements
and two outcomes each. The fact that these state spaces can have stronger
non-locality than quantum theory has been extensively studied and is a main
reason for the popularity of general probabilistic theories in quantum infor-
mation.

It is also important to keep in mind that the conditions above do not deter-
mine the composite state space SAB uniquely, even if SA and SB are given.
For example, if SA and SB are quantum state spaces, then the usual com-
posite quantum state space is a possible composite SAB, but there are other
possibilities: one of them is to define SAB as the set of unentangled global
states. It satisfies all conditions mentioned above.

12.3.4 D. Equivalent state spaces

In classical physics, choosing a different inertial coordinate system does not
alter the physical predictions of Newtonian mechanics. A similar statement
is true for convex states spaces.

Consider a system A, given by a state space SA, a group of transformations
GA, and some allowed effects. Suppose that B is another system, and suppose
that there is an invertible linear map L : A→ B (where now A and B denote
the linear spaces carrying the state spaces) such that

• SB = L(SA)

• EA is an allowed effect on A if and only if EA ◦ L−1 is an allied effect
on B

• GB = L ◦ GA ◦ L−1

Then the systems A and B are physically indistinguishable from each other
- they describe the same type of system, just parametrized in different ways.
We will then call A and B equivalent. This notion is obviously an equivalence
relation.

An example of two equivalent state spaces is given by a qubit B and the three-
ball A. That is, the set of states SB is the set of 2×2−density matrices, with
the unitaries (acting by conjugation) as the group of reversible transforma-
tions GB . The state space A is defined as the set of states ω = [1, ~r]T , where
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~r s a vector with Euclidean norm |~R| ≤ 1 (as in Figure 8d)); the group of
transformations is GA = SO(3). The corresponding linear map establishing
the equivalence is L(ω) := (r0 · 1 +~r ·~σ)/2 where r0 denotes the first compo-
nent of ω.

Thus, in our endeavour to derive quantum theory, all we have to do is to prove
that all state spaces satisfying our postulates are equivalent to quantum state
spaces.

12.4 The Postulates

In this section, we describe our postulates and explain their physical mean-
ing. We start with an axiom on composite state spaces that has already been
mentioned in Subsection C above:

Postulate 1 (Local tomography). The state of a composite system AB is
completely characterized by the statistics of measurements on the subsys-
tems A,B.

The name local tomography comes from the interpretation that state tomog-
raphy on composite systems can be done by performing local measurements
and subsequently comparing the outcomes to uncover correlations. As al-
ready mentioned, this postulate is equivalent to KAB = KAKB, where KA

denotes the number of degrees of freedom needed to specify an unnormalized
state on A.

Our second postulate formalizes a property of physics that physicists intu-
itively take for granted, and that is in fact used very often in performing
real experiments. Imagine some physical three-level system (that is, with
three perfectly distinguishable states and no more: N = 3) that we can ac-
cess in the lab (it might be quantum, classical, or describable within another
theory). Now suppose that, for some reason, we have a situation where we
never find the system in the third of the three distinguishable configurations
on performing a measurement.

To have a concrete example, consider a quantum system that consists of three
energy levels which can be occupied by a single particle. Suppose the sys-
tem is constructed such that the third energy level is actually never occupied
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(maybe because the corresponding energy is too high).

The consequence that we expect is the following: We effectively have a two-
level system. This is definitely true for quantum theory, and classical prob-
ability theory, but it is not necessarily true for other generalized probabilis-
tic theories. In general, for any number of levels (perfectly distinguishable
states) N , we expect to have a corresponding state space SN . And the col-
lection of states ω ∈ SN which has probability zero to be found in the N−th
level upon measurement should be equivalent to SN−1.

In actual physics, this property is used all the time: We apply effective de-
scriptions of physical systems, by ignoring impossible configurations. Qubits
manufactured in the lab usually actually correspond to two levels of a sys-
tem with much more energy levels, set up in a way such that the additional
energy levels have probability close to zero to be occupied.

One may argue that physics would be in severe trouble if this property did
not hold: we would then possibly have to take into account unobservable
potential configurations even if they are never seen. They would modify the
resulting state space that we actually observe. The following subspace postu-
late formalizes this idea. It is actually somewhat stronger than our discussion
motivates: it also implies that, for every N , there is a unique type of N−level
system SN .

The notions of complete measurements and equivalent state spaces were de-
fined earlier in Subsections A and D.

Postulate 2 (Equivalence of subspaces). Let SN and SN−1 be systems with
capacities N and N − 1, respectively. If E1, ...., EN is a complete measure-
ment on SN , then the set of states ω ∈ SN with EN(ω) = 0 is equivalent to
SN−1.

The notion of equivalence needs some discussion. Postulate 2 states the
equivalence of SN−1 and

S ′N−1 := {ω ∈ SN |EN(ω) = 0} (3)

Denote the real linear space which contains SN by VN ; define VN−1 analo-
gously, and set V ′N−1 := span(S ′N−1). Equivalence means first of all that there
is an invertible linear map L : VN−1 → V ′N−1 such that L(SN−1) = S ′N−1. But
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it also means that transformations and measurements on one of them can be
implemented on the other. We now describe in more detail what this means.

Every effect E on SN defines an effect on S ′N−1 by restricting it to the corre-
sponding linear space, resulting in EN � V ′N−1. Equivalence implies that the
resulting set of effects is in one-to-one correspondence with the set of effects
on SN−1, as described earlier in Subsection D.

The transformations on S ′N−1 are defined analogously. To be more specific,
define Ḡ ′N−1 as the set of transformations in SN that preserve S ′N−1 (or,
equivalently, V ′N−1):

Ḡ ′N−1 := {T ∈ GN |TS ′N−1 = S ′N−1}

The set of reversible transformations G ′N−1 is defined as the restriction of all
these transformations to S ′N−1 (or rather, as linear maps, to V ′N−1):

G ′N−1 = {T � V ′N−1 |T ∈ Ḡ ′N−1}

Equivalence means that

G ′N−1 = L ◦ GN−1 ◦ L−1

Concretely, if U ∈ GN−1 is any reversible transformation on a state space of
capacity N−1, then the transformation Ũ := L◦U ◦L−1 is a reversible trans-
formation on S ′N−1, i.e., Ũ ∈ G ′N−1. As such, it can be written Ũ = T � S ′N−1

for some reversible transformation T ∈ GN .

It is important to note that we don’t have full information on T - that is, our
postulate does not specify T uniquely, given Ũ . By definition, T preserves
S ′N−1 and therefore the subspace V ′N−1, but we do not know how it acts on the
complement of that subspace - it might act as the identity there, or it might
have a non-trivial action. Postulate 2 does not specify this. In general, there
may (and will) be different T which implement the same Ũ on the subspace.

Using Postulate 2 iteratively, we see that state spaces of smaller capacity are
included (in the sense described above) in those of larger capacity; symboli-
cally,

S1 ( S2 ( S3 ( .......

58



Our next postulate describes the idea that any actual physical theory of
probabilities must allow for ample possibilities of reversible time evolution.
In situations where no information is lost - assuming that this situation ap-
plies to closed systems -, these systems A must evolve reversibly, that is,
according to some subgroup of the group of reversible transformation GA.
Clearly, if this group is trivial (contains only the identity), physics becomes
frozen: no reversible time evolution is possible at all.

Postulate 3 proclaims a minimal amount of transformational richness for re-
versible time evolution: as a minimal requirement, it states that the group of
reversible transformations should at least act transitively on the pure states.
That is, if we prepare a pure state ω, and ϕ is another (desired) pure state
on the same state space, then there should be a reversible transformation T
which maps ω to ϕ:

Postulate 3 (Symmetry). For every pair of pure states ω, ϕ ∈ SA, there is
a reversible transformation T ∈ GA such that Tω = ϕ.

It is easy to see that Postulate 3 is actually true for quantum theory: every
pure state can be mapped to every other by some unitary. This example also
shows that Postulate 3 is rather weak: in quantum theory, even tuples of per-
fectly distinguishable pure states ω1, ...., ωn can be mapped to other tuples
ϕ1, ...., ϕn by suitable unitaries. This is a much higher degree of symmetry
than what is directly demanded by Postulate 3.

There is one postulate remaining. As we discussed earlier in Subsection A,
given some state space SA, not all effects (i.e. linear functionals on A which
are non-negative on SA) may be physically allowed. Similarly as for superse-
lection rules, it might be true that some effects are impossible to implement
(an example would be a state space that allows only noisy measurements,
and no outcome whatsoever occurs with probability zero).

In order for our axiomatization to work, we need to postulate that this strange
behavior does not happen: that is, all mathematically well-defined effects
correspond in fact to allowed measurement outcomes. As it turns out, it is
sufficient to postulate this for a 2−level system S2 (i.e. a generalized bit)
only. In combination with the other postulates, it follows then for all other
state spaces.
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Postulate 4 (All measurements allowed). All effects on S2 are outcome
probabilities of possible measurements.

From a mathematical point of view, this postulate could also be regarded as
a background assumption: structurally, it says that the class of considered
theories is the class of models where the effects are automatically taken as
the dual of the states. In other words, it means that whenever we refer to
measurements in the other postulates, we actually refer to collections of ef-
fects without considering the possibility that additional physical conditions
might prevent their implementation. It is interesting to note that Postulate
4 can be replaced by a different formulation. It refers to completely mixed
states, which are states that are in the relative interior of the convex set of
states:

Postulate 4’ If a state is not completely mixed, then there exists at least
one state that can be perfectly distinguished from it.

12.5 How Quantum Theory Follows from the Postu-
lates

We are now ready to carry out the reconstruction of quantum theory (QT)
from the postulates. As it turns out, there will be another solution to Pos-
tulates 1.-4., which is classical probability theory (CPT). By this we mean
the theory where the states are finite probability distributions, and the re-
versible transformations are the permutations. Figure 8a)-c) shows what
classical probability distributions look like in terms of convex sets: they are
simplices.

Therefore, we will now prove the following theorem:

Theorem 1 (Main Result). The only general probabilistic theories, satisfy-
ing Postulates 1.-4. above, are equivalent to one of the following two theories:

• Classical probability theory (CPT): The state space is the set of
probability distributions,

SN = {(p1, ......, pN) | pi ≥ 0,
∑
i

pi = 1}
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and the reversible transformations GN are the per- mutations on {1, ..., N}.

• Quantum theory (QT): The state space SN is the set of density
matrices on N−dimensional complex Hilbert space,

SN = {ρ ∈ CN×N | ρ ≥ 0, T rρ = 1}

and the group of reversible transformations GN is the projective unitary
group, that is, the set of maps ρ 7→ UρU−1 with U †U = 1.

In both cases, all effects must be allowed. Working out the set of effects (that
is, linear functionals on states yielding values between 0 and 1), one easily
recovers the usual measurements of CPT and QT. In this discussion, we will
not give the full reconstruction but will only try to give an easily accessible
summary of the reconstruction, its main ideas, and some interesting obser-
vations in the course of the argument.

Before starting to do this, let us discuss a simple observation regarding The-
orem 1. In order to rule out CPT - and hence to single out QT uniquely -
we can tighten Postulate 3 by replacing it with the following modification:

Postulate 3C (Continuous symmetry.) For every pair of pure states ω, ϕ ∈
SA, there is a continuous family of reversible transformations {Gt}t∈[0,1] such
that G0ω = ω and G1ω = ϕ.

In other words, every pure state can be continuously moved into every other
pure state. A statement like this is expected to be true in physical systems
with continuous reversible time evolution - which is the case that seems to
be true, to good approximation, in our universe. The consequence is:

The only general probabilistic theory that satisfies Postulates 1, 2, 3C,
and 4, is quantum theory (QT).

12.5.1 A. Why bits are balls

In QT, the state space of a 2−level system (that is, a generalized bit, or
qubit, S2) is a three-dimensional ball, the Bloch ball. In CPT, the (classical)
bit instead is a line segment, as shown in Figure 8. In fact, this is a ball,
too: it is a one-dimensional unit ball. However, quantum N−level systems
with N ≥ 3 are not balls: they contain mixed states in their topological

61



boundary(the boundary of a subset S of a topological space X is the set of
points which can be approached both from S and from the outside of S -
more precisely, it is the set of points in the closure of S, not belonging to the
interior of S).

We will now show that all theories satisfying our postulates must have Eu-
clidean ball states spaces as generalized bits. The dimension of this ball will
not be determined yet; this will be done later on.

Our argument proceeds in two steps: first, we show that the state space S2

cannot have lines in its boundary; that is, we exclude the fact that S2 has
proper faces as in the left picture of Figure 9. Using convex geometry lan-
guage, we prove that S2 is strictly convex.

Figure 9: Like every compact convex set, the bit state space S2 contains
pure states ωe that are exposed - that is, there is an effect Ee such that ωe
is the unique state where this effects attains value 1. Due to Postulate 2,
this proves that S1 contains a single state only. Now suppose S2 had lines in
its boundary, as in the left picture. Then we would analogously find another
effect E that attains value 1 on a non-trivial face. Consequently, Postulate 2
would tell us that S1 contains infinitely many states - a contradiction. Thus,
S2 must be strictly convex as in the right picture. Euclidean ballness follows
from group representation theory.

As a second step, we show that the symmetry property, Postulate 3, enforces
S2 to be a Euclidean ball. The reason for this comes from group represen-
tation theory: since the group of transformations acts linearly, there is an
inner product such that all transformations are orthogonal with respect to
it.
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Lemma 2. The state space of the generalized bit S2 is strictly convex.

Proof. Consider any effect E with 0 ≤ E(ω) ≤ 1 for all states ω ∈ S2.
Then this effect belongs to a two-outcome measurement (as defined earlier in
Subsection A), consisting of the two effects E and 1−E. It is important to
understand that the level sets {x |E(x) = c} are hyperplanes(a hyperplane
of an n−dimensional space is a flat subset with dimension n − 1 - by its
nature, it separates the space into two half spaces) of codimension(difference
between dimension of space and subspace) 1, due to linearity of E. This
is true for all state spaces S. On the other hand, given some hyperplane,
we can construct a corresponding effect E (with some freedom of offset and
scaling) that has this hyperplane as its level set.

Like every compact convex set, S2 has at least one pure state ωe which is
exposed - that is, there is a hyperplane which touches the convex set only
in ωe and in no other point. Thus, we can construct an effect Ee such
that the corresponding hyperplane is {x |Ee(x) = 1}, i.e., Ee(ω) = 1, and
minω∈S2Ee(ω) = 0. But then, (Ee,1−Ee) distinguishes two states perfectly,
which is the maximal number for a bit - in other words, this is a complete
measurement.

Now Postulate 2 says that

{ω ∈ S2 | (1− Ee)(ω) = 0} = {ω ∈ S2 |Ee(ω) = 1}
= {ωe} ' S1

In other words, S1 is a trivial state space which contains only a single state.
Now suppose that S2 would have lines in its boundary, and therefore non-
trivial faces, as depicted on the left-hand side of Figure 9. Then we would
find a supporting hyperplane that touches S2 in infinitely many states. Con-
structing a corresponding effect E and repeating the argument from above,
we would analogously argue that S1 must contain infinitely many states. This
is a contradiction. �

Balls do not have lines in their boundary, but there are many other strictly
convex sets - for example, imagine a droplet-like figure. However, Postulate
3 says that there is lots of symmetry in the state space S2: all pure states
(which we now know means all states in the topological boundary) are con-
nected by reversible transformations.
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From this, one can prove that

Lemma 3. The state space S2 is equivalent to a Euclidean ball (of some
dimension d2 := K2 − 1).

Recall that we denote the dimension of the set of unnormalized states in SN
by KN ; therefore, the set of normalized states has dimension KN−1. We will
not prove Lemma 3 here, but only sketch where it comes from. An important
notion turns out to be the maximally mixed state. On any state space SN ,
define µN as a mixture over the group of transformations,

µN :=

∫
GN
Gω dG

where ω ∈ SN is any pure state. This is an integral over the invariant measure
of the group(). It follows from the connectedness of all pure states (Postulate
3) that µN does not depend on the choice of the pure state ω. Moreover,
µN turns out to be the unique state which is invariant with respect to all
reversible transformations,

GµN = µN for all G ∈ GN

All states ω ∈ SN span an affine space of dimension KN − 1. We can now
consider µN to be the origin of that affine space(remember - an affine space
or affine linear space is a vector space that has forgotten its origin); then,
reversible transformations G ∈ GN act linearly; they preserve the origin. By
group representation theory, there is an inner product on that space which
is invariant with respect to all reversible transformations. As a consequence,
all pure states have the same norm with respect to this inner product. In
the case of a bit, i.e., N = 2, this yields a sphere, containing all pure states,
with the maximally mixed state µN as the center of the ball.

12.5.2 B. The multiplicativity of capacity

So far, we know that of we combine two state space A and B, the joint
state space has dimension KAB = KAKB - this is due to Postulate 1, local
tomography, as discussed earlier in Subsection C. However, we do not yet
know whether the same equality is true for capacity N . An important step
in the derivation of quantum theory is to prove this. As it turns out, a key
insight is that the maximally mixed state must be multiplicative: if we have
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two state spaces A and B, then the maximally mixed state on the composite
system AB (assuming our postulates) is

µAB = µA ⊗ µB

This is easily proved from the fact that µAB must in particular be invariant
with respect to all local reversible transformations, leaving µA ⊗ µB as the
only possibility.

A further key lemma is the following: Lemma 4. If there are perfectly
distinguishable pure states ω1, ..., ωn ∈ SN that average to the maximally
mixed state, i.e.,

µN =
1

n

n∑
i=1

ωi

then n = N .

Proof. Clearly, N ≥ n, since N is the maximal number of perfectly dis-
tinguishable states. On the other hand, let ϕ1, ..., ϕn be a set of perfectly
distinguishable pure states on SN , and E1, ..., EN the corresponding effects,
i.e., Ei(ωj) = δij. Since 1 =

∑n
i=1EI(µN), there must be some k such that

Ek(µN) ≤ 1/N . By Postulate 3, there is a reversible transformation G ∈ GN
with Gωi = ϕk. Thus

1

N
≥ Ek(µN) = Ek ◦G(µN) =

1

n

n∑
i=1

Ek ◦G(ωi)

≥ 1

n
Ek ◦G(ω1) =

1

n

Thus, we also have N ≤ n, proving the claim. �

In quantum theory, the maximally mixed state on an N−dimensional Hilbert
space is the density matrix

µN =
1N
N

=
1

N

N∑
i=1

|ψi〉 〈ψi|

if |ψ1〉 , ..., |ψN〉 denotes an orthonormal basis of CN - that is, if these are pure
states that are perfectly distinguishable. This is in agreement with Lemma
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4. Moreover, we can prove that an analogous formula holds for every theory
satisfying our Postulates 1.-4.:

Lemma 5. For every N , there are N pure perfectly distinguishable states
ω1, ...., ωN ∈ SN such that

µN =
1

N

N∑
i=1

ωi

We only sketch the proof here: For N = 1, the statement is trivially true,
since S1 contains only a single state. For N = 2, we know that SN is a
Euclidean ball, with the maximally mixed state in the center. Thus, taking
ω1 and ω2 as two antipodal points on the ball (say, north and south pole),
we get

µ2 =
1

2
(ω1 + ω2)

and these states are perfectly distinguishable by an analogue of a quantum
spin measurement. Now suppose we combine k of these generalized bit state
spaces S2 into a joint state space, S⊗k2 := S2⊗ ....⊗S2. Then the maximally
mixed state on the resulting state space is

µS⊗k
2

= µ2 ⊗ ......⊗ µ2 =
1

2k

∑
i1,...,ik=1,2

ωi1 ⊗ ....⊗ ωik

Since in locally tomographic composites, products of pure states are pure,
the ωi1⊗....⊗ωik are all pure states, and they are perfectly distinguishable by
product measurements. Thus, Lemma 4 shows that the capacity of S⊗k2 must
be NS⊗k

2
= 2k. This proves Lemma 5 for all N which are a power of two. For

all other N , the lemma is proved by using the fact that SN is embedded in
some S⊗k2 for some k large enough due to Postulate 2, and then constructing
the maximally mixed state on SN in a clever way from that on S⊗k2 .

Now we can just tensor together the equations

µNA
=

1

NA

NA∑
i=1

ωAi and µNB
=

1

NB

NB∑
i=1

ωBi

and we obtain

µNAB = µNA
⊗ µNB

=
1

NANB

NA∑
i=1

NB∑
j=1

ωAi ⊗ ωBj
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and Lemma 4 tells us that capacity must be multiplicative:

Lemma 6. NAB = NANB

Why is this equation so important? As noticed by Hardy, it allows us to draw
a surprising conclusion. Every state space SN has unnormalized dimension
KN . Since KAB = KAKB and NAB = NANB for all state spaces A and B
due to our postulates, we get the following facts:

• The function N 7→ KN mapsnaturalnumbersto natural numbers, and
is strictly increasing due to Postulate 2.

• It satisfies KN1,N2 = KN1KN2 , and K1 = 1

These simple conditions imply that there must be an integer r ≥ 1 such that

KN = N r (4)

Now recall that the dimension of the bit state space (which is a Euclidean
ball) is d2 := K2 − 1. It follows that

d2 ∈ {1, 3, 7, 15, 31, .....}

since K2 = 2r for some r ∈ N. Thus, we see in particular that the bit
state space is an odd -dimensional Euclidean ball. The next subsection will
deal with the case d2 = 1; as we will see, this case corresponds to classical
probability theory.

C. How to get classical probability theory (CPT)

Suppose that d2 = K2 − 1; that is, the generalized bit is a one-dimensional
ball, as shown in Figure 8. A line segment like this describes a classical bit.
What can we say about N−level systems for N ≥ 3 in this case? Equation
(4) tells us that the parameter r must be r = 1, and thus

KN = N

for all N , not only for N = 2.

ChooseN perfectly distinguishable pure states ω1, ..., ωN ∈ SN and E1, ..., EN
the corresponding effects with Ei(ωj) = δij as well as

∑
iEi = 1. It is easy
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to see that the states must be linearly independent; since K = N , they span
the full unnormalized state space.

Thus, every state ω can be written ω =
∑N

i=1 αiωi with αi ∈ R and
∑

i αi =
1(ω) = 1. But then, Ej(ω) = αj ≥ 0, and so this decomposition of ω is in
fact a convex decomposition.

In other words, the full state space SN is a convex combination of ω1, ..., ωN
- that is, a classical simplex as in Figure 8a)c). These are exactly the state
spaces of CPT. Moreover, since for N = 2, we can permute the two pure
states due to Postulate 3. We can use the subspace postulate, that is, Postu-
late 2, to conclude that every pair of pure states on SN can be interchanged.
These transpositions generate the full permutation group, which must thus
be the group of reversible transformations GN . We have therefore proven the
following:

In the case d2 = 1, we get classical probability theory as the unique
solution of Postulates 1.-4.

D. The curious 7-dimensional case

Let us now consider the remaining cases, i.e. the cases where the dimension
of the Euclidean bit ball is K2 − 1 ∈ {3, 7, 15, 31, ....}. The generalized bit
carries a group of reversible transformations G2; by our background assump-
tions mentioned earlier in Subsection B, this must be a topologically closed
matrix group. Closed subgroups of Lie groups are Lie groups; therefore, G2

is itself a Lie group. Since it maps the unit ball into itself, it must be a
subgroup of the orthogonal group.

Denote by G0
2 the connected component(a connected space is a topologi-

cal space that cannot be represented as the union of two or more disjoint
nonempty open subsets - the maximal connected subsets (ordered by inclu-
sion) of a nonempty topological space are called the connected components
of the space ) of G2 containing the identity matrix. We have

G0
2 ⊆ SO(d2)

We know from Postulate 3 that for every pair of pure states ω, ϕ ∈ S2, there
is a reversible transformation T ∈ G2 with Tω = ϕ. In other words, G2 acts
transitively(a group G acts transitively on a set S if for any x, y ∈ S, there
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is some g ∈ G such that gx = y) on the unit sphere, that is, the surface of
the unit ball. It can be shown that this implies that G0

2 is itself transitive on
the unit sphere.

At first sight, it seems that this enforces G0
2 to be the full special orthogonal

group SO(d2), but this intuition is easily seen to be wrong. For example, the
group of 4× 4−matrices{(

re U imU
−imU reU

) ∣∣∣∣U ∈ SU(2)

}
acts transitively on the surface of the 4−dimensional unit ball, even though it
is a proper subgroup of SO(4). The set of all compact connected Lie matrix
groups which act transitively on the unit sphere has been classified. In gen-
eral, there are many possibilities. Fortunately, however, we have additional
information: we know that the bit ball has odd dimension d2 := K2 − 1. It
turns out that there remain only two possibilities:

• If d2 6= 7, then G0
2 = SO(d2)

• If d2 = 7, then G0
2 is either SO(7) or of the form MG2M

−1, where M
is a fixed orthogonal matrix, and G2 is the fundamental representation
of the exceptional Lie group G2.

In fact, d2 = 7 appears in our list of possible dimensions of the bit ball, be-
cause 7 = 23− 1. In our endeavor to derive quantum theory from Postulates
1.-4., we will have to show that all the cases d2 ∈ {7, 15, 31, ...} violate at
least one postulate. Thus, we see that the case d2 = 7 has to be (and is)
treated separately.

The appearance of d2 = 7 as a special case seems like an almost unbe-
lievable coincidence. Is there some deeper significance to this case? Might
there be some interesting unknown theory waiting to be discovered which has
7−dimensional balls as bits and the exceptional Lie group G2 as the analogue
of local unitaries? We do not know.

12.5.3 Subspace structure and 3-dimensionality

Having discussed the case of classical probability theory with bit ball dimen-
sion d2 = 1, the remaining cases are

d2 ∈ {3, 7, 15, 31, ...}
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We will now show that all dimensions d2 ≥ 7 are incompatible with the
postulates, leaving only the case d2 = 3 - that is, the Bloch ball of quantum
theory. For the rest of this section, we ignore the special case d2 = 7 with
G0

2 = MG2M
−1 and G2 the exceptional Lie group; it can be ruled out by an

analogous argument.

In the following, we will parametrize the single bit state space as

S2 =

{(
1
ω̂

) ∣∣∣∣ ω̂ ∈ Rd2 , ‖ω̂‖ ≤ 1

}
The maximally mixed state becomes µ = (1, 0)T . Let n := (1, 0, ..., 0)T , then
we have two pure states ω1 := (1, n)T and ω2 := (1,−n)T , corresponding to
the north and south pole of the ball. These states are pure, and they are
perfectly distinguished by the measurement consisting of the two effects (for
ω ∈ S2)

E1(ω) := (1 + 〈ω̂, n〉)/2
E2(ω) := (1− 〈ω̂, n〉)/2

We know that if we combine two bits into a joint state space, we obtain a
state space of capacity four:

S4 = S2 ⊗ S2

Thus, the product states ωi ⊗ ωj with i, j = 1, 2 represent four perfectly
distinguishable states in S4, and the corresponding product effects Ei ⊗ Ej
constitute a complete measurement. Recall, however, that the joint state
space that we sloppily denoted S2 ⊗ S2 is not fully known so far - all we
know is that the surrounding linear space is the tensor product of the local
spaces. At this stage, we do not yet have a complete description of the set
of all global states S4.

Using the subspace postulate twice, i.e. Postulate 2, we obtain that the set
of states ω with (E1 ⊗ E1 + E2 ⊗ E2)(ω) = 1 is again equivalent to a single
bit. This turns out to be a surprisingly restrictive requirement that we are
now going to exploit. Denote this set of states by F (it is a face of the state
space S4), then

F = {ω ∈ S4 | (E1 ⊗ E1 + E2 ⊗ E2)(ω) = 1} ' S2
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In the following, we will label the two bits by indices A and B for conve-
nience. The group G0

2 = SO(d2) contains a subgroup Gs2 which leaves the
axis containing north and south pole invariant, i.e.

Gs2 := {G ∈ G2 |Gω1 = ω1 and Gω2 = ω2} ' SO(d2 − 1)

If R ∈ SO(d2 − 1), then its action as an element of Gs2 is(
1, ω(1), ...., ω(d2)

)T 7→ (
1, ω(1), R

(
ω(2), ...., ω(d2)

))T
Suppose we apply one transformation of this kind on each part of a bipartite
state ω locally; that is, a transformation GA ⊗GB with GA, GB ∈ Gs2. Then
we have (E1⊗E1 +E2⊗E2)(ω) = 1 if and only if (E1⊗E1 +E2⊗E2)(GA⊗
GB)(ω) = 1. Thus, this transformation leaves the face F invariant:

(GA ⊗GB)F = F

We know that the dimension of the linear span of F is d2 + 1, since it is
equivalent to S2. We will now explore in more detail how the transformations
GA ⊗GB act on the face F . In particular, we are interested in the structure
of invariant subspaces.

First, consider a single bit. Its unnormalized states are carried by a real
vector space A = Rd2+1 that we can decompose in the following way:

A = R ·


1
0
...
0

⊕ R ·


0
1
...
0

⊕ A′
where A′ denotes the set of all vectors with first two components zero.Since
µ = (1, 0, ..., 0)T and Gµ = µ, as well as ω1 = (1, 1, 0, ..., 0)T and Gω1 = ω1

for all G ∈ Gs2, these three subspaces are all invariant.

Consequently, the vector space which carries two bits, AB ≡ A⊗B, contains
the subspace A′ ⊗ B′ which is invariant with respect to all transformations
GA⊗GB for GA, GB ∈ Gs2. This defines an action of SO(d2−1)×SO(d2−1)
on the subspace A′ ⊗B′.

With a bit of work, one can show that the face F contains at least one state
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ω which has non-zero overlap with A′ ⊗ B′. Denote the projection of that
vector onto this subspace by ωA′⊗B′ . We know that every (GA⊗GB)(ω) is a
valid state in the face F , and its component in the aforementioned subspace
is (GA ⊗ GB)(ωA′⊗B′). Now imagine we apply all the local transformations
GA⊗GB to the vector ωA′⊗B′ , and we are interested in the orbit - that is, in
the set of all vectors that we can generate this way.

If d2 ≥ 4, then the group SO(d2?1) has a nice property in terms of group
representation theory: It is irreducible. That is, its action on Cd2−1 does not
leave any non-trivial subspaces invariant. This allows us to draw an impor-
tant conclusion: it implies that the product group SO(d2 − 1)× SO(d2 − 1)
is also irreducible. But then, the orbit (GA ⊗ GB)(ωA′⊗B′) must span the
full space A′ ⊗B′, which has dimension (d2 − 1)2 - this is a very large orbit.
In fact, it is too large for the subspace postulate: above, we have concluded
from Postulate 2 that the span of the face F (which is preserved by those lo-
cal transformations) must have dimension d2 + 1, which is less than (d2− 1)2

if d2 > 3. Thus, we obtain a contradiction: if the bit ball has dimension
d2 ∈ {7, 15, 31, ....}, it is impossible to combine two bits into a joint state
space which satisfies all our postulates.

As it turns out, this is not true if d2 = 3: the group SO(d2 − 1) = SO(2)
leaves the span of (1, i)T invariant; that is, SO(2) is reducible. Thus, this
case is not ruled out by the reasoning above. In group-theoretic terms, this
reducibility is related to the fact that SO(2) is Abelian. In other words, the
fact that rotations commute in 3 − 1 dimensions can be seen as a possible
reason of the fact that the Bloch ball is 3−dimensional.

Lemma 7. The dimension of the bit ball must be d2 = 3.

We have thus uncovered a group-theoretic explanation why the smallest
non-trivial quantum systems have three mutually incompatible, independent
components and not more. Due to Postulate 4, we can find all possible mea-
surements on this state space: all effects (that is, linear functionals) which
yield probabilities in the interval [0, 1] correspond to outcome probabilities of
possible measurements. It is easy to see that these effects are in one-to-one
correspondence with the quantum measurements (POVMs) on a single qubit.

Furthermore, we know that the group of reversible transformations contains
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SO(3), the rotations of the Bloch ball, which correspond to the unitary trans-
formations on a qubit. At this point, however, we do not yet know whether
G2 = SO(3) or G2 == O(3).

12.5.4 F. Quantum theory on N-level systems for N ≥ 3

In the previous section, we have derived quantum theory for single bits. It
remains to show that our postulates also predict quantum theory for all
N−level systems with N ≥ 3. As before, we only sketch the main proof
ideas.

For a single bit in state (1, ω̂)T , we can obtain the usual representation as
a density matrix by applying a linear map L : R4 → C2×2

sa , where the latter
symbol denotes the real vector space of self-adjoint complex 2× 2−matrices.
This map L is defined by linear extension of

L(ω) := (1 + ω̂ · ~σ)/2

where ~σ = (σx, σy, σz) denotes the Pauli matrices. The representation that we
obtain (applying L in a suitable way to effects and transformations as well)
is equivalent in the sense of Subsection D to the Bloch ball representation.

If we have the state space S4 = S2 ⊗ S2 of two bits, we can use the map
L ⊗ L to represent states ω ∈ S4 by self-adjoint 4 × 4−matrices L ⊗ L(ω).
Recall that we have constructed a face F of S4 in the previous subsection.
Analyzing F in a bit more detail, one can show that it contains a family of
pure states ωu, where u ∈ [0, π), which are mapped by L⊗ L onto

L⊗ L(ωu) = |ψu〉 〈ψu|

where
|ψu〉 = cos

u

2
|0〉 〈0|+ sin

u

2
|1〉 〈1|

for some orthonormal basis {|0〉 , |1〉}. This is an entangled quantum state
with Schmidt coefficients cos (u/2) and sin (u/2). Choosing u appropriately,
they can attain any value between 0 and 1. Thus, by applying local unitaries
(which corresponds to the SO(3)−rotations of the local balls), we can gen-
erate all pure quantum states.

Denoting S ′4 := L⊗ L(S4), we have proven the following:
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Lemma 8. S ′4 contains all pure 2−qubit quantum states as pure states.

The next step is somewhat tricky: we have to show that there are no further
(non-quantum) states in S ′4. The idea is to show that all quantum effects are
allowed effects on S ′4. Then, if there were additional non-quantum states in
S ′4, some of these effects would give negative probabilities, which is impossi-
ble.

We know that the product effects are allowed on S4. Applying the transfor-
mation L⊗ L, some of the corresponding effects in S ′4 are the maps

ρ 7→ Tr(P1 ⊗ P2ρ)

where P1 and P2 are one-dimensional projectors. If T ∈ G4 is any reversible
transformation on S4, denote the corresponding transformation on S ′4 by
T ′ ∈ G ′4. It maps states ρ to T ′(ρ). Suppose we could show the equation

Tr(P1 ⊗ P2T
′(ρ)) = Tr((T ′)−1(P1 ⊗ P2)ρ) (5)

Then we would be done: due to Postulate 3, transformations T ′ ∈ G ′4 can
map every pure product state to every other pure state, in particular, to
every pure entangled quantum state. This way, (T ′)−1 in (5) would generate
all entangled quantum effects from the product effect P1⊗P2. This is exactly
what we want.

When would eq. (5) hold? Up to a factor 1/4, the map L⊗2 is an isometry
(a distance-preserving map): for all x, y ∈ R4 ⊗ R4, we have

Tr
(
L⊗2(x)L⊗2(y)

)
=

1

4
〈x, y〉

Thus, translating eq. (5) from S ′4 back to S4, the corresponding equation is

〈E1 ⊗ E2, Tω〉 = 〈T−1(E1 ⊗ E2), ω〉

This is satisfied if T T = T−1 for all T ∈ G4. In fact, we have

Lemma 9. All reversible transformations T ∈ G4 act as orthogonal matrices
on R4 ⊗ R4

The proof of this lemma is non-trivial and somewhat surprising: it uses
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Schur’s Lemma from group representation theory, together with the fact that
there exist certain kinds of SWAP and CNOT operations on two bits. These
operations are constructed by using Postulate 2.

Due to Lemma 9, all the above argumentation becomes solid: eq. (5) is valid,
and we get

Lemma 10. S ′4 is the set of 2−qubit quantum states, and the allowed effects
are the quantum effects.

So what about the transformations? First of all, we know that that the trans-
formation group of a single bit must be SO(3) - it cannot be O(3), because
local reflections would correspond to partial transposition which generates
negative eigenvalues on entangled states. Furthermore, every transformation
T ∈ G4 is a linear isometry on the set of self-adjoint 4 × 4−matrices that
maps the set of density matrices into itself.

According to Wigners Theorem, only unitary and anti-unitary maps satisfy
this. However, due to Wigners normal form, anti-unitary maps generate re-
flections in some Bloch ball faces of the state space, which is impossible due
to Postulate 2.

So G4 is a subgroup of the unitary group. Due to Postulate 3, it maps some
pure product state to an entangled state. In other words, G4 contains an
entangling unitary, and also all local unitaries. It is a well-known fact from
quantum computation that these transformations generate the full unitary
group.

We have thus shown

Lemma 11. The group of reversible transformations G ′2 on two bits corre-
sponds to the unitary conjugations, i.e., the maps ρ 7→ UρU † with U ∈ SU(4).

It is now clear that what we did for two bits can also be done for n bits. Since
every SN is contained in some S2n for n large enough, we can use the sub-
space postulate to conclude that every state space SN is equivalent to the
quantum N−level state space.
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12.6 Conclusions and Outlook

We have shown that the Hilbert space formalism of quantum theory can be
reconstructed from four natural, information-theoretic postulates. We hope
that this reconstruction - together with other recent axiomatizations - con-
tributes to a better understanding of quantum theory, and sheds some light
on some of the mysterious aspects of its formalism, such as the appearance
of complex numbers or unitaries.

One of the main motivations for this discussion, as mentioned earlier, was
to search for quantum theory’s closest cousins : dropping one or two of the
axioms, and working out the remaining set of theories, should yield interest-
ing alternative probabilistic theories that are conceptually close to quantum
theory, but not described by the Hilbert space formalism. These theories
make different physical predictions that can be tested experimentally.

What is the status of the search for those theories? Currently, it seems that
there are two natural ways to proceed. The first possibility is to drop the
subspace postulate (Postulate 2), because it is in a way the strongest and
most complicated postulate. This raises the question what other theories (in
addition to quantum theory and classical probability theory) have the prop-
erties of local tomography and pure-state transitivity, given that all effects
are outcomes of allowed measurements?

In the case where the local systems are balls and the transformation groups
are assumed to be continuous, quantum theory is still the only solution for
two binary systems. In fact, there is currently no known example of a theory
which satisfies the remaining three postulates and is not a part of quantum
theory. This suggests the conjecture that the results of this discussion remain
basically valid if the subspace axiom is dropped.

A second possibility is to drop local tomography, i.e. Postulate 1. Then it
seems that indeed further theories appear as solutions, in particular state
spaces of Jordan algebras. It is an interesting open problem to work out this
idea rigorously, and to classify all state spaces that appear in addition to
quantum theory.
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13 Theory #2 - Quantum Theory From Five

Reasonable Axioms

13.1 Introduction

Quantum theory, in its usual formulation, is very abstract. The basic ele-
ments are vectors in a complex Hilbert space. These determine measured
probabilities by means of the well known trace formula - a formula which has
no obvious origin. It is natural to ask why quantum theory is the way it is.
Quantum theory is simply a new type of probability theory. Like classical
probability theory it can be applied to a wide range of phenomena. However,
the rules of classical probability theory can be determined by pure thought
alone without any particular appeal to experiment (though, of course, to de-
velop classical probability theory, we do employ some basic intuitions about
the nature of the world). Is the same true of quantum theory? Put another
way, could a 19th century theorist have developed quantum theory without
access to the empirical data that later became available to his 20th century
descendants? In this paper it will be shown that quantum theory follows
from five very reasonable axioms which might well have been posited with-
out any particular access to empirical data. We will not recover any specific
form of the Hamiltonian from the axioms since that belongs to particular
applications of quantum theory (for example - a set of interacting spins or
the motion of a particle in one dimension). Rather we will recover the basic
structure of quantum theory along with the most general type of quantum
evolution possible. In addition we will only deal with the case where there are
a finite or countably infinite number of distinguishable states corresponding
to a finite or countably infinite dimensional Hilbert space. We will not deal
with continuous dimensional Hilbert spaces.

The basic setting we will consider is one in which we have preparation de-
vices, transformation devices, and measurement devices. Associated with
each preparation will be a state defined in the following way:

The state associated with a particular preparation is defined to be
(that thing represented by) any mathematical object that can be used
to determine the probability associated with the outcomes of any mea-
surement that may be performed on a system prepared by the given
preparation.
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Hence, a list of all probabilities pertaining to all possible measurements that
could be made would certainly represent the state. However, this would
most likely over-determine the state. Since most physical theories have some
structure, a smaller set of probabilities pertaining to a set of carefully chosen
measurements may be sufficient to determine the state. This is the case in
classical probability theory and quantum theory. Central to the axioms are
two integers K and N which characterize the type of system being considered.

• The number of degrees of freedom, K, is defined as the minimum num-
ber of probability measurements needed to determine the state, or,
more roughly, as the number of real parameters required to specify the
state.

• The dimension, N , is defined as the maximum number of states that
can be reliably distinguished from one another in a single shot mea-
surement.

We will only consider the case where the number of distinguishable states
is finite or countably infinite. As will be shown below, classical probability
theory has K = N and quantum probability theory has K = N2 (note we
do not assume that states are normalized).

The five axioms for quantum theory (to be stated again, in context, later)
are

Axiom 1 Probabilities. Relative frequencies (measured by taking the propor-
tion of times a particular outcome is observed) tend to the same value
(which we call the probability) for any case where a given measure-
ment is performed on a ensemble of n systems prepared by some given
preparation in the limit as n becomes infinite.

Axiom 2 Simplicity. K is determined by a function of N (i.e. K = K(N)) where
N = 1, 2, ... and where, for each given N , K takes the minimum value
consistent with the axioms.

Axiom 3 Subspaces. A system whose state is constrained to belong to an M
dimensional subspace (i.e. have support(subset of the domain of a
function where it is non-zero valued) on only M of a set of N possible
distinguishable states) behaves like a system of dimension M .
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Axiom 4 Composite systems. A composite system consisting of subsystems A
and B satisfies N = NANB and K = KAKB

Axiom 5 Continuity. There exists a continuous reversible transformation on a
system between any two pure states of that system.

The first four axioms are consistent with classical probability theory but
the fifth is not (unless the word continuous is dropped). If the last axiom is
dropped then, because of the simplicity axiom, we obtain classical probability
theory (with K = N) instead of quantum theory (with K = N2 ). It is very
striking that we have here a set of axioms for quantum theory which have
the property that if a single word is removed - namely the word continuous
in Axiom 5 - then we obtain classical probability theory instead.

The basic idea of the proof is simple. First we show how the state can be
described by a real vector, p, whose entries are probabilities and that the
probability associated with an arbitrary measurement is given by a linear
function, r·p, of this vector (the vector r is associated with the measurement).
Then we show that we must have K = N r where r is a positive integer and
that it follows from the simplicity axiom that r = 2 (the r = 1 case being
ruled out by Axiom 5). We consider the N = 2, K = 4 case and recover
quantum theory for a two dimensional Hilbert space. The subspace axiom
is then used to construct quantum theory for general N . We also obtain the
most general evolution of the state consistent with the axioms and show that
the state of a composite system can be represented by a positive operator on
the tensor product of the Hilbert spaces of the subsystems. Finally, we show
obtain the rules for updating the state after a measurement.

This discussion is organized in the following way. First we will describe
the type of situation we wish to consider (in which we have preparation
devices, state transforming devices, and measurement de- vices). Then we
will describe classical probability theory and quantum theory. In particular it
will be shown how quantum theory can be put in a form similar to classical
probability theory. After that we will forget both classical and quantum
probability theory and show how they can be obtained from the axioms.

Others have set up axiomatic formulations of quantum theory. Much of
this work is in the quantum logic tradition. The advantage of the present
discussion is that there are a small number of simple axioms, these axioms
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can easily be motivated without any particular appeal to experiment, and
the mathematical methods required to obtain quantum theory from these
axioms are very straightforward (essentially just linear algebra).

13.2 Setting the Scene

We will begin by describing the type of experimental situation we wish to
consider (see Figure 10).

Figure 10: The situation considered consists of a preparation device with
a knob for varying the state of the system produced and a release button
for releasing the system, a transformation device for transforming the state
(and a knob to vary this transformation), and a measuring apparatus for
measuring the state (with a knob to vary what is measured) which outputs
a classical number.

An experimentalist has three types of device. One is a preparation device.
We can think of it as preparing physical systems in some state. It has on it
a number of knobs which can be varied to change the state prepared. The
system is released by pressing a button. The system passes through the sec-
ond device. This device can transform the state of the system. This device
has knobs on it which can be adjusted to effect different transformations (we
might think of these as controlling fields which effect the system). We can
allow the system to pass through a number of devices of this type. Unless
otherwise stated, we will assume the transformation devices are set to al- low
the system through unchanged. Finally, we have a measurement apparatus.
This also has knobs on it which can be adjusted to determine what measure-
ment is being made. This device outputs a classical number. If no system is
incident on the device (i.e., because the button on the preparation device was
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not pressed) then it outputs a 0 (corresponding to a null outcome). If there
is actually a physical system incident (i.e., when the release button is pressed
and the transforming device has not absorbed the system) then the device
outputs a number l where l = 1 to L (we will call these non-null outcomes).
The number of possible classical outputs, L, may depend on what is being
measured (the settings of the knobs).

The fact that we allow null events means that we will not impose the con-
straint that states are normalized. This turns out to be a useful convention.
It may appear that requiring the existence of null events is an additional
assumption. However, it follows from the subspace axiom that we can ar-
range to have a null outcome. We can associate the non-null outcomes with a
certain subspace and the null outcome with the complement subspace. Then
we can restrict ourselves to preparing only mixtures of states which are in
the non-null subspace (when the button is pressed) with states which are in
the null subspace (when the button is not pressed).

The situation described here is quite generic. Although we have described
the set up as if the system were moving along one dimension, in fact the
system could equally well be regarded as remaining stationary whilst being
subjected to transformations and measurements. Furthermore, the system
need not be localized but could be in several locations. The transformations
could be due to controlling fields or simply due to the natural evolution of
the system. Any physical experiment, quantum, classical or other, can be
viewed as an experiment of the type described here.

13.3 Probability measurements

We will consider only measurements of probability since all other measure-
ments (such as expectation values) can be calculated from measurements of
probability. When, in this discussion, we refer to a measurement or a proba-
bility measurement we mean, specifically, a measurement of the probability
that the outcome belongs to some subset of the non-null outcomes with a
given setting of the knob on the measurement apparatus. For example, we
could measure the probability that the outcome is l = 1 or l = 2 with some
given setting.

To perform a measurement we need a large number of identically prepared
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systems.

A measurement returns a single real number (the probability) between 0 and
1. It is possible to perform many measurements at once. For example, we
could simultaneously measure [the probability the outcome is l = 1] and [the
probability the outcome is l = 1 or l = 2] with a given knob setting.

13.4 Classical Probability Theory

A classical system will have available to it a number, N , of distinguishable
states. For example, we could consider a ball that can be in one of N boxes.
We will call these distinguishable states the basis states. Associated with
each basis state will be the probability, pn, of finding the system in that
state if we make a measurement. We can write

p =


p1

p2

p3
...
pN

 (1)

This vector can be regarded as describing the state of the system. It can be
determined by measuring N probabilities and so K = N . Note that we do
not assume that the state is normalized (otherwise we would have K = N?1).

The state p will belong to a convex set S. Since the set is convex it will have
a subset of extremal states. These are the states

p1 =


1
0
0
...
0

 p2 =


0
1
0
...
0

 p3 =


0
0
1
...
0

 etc. (2)

and the state

pnull = 0 =


0
0
0
...
0

 (3)

82



The state 0 is the null state (when the system is not present). We define
the set of pure states to consist of all extremal states except the null state.
Hence, the states in (2) are the pure states. They correspond to the system
definitely being in one of the N distinguishable states. A general state can be
written as a convex sum of the pure states and the null state and this gives
us the exact form of the set S. This is always a polytope (a shape having
flat surfaces and a finite number of vertices).

We will now consider measurements. Consider a measurement of the proba-
bility that the system is in the basis state n. Associated with this probability
measurement is the vector rn having a 1 in position n and 0s elsewhere. At
least for these cases the measured probability is given by

pmeas = r · p (4)

However, we can consider more general types of probability measurement and
this formula will still hold. There are two ways in which we can construct
more general types of measurement:

1. We can perform a measurement in which we decide with probability λ
to measure rA and with probability 1− λ to measure rB. Then we will
obtain a new measurement vector λrA + (1− λ)rB.

2. We can add the results of two compatible probability measurements
and therefore add the corresponding measurement vectors.

An example of the second is the probability measurement that the state is
basis state 1 or basis state 2 is given by the measurement vector r1 + r2.
From linearity, it is clear that the formula (4) holds for such more general
measurements.

There must exist a measurement in which we simply check to see that the
system is present (i.e. not in the null state). We denote this by rI . Clearly

rI =
∑
n

rn =


1
1
1
...
1

 (5)
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Hence 0 ≤ rI · p ≤ 1 with normalized states saturating the upper bound.

With a given setting of the knob on the measurement device there will be a
certain number of distinct non-null outcomes labeled l = 1 to L. Associated
with each outcome will be a measurement vector rl. Since, for normalized
states, one non-null outcome must happen we have

L∑
l=1

rl = rI (6)

This equation imposes a constraint on any measurement vector. Let allowed
measurement vectors r belong to the set R. This set is clearly convex (by
virtue of 1. above). To fully determine R first consider the set R+ consisting
of all vectors which can be written as a sum of the basis measurement vectors,
rn, each multiplied by a positive number. For such vectors r ·p is necessarily
greater than 0 but may also be greater than 1. Thus, elements of R+ may
be too long to belong to R. We need a way of picking out those elements of
R+ that also belong to R. If we can perform the probability measurement
r then, by (6) we can also perform the probability measurement r̄ ≡ rI − r.
Hence

if and only if r, r̄ ∈ R+ and r + r̄ = rI then r, r̄ ∈ R (7)

This works since it implies that r · p ≤ 1 for all p so that r is not too long.

Note that the Axioms 1 to 4 are satisfied but Axiom 5 is not since there are a
finite number of pure states. It is easy to show that reversible transformations
take pure states to pure states (see later). Hence a continuous reversible
transformation will take a pure state along a continuous path through the
pure states which is impossible here since there are only a finite number of
pure states.

13.5 Quantum Theory

Quantum theory can be summarized by the following rules

States: The state is represented by a positive (and therefore Hermi-
tian) operator ρ̂ satisfying 0 ≤ tr(ρ̂) ≤ 1.
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Measurements: Probability measurements are represented by a pos-
itive operator Â. If Âl corresponds to outcome l where l = 1 to L
then

L∑
l=1

Âl = Î (8)

Probability formula: The probability obtained when the measure-
ment Â is made on the state ρ̂ is

pmeas = tr(Âρ̂) (9)

Evolution: The most general evolution is given by the superoperator
$

ρ̂ = $(ρ̂) (10)

where $

• Does not increase the trace.

• Is linear.

• Is completely positive.

This way of presenting quantum theory is rather condensed. The following
notes should provide some clarifications

1. It is, again, more convenient not to impose normalization. This, in any
case, more accurately models what happens in real experiments when
the quantum system is often missing for some portion of the ensemble.

2. The most general type of measurement in quantum theory is a POVM
(positive operator valued measure). The operator Â is an element of
such a measure.

3. Two classes of superoperator are of particular interest. If $ is reversible
(i.e. the inverse $−1 both exists and belongs to the allowed set of trans-
formations) then it will take pure states to pure states and corresponds
to unitary evolution. The von Neumann projection postulate takes the
state ρ̂ to the state P̂ ρ̂P̂ when the outcome corresponds to the projec-
tion operator P̂ . This is a special case of a superoperator evolution in
which the trace of ρ̂ decreases.
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4. It has been shown by Krauss that one need only impose the three listed
constraints on $ to fully constrain the possible types of quantum evo-
lution. This includes unitary evolution and von Neumann projection
as already stated, and it also includes the evolution of an open sys-
tem (interacting with an environment). It is sometimes stated that the
superoperator should preserve the trace. However, this is an unnec-
essary constraint which makes it impossible to use the superoperator
formalism to describe von Neumann projection.

5. The constraint that $ is completely positive imposes not only that $
preserves the positivity of ρ̂ but also that of $A ⊗ ÎB acting on any
element of a tensor product space also preserves positivity for any di-
mension of B.

This is the usual formulation. However, quantum theory can be recast in
a form more similar to classical probability theory. To do this we note first
that the space of Hermitian operators which act on a N dimensional complex
Hilbert space can be spanned by N2 linearly independent projection opera-
tors P̂k for k = 1 to K = N2. This is clear since a general Hermitian operator
can be represented as a matrix. This matrix has N real numbers along the
diagonal and 1

2
N(N − 1) complex numbers above the diagonal making a to-

tal of N2 real numbers. An example of N2 such projection operators will be
given later.

Define

P̂ =


P̂1

P̂2
...

P̂K

 (11)

Any Hermitian matrix can be written as a sum of these projection operators
times real numbers, i.e. in the form a · P̂ where a is a real vector (a is unique
since the operators P̂k are linearly independent). Now define

pS = tr(P̂ρ̂) (12)

Here the subscript S denotes state. The k th component of this vector is
equal to the probability obtained when P̂k is measured on ˆrho. The vector
pS contains the same information as the state ˆrho and can therefore be
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regarded as an alternative way of representing the state. Note that K = N2

since it takes N2 probability measurements to determine pS or, equivalently
ˆrho. We define rM through

Â = rM · P̂ (13)

The subscript M denotes measurement. The vector rM is another way of
representing the measurement Â. If we substitute (13) into the trace formula
(9) we obtain

pmeas = rM · pS (14)

We can also define
pM = tr(ÂP̂) (15)

and rS by
ρ̂ = P̂ · rS (16)

Using the trace formula (9) we obtain

pmeas = pM · rS = rTMDrS (17)

where T denotes transpose and D is the K × K matrix with real elements
given by

Dij = tr(P̂iP̂j) (18)

or we can write D = tr(P̂P̂T ). From (14,17) we obtain

pS = DrS (19)

and
pM = DT rM (20)

We also note that
D = DT (21)

though this would not be the case had we chosen different spanning sets of
projection operators for the state operators and measurement operators. The
inverse D−1 must exist (since the projection operators are linearly indepen-
dent). Hence, we can also write

pmeas = pTMD
−1pS (22)

The state can be represented by an r−type vector or a p−type vector as can
the measurement. Hence the subscripts M and S were introduced. We will
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sometimes drop these subscripts when it is clear from the context whether
the vector is a state or measurement vector. We will stick to the convention
of having measurement vectors on the left and state vectors on the right as
in the above formulae. We define rI by

Î = rI · P̂ (23)

This measurement gives the probability of a non-null event. Clearly we must
have 0 ≤ rI · p ≤ 1 with normalized states saturating the upper bound. We
can also define the measurement which tells us whether the state is in a given
subspace. Let ÎW be the projector into an M dimensional subspace W . Then
the corresponding r vector is defined by ÎW = rIW · P̂. We will say that a
state p is in the subspace W if

rIW · p = rI · p (24)

so it only has support in W . A system in which the state is always con-
strained to an M−dimensional subspace will behave as an M−dimensional
system in accordance with Axiom 3.

The transformation ρ̂ → $(ρ̂) of ρ̂ corresponds to the following transforma-
tion for the state vector p:

p = tr(P̂ρ̂)

→ tr(P̂$(ρ̂))

= tr(P̂$(P̂TD−1p))

= Zp

where equations (16,19) were used in the third line and Z is a K × K real
matrix given by

Z = tr(P̂$(P̂)T )D−1 (25)

(we have used the linearity property of $). Hence, we see that a linear
transformation in ρ̂ corresponds to a linear transformation in p. We will say
that Z ∈ Γ.

Quantum theory can now be summarized by the following rules

States: The state is given by a real vector p ∈ S with N2 components.
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Measurements: A measurement is represented by a real vector r ∈ R
with N2 components.

Probability formula: The measured probability if measurement r is
performed on state p is

pmeas = r · p

Evolution: The evolution of the state is given by p → Zp where
Z ∈ Γ is a real matrix.

The exact nature of the sets S, R and Γ can be deduced from the equations
relating these real vectors and matrices to their counterparts in the usual
quantum formulation. We will show that these sets can also be deduced
from the axioms. It has been noticed by various other authors that the state
can be represented by the probabilities used to determine it.

There are various ways of choosing a set of N2 linearly independent projec-
tions operators P̂k which span the space of Hermitaan operators. Perhaps the
simplest way is the following. Consider an N−dimensional complex Hilbert
space with an orthonormal basis set |n〉 for n = 1 to N . We can define N
projectors

|n〉 〈n| (26)

Each of these belong to one-dimensional subspaces formed from the orthonor-
mal basis set. Define

|mn〉x =
1√
2

(|m〉+ |n〉)

|mn〉y =
1√
2

(|m〉+ i |n〉)

for m < n. Each of these vectors has support on a two-dimensional subspace
formed from the orthonormal basis set. There are 1

2
N(N − 1) such two-

dimensional subspaces. Hence we can define N(N − 1) further projection
operators

|mn〉x 〈mn| and |mn〉y 〈mn| (27)

This makes a total of N2 projectors. It is clear that these projectors are
linearly independent. Each projector corresponds to one degree of freedom.
There is one degree of freedom associated with each one-dimensional sub-
space n, and a further two degrees of freedom associated with each two-
dimensional subspace mn. It is possible, though not actually the case in
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quantum theory, that there are further degrees of freedom associated with
each three-dimensional subspace and so on. Indeed, in general, we can write

K = Nx1 +
1

2!
N(N − 1)x2

+
1

3!
N(N − 1)(N − 2)x3 + ...... (28)

We will call the vector x = (x1, x2, ......) the signature of a particular probabil-
ity theory. Classical probability theory has signature xClassical = (1, 0, 0, ......)
and quantum theory has signature xQuantum = (1, 2, 0, 0, ......). We will show
that these signatures are respectively picked out by Axioms 1 to 4 and Ax-
ioms 1 to 5. The signatures xReals = (1, 1, 0, 0, ......) of real Hilbert space
quantum theory and xQuaternions = (1, 4, 0, 0, ......) of quaternionic quantum
theory are ruled out.

If we have a composite system consisting of subsystem A spanned by P̂A
i

(i = 1 to KA) and B spanned by P̂B
j (j = 1 to KB) then P̂A

i ⊗ P̂B
j

arelinearlyinde- pendent and span the composite system. Hence, for the
composite system we have K = KAKB. We also have N = NANB. There-
fore Axiom 4 is satisfied.

The set S is convex. It contains the null state 0 (if the system is never present)
which is an extremal state. Pure states are defined as extremal states other
than the null state (since they are extremal they cannot be written as a
convex sum of other states as we expect of pure states). We know that a
pure state can be represented by a normalized vector |ψ〉. This is specified
by 2N − 2 real parameters (N complex numbers minus overall phase and
minus normalization). On the other hand, the full set of normalized states
is specified by N2 − 1 real numbers. The surface of the set of normalized
states must therefore be N2 − 2 dimensional. This means that, in general,
the pure states are of lower dimension than the the surface of the convex set
of normalized states. The only exception to this is the case N = 2 when the
surface of the convex set is 2−dimensional and the pure states are specified
by two real parameters. This case is illustrated by the Bloch sphere. Points
on the surface of the Bloch sphere correspond to pure states.

In fact the N = 2 case will play a particularly important role later so we
will now develop it a little further. There will be four projection operators

90



spanning the space of Hermitian operators which we can choose to be

P̂1 = |1〉 〈1| (29)

P̂2 = |2〉 〈2| (30)

P̂3 = (α |1〉+ β |2〉)(α∗ 〈1|+ β∗ 〈2|) (31)

P̂4 = (γ |1〉+ δ |2〉)(γ∗ 〈1|+ δ∗ 〈2|) (32)

where |α|2 + |β|2 = 1 and |γ|2 + |δ|2 = 1. We have chosen the second pair of
projections to be more general than those defined in (27) above since we will
need to consider this more general case later. We can calculate D using (18)

D =


1 0 1− |β|2 1− |δ|2
0 1 |β|2 |δ|2

1− |β|2 |β|2 1 |αγ∗ + βδ∗|2
1− |δ|2 |δ|2 |αγ∗ + βδ∗|2 1

 (33)

We can write this as

D =


1 0 1− a 1− b
0 1 a b

1− a a 1 c
1− b b c 1

 (34)

where a and b are real with β =
√
aexp(iφ3), δ =

√
bexp(iφ4), and c =

|αγ∗ + βδ∗|2. We can choose α and γ to be real (since the phase is included
in the definition of β and δ). It then follows that

c = 1− a− b+ 2ab

+ 2 cos (φ4 − φ3)
√
ab(1− a)(1− b) (35)

Hence, by varying the complex phase associated with α,β, γ and δ we find
that

c− < c < c+ (36)

where
c± ≡ 1− a− b+ 2ab± 2

√
ab(1− a)(1− b) (37)

This constraint is equivalent to the condition Det(D) > 0. Now, if we are
given a particular D matrix of the form (34) then we can go backwards to
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the usual quantum formalism though we must make some arbitrary choices
for the phases. First we use (35) to calculate cos (φ4 − φ3). We can assume
that 0 ≤ φ4 − φ3 ≤ π ( this corresponds to assigning i to one of the roots
of sqrt−1). Then we can assume that φ3 = 0. This fixes φ4. An example
of this second 1 choice is when we assign the state 1√

2
(|+〉 + |−〉) (this has

real coefficients) to spin along the x direction for a spin half particle. This
is arbitrary since we have rotational symmetry about the z axis. Having
calculated φ3 and φ4 from the elements of D we can now calculate α,β, γ
and δ and hence we can obtain P̂. We can then calculate ρ̂, Â and $ from p,
r, and Z and use the trace formula. The arbitrary choices for phases do not
change any empirical predictions.

13.6 Basic Ideas and the Axioms

We will now forget quantum theory and classical probability theory and
rederive them from the axioms. In this section we will introduce the basic
ideas and the axioms in context.

13.6.1 Probabilities

As mentioned earlier, we will consider only measurements of probability since
all other measurements can be reduced to probability measurements. We
first need to ensure that it makes sense to talk of probabilities. To have a
probability we need two things. First we need a way of preparing systems
(in Figure 10 this is accomplished by the first two boxes) and second, we
need a way of measuring the systems (the third box in Figure 10). Then, we
measure the number of cases, n+, a particular outcome is observed when a
given measurement is performed on an ensemble of n systems each prepared
by a given preparation. We define

prob+ = lim
n→∞

n+

n
(38)

In order for any theory of probabilities to make sense prob+ must take the
same value for any such infinite ensemble of systems prepared by a given
preparation. Hence, we assume

Axiom 1 Probabilities. Relative frequencies (measured by taking the propor-
tion of times a particular outcome is observed) tend to the same value (which
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we call the probability) for any case where a given measurement is performed
on an ensemble of n systems prepared by some given preparation in the limit
as n becomes infinite.

With this axiom we can begin to build a probability theory.

Some additional comments are appropriate here. There are various different
interpretations of probability: as frequencies, as propensities, the Bayesian
approach, etc. As stated, Axiom 1 favors the frequency approach. However,
it it equally possible to cast this axiom in keeping with the other approaches.
In this discussion we are principally interested in deriving the structure of
quantum theory rather than solving the interpretational problems with prob-
ability theory and so we will not try to be sophisticated with regard to this
matter. Nevertheless, these are important questions which deserve further
attention.

13.6.2 The state

We can introduce the notion that the system is described by a state. Each
preparation will have a state associated with it. We define the state to be
(that thing represented by) any mathematical object which can be used to
determine the probability for any measurement that could possibly be per-
formed on the system when prepared by the associated preparation. It is
possible to associate a state with a preparation because Axiom 1 states that
these probabilities depend on the preparation and not on the particular en-
semble being used. It follows from this definition of a state that one way
of representing the state is by a list of all probabilities for all measurements
that could possibly be performed. However, this would almost certainly be
an over-complete specification of the state since most physical theories have
some structure which relates different measured quantities. We expect that
we will be able to consider a subset of all possible measurements to determine
the state. Hence, to determine the state we need to make a number of dif-
ferent measurements on different ensembles of identically prepared systems.
A certain minimum number of appropriately chosen measurements will be
both necessary and sufficient to determine the state. Let this number be K.
Thus, for each setting, k = 1 to K, we will measure a probability pk with
an appropriate setting of the knob on the measurement apparatus. These K
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probabilities can be represented by a column vector p where

p =


p1

p2

p3
...
pK

 (39)

Now, this vector contains just sufficient information to determine the state
and the state must contain just sufficient information to determine this vector
(otherwise it could not be used to predict probabilities for measurements).
In other words, the state and this vector are interchangeable and hence we
can use p as a way of representing the state of the system. We will call K
the number of degrees of freedom associated with the physical system. We
will not assume that the physical system is always present. Hence, one of
the K degrees of freedom can be associated with normalization and therefore
K ≥ 1.

13.6.3 Fiducial measurements

We will call the probability measurements labeled by k = 1 to K used
in determining the state the fiducial measurements. There is no reason to
suppose that this set is unique. It is possible that some other fiducial set
could also be used to determine the state.

13.6.4 Measured probabilities

Any probability that can be measured (not just the fiducial ones) will be
determined by some function f of the state p. Hence,

pmeas = f(p) (40)

For different measurements the function will, of course, be different. By
definition, measured probabilities are between 0 and 1.

0 ≤ pmeas ≤ 1

This must be true since probabilities are measured by taking the proportion
of cases in which a particular event happens in an ensemble.
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13.6.5 Mixtures

Assume that the preparation device is in the hands of Alice. She can decide
randomly to prepare a state pA with probability λ or a state pB with proba-
bility 1−λ. Assume that she records this choice but does not tell the person,
Bob say, performing the measurement. Let the state corresponding to this
preparation be pC . Then the probability Bob measures will be the convex
combination of the two cases, namely

f(pC) = λf(pA) + (1− λ)f(pB) (41)

This is clear since Alice could subsequently reveal which state she had pre-
pared for each event in the ensemble providing two sub-ensembles. Bob could
then check his data was consistent for each subensemble. By Axiom 1, the
probability measured for each subensemble must be the same as that which
would have been measured for any similarly prepared ensemble and hence
(41) follows.

13.6.6 Linearity

Equation (41) can be applied to the fiducial measurements themselves. This
gives

pC = λpA + (1− λ)pB (42)

This is clearly true since it is true by (41) for each component.

Equations (41,42) give

f(λpA + (1− λ)pB) = λf(pA) + (1− λ)f(pB) (43)

This strongly suggests that the function f(·) is linear. This is indeed the
case and a proof is given in Appendix 1. Hence, we can write

pmeas = r · p (44)

The vector r is associated with the measurement. The k th fiducial measure-
ment is the measurement which picks out the k th component of p. Hence,
the fiducial measurement vectors are

r1 =


1
0
0
...
0

 r2 =


0
1
0
...
0

 r3 =


0
0
1
...
0

 etc. (45)
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13.6.7 Transformations

We have discussed the role of the preparation device and the measurement
apparatus. Now we will discuss the state transforming device (the middle
box in Figure 10). If some system with state p is incident on this device its
state will be transformed to some new state g(p). It follows from Eqn (41)
that this transformation must be linear. This is clear since we can apply the
proof in the Appendix 1 to each component of g. Hence, we can write the
effect of the transformation device as

p→ Zp (46)

where Z is a K ×K real matrix describing the effect of the transformation.

13.6.8 Allowed states, measurements, and transformations

We now have states represented by p, measurements represented by r, and
transformations represented by Z. These will each belong to some set of
physically allowed states, measurements and transformations. Let these sets
of allowed elements be S,R and Γ. Thus,

p ∈ S (47)

r ∈ R (48)

Z ∈ Γ (49)

We will use the axioms to determine the nature of these sets. It turns out
(for relatively obvious reasons) that each of these sets is convex.

13.6.9 Special states

If the release button on Figure 10 is never pressed then all the fiducial mea-
surements will yield 0. Hence, the null state pnull = 0 can be prepared and
therefore 0 ∈ S.

It follows from (42) that the set S is convex. It is also bounded since the
entries of p are bounded by 0 and 1. Hence, S will have an extremal set
Sextremal (these are the vectors in S which cannot be written as a convex sum
of other vectors in S). We have 0 ∈ Sextremal since the entries in the vectors
p cannot be negative. We define the set of pure states Spure to be the set
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of all extremal states except 0. Pure states are clearly special in some way.
They represent states which cannot be interpreted as a mixture. A driving
intuition in this work is the idea that pure states represent definite states of
the system.

13.6.10 The identity measurement

The probability of a non-null outcome is given by summing up all the non-
null outcomes with a given setting of the knob on the measurement apparatus
(see Figure 10). The non-null outcomes are labeled by l = 1 to L.

pnon−null =
L∑
l=1

rl · p = rI · p (50)

where rl is the measurement vector corresponding to outcome l and

rI =
L∑
l=1

rl (51)

is called the identity measurement.

13.6.11 Normalized and unnormalized states

If the release button is never pressed we prepare the state 0. If the release
button is always pressed (i.e., for every event in the ensemble) then we will
say p ∈ Snorm or, in words, that the state is normalized. Unnormalized states
are of the form λp + (1 − λ)0 where 0 ≤ λ < 1. Unnormalized states are
therefore mixtures and hence, all pure states are normalized, that is

Spure ⊂ Snorm

We define the normalization coefficient of a state p to be

µ = rI · p (52)

In the case where p ∈ Snorm we have µ = 1.

The normalization coefficient is equal to the proportion of cases in which the
release button is pressed. It is therefore a property of the state and cannot
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depend on the knob setting on the measurement apparatus. We can see that
rI must be unique since if there was another such vector satisfying (52) then
this would reduce the number of parameters required to specify the state
contradicting our starting point that a state is specified by K real numbers.
Hence rI is independent of the measurement apparatus knob setting.

13.6.12 Basis states

Any physical system can be in various states. We expect there to exist some
sets of normalized states which are distinguishable from one another in a
single shot measurement (were this not the case then we could store fixed
records of information in such physical systems). For such a set we will
have a setting of the knob on the measurement apparatus such that each
state in the set always gives rise to a particular outcome or set of outcomes
which is disjoint from the outcomes associated with the other states. It is
possible that there are some non-null outcomes of the measurement that are
not activated by any of these states. Any such outcomes can be added to
the set of outcomes associated with, say, the first member of the set without
effecting the property that the states can be distinguished. Hence, if these
states are pn and the measurements that distinguish them are rn then we
have

rm · pn = δmn where
∑
n

rn = rI (53)

The measurement vectors rn must add to rI since they cover all possible out-
comes. There may be many such sets having different numbers of elements.
Let N be the maximum number of states in any such set of distinguishable
states. We will call N the dimension. We will call the states pn in any such
set basis states and we will call the corresponding measurements rn basis
measurements. Each type of physical system will be characterized by N and
K. A note on notation: In general we will adopt the convention that the
subscript n (n = 1 to N) labels basis states and measurements and the su-
perscript k (k = 1 to K) labels fiducial measurements and (to be introduced
later) fiducial states. Also, when we need to work with a particular choice of
fiducial measurements (or states) we will take the first n of them to be equal
to a basis set. Thus, rk = rk for k = 1 to N .

If a particular basis state is impure then we can always replace it with a pure
state. To prove this we note that if the basis state is impure we can write it
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as a convex sum of pure states. If the basis state is replaced by any of the
states in this convex sum this must also satisfy the basis property. Hence,
we can always choose our basis sets to consist only of pure states and we will
assume that this has been done in what follows.

Note that N = 1 is the smallest value N can take since we can always choose
any normalized state as p1 and r1 = rI .

13.6.13 Simplicity

There will be many different systems having different K and N . We will
assume that, nevertheless, there is a certain constancy in nature such that
K is a function of N . The second axiom is

Axiom 2 Simplicity. K is determined by a function of N (i.e., K = K(N))
where N = 1, 2, ... and where, for any given N , K takes the minimum value
consistent with the axioms.

The assumption that N = 1, 2, .... means that we assume nature provides
systems of all different dimensions. The motivation for taking the smallest
value of K for each given N is that this way we end up with the simplest
theory consistent with these natural axioms. It will be shown that the axioms
imply K = N r where r is an integer. Axiom 2 then dictates that we should
take the smallest value of r consistent with the axioms (namely r = 2).
However, it would be interesting either to show that higher values of r are
inconsistent with the axioms even without this constraint that K should take
the minimum value, or to explicitly construct theories having higher values
of r and investigate their properties.

13.6.14 Subspaces

Consider a basis measurement set rn. The states in a basis are labeled by
the integers n = 1 to N . Consider a subset W of these integers. We define

rIW =
∑
n∈W

rn (54)

Corresponding to the subset W is a subspace which we will also call W
defined by

p ∈ W iff rIW · p = rI · p (55)

99



Thus, p belongs to the subspace if it has support only in the subspace. The
dimension of the subspace W is equal to the number of members of the set
W . The complement subset W consists of the the integers n = 1 to N not
in W . Corresponding to the subset W is the subspace W which we will call
the complement subspace to W . Note that this is a slightly unusual usage of
the terminology subspace and dimension which we employ here because of
the analogous concepts in quantum theory. The third axiom concerns such
subspaces.

Axiom 3 Subspaces. A system whose state is contrained to belong to an M
dimensional subspace behaves like a system of dimension M .

This axiom is motivated by the intuition that any collection of distinguish-
able states should be on an equal footing with any other collection of the
same number distinguishable states. In logical terms, we can think of distin-
guishable states as corresponding to a propositions. We expect a probability
theory pertaining to M propositions to be independent of whether these
propositions are a subset or some larger set or not.

One application of the subspace axiom which we will use is the following: If
a system is prepared in a state which is constrained to a certain subspace W
having dimension NW and a measurement is made which may not pertain to
this subspace then this measurement must be equivalent (so far as measured
probabilities on states in W are concerned) to some measurement in the set
of allowed measurements for a system actually having dimension NW .

13.6.15 Composite systems

It often happens that a preparation device ejects its system in such a way
that it can be regarded as being made up of two subsystems. For example,
it may emit one system to the left and one to the right (see Figure 11). We
will label these subsystems A and B. We assume

Axiom 4 Composite systems. A composite system consisting of two sub-
systems A and B having dimension NA and NB respectively, and number of
degrees of freedom KA and KB respectively, has dimension N = NANB and
number of degrees of freedom K = KAKB.

We expect that N = NANB for the following reasons. If subsystems A and
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B have NA and NB distinguishable states, then there must certainly exist
NANB distinguishable states for the whole system. It is possible that there
exist more than this but we assume that this is not so. We will show that
the relationship K = KAKB follows from the following two assumptions

• If a subsystem is in a pure state then any joint probabilities between
that subsystem and any other subsystem will factorize. This is a rea-
sonable assumption given the intuition (mentioned earlier) that pure
states represent definite states for a system and therefore should not
be correlated with anything else.

• The number of degrees of freedom associated with the full class of states
for the composite system is not greater than the number of degrees of
freedom associated with the separable states. This is reasonable since
we do not expect there to be more entanglement than necessary.

Note that although these two assumptions motivate the relationship K =
KAKB we do not actually need to make them part of our axiom set (rather
they follow from the five axioms). To show that these assumptions imply
K = KAKB consider performing the i th fiducial measurement on system
A and the j th fiducial measurement on system B and measuring the joint
probability pij that both measurements have a positive outcome. These
joint probabilities can be arranged in a matrix p̃AB having entries pij. It
must be possible to choose KA linearly independent pure states labeled pkAA
(kA = 1 to KA) for subsystems A, and similarly for subsystem B. With
the first assumption above we can write p̃kAkBAB = pkAA (pkBB )T when system
A is prepared in the pure state pkAA and system B is prepared in the pure
state pkBB . It is easily shown that it follows from the fact that the states for
the subsystems are linearly independent that the KAKB matrices p̃kAkBAB are
linearly independent. Hence, the vectors describing the correspond- ing joint
states are linearly independent. The convex hull(the convex hull or convex
envelope for a set X of points in the Euclidean plane or Euclidean space is
the minimal convex set containing X) of the end points of KAKB linearly
independent vectors and the null vector is KAKB dimensional. We cannot
prepare any additional product states which are linearly independent of these
since the subsystems are spanned by the set of fiducial states considered.
Therefore, to describe convex combinations of the separable states requires
KAKB degrees of freedom and hence, given the second assumption above,
K = KAKB.
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It should be emphasized that it is not required by the axioms that the state
of a composite system should be in the convex hull of the product states.
Indeed, it is the fact that there can exist vectors not of this form that leads
to quantum entanglement.

13.7 The continuity axiom

Now we introduce the axiom which will give us quantum theory rather than
classical probability theory. Given the intuition that pure states represent
definite states of a system we expect to be able to transform the state of a
system from any pure state to any other pure state. It should be possible to
do this in a way that does not extract information about the state and so
we expect this can be done by a reversible transformation. By reversible we
mean that the effect of the transforming device (the middle box in Figure 10)
can be reversed irrespective of the input state and hence that Z?1 exists and
is in Γ. Furthermore, we expect any such transformation to be continuous
since there are generally no discontinuities in physics. These considerations
motivate the next axiom.

Axiom 5 Continuity. There exists a continuous reversible transformation
on a system between any two pure states of the system.

By a continuous transformation we mean that one which can be made up from
many small transformations only infinitesimally different from the identity.
The set of reversible transformations will form a compact Lie group (compact
because its action leaves the components of p bounded by 0 and 1 and hence
the elements of the transformation matrices Z must be bounded).

If a reversible transformation is applied to a pure state it must necessar-
ily output a pure state. To prove this assume the contrary. Thus, assume
Zp = λpA + (1 − λ)pB where p is pure, Z−1 exists and is in Γ, 0 < λ < 1,
and the states pAB are distinct. It follows that p = λZ−1pA + (1−λ)Z−1pB
which is a mixture. Hence we establish proof by contradiction.

The infinitesimal transformations which make up a reversible transforma-
tion must themselves be reversible. Since reversible transformations always
transform pure states to pure states it follows from this axiom that we can
transform any pure state to any other pure state along a continuous trajec-

102



tory through the pure states. We can see immediately that classical systems
of finite dimension N will run into problems with the continuity part of this
axiom since there are only N pure states for such systems and hence there
cannot exist a continuous trajectory through the pure states. Consider, for
example, transforming a classical bit from the state 0 to the state 1. Any con-
tinuous transformation would have to go through an infinite number of other
pure states (not part of the subspace associated with our system). Indeed,
this is clear given any physical implementation of a classical bit. For example,
a ball in one of two boxes must move along a continuous path from one box
(representing a 0) to the other box (representing a 1). Deutsch has pointed
out that for this reason, the classical description is necessarily approximate
in such situations whereas the quantum description in the analogous situa-
tion is not approximate. We will use this axiom to rule out various theories
which do not correspond to quantum theory (including classical probability
theory).

Axiom 5 can be further motivated by thinking about computers. A classical
computer will only employ a finite number of distinguishable states (usu-
ally referred to as the memory of the computer - for example 10 GB). For
this reason it is normally said that the computer operates with finite re-
sources. However, if we demand that these bits are described classically and
that transformations are continuous then we have to invoke the existence
of a continuous infinity of distinguishable states not in the subspace being
considered. Hence, the resources used by a classically described computer
performing a finite calculation must be infinite. It would seem extravagant
of nature to employ infinite resources in performing a finite calculation.

13.8 The Main Proofs

In this section we will derive quantum theory and, as an aside, classical prob-
ability theory by dropping Axiom 5. The following proofs lead to quantum
theory

1. Proof that K = N r where r = 1, 2, ....

2. Proof that a valid choice of fiducial measurements is where we choose
the first N to be some basis set of measurements and then we choose
2 additional measurements in each of the 1

2
N(N − 1) two-dimensional

subspaces (making a total of N2).
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3. Proof that the state can be represented by an r−type vector.

4. Proof that pure states must satisfy an equation rTDr = 1 where D =
DT .

5. Proof that K = N is ruled out by Axiom 5 (though leads to classical
probability theory if we drop Axiom 5) and hence that K = N2 by the
Axiom 2.

6. We show that the N = 2 case corresponds to the Bloch sphere and
hence we obtain quantum theory for the N = 2 case.

7. We obtain the trace formula and the conditions imposed by quantum
theory on ρ̂ and Â for general N .

8. We show that the most general evolution consistent with the axioms
is that of quantum theory and that the tensor product structure is
appropriate for describing composite systems.

9. We show that the most general evolution of the state after measure-
ment is that of quantum theory (including, but not restricted to, von
Neumann projection).

13.8.1 Proof that K = N r

In this section we will see that K = N r where r is a positive integer. It
will be shown in Section 13.8.5 that K = N (i.e., when r = 1) is ruled out
by Axiom 5. Now, as shown in Section 13.8.5, quantum theory is consistent
with the Axioms and has K = N2. Hence, by the simplicity axiom (Axiom
2), we must have K = N2 (i.e., r = 2).

It is quite easy to show that K = N r. First note that it follows from the
subspace axiom (Axiom 3) that K(N) must be a strictly increasing function
of N . To see this consider first an N dimensional system. This will have
K(N) degrees of freedom. Now consider an N+1 dimensional system. If the
state is constrained to belong to an N dimensional subspace W then it will,
by Axiom 3, have K(N) degrees of freedom. If it is constrained to belong
to the complement 1 dimensional subspace then, by Axiom 3, it will have at
least one degree of freedom (since K is always greater than or equal to 1).
However, the state could also be a mixture of a state constrained to Wwith
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some weight λ and a state constrained to the complement one dimensional
subspace with weight 1−λ. This class of states must have at least K(N) + 1
degrees of freedom (since λ can be varied). Hence, K(N + 1) ≥ K(N) + 1.
By Axiom 4 the function K(N) satisfies

K(NANB) = K(NA)K(NB) (56)

Such functions are known in number theory as completely multiplicative. It
is shown in Appendix 2 that all strictly increasing completely multiplicative
functions are of the form K = Nα. Since K must be an integer it follows
that the power, α, must be a positive integer. Hence

K(N) = N r where r = 1, 2, 3, ..... (57)

The signatures (see earlier discussion) associated with K = N and K = N2

are x = (1, 0, 0, ...) and x = (1, 2, 0, 0, .....) respectively. It is interesting to
consider some of those cases that have been ruled out. Real Hilbert spaces
have x = (1, 1, 0, ...) (consider counting the parameters in the density ma-
trix). In the real Hilbert space composite systems have more degrees of
freedom than the product of the number of degrees of freedom associated
with the subsystems (which implies that there are necessarily some degrees
of freedom that can only be measured by performing a joint measurement on
both subsystems). Quaternionic Hilbert spaces have x = (1, 4, 0, ...). This
case is ruled out because composite systems would have to have less degrees
of freedom than the product of the number of degrees of freedom associated
with the subsystems. This shows that quaternionic systems violate the prin-
ciple that joint probabilities factorize when one (or both) of the subsystems
is in a pure state. We have also ruled out K = N3 (which has signature
x = (1, 6, 6, 0, 0, .....)) and higher r values. However, these cases have only
been ruled out by virtue of the fact that Axiom 2 requires we take the sim-
plest case. It would be interesting to attempt to construct such higher power
theories or prove that such constructions are ruled out by the axioms even
without assuming that K takes the minimum value for each given N .

The fact that x1 = 1 (or, equivalently, K(1) = 1) is interesting. It implies
that if we have a set of N distinguishable basis states they must necessarily
be pure. After the one degree of freedom associated with normalization has
been counted for a one dimensional subspace there can be no extra degrees
of freedom. If the basis state was mixed then it could be written as a convex
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sum of pure states that also satisfy the basis property. Hence, any convex
sum would would satisfy the basis property and hence there would be an
extra degree of freedom.

13.8.2 Choosing the fiducial measurements

We have either K = N or K = N2. If K = N then a suitable choice of
fiducial measurements is a set of basis measurements. For the case K = N2

any set of N2 fiducial measurements that correspond to linearly independent
vectors will suffice as a fiducial set. However, one particular choice will turn
out to be especially useful. This choice is motivated by the fact that the
signature is x = (1, 2, 0, 0, .....). This suggests that we can choose the first
N fiducial measurements to correspond to a particular basis set of measure-
ments rn (we will call this the fiducial basis set) and that for each of the
1
2
N(N − 1) two-dimensional fiducial subspaces Wmn (i.e., two-dimensional

subspaces associated with the mth and n th basis measurements) we can
chose a further two fiducial measurements which we can label rmnx and rmny
(we are simply using x and y to label these measurements). This makes
a total of N2 vectors. It is shown in Appendix 3.4 that we can, indeed,
choose N2 linearly independent measurements (rn, rmnx, rmny) in this way
and, furthermore, that they have the property

rmnx · p = 0 if p ∈ Wmn (58)

where Wmn is the complement subspace to Wmn. This is a useful property
since it implies that the fiducial measurements in the Wmn subspace really
do only apply to that subspace.

13.8.3 Representing the state by r

Till now the state has been represented by p and a measurement by r. How-
ever, by introducing fiducial states, we can also represent the measurement
by a p−type vector (a list of the probabilities obtained for this measurement
with each of the fiducial states) and, correspondingly, we can describe the
state by an r−type vector. For the moment we will label vectors pertaining
to the state of the system with subscript S and vectors pertaining to the
measurement with subscript M (we will drop these subscripts later since it
will be clear from the context which meaning is intended).
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Fiducial states

We choose K linearly independent states, pkS for k = 1 to K, and call them
fiducial states (it must be possible to choose K linearly independent states
since otherwise we would not need K fiducial measurements to determine the
state). Consider a given measurement rM . We can write

pkM = rM · pkS (59)

Now, we can take the number pkM to be the k th component of a vector. This
vector, pM , is related to rM by a linear transformation. Indeed, from the
above equation we can write

pM = CrM (60)

where C is a K×K matrix with l, k entry equal to the l th component of pkS.
Since the vectors pkS are linearly independent, the matrix C is invertible and
so rM can be determined from pM . This means that pM is an alternative way
of specifying the measurement. Since pmeas is linear in rM , which is linearly
related to pM it must also be linear in pM . Hence we can write

pmeas = pM · rS (61)

where the vector rS is an alternative way of describing the state of the system.
The k th fiducial state can be represented by an r−type vector, rkS, and is
equal to that vector which picks out the k th component of pM . Hence, the
fiducial states are

r1
S =


1
0
0
...
0

 r2
S =


0
1
0
...
0

 r3
S =


0
0
1
...
0

 etc. (62)

A useful bilinear form for pmeas

The expression for pmeas is linear in both rkM and rkS. In other words, it is a
bilinear form and can be written

pmeas = rTMDrS (63)
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where superscript T denotes transpose, and D is a K×K real matrix (equal,
in fact, to CT ).The k, l element of D is equal to the probability measured
when the k th fiducial measurement is performed on the l th fiducial state
(since, in the fiducial cases, the r vectors have one 1 and otherwise 0s as
components). Hence,

Dlk = (rlM)TDrkS (64)

D is invertible since the fiducial set of states are linearly independent.

Vectors associated with states and measurements

There are two ways of describing the state: Either with a p−type vector or
with an pr−type vector. From (44, 63) we see that the relation between
these two types of description is given by

pS = DrS (65)

Similarly, there are two ways of describing the measurement: Either with
an r−type vector or with a p−type vector. From (61,63) we see that the
relation between the two ways of describing a measurement is

pM = DT rM (66)

(Hence, C in equation (60) is equal to DT ).

Note that it follows from these equations that the set of states/measurements
rS,M is bounded since pS,M is bounded (the entries are probabilities) and D
is invertible (and hence its inverse has finite entries).

13.8.4 Pure states satisfy rTDr = 1

Let us say that a measurement identifies a state if, when that measurement
is performed on that state, we obtain probability one. Denote the basis mea-
surement vectors by rMn and the basis states (which have been chosen to be
pure states) by pSn where n = 1 to N . These satisfy rMn ·pSn = δmn. Hence
rMn identifies pSn.

Consider an apparatus set up to measure rM1. We could place a transforma-
tion device, T , in front of this which performs a reversible transformation.
We would normally say that that T transforms the state and then rM1 is
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measured. However, we could equally well regard the transformation device
T as part of the measurement apparatus. In this case some other measure-
ment r is being performed. We will say that any measurement which can be
regarded as a measurement of rM1 preceded by a reversible transformation
device is a pure measurement. It is shown in Appendix 3.7 that all the basis
measurement vectors rMn are pure measurements and, indeed, that the set
of fiducial measurements of Section 13.8.2 can all be chosen to be pure.

A pure measurement will identify that pure state which is obtained by acting
on pS1 with the inverse of T . Every pure state can be reached in this way
(by Axiom 5) and hence, corresponding to each pure state there exists a pure
measurement. We show in Appendix 3.5 that the map between the vector
representing a pure state and the vector representing the pure measurement
it is identified by is linear and invertible.

We will now see that not only is this map linear but also that, by appropriate
choice of the fiducial measurements and fiducial states, we can make it equal
to the identity. A convex structure embedded in a K−dimensional space
must have at least K + 1 extremal points (for example, a triangle has three
extremal points, a tetrahedron has four, etc.). In the case of the set S, one of
these extremal points will be 0 leaving at least K remaining extremal points
which will correspond to pure states (recall that pure states are extremal
states other than 0). Furthermore, it must be possible to choose a set of
K of these pure states to correspond to linearly independent vectors (if this
were not possible then the convex hull would be embedded in a lower than
K dimensional space). Hence, we can choose all our fiducial states to be
pure. Let these fiducial states be rkS. We will choose the k th fiducial mea-
surement rkM to be that pure measurement which identifies the k th fiducial
state. These will constitute a linearly independent set since the map from
the corresponding linearly independent set of states is invertible.

We have proven (in Appendix 3.5) that, if rM identifies rS, there must exist
a map

rS = HrM (67)

where H is a K×K constant matrix. In particular this is true for the fiducial
states and fiducial measurements:

rkS = HrkM (68)
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However, the fiducial vectors have the special form given in (45,62), namely
zeros everywhere except for the k th entry. Hence, the map H is equal to
the identity. This is true because we have chosen the fiducial measurements
to be those which identify the fiducial states. Since these vectors are related
by the identity map we will drop the M and S subscripts in what follows, it
being understood that the left most vector corresponds to the measurement
apparatus and the right most vector corresponds to the state. Thus the
measurement r identifies the state r (i.e. given by the same vector) if r is
pure. Hence,

rTDr = 1 (69)

for pure states (and pure measurements). This equa- tion is very useful
since will help us to find the pure states. It is shown in Appendix 3.6 that
D = DT .

It is shown in Appendix 3.7 that the fiducial measurements rn, rmix, and
rmny are pure. They will identify a set of pure states represented by the
same vectors rn, rmix, and rmny which we take to be our fiducial states. The
first N fiducial states, rn, are then just the basis states and it follows from
(58) that the remaining basis states, rmix, and rmny are in the corresponding
Wmn subspaces.

13.8.5 Ruling out the K = N case

Consider the K = N case. There will be K = N fiducial vectors which we
can choose to be equal to the basis vectors. From equation (64) we know
that the lk element of D is equal to the measured probability with the k th
fiducial state and the l th fiducial measurement. Since the fiducial vectors
correspond to basis vectors this implies that D is equal to the identity. The
pure states must satisfy

rTDr = 1 (70)

We also have p = Dr (equation (65)). Given that D is equal to the identity
in this case we obtain

N∑
k=1

(pk)2 = 1 (71)

where pk is the k the component of p. However,

0 ≤ pk ≤ 1 (72)
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Normalization implies that
N∑
k=1

pk = 1 (73)

The solutions of (71), (72), (73) have one pk equal to 1 and all the others
are equal to 0. In other words, the only pure vectors are the basis vectors
themselves which corresponds to classical probability theory. This forms a
discrete set of vectors and so it is impossible for Axiom 5 (the continuity
axiom) to be satisfied. Hence, we rule out such theories. However, if Axiom
5 is dropped then, by Axiom 2, we must take K = N . This necessarily
corresponds to classical probability theory for the following reasons. We can
choose our K(= N) fiducial measurements to be the basis measurements
rn. Then the basis states must be represented by vectors with zero’s in
all positions except the n th position. All states must have normalization
coefficient less than or equal to 1. Hence, all states can be written as a
convex combination of the basis states and the null state. This means that
only the basis states are pure states. Hence, we have classical probability
theory.

13.8.6 The Bloch sphere

We are left with K = N2 (since K = N has been ruled out by Axiom 5).
Consider the simplest non-trivial case N = 2 and K = 4. Normalized states
are contained in a K − 1 = 3 dimensional convex set. The surface of this set
is two-dimensional. All pure states correspond to points on this surface. The
four fiducial states can all be taken to be pure. They correspond to a linearly
independent set. The reversible transformations that can act on the states
form a compact Lie Group. The Lie dimension (number of generators) of this
group of reversible transformations cannot be equal to one since, if it were,
it could not transform between the fiducial states. This is because, under
a change of basis, a compact Lie group can be represented by orthogonal
matrices. If there is only one Lie generator then it will generate pure states
on a circle. But the end points of four linearly independent vectors cannot
lie on a circle since this is embedded in a two-dimensional subspace. Hence,
the Lie dimension must be equal to two. The pure states are represented by
points on the two-dimensional surface. Furthermore, since the Lie dimension
of the group of reversible transformations is equal to two it must be possible
to transform a given pure state to any point on this surface. If we can find
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this surface then we know the pure states for N = 2. This surface must be
convex since all points on it are extremal. We will use this property to show
that the surface is ellipsoidal and that, with appropriate choice of fiducial
states, it can be made spherical (this is the Bloch sphere).

The matrix D can be calculated from equation (64)

Dij = (ri)TDrj

As above, we will choose the fiducial measurements to be those pure mea-
surements which identify the fiducial states (these also being taken to be
pure). Hence, D will have 1′s along the diagonal. We choose the first two
fiducial vectors to be basis vectors. Hence, D has the form

D =


1 0 1− a 1− b
0 1 a b

1− a a 1 c
1− b b c 1

 (74)

The two 0′s follow since the first two vectors are basis vectors (i.e., (r2)TDr2 =
0 and (r2)TDr1 = 0). The 1 − a and a pair above the diagonal follow from
normalization since

1 = (rI)TDri = (r1)TDri + (r2)TDri (75)

The 1− b and b pair follow for similar reasons. The matrix is symmetric and
this gives all the terms below the diagonal.

We will not show that the constraints on the elements of D are the same as
in quantum theory (discussed in Section 13.8.5). Define

v =


v0

v1

v2

v3

 =


r1

r2 − r1

r3

r4

 (76)

Thus,
r = Cv (77)

where

C =


1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 (78)
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Hence rTDr′ = vTCTDCv′. From (74) we obtain

F ≡ CTDC =


2 1 1 1
1 1 a b
1 a 1 c
1 b c 1

 (79)

Now rI = r1 + r2 = (1, 1, 0, 0)T . The corresponding v type vector is, using
(76), vI = (1, 0, 0, 0)T . Assume that r is normalized to µ and r′ is normalized
to µ′. Then

µ = vIFv = 2v0 +
3∑
i=1

vi (80)

and similarly for µ′. For normalized states µ = 1. If vIFv′ is multiplied out
and (80) is used to eliminate v0 (and a similar equation is used to eliminate
v′0 ) then we obtain

pmeas = rTDr′ = ~v TA~v ′ + µµ′/2 (81)

where

~v =

v1

v2

v3

 =

r2 − r1

r3

r4

 (82)

and

A =

 1
2

a− 1
2

b− 1
2

a− 1
2

1
2

c− 1
2

b− 1
2

c− 1
2

1
2

 (83)

All the pure states will be normalized. Furthermore, they will satisfy rTDr =
1 or

~v TA~v =
1

2
(84)

This equation defines a two dimensional surface T embedded in three dimen-
sions. For example, if a = b = c = 1

2
then we have a sphere of radius 1

(this is, in fact, the Bloch sphere). If A has three positive eigenvalues then
T will be an ellipsoid. If A has one or two negative eigenvalues then T will
be a hyperboloid (if A has three negative eigenvalues then there cannot be
any real solutions for ~v). An equal mixture of the two basis states 1

2
r1 + 1

2
r2

corresponds to ~v = (0, 0, 0)T . Thus, the origin is in the set of allowed states.
An ellipsoid represents a convex surface with the origin in its interior. On the
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other hand, the curvature of a hyperboloid is such that it cannot represent a
convex surface with the origin on the interior and so cannot represent points
in the set of pure vectors. Thus we require that T has three positive eigen-
values. A necessary condition for A to have all positive eigenvalues is that
det(A) > 0. We have three variables a, b and c. The condition det(A) = 0 is
satisfied when

c = c± ≡ 1− a− b+ 2ab± 2
√
ab(1− a)(1− b) (85)

Note, we get the same conditions on c if we solve detD = 0. We know the
case with a = b = c = 1

2
corresponds to a sphere. This falls between the two

roots in equation (85). The sign of the eigenvalues cannot change unless the
determinant passes through a root as the parameters are varied. Hence, all
values of a, b, c satisfying

c− < c < c+ (86)

must correspond to three positive eigenvalues and hence to an ellipsoid. Val-
ues outside this range correspond to some negative eigenvalues (this can be
checked by trying a few values). Hence, (86) must be satisfied. This agrees
with quantum theory (see (36)). Therefore, we have obtained quantum the-
ory from the axioms for the special case N = 2. As detailed in Section 13.8.5,
if we are given D we can go back to the usual quantum formalism by using D
to calculate P̂ (making some arbitrary choices of phases) and then using the
formulae in that section (equations (13) and (16)) to obtain ρ̂ for the state
and Â for the measurement.

If T is ellipsoidal it is because we have made a particular choice of fiducial
projectors P̂k. We can choose a different set to make T spherical. Since the
choice of fiducial vectors is arbitrary we can, without any loss of generality,
always take T to be spherical with a = b = c = 1

2
. Hence, without loss of

generality, we can always put

D =


1 0 1

2
1
2

0 1 1
2

1
2

1
2

1
2

1 1
2

1
2

1
2

1
2

1

 (87)

for the N = 2 case.

Since we have now reproduced quantum theory for the N = 2 case we can
say that
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• Pure states can be represented by |ψ〉 〈ψ| where |ψ〉 = u |1〉+ v |2〉 and
where u and v are complex numbers satisfying |u|2 + |v|2 = 1.

• The reversible transformations which can transform one pure state to
another can be seen as rotations of the Bloch sphere, or as the effect of
a unitary operator û in SU(2).

This second observation will be especially useful when we generalize to any
N .

13.8.7 General N

It quite easy now to use the N =2 result to construct the case for general N
using Axiom 3 (the subspace axiom). We will use the N = 3 case to illustrate
this process. For this case K = 9 and so we need 9 fiducial vectors which we
will choose as in Section 13.8.2. Thus, we choose the first 3 of these to be the
fiducial basis vectors. There are 3 two-dimensional fiducial subspaces. Each
of these must have a further two fiducial vectors (in addition to the basis
vectors already counted). As in Section 13.8.2 we will label the two fiducial
vectors in the mn subspace as mnx and mny. We will choose the following
order for the fiducial states

1, 2, 3, 12x, 12y, 13x, 13y, 23x, 23y,

This provides the required 9 fiducial vectors. These fiducial vectors can
represent pure states or pure measurements. The matrix D is a 9×9 matrix.
However, each two-dimensional fiducial subspace must, by Axiom 3, behave
as a system of dimension 2. Hence, if we take those elements of D which
correspond to an N = 2 fiducial subspace they must have the form given in
equation (87). We can then calculate that for N = 3

D =



1 0 0 h h h h 0 0
0 1 0 h h 0 0 h h
0 0 1 0 0 h h h h
h h 0 1 h q q q q
h h 0 h 1 q q q q
h 0 h q q 1 h q q
h 0 h q q h 1 q q
0 h h q q q q 1 h
0 h h q q q q h 1
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where h = 1/2 and, as we will show, q = 1/4. All the 0′s are because
the corresponding subspaces do not overlap (we are using property (58)).
The q′s correspond to overlapping subspaces. Consider for example, the
D46 term. This is given by rT12xDr13x which is the probability when r12x is
measured on the state r13x. If states are restricted to the 13 fiducial subspace
then, by Axiom 3, the system must behave as a two-dimensional system. In
this case, the mea- surement r12x corresponds to some measurement in the
13 fiducial subspace. Since it has support of 1/2 on the 1 basis state and
support of 0 on the 3 basis state this measurement must be equivalent to
the measurement 1

2
r1 (though only for states restricted to the 13 fiducial

subspace). But rT1Dr13x = 1/2 and hence rT12xDr13x = 1/4. We can use a
similar procedure to calculate D for any N . Once we have this matrix we can
convert to the usual quantum formalism as we did in the N = 2 case. The
projection operators which give rise to this D are, up to arbitrary choices
in phase, those in equations (26) and (27) (these arbitrary choices in phase
correspond to fixing the gauge). Hence, we obtain P̂. Using the results of
Section 13.8.5, we obtain

ρ̂ = P̂ · r (88)

for a state represented by r, and

Â = r · P̂ (89)

or a measurement represented by r. Hence, we obtain

pmeas = tr(Âρ̂) (90)

which is shown to be equivalent to pmeas = r ·p in section 5. We now need to
prove that the restrictions from quantum theory on Â and ρ̂ from the axioms.

Both ρ̂ and Â must be Hermitian since r is real. The basis state r1 is repre-
sented by |1〉 〈1|. We showed above that we can apply any unitary rotation
U ∈ SU(2) for the N = 2 case. It follows from Axiom 3 and the results of
the previous section that if we apply an reversible transformation in a two-
dimensional fiducial subspace on a state which is in that two-dimensional
subspace the effect will be given by the action of a unitary operator acting in
that subspace. Thus imagine we prepare the state |1〉 〈1|. Let the basis states
be |n〉 〈n| (where n = 1 toN). Perform the rotation U12 in the 12 subspace.
This transforms the state to U12 |1〉 〈1|U †12. Now redefine the basis states to
be |1′〉 〈1′| = U12 |1〉 〈1|U †12, |2′〉 〈2′| = U12 |2〉 〈2|U †12, and |n〉 〈n| for n 6= 1, 2

116



(it is shown in Appendix 3.3 that a reversible transformation in a subspace
can be chosen to leave basis states not in that subspace unchanged). Next,
we consider a rotation U1′3 in the 1′3 subspace. The state will only have
support in this subspace and so Axiom 3 can be applied again. The basis
states can be redefined again. This process can be repeated. In this way it
is easy to prove we can generate any state of the form

ρ̂ = |Ψ〉 〈Ψ| (91)

where

|Ψ〉 =
N∑
n=1

cn |n〉 (92)

and
∑

n |cn|2 = 1 (this is most easily proven by starting with the target state
and working backwards). These transformations are reversible and hence all
the states generated in this way must be pure. Now, since we have shown
that these states exist, all mea- surements performed on these states must
be non- negative. That is

tr(Â |Ψ〉 〈Ψ|) ≥ 0 for all |Ψ〉 (93)

Hence, we obtain the positivity condition for the operators Â associated
with measurements. For each state, r, there exists a pure measurement
represented by the same vector, r, which identifies the state. Hence, since
the state |Ψ〉 〈Ψ| exists, it follows from (88,89) that measurements of the
form

Â = |Ψ〉 〈Ψ| (94)

exist. Therefore, all states ρ̂ must satisfy

tr(|Ψ〉 〈Ψ| ρ̂) ≥ 0 for all |Ψ〉 (95)

Hence we have proved the positivity condition for states.

We have Î = rI · P̂ since the first N elements of rI are equal to 1 and the
remainder are 0, and the first N elements of P̂ are projectors corresponding
to a basis. Hence, the trace condition (that 0 ≤ tr(ρ̂) ≤ 1) follows simply
from the requirement 0 ≤ rI · p ≤ 1.

The most general measurement consistent with the axioms can be shown to
be a POVM. A set of measurements rl that can be performed with a given
knob setting on the measurement apparatus must satisfy

∑
l rl = rI . Using

(89), this corresponds to the constraints
∑

l Âl = I as required.
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13.8.8 Transformations

It was shown in Section 5 that the transformation Z on p is equivalent to
the transformation $ on ρ̂ where

Z = tr(P̂$(P̂)T )D−1) (96)

To discuss the constraints on transformations we need to consider composite
systems. Figure 11 shows a preparation apparatus producing a system made
up of subsystems A and B such that A goes to the left and B goes to the
right.

Figure 11: The preparation device here prepares a system in the form of two
subsystems which go to the left and the right.

These subsystems then impinge on measurement apparatuses after passing
through transformations devices which perform transformations ZA and ZB.
This set up can be understood to be a special case of the more generic setup
shown in Figure 10 (there is no stipulation in the case of Figure 10 that the
measurement apparatus or any of the other apparatuses be located only in
one place). Assume the transformation devices are initially set to leave the
subsystems unchanged. From Axiom 4 we know that there are KAKB fiducial
measurements. As discussed in Section 5, the space of positive operators for
the composite system is spanned by P̂A

i ⊗ P̂B
j where P̂A

i (i = 1 to KA)

is a fiducial set for A and P̂B
j (j = 1 to KB) is a fiducial set for B. It

is shown in Appendix 4 that (as we would expect) the projector P̂A
i ⊗ P̂B

j

corresponds (i) to preparing the i th fiducial state at side A and the j th
fiducial state at side B when the operator is regarded as representing a state,
and (ii) to measuring the joint probability of obtaining a positive outcome
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at both ends when the i th fiducial measurement is performed at side A
and the j th fiducial measurement is performed at side B when the operator
is regarded as representing a measurement. Hence, one choice of fiducial
measurements is where we simply perform the i th fiducial measurement on
A and the j th fiducial measurement on B and measure the joint probability
pij. The probabilities pij could be put in the form of a column vector pAB.
However, for discussing transformations, it is more convenient to put them
in the form of a KA × KB matrix, p̃AB , having ij entry pij. It is easy to
convert between these two ways of describing the state. We could regard both
the preparation apparatus and measurement apparatus B as a preparation
apparatus preparing states of subsystem A. If we perform the j th fiducial
measurement on system B and take only those cases where we obtain a
positive result for this measurement preparing the null state otherwise then
the resulting state of system A will be given by a vector equal to the j th
column of p̃AB (since these probabilities are equal to the probabilities that
would be obtained for the fiducial measurements on A with this preparation).
Hence, the columns of p̃AB must transform under ZA. Similarly, the rows of
p̃AB must transform under ZB. Hence, when the transformation devices in
Figure 11 are active, we have

p̃AB → ZAp̃ABZ
T
B (97)

If the state is represented by r̃AB where

p̃AB = DAr̃ABD
T
B (98)

then this equation becomes

r̃AB = XAr̃ABX
T
B (99)

where
XA = D−1

A ZADA (100)
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and similarly for B. It is easy to see that this is the correct transformation
equation in quantum theory (we have dropped the A and B superscripts).

pijAB → tr[P̂i ⊗ P̂j$A ⊗ $B(ρ̂)]

= tr[P̂i ⊗ P̂j$A ⊗ $B(
∑
k

P̂k ⊗ P̂lrkl)]

=
∑
kl

tr[P̂i ⊗ P̂j$A(P̂k)⊗ $B(P̂l)]r
kl

=
∑
kl

tr[P̂i$A(P̂k)]r
kl
ABtr[P̂j$B(P̂k)] (101)

which, using (96), gives (97) and (99). The steps in (101) can be read back-
wards. Hence, from (97), we obtain the tensor product structure for describ-
ing composite systems.

We will say that ZA is completely positive iff

p̃AB → ZAp̃AB (102)

maps all allowed states of the composite system AB to states which are also
allowed states for any dimension NB. The only constraint on transformation
matrices Z is that they transform states in S to states in S. This means that
probabilities must remain bounded by 0 and 1. Hence,

1. Z must not increase the normalization coefficient of states.

2. Z must be completely positive.

Condition 2 is necessary since any system could always be a subsystem of
some larger system. The transformations deduced from the axioms are sub-
ject to the equivalent constraints for $ listed in Section 5. They preserve
Hermiticity since the transformation matrix Z is real (and hence pp remains
real). They do not increase the trace (point 1. above). They are linear and
they must be completely positive (point 2. above). Hence, the most general
type of transformation consistent with the axioms is the most general trans-
formation of quantum theory. As noted in section 5, this gives us unitary
evolution and von Neumann projection as special cases.
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13.8.9 The state after a measurement

It is possible that, after a measurement, a quantum system emerges from
the measurement apparatus. In such cases the measurement apparatus is
also behaving as a transformation apparatus. We can think of the state as
emerging into a different channel for each measurement outcome. Associated
with each outcome, l, of the measurement will be a certain transformation,
Zl ∈ Γ, on the state. he probability of any given outcome will not, in general,
be equal to 1. Hence, the transformation must reduce the normalization
coefficient associated with the state to a value consistent with the probability
of obtaining that outcome. This condition is

rI · Zlp = rl · p for all p ∈ S (103)

Furthermore, we can consider all these channels taken together. In this case
the effective transformation is given by

∑
l Zl. It is necessary that this also

belongs to the allowed set of transformations, Γ, and that it does not change
the normalization coefficient associated with the state. This second condition
can be written (∑

l

Zl

)T

rI = rI (104)

This is equivalent to constraint

tr
∑
l

$(ρ̂) = tr(ρ̂) for all ρ̂ (105)

Since completely positive operators can be written as $(ρ̂) =
∑

l M̂lρ̂M̂
†
l this

equation can be shown to be equivalent to∑
l

M̂ †
l M̂l = Î (106)

which is the usual quantum constraint on superoperators associated with
measurements.

The two equations (103,104) which constrain the possible transformations of
the state after measurement apply equally well to classical probability theory.
This may suggest a new approach to the measurement problem in quantum
theory.
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13.9 Infinite dimensional spaces

There are two types of infinite dimensional space - countable and continuous
dimensional. The countable infinite dimensional spaces are accounted for
by these axioms since such systems are characterized by the property that
any finite subspace obeys quantum theory. It is not so clear what the sta-
tus of continuous dimensional spaces is. Such spaces can always be modeled
arbitrarily well by a countable infinite dimensional Hilbert space. However,
there are certain mathematical subtleties associated with the continuous case
which we have not considered here. Nevertheless, it is clear that the classical
continuous case violates the axioms even though there are continuous paths
between states since the continuity axiom (Axiom 5) must also apply to finite
subspaces (by Axiom 3) and for these there are no continuous transforma-
tions.

While continuous dimensional spaces play a role in some applications of quan-
tum theory it is worth ask- ing whether we expect continuous dimensional
spaces to appear in a truly fundamental physical theory of nature. Con-
siderations from quantum gravity suggest that space is not continuous at
the planck scale and that the amount of information inside any finite vol-
ume is finite implying that the number of distinguishable states is countable.
Given the mathematical difficulties that appear with continuous dimensional
Hilbert spaces it is also natural to ask what our motivation for considering
such spaces was in the first place. Consider a classical particle which can
move along a straight line. If where were not a continuous infinity of distin-
guishable positions for the particle then the only way the particle could move
would be to jump from one position to the next. It is because we do not like
such discontinuities in physics that we imagine that there is a continuous
infinity of distinct positions along the line. However, in quantum theory it
is no longer the case that the particle would need to jump and hence the
main motivation for considering the continuous dimensional case no longer
pertains.

If we do, nevertheless, consider continuous dimensional spaces then there is
an interesting respect in which the quantum case is superior to the classi-
cal case. Consider again a particle which can move along a straight line.
Every point on the line represents a distinguishable state for the particle.
Take three points A, B, and C along this line where B is between A and
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C. In classical theory, if the particle is to move continuously through the
state space from A to C it must pass through point B. However, to move
continuously from A to B it need not pass through C. Hence, the pairs AB
and AC are on an unequal footing. In quantum theory a particle can pass
directly from the point A to the point C without going through the points
in between along a continuous trajectory in the state space simply by going
along the Bloch sphere corresponding to this two-dimensional subspace (such
transformations do not occur in practice since Hamiltonians contain only lo-
cal terms). Hence, the pairs AB and AC are on an equal footing. We can
regard statements like the particle is at point B as logical propositions. It
is a very desirable property that pairs of propositions should be on an equal
footing. Thus, in this respect, quantum theory is superior.

On the other hand, even in the quantum case, continuous dimensional spaces
appear to have a topological relationship between infinitesimally displaced
distinguishable states which is different to the topological relationship be-
tween finitely displaced distinguishable states. This is hard to reconcile with
the notion that any pair of distinguishable states are on an equal footing and
may be further support for the case against giving continuous dimensional
spaces a role in any fundamental theory of nature.

13.10 Discussion

We have shown that quantum theory follows from five very natural axioms. If
Axiom 5 (or even just the word continuous in Axiom 5) is dropped we obtain
classical probability theory instead. It is classical probability theory that
must have jumps. If a 19 th century ancestor of Schrodinger had complained
about dammed classical jumps then he might have attempted to derive a
continuous theory of probability and arrived at quantum theory. Quantum
theory is, in some respects, both superior to and more natural than classical
probability theory (and therefore classical theories in general) since it can
describe evolution for finite systems in a continuous way. Since nature is
quantum, not classical, it is to be expected that quantum theory is ultimately
the more reasonable theory.

There are many reasons to look for better axiomatic formulations of quantum
theory.

• Aesthetics. A theory based on reasonable axioms is more appealing.
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• A set of reasonable axioms provides us with a deeper conceptual un-
derstanding of a theory and is therefore more likely to suggest ways in
which we could extend the domain of the theory or modify the axioms
in the hope of going beyond quantum theory (for example, to develop
quantum gravity).

• This approach puts a different slant on the interpretation of quantum
theory (see discussion below).

• Since the formulation of quantum theory here is closer to classical prob-
ability theory than the standard formulation, this may motivate new
applications and new treatments of the theory of quantum information.

There are various ways in which this work has a bearing on interpretational
matters. First, if we re- ally believe these axioms to be reasonable then they
would also apply to hidden variables and it would follow that the hidden
variable substructure must look like quantum theory. We could not then
use hidden variables to solve the measurement problem (since this relies on
being able to give the hidden variables a classical probability interpretation).
Second, we see here how successful a purely instrumentalist approach is in
obtaining the structure of quantum theory. Whilst this need not contradict
beliefs held by the realist since he would anyway expect quantum theory
to be consistent with instrumentalist argumentation, it does require some
explanation. And, third, we obtain that the most general evolution is that of
a superoperator. This is capable of taking pure states to mixed states. Hence,
collapse interpretations of quantum theory could be incorporated into this
structure.

Appendix 1

We will prove that the property

f(λpA + (1− λ)pB) = λf(pA) + (1− λ)f(pB) (107)

where λ ≥ 0, implies that

f(p) =
∑
α

aαf(pα) (108)

where
p =

∑
α

aαpα (109)
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if
pα,p ∈ S for all α

for all aα where S is the set of allowed p. First note that putting pA = 0
gives

f(λp) = λf(p) (110)

for 0 ≤ λ ≤ 1. We can write γ = 1/λ and p′′ = p/λ. Then we obtain

f(γp′′) = γf(p′′) (111)

where 1 ≤ γ. Hence
f(vp) = vf(p) (112)

if v ≥ 0. This only follows from (107) if p, vp ∈ S. However, if this is not
the case, then the equation does not correspond to any physical situation.
Hence, we are free to impose that (112) is true for all p. In those cases where
p, vp ∈ S is not satisfied the equation has no physical significance anyway.

Let fI pertain to that measurement that simply checks to see that a non-null
result has been recorded (we call this the identity measurement). We will
write fI(p) = µ. We define the normalized state p̃ by µp̃ = p such that
fI(p̃) = 1 (using (112)).

We can normalize each of the states in (109) such that

µp̃ =
∑
α

aαµαp̃α (113)

We are free to choose the fiducial measurement corresponding to the first
component of the state vector p to be the identity measurement. Hence,
reading off the first component from (113) we obtain

µ =
∑
α

aαµα (114)

Let α ∈ A± if aα is ±ve and define

ν = µ+
∑
α∈A−

|aα|µα =
∑
α∈A+

aαµα (115)

125



We can rearrange (113)

µ

ν
p̃ +

∑
α∈A−

|aα|µα
ν

p̃ =
∑
α∈A+

aαµα
ν

p̃ (116)

Each coefficient is positive and the coefficients on each side add to 1. Hence
we can apply (107)

µ

ν
f(p̃) +

∑
α∈A−

|aα|µα
ν

f(p̃) =
∑
α∈A+

aαµα
ν

f(p̃) (117)

Rearranging this using (112) gives (108) as required.

We see that (108) holds whenever the arguments of f in each term correspond
to physical states. If these arguments do not all correspond to physical
states then the equation does not correspond to any physical situation. For
mathematical simplicity we will impose that (108) still holds in such cases.
Appendix 2

In this appendix we show that any strictly increasing function having the
completely multiplicative property

K(mn) = K(m)K(n) (118)

where n takes only positive integer values, is of the form K(n) = nα. First
put m = n = 1 into(118). We obtain that K(1) = 0, 1. Put m = 1 into (118).
If K(1) = 0then K(n) = 0for all n. But this is not strictly increasing. Hence
we must have K(1) = 1. The argument n can be factorized into primes:
n = pk11 p

k2
2 .... where pi is the i th primes and the k′is are integers. It follows

from the completely multiplicative property that

K(n) =
∏
i

Kki(pi) (119)

Hence, the function K(n) is completely determined by its values at the
primes. Now consider two primes p and q.Define α by

K(p) = pα (120)

Note that K(p) > 1 since K(n) is a strictly increasing function and hence
α > 0. Define a by

K(q) = aqα (121)

126



Introduce the integer t which we will allow to take any positive value. Then
define s by

ps > qt > ps−1 (122)

From the fact that K(n) is strictly increasing we have

K(ps) > K(qt) > K(ps−1) (123)

Hence,
pαs > atqαt > pα(s−1) (124)

Define s̃ by
ps̃ = qt (125)

Comparing with (122) we have

s̃+ 1 > s > s̃ > s− 1 > s̃− 1 (126)

Hence, (124) gives
ps̃+1 > atqαt > pα(s̃−1) (127)

(we have used the fact that α > 0). Using (125) we obtain

pα > at > p−α (128)

This must be true for all t. However, at can only be bounded from above
and below if a = 1. Hence, K(q) = qα. This applies to any pair of primes, p
and q, and hence K(n) = nα. Appendix 3

In this appendix we will prove a number of related important results some
of which are used in the main part of the paper.

The set of reversible transformations is represented by the set, Γreversible, of
invertible matrices Z in Γ whose inverses are also in Γ. These clearly form a
representation of a group. In fact, since, by Axiom 5, this group is continuous
and the vectors p generated by the action of the group remain bounded,
Γreversible is a representation of a compact Lie group. It can be shown that
all real representations of a compact Lie group are equivalent (under a basis
change) to a real orthogonal representation. Let us perform such a basis
change. Under this basis change assume that Z ∈ Γ is transformed to Y ∈ Ω
and pS ∈ S is transformed to q ∈ Q. The formula pmeas = r · p becomes

pmeas = s · q (129)
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where s now represents the measurement (and is obtainable from r by a basis
change). If a transformation device is present then we have

pmeas = sTY q (130)

We can regard Y as transforming the state or, alternatively, we can regard it
as part of the measurement apparatus. In this case we have s→ Y T s. If we
now restrict our attention to reversible transformations then Y ∈ Ωreversible.
Therefore, with this representation, both states q and measurements s are
acted on by elements of Ωreversible.

A3.1

In this Appendix section we will prove that

ZT
W rIW = rIW for all ZW ∈ ΓreversibleW (131)

where rIW is the identity measurement for the subspace Wn and ΓreversibleW

is the set of reversible transformations which map states in the subspace W
to states in W - such transformations must exist by Axiom 3. We can work
in the basis for which the transformations are orthogonal introduced above.
Then we wish to prove

Y T
W sIW = sIW for all YW ∈ Ωreversible

W (132)

Working in this basis we can write any state in the subspace W as

q = asIW + x (133)

where x is orthogonal to sI . The normalization of this state is fixed by a. Let
KW be the number of degrees of freedom associated with the subspace W .
Once the normalization coefficient has been fixed there are KW − 1 degrees
of freedom left corresponding to the KW − 1 dimensions of the vector space
orthogonal to sIW for states in W which is spanned by possible x. There must
be at least one direction in this vector space for which both x and γx where
γ 6= 1, are permissible vectors (corresponding to allowed states). To see this
assume the contrary. Thus assume that for each direction x/|x| there is only
one allowed length of vector. Such a constraint would remove one degree of
freedom leaving KW − 2 degrees of freedom which contradicts our starting
point that there are KW −1 degrees of freedom associated with states with a
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particular normalization coefficient. Consider such an x for which γx is also
permissible. Now

sIW · YWq = sIW · q (134)

since the reversible transformation YW does not change the normalization
coefficient of the state and q is in W both before and after the transformation.
Using (133) this becomes

asIW · YW sIW + sIW · YWx = asIW · sIW (135)

This equation must also apply when x is replaced by γx.

asIW · YW sIW + γsIW · YWx = asIW · sIW (136)

Subtracting these two equations tells us that the second term on the LHS
vanishes. Hence

sIW · YW sIW = sIW · sIW (137)

Now, the transformation YW is orthogonal and hence length preserving and
thus (132) follows.

It follows that
Y T sI = sI for all Y ∈ Ωreversible (138)

where sI is the identity measurement in this new basis (written as rI in the
usual basis). This property is to be expected since reversible transformations
leave the normalization coefficient of a state unchanged.

A3.2

It is clearly the case that

ZWp ∈ W if p ∈ W and ZW ∈ ΓreversibleW (139)

It is also the case that

ZWp ∈ W if p ∈ W and ZW ∈ ΓreversibleW (140)

where W is the complement subspace of W . This follows immediately since
p ∈ W iff rIW · p = 0. But if this is true then, since ZT

W rIW = rIW , it is also
true that rIW · ZWp = 0. Hence, ZWp ∈ W .
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A3.3

We will now prove that we can choose ZW such that ZWPn = Pn for n ∈ W .
Define W ′(m) to be the set containing all the elements of W plus the first
m elements of W . Consider only states constrained to the subspace W ′(1)
and consider the set ΓreversibleW ′(1) of W?(1) reversible transformations which map

states in W ′(1) back into W ′(1). The subspace W is a subspace of W ′(1).
Hence, by Axiom 3, there must exist a subset of ΓreversibleW ′(1) which map states
in W back into W . By the result in A3.2 these transformations must leave
the basis state pm1 unchanged (where m1 is the first entry of W ) since this
is the only normalized state in W ′(1) and the complement of W . We can
now run the same argument taking W ′(2) to be our system and so on. In
this way we establish that we can find a transformations ZW which have the
desired property.

A3.4

In this appendix subsection we show that one possible choice of fiducial mea-
surements are those identified in Section 13.8.2. Consider the set Γreversiblemn

of reversible transformations that transform states in the subspace Wmn to
states in the same subspace (where Wmn is the subspace associated with the
mth and the n th basis vectors). It follows from the property established in
A3.2 that

rTnZmnp = 0 if p ∈ Wmn (141)

We can regard the transformation device as part of the measurement ap-
paratus (rather than regarding it as acting on the state). In this case we
have

rn → ZT
mnrn (142)

We can choose two particular transformations Zmnx and Zmny to provide us
with the two extra needed fiducial measurements, rmnx and rmny respectively,
for each two-dimensional subspace. The vectors rm, rn, rmnx, and rmny must
be linearly independent. It follows from the fact that, for this subspace,
the group of transformations is equivalent, under a basis change, to the full
group of orthogonal rotations in three dimensions that we can choose Zmnx
and Zmny such that this is the case. From (141) we have

rmnx · p = 0 if p ∈ Wmn (143)
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and similarly for rmny.

We will now prove that the N2 vectors chosen in this way are linearly in-
dependent. We can do this by showing that each measurement yields infor-
mation about the state that none of the others do. First, the vectors rn are
linearly independent of each other since there exists a vector (namely pm)
having non-zero overlap with any given rm which has zero overlap with all
the other rn. Now we add two fiducial vectors, rmnx and rmny, to each two-
dimensional subspace Wmn that are, by construction, linearly independent
of the basis vectors already in that subspace. Since the fiducial measure-
ments pertaining to one such two-dimensional subspace yield no information
about states in any other non-overlapping two-dimensional subspace (because
of (143))they must be linearly independent of the fiducial measurements in
those non-overlapping subspaces. What about over-lapping two-dimensional
subspaces? Consider per-forming the measurement rmnx on p in Wmn′ where
n′ 6= n. Since p is in Wmn′ it follows from Axiom 3 that the measurement
rmnx must be equivalent to some measurement in this subspace (though only
for states in this subspace). Now, if the state is actually the basis state
pn′ then zero probability would be recorded. This means that the measure-
ment rmnx, when regarded as a measurement on Wmn′ is actually equivalent
to a measurement just on the one-dimensional subspace Wm. Hence, rmnx
does not yield any information about states in the subspace Wmn′ that is
not given by rm and therefore the measurements rmn′x and rmn′y are linearly
independent of it. Hence, the N2 fiducial measurements are all necessary to
determine the state and are therefore linearly independent.

A3.5

In this appendix subsection we show that the map between a pure state and
that pure measurement identifying it is linear and invertible (recall that pure
measurements are defined to be those measurements which can be obtained
by acting on the basis measurement r1 with a reversible transformation).
Using the basis for which reversible transformations are orthogonal (see in-
troduction to this appendix) we can put

q = asI + u (144)

for the state, and
s = bsI + v (145)
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for the measurement where u and v are orthogonal to sI . Since Y T sI = sI

and since the group of reversible transformations, Ωreversible, is orthogonal it
follows that Y sI = sI . Hence, transformations only effect the components of
q and s orthogonal to sI . Using pmeas = r · p = s · q we obtain

pmeas = k + v · u (146)

where k = absI · sI .

Now assume that the pure measurement represented by s identifies the pure
state represented by s. Then k + u · v = 1. This probability cannot be
increased by any transformation device. Hence,

vTY u ≤ vTu for all Y ∈ Ωreversible (147)

Since the orthogonal transformation Y is length preserving it would appear
that the only way to satisfy this condition is if v is parallel to u. This is in-
deed the case and is proven at the end of this appendix sub- section. Hence,
we can say that the state q = asI + u is identified by the measurement
s = bsI + cu. Now apply this result to the basis state q1 (this corresponds
to p1) and the basis measurement s1 (this corresponds to r1). Let C be
the linear map that performs scalar multiplication by a factor µ in the sI

direction and by a factor ν in the subspace orthogonal to sI . We can apply
C to q and C−1 to s such that s1q1 = αsI + βu1 by appropriate choice of
the factors µ and ν. The maps C and C−1 commute with the orthogonal
transformations Ωreversible. Hence, in general, the pure state q = αsI +Y βu1

identified by the pure measurement s = αsI + Y βu1 (i.e. represented by the
same vector) as Y Y T = I. Since the basis change and the maps C and C−1

are all linear and invertible it follows that the map from pure states to the
pure measurements identifying them is linear and invertible.

As promised, we will now prove that v is parallel to u when a pure mea-
surement s identifies a pure state q. First consider the basis measurement
s1 and the basis state q1 it identifies. Let Vmn be the vector space spanned
by the fiducial measurement vectors sm, sn, smnx, and smny associated with
the mn subspace. It follows from A3.4 that these vector spaces span the full
N2 dimensional vector space. The state q1 can have no projection into the
vector space Vmn if m,n 6= 1 (since s · q1 = 0 for s associated with the mn
subspace). Let Ṽ be the vector space spanned by the vector spaces V1n for
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n = 1 toN . It follows from the fact that q1 has no projection into Vmn for
m,n 6= 1 that q1 is in Ṽ . Now the vector sI =

∑
n sn is clearly in Ṽ . Let Ṽ ′

be the vector space in Ṽ orthogonal to sI . We can write q1 = asI +u1 where
u1 is in the vector space Ṽ ′. Similarly, we can write s1 = bsI + v1. Define
V ′1n as the vector space spanned by the fiducial measurement vectors v1, vn,
v1nx, and v1ny associated with the subspace 1n. The vector spaces V ′1n for
n = 1 toN span Ṽ ′. Consider orthogonal transformations Y1n which leave
states in the 1n subspace. They will also transform measurements pertaining
to the 1n subspace to measurements still pertaining to this subspace (and
thus still in V ′1n). Since v1 and Y T

1nv1 are both in V ′1n we can write (147)
as

vT1 Y1nu
1n
1 ≤ vT1 u1n

1 (148)

where u1n
1 is the component of u1 in V ′1n. The vector space V ′1n is three

dimensional and the action of the group of orthogonal transformations in the
1n subspace on u1 is to sweep out a sphere (since these transformations are
length preserving). Hence, condition (148) can only be satisfied for all rota-
tions Y1n if u1n

1 is parallel to v1. The vector spaces V ′1n span all of Ṽ ′ and
hence u1 has no component which is perpendicular to v1. This means that
v1 is parallel to u1. We complete the proof by noting that a general pure
measurement can be written v = Y v1 and identifies the pure state u = Y u1.

A3.6

It is easy to prove that D = DT . We chose a set of pure fiducial states and
we chose the fiducial measurements to be the set of pure measurements that
identify these states. Hence, if we represent the fiducial states by a set of
vectors ql then, as proven in A3.5, we can represent the fiducial measure-
ments by the the same vectors sk = qk. The matrix element Dkl is equal to
the probability when the k th fiducial measurement is performed on the l th
fiducial state. This is equal to qk · ql and hence D = DT .

A3.7

Now we will show that the basis measurements rn are all pure and, therefore,
that all the fiducial measurements of A3.4 are pure. Consider first the case
where N = 2. Then K = 4. The normalized states (and hence pure states)
live in a three dimensional space (since we can eliminate one variable by nor-
malization). Hence, orthogonal transformations can be regarded as rotations
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about an axis. We can write the basis states as

q1 = αsI + βu1 (149)

q2 = αsI − βu1 (150)

This follows since there exists a continuous orthogonal transformation which
takes q1 to q2. This can be regarded as a rotation around a great circle.
The orthogonal state q2 must correspond to the opposite point on the circle
where u = −u1 since this is the point at which s1 · q stops decreasing and
starts increasing again. Now, we have already that

s1 = αsI + βu1 (151)

We have not yet proven that s2 (corresponding to r2) is pure. However, we
know that s1 + s2 = sI so we can write

s2 = α′sI − βu1 (152)

with α + α′ = 1. It then follows from s1 · q2 = s2 · q1 = 0 that α =
α′ = 1/2. Hence, s2 is pure.This proof can be applied to the general N
case by considering only a two dimensional subspace. It follows from Axiom
3 that there must exist a set of invertible transformations which transform
states in the 1n subspace to states in the same subspace. As shown in A3.1,
these leave sIW1n invariant (this is the identity measurement vector for the
1n subspace). Hence, we can replace sI by sIW1n throughout the above proof
if we are only considering transformations in this subspace. It follows that
we can transform s1 to sn and hence the basis measurements are all pure.

Hence we can transform s1 to any smnx by first transforming by a reversible
transformation to sn and then applying the reversible transformation of A3.4
to obtain smnx. Similar remarks apply to smny.

Appendix 4

In this appendix we will show that the projector P̂A
i ⊗ P̂B

j can correspond
to the measurement of the joint probability of obtaining a positive outcome
for fiducial measurements i at A and j at B, and to the state when the
i th fiducial state is prepared at A and the j th fiducial state is prepared
at B. First, note that we can prepare NANB distinguishable states for the
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composite system by preparing basis state m at A and basis state n at B.
Since the composite system has N = NANB this represents a complete set
of basis states. Further, since K(1) = 1 all basis states must be pure (as
noted at the end of Section 13.8.1). Hence, we can choose these basis states
to correspond to the basis states of our Hilbert space |mn〉 or, equivalently,
|m〉 ⊗ |n〉. As operators these basis states are P̂A

m ⊗ P̂B
n where m(n) only

runs over the first NA(NB) values (the remaining values corresponding to
the other fiducial projectors).

Now consider the NB dimensional subspace with basis states |1〉 ⊗ |n〉 (n =
1 toNB). This subspace corresponds to the case where system A is prepared
in basis state 1 and system B is prepared in any state. A full set of fiducial
projectors can be formed for this subspace. These will take the form P̂A

1 ⊗P̂B
l

where l = 1 toKB (i.e., runs over the all values, not just the basis labels).
We can do the same for the case where basis state 2 is prepared at A. Then
we have the fiducial projectors P̂A

2 ⊗ P̂B
l for the subspace 2n (n = 1 toNB).

Indeed, we can do this for the general case in which the basis state m is
prepared at A. Now consider the pure state P̂A

1 ⊗ Q̂B where Q̂B is some
arbitrary projector at B. This state is in the 1n (n = 1 toNB) subspace and
we can perform the fiducial measurements P̂A

1 ⊗ P̂B
l in this subspace to fully

characterize this state. The probabilities obtained in making these fiducial
measurements will be the same as if we prepared the state P̂A

2 ⊗Q̂B and made
the fiducial measurements P̂A

2 ⊗ P̂B
l and hence this corresponds to the same

preparation at B. Hence, in general the projector P̂A
m ⊗ Q̂B corresponds to

preparing the basis state P̂m at A and the general pure state Q̂B at B. Now
consider the subspace spanned by the projectors P̂A

m ⊗ Q̂B (m = 1 toNA) in
which we prepare Q̂B at B. A fiducial set for this subspace is P̂A

k ⊗Q̂B where
k = 1 toKA. If these fiducial measurements are made on a state R̂A ⊗ Q̂B

where R̂A is a projector at A then we would get the same results as if the
fiducial measurements P̂A

k ⊗ Q̂′B were made on the state R̂A⊗ Q̂′B. Hence, in
both cases the preparation at A is the same. Thus, the pure state R̂A ⊗ Q̂B

corresponds to the case where a particular pure state R̂A is is prepared at
A and the pure state Q̂B is prepared at B. An analogous argument to that
above can be used to show that, regarded as a measurement, the projector
R̂A⊗Q̂B corresponds to measuring the joint probability with setting R̂ at the
end A and setting Q̂ at end B. Applied to the fiducial projectors, P̂A

k ⊗ P̂B
l ,

this proves our result.
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14 New postulates for quantum theory

We give two sets of postulates, the first, which pick out the kinematical
framework and the second, which specifies dynamics.

14.1 Definitions

We need a number of definitions, in most cases more information is found
from Theories #1 and #2, from where these definitions are taken.

• The universe at a given time consists of a number of systems, SI .

• Systems are labeled by their constituents and preparation.

New systems can be formed from old systems in three ways.

• New systems can be formed by combinations of existing systems, or
composition.

S12 = S1 ∪ S2 (153)

• Systems may also be prepared by projection, which is subjecting them
to a filter that picks out a subset of possible measurement outcomes.

• Systems may also be altered by evolution in time, with or without
external influences. This is also called transformation.

Composition increases the set of possible outcomes of measurements,
projection reduces it and evolution leaves the number fixed.

• Capacity: For a given system, there is a number N , called the ca-
pacity by, which is the number of possible outcomes of a given single
measurement made on the system.

• Degrees of freedom: The minimal amount of information needed
to completely determine the statistical distribution of outcomes of any
experiment on the system is K real parameters.

• Statistical state: The state of a system S can be specified by a list
of K probabilities, ρ = (p1, p2, ...., pK) which are complete in the sense
that the probabilities of any measurement made on S can be computed
from the pa. The space of states, SS is convex and compact, because
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the probabilities are bounded by 0 ≤ pa ≤ 1. A state is a mixture if it
can be written as a statistical mixture of two other states,

pa = xp1
a + (1− x)p2

a (154)

for a probability 0 ≤ x ≤ 1. A state is pure if it cannot be so expressed.

• Measurement is a map E : ρ → R which corresponds to a possi-
ble experiment. A set of complete measurements is N measurements
that suffice to pick out uniquely one of the N possible outcomes of a
measurement.

14.2 Kinematical postulates for quantum theory

For the kinematical framework we work in the tradition of operational axioms
for quantum theory pioneered by Hardy. We find it most useful to use a set of
postulates proposed by Theory #1, which gives four postulates for quantum
theory.

To emphasize the role of freedom in quantum physics I would like to propose
a modification of their postulates which modify one and add one additional,
so that we have the following system of five postulates.

• Postulate1: Local tomography. The state of a composite system
AB is completely characterized by the statistics of measurements on
the subsystems A and B.

• Postulate2: Equivalence of subspaces. Let SN and SN−1 be sys-
tems with capacities N and N − 1, respectively. If E1, ...., EN is a
complete measurement on SN , then the set of states ω ∈ SN with
EN(ω) = 0 is equivalent to SN−1. Physically this means that if two
quantum systems of the same capacity are equivalent even if one arises
by reduction from a larger system.

• Postulate3: Symmetry. For every pair of pure states ω, φ ∈ SA,
there is a reversible transformation T such that T · ω = φ.

• Postulate4: All measurements allowed. All probability measures
on S2 (that is, maps from S2 to the interval [0, 1] are outcome proba-
bilities of possible measurements.
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• Postulate5: The principle of maximal freedom. The amount of
information needed to predict the statistical distribution of outcomes
of any experiment on a system S should be as large as possible, given
N . Thus, K should increase with N by a fixed function, which grows
as fast as possible, consistent with the other axioms.

We note that Postulates 1 to 4 are given by Theory #1. Note that we
use a version of Postulate 3 that does not specify the transformations are
continuous. The only thing new is the fifth postulate. The fact that these five
postulates together pick out quantum theory uniquely follows trivially from
Theorem 1 of Theory #1 which asserts that the first four postulates have
two realizations, classical probability theory and quantum theory. Postulate
5 then trivially picks out quantum theory, for which K = N2−1 over classical
probability theory for which K = N .

14.3 Dynamical postulates for quantum theory

We begin by postulating a real ensemble within which probabilities for quan-
tum systems are defined as relative frequencies.

• Definition: The precedents of a quantum system S is the ensemble,
E(S) of systems with the same constituents and preparation (including
transformations) in the past. The ensemble of precedents of a measure-
ment, M , consists of copies of the processes with the same constituents,
preparation and measurement in the past. M(E, S) is the ensemble of
outcomes of these measurements.

We also need to specify how the formalism applies to experiment. This
is through a

• Principle of correspondence: The statistical state ρ of a quantum
system, S, is a description of the ensemble of its precedents. It is
measured by constructing an ensemble and measuring the probability
distributions of the outcomes of K distinct experiments on them.

Now we are ready to state the dynamical principle of quantum physics.

• Postulate 6: Precedence: The outcome of a measurement, M , on a
system, S, is a randomly chosen member of M(E, S), the ensemble of
outcomes of past instances of that measurement on identically prepared
systems, in the case that the number of such precedents is large.
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What if a system has no precedents? This can occur if an entangled
state is formed for the first time. Then it is a novel state and we apply

• The principle of freedom in the absence of precedent: A quan-
tum system, S, may have no precedent. Then the outcome of a mea-
surement M on it is not determined by any prior knowledge of the state
of the universe.

A system may have aspects that have precedence without being determined
totally. For example, the possible outcomes of a measurement on a novel
system are still constrained by symmetries. They are also constrained by the
conservation laws that follow from symmetries including energy.

What happens in between, when the number of precedents is non-zero but
small. This requires a novel principle, about which I only have a few prelim-
inary remarks to offer in the next section. A question we can answer now
is how many instances are necessary to go between the principle of freedom
and the principle of precedence? We note that K is a measure of how many
precedents are necessary before the statistical distributions of the outcome
of any experiment are determined. Hence, K is a measure of the freedom of
quantum systems. This is specified by postulate 5.

This means that quantum systems are maximally free because a maximal
number of prior cases is needed to establish enough precedence to predict as
we as can be done the result of any measurement. To put this another way,
it takes a maximal amount of information to be able to predict or foresee
how the system will respond to anything it might encounter.

The fact that K is large compared to N reflects the fact that a density
matrix, which could arise as the description of the state of a subsystem en-
tangled within a larger system, requires much more information to specify,
then a pure state. This means that there are many more ways a system may
be entangled within a larger system than can be distinguished by a single
measurement. This accords a great freedom to quantum systems because it
means that they can have properties that are only expressed by measuring
statistical distributions over many repeated experiments. Our result means
that quantum mechanics is the case where this freedom is maximal given a
set of reasonable axioms.
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15 How precedence builds up

The action of the principle of precedence has to be restricted to cases in
which the number of precedents of a measurement is large. Otherwise, the
first result with no precedence would be chosen randomly and that result
would be the sole precedent for the second result, which would imply that
all future measurements would repeat the first random choice. To avoid this
a different principle is required while the precedents build up an ensemble
which fills out the elements of a density matrix. One intriguing suggestion is
that nature tries to induct from the first randomly chosen results the simplest
possible rule. This can be understood as saying that it is more efficient for
nature to store a simple rule to generate the ensemble of outcomes than it
is to store the whole ensemble of outcomes itself. This leads to a hypothesis
that nature chooses the simplest rule, in the sense of algorithmic informa-
tion theory, which accounts for the first small number of precedents. Such
a principle of a simplest rule contrasts interestingly with the principle that
the state requires as much information as possible to specify.

This suggests that the laws of nature are the result of a minimalization, not
of an action, but of the information needed to express a rule that propagates
future cases from past cases. So rather than a principle of least action we
will formulate dynamics as a principle of least information.

There is of course a difficulty with the idea that the laws of nature are as
simple as possible, which is that they aren’t. Free theories are simpler than
interacting theories because it takes less information to specify linear laws
then it does non-linear laws. But a linear world would have no interac-
tions and so no relations to define properties of subsystems. So perhaps the
principle that the world is relational forces it to be interacting. Then we
require the simplest possible non-linear law. That is easy to satisfy: the sim-
plest non-linear equations are quadratic. Remarkably, both general relativity
and Yang-Mills theory can be expressed as quadratic equations through Ple-
banskis trick of adding auxiliary variables. This basically follows from the
fact that gauge couplings modify linear field equations by the addition of a
quadratic term coupling matter with the gauge field. Further, it is possible
to conjecture that there may be a universal expression which unifies inter-
acting gauge and gravitational theories, in which the fundamental dynamics
expressed by a quadratic law. We can also consider the hypothesis that the
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state and the dynamical law are unified at a fundamental level, in such a way
that the distinction between them is emergent and approximate. From this
perspective the law that must be minimal is the one that evolves the state
and dynamics together(see later).

16 Discussion

This proposal shows that, at the very least, we do not need to postulate
timeless laws of nature to explain the success of physics as a predictive sci-
ence. A weaker notion in which laws evolve through the accumulation of
precedence suffices. The important thing is that this idea is testable, by the
construction and study of entangled quantum states which are novel in the
sense that they can reasonably be presumed not to have been produced in
the history of the universe. If one can construct such states, one can study
their evolution and possibly observe the evolution of novel precedents.

One can ask whether the freedom quantum systems have described here
means that hidden variables theories are impossible? The answer is no, noth-
ing could contradict the possibility of non-local, context dependent, hidden
variables theories because several examples already exist, such as deBrogle-
Bohm. We have been concerned here with quantum mechanics as a de-
scription of small subsystems of the universe. There could very well be a
non-quantum theory that describes the whole universe, truncations of which
to small subsystems yield quantum mechanics. The freedom attributed to
quantum systems could then be understood as being determined by informa-
tion about the relations of subsystems to the whole which is lost when one
truncates the cosmological theory to extract the behavior of small subsys-
tems.

Someone might object that this interpretation of quantum theory takes the
notion of copy, or similar preparation or measurement, as a primitive. This is
true. But one should not have to apologize for the use of such primitives in an
operational approach to quantum mechanics which, otherwise, takes notions
of measurement to be primitives. One might however, still ask how a system
knows what its precedents are? This is like asking how an elementary particle
knows which laws of nature apply to it. The postulate that general timeless
laws act on systems as they evolve in time requires a certain set of metaphys-
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ical presuppositions. The hypothesis given here, that instead systems evolve
by copying the responses of precedents in their past, requires a different set
of metaphysical presuppositions. Either set of presuppositions can appear
strange, or natural, depending on ones metaphysical preconceptions. The
only scientific question is which sets of metaphysical preconceptions lead to
hypotheses which are confirmed by experiment.

An important part of any package of metaphysical presuppositions is the re-
lationship of laws of nature to time. A timeless law cannot refer explicitly to
the present or past, because those are thought to be subjective distinctions.
The formulation of quantum mechanics proposed here refers explicitly to the
past and present and so only makes sense within a framework in which the
distinctions between past, present and future are held to be real and objec-
tive. This makes it possible to discuss objectively notions of laws evolving in
time.

Finally, some will ask whether there are any implications for whether human
beings or animals have freedom to make choices not completely determined
by the past. This might arise by the generation of novel entangled states in
neural processes. Of course, allowing the possibility for novelty is not suf-
ficient. What would be necessary to realize the idea would be to discover
that the outcomes of neural processes are influenced by quantum dynamics
of large molecules with entangled states, so that the lack of determinism of
quantum processes is reflected in human choices and actions. This could very
easily fail to be the case. Resolving this kind of question remains a goal for
the future.

17 Unification of the state with the dynami-

cal law

17.1 Introduction

Physics has for most of its history been primarily concerned with finding out
what the laws of nature are. While we still do not have a completely unified
theory of physics, our understanding of the laws of nature has advanced to
the point where we are not only interested in what the laws are, but why
these are the laws, and not others. This problem has become urgent since
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the discovery of the landscape of string theories. The hope that a theory that
unifies gravity and the standard model of particle physics would be unique,
in a way that leads to unique predictions for beyond the standard model
physics, seems difficult to sustain in the face of a vast or infinite number
of apparently equally consistent string vacua. Even if one is not confident
that string theory is the right framework for unification, no framework has
appeared which would answer the why these laws question.

The realization that we would sooner or later have to explain how and why
the laws we observe governing our universe were chosen is not new. The issue
was emphasized by John Wheeler, but the concern is much older and goes
back to Leibnizs Principle of Sufficient Reason. As the American pragmatist
philosopher Charles Sanders Pierce wrote in 1893, nothing is so needing of
rational explanation than laws of nature. Pierce goes on to say,

To suppose universal laws of nature capable of being apprehended by
the mind and yet having no reason for their special forms, but standing
inexplicable and irrational, is hardly a justifiable position. Uniformities
are precisely the sort of facts that need to be accounted for. Law is par
excellence the thing that wants a reason. Now the only possible way of
accounting for the laws of nature, and for uniformity in general, is to
suppose them results of evolution.

In contemporary work, all the present attempts to understand how laws may
have been chosen from a landscape of possible laws evoke, in one way or an-
other, the notion that the effective low energy laws change on cosmological
time scales. This includes eternal inflation and cosmological natural selec-
tion. It is notable that both require a notion of time to give meaning to
the evolution of effective laws. In cosmological natural selection a time is
required to count generations and give sense to an ensemble of universes on
the landscape at a fixed time, in eternal inflation it appears necessary to
impose a measure which is related to a notion of time on the multiverse.

There is a view that laws have to evolve in a physically real, non-emergent
time, in order to have a scientific explanation of why these laws. This discus-
sion explores a suggestion made in these views, which is that the evolution of
laws implies a breakdown of the distinction between law and state. Another
way to say this is that there is an enlarged notion of state - a metastate -
which codes information needed to specify both an effective law and an ef-
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fective state, that the effective law acts on. The whole metastate evolves in
time, and the distinction between effective law and effective state can only
be made for certain time scales. How long these time scales are, as well as
the effective laws, are determined by the initial metastate. The effective laws
evolve with the state, but they evolve slowly, compared to other information
captured by the state.

Hence, on short time scales, and to a certain approximation, one can distin-
guish a slowly varying effective law which generates faster evolution of an
approximate state. On longer time scales the more precise picture is that
there is a notion of a meta-state, which codes both the effective law and the
effective state.

The purpose of this discussion is to present a simple matrix model where
this idea is realized. But in realizing this idea we have to confront an issue
that arises in any scenario in which laws of physics evolve. In both cosmo-
logical natural selection and eternal inflation there is posited a dynamical
mechanism whereby a population of regions of the universe with different
laws evolves, giving rise to an evolving distribution on a landscape, or space
of laws, L. The evolution of laws on the landscape is then driven by a meta-
law. Even if not precisely specified, this metalaw becomes a key part of the
explanation of why these laws.

In the case of cosmological natural selection, the metalaw is approximate
and effective and involves small random changes in the parameters of the
standard model. This is analogous to an effective dynamics for evolution of
phylogeny in biology. In the case of eternal inflation the metalaw is tunneling
from false vacua with amplitudes given by string theory.

However, these scenarios have a weak point. The postulation of metadynam-
ics on the landscape is a scientific hypothesis. How is it to be justified? If
there is no principle which determines the law, it is not likely there will be a
principle which determines the metalaw. And how is the proposed metalaw
to be tested? One can easily imagine different hypotheses for the action of
metalaws on the spaces of observable parameters. How are these to be com-
pared, when we see in our past at best one instance of the metalaws acting?
Someone may claim that the evolution on the landscape is driven by some
fundamental version of string theory. Someone else may claim the evolution

144



on the landscape is fundamentally stochastic (and why not - so is quantum
theory?) and driven only by a simple set of rules. How are we to determine
scientifically which is right?

Worse, we may have to postulate some metalandscape of metalaws on which
a meta-meta-law acts to govern the choice of the metalaw. There is clearly
a danger of an infinite regress here.

On the other hand, if one does not specify a metalaw one explains nothing.
We call this the metalaws dilemma.

It is important to have a precise idea of what is going wrong when we en-
counter this kind of dilemma. Normally in physics we specify a theory in
two steps. First we specify the configuration or a phase space, C, which is
a timeless space of possible configurations a system may have at one time.
Then we specify the laws of motion, which generates the possible lawful tra-
jectories of the system on C. If we append to this the landscape of possible
laws we have two timeless configuration spaces: that of configurations and
that of laws.

This formulation of laws of nature can be called the Newtonian paradigm be-
cause it is the basic framework of laws of motion introduced by Newton. The
Newtonian paradigm is also the framework for modern quantum mechanics,
quantum field theory, and general relativity. In each case there is a timeless
space of states acted on by a timeless law.

The Newtonian paradigm is the proper setting for most of physics, which
concerns small subsystems of the universe. But when we attempt to scale
it up to a description of the universe as a whole it leads to unanswerable
questions such as why these laws and not others and what caused the ini-
tial conditions. No theory formulated within the Newtonian paradigm can
answer these questions because it takes the laws and initial conditions as
inputs. When we attempt to invent a theory of evolution on a landscape of
theories, but stay within the Newtonian paradigm, we end up with puzzles
and paradoxes.

Part of the problem is the following. The Newtonian paradigm is based on a
strict separation of the roles of law and initial conditions. This is justified by
the fact that we can operationally distinguish the influence of the choice of
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laws from the choice of initial conditions, by doing experiments many times
varying the initial conditions. Operationally, what we mean by a law is some
feature of the evolution which is invariant or conserved when we vary the ini-
tial conditions. So the experimental context that gives meaning to theories
formulated in the Newtonian paradigm is the study of small subsystems of
the universe, where we can repeat an experiment as many times as needed.

In cosmology there is only a single history, so we lose the ability to do an
experiment over and over again, while varying the initial conditions. So we
have no operational way to absolutely distinguish the influence of the choice
of laws from the choice of initial conditions. When we attempt to impose
the Newtonian paradigm on the interpretation of cosmological data, and ask
questions that assume a strict separation between the role of law and the
role of initial conditions, we end up asking confused questions that have no
clear answers.

We call this running into the cosmological fallacy, which is the mistake of ex-
tending a method that is designed to study small subsystems of the universe
that come in many copies to the universe as a whole. To usefully apply a
theory in the Newtonian paradigm to a system we require data from many
repetitions of an experiment to give operational meaning to its basic terms,
and in particular, to separate out the role of laws from initial conditions. But
in the cosmological case, the data does not allow that distinction to be made
(The multiverse seems at first to be a way to avoid this, because it makes our
universe one out of many and so appears to reproduce the context needed to
make sense of the separation between law and initial condition. This how-
ever, cannot succeed so long as we have no data about the other universes,
because there is still no operational basis for the distinction between law and
initial conditions. The only exception, is special cases where each universe in
the ensemble shares a property - then one can check the theory by seeing if
our universe has that property. This is the strategy of cosmological natural
selection. It also leads to a single prediction for eternal inflation, which is
that all universes in the multiverse have k =?1).

It is probably wiser to not impose a paradigm for dynamical law on the cos-
mological data that is based on a distinction that cannot be made within
that data. That is, once we lose the ability to distinguish the role of law and
initial conditions in the data, because we have just one case in cosmology, we
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are probably going to make more progress if we search for a framework for
physical theory that does not rely on the distinction between law and initial
condition being absolute.

What is then needed is a new paradigm for dynamics on a cosmological scale.
In this new framework, the absolute distinction between laws and states, or
laws and initial conditions, which underlies the Newtonian paradigm can be
transcended. That distinction will be seen to be an artifact of descriptions
of small subsystems of the universe, and breaks down on cosmological time
scales. The challenge is to introduce such a framework without falling into
a vicious circle or the metalaws dilemma. The purpose of this discussion
is to explore one possible form that such a new approach to cosmological
dynamics may take.

A possible resolution to these conundra is that there could be a notion of
universality of metalaws, analogous to universality in the theory of compu-
tation. The idea is that any metalaw which could serve as such is equivalent
to any other. Computation is universal because any computer can emulate
any other exactly. We could propose that any metalaw worthy of that name
can emulate any other, because they will lead to the same predictions for the
evolution of laws.

In this discussion, however, we propose a model for an approach to the met-
alaws dilemma, which is that the distinction between states and laws breaks
down. This new proposal is realized in a simple matrix model. Instead of
timeless law determining evolution on a timeless space of states, we have a
single evolution which cannot be precisely broken down into law and state.
Formally, what this means is to embed the configuration space of states, C
and the landscape parameterizing laws, L into a single meta-configuration
space,M. The distinction between law and state must then be both approx-
imate and dependent on initial conditions.

There is, it must be granted, an evolution rule on M, but we can choose
an evolution rule that is almost entirely fixed by some natural assumptions.
The remaining freedom is, we conjecture, accounted for by the principle of
universality, as just described. Because the complexity of the effective law is
now coded into the state, the meta-law can be very simple, because all it has
to do is to generate a sequence of matrices, in which the differences from one
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to the next are small. The metalaw dilemma is addressed by showing that
the form of this rule is almost completely fixed by some natural assumptions,
with the remaining freedom plausibly accounted for by universality.

In this model of a metatheory, the metastate is captured in a large matrix,
X, which we take to be antisymmetric and valued in the integers. It might
describe a labeled graph. The metalaw is a simple algorithm that yields a
sequence of matrices, Xn. The rule is that Xn is gotten by adding to a linear
combination of Xn?1 and Xn?2 their commutator [Xn?1, Xn?2]. Given the first
two matrixes, X0 and X1, the sequence is determined. This is more like a
simple instruction in computer science than a law of physics, and we are able
to argue it is almost unique, given a few simple conditions.

That almost unique evolution rule acts on a configuration space of matrices,
whose interpretation depends on a separation of time scales. For certain ini-
tial configurations - there will be a long time scale, TNewton such that, for
times shorter than TNewton, the dynamics can be approximately described
by a fixed law acting on a fixed space of states. Both that law and that
state are coded into the Xn. But for longer times everything evolves, laws
and states together, and it is impossible to cleanly separate what part of the
evolution is changes in law and what part is changes in state. Furthermore,
which information inM evolves slowly, and goes into the specification of the
approximate time independent law, and which evolves fast, and goes into the
description of the time dependent state, is determined by the initial condi-
tions.

So the question of why these laws becomes subsumed into the question of why
these initial conditions in a metatheory. This does not yet solve the problem
of explaining the particular features of the standard model and its parame-
ters, but it gives a new methodology and strategy with which to search for
the answer.

Starting from the standard model, one might move in the direction of a
metatheory by elevating all parameters to degrees of freedom. This is some-
thing like what happens in the string landscape. Here we make a simple
model in which the meta-state is a large sparse matrix, perhaps representing
the connections on a graph.
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In the next section we describe a simple model which illustrates these ideas
and show how it leads, for short time scales, to an approximate distinction
between an effective law which governs the evolution of a state.

17.2 A minimal evolution rule

We are interested in the most minimal evolution rule we can imagine which
combines the theory and the state. Let us specify the meta-state by an N×N
antisymmetric matrix of integers, (Xn)ab = −(Xn)ba. We will consider the
dimension N to be large. The n refers to a succession of times, n = 0, 1, 2, ...
also labeled by integers. (Xn)ab might be taken to describe an adjacency
matrix of a weighted, directed, graph, whose edges are labeled by integers.
This accords with the expectation that the fundamental variables in physics
be relational.

The idea is that there will be an evolution rule which specifies the series of
matrices, given initial choices. The choice of this evolution rule is fixed by
the following ideas.

1. The evolution rule should mimic second order differential equations,
as these are basic to the dynamics of physical systems. So two initial
conditions should be required to generate the evolution. We should
then need to specify X0 and X1 to generate the sequence. We are then
interested in rules of the form.

Xn = F(Xn−1, Xn−2) (1)

2. The changes should be small from matrix to matrix, at least given
suitable initial conditions. This is needed so that there can be a long
time scale on which some of the information in the matrixes are slowly
varying. This makes it possible to extract a notion of slowly varying
law, acting on a faster varying state. So we will ask that

X = F(X,X) (2)

3. We require that the evolution rule be non-linear, because non-linear
laws are needed to code interactions in physics. But we can always use
the basic trick of matrix models of introducing auxiliary variables, by
expanding the matrix, in order to lower the degree of non-linearity. This
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accords with the fact that the field equations of general relativity and
Yang-Mills theory can, by the use of auxilary variables, be expressed as
quadratic equations(for example in the Plebanski action). The simplest
non-linear evolution rule will then suffice, so we require a quadratic
evolution rule.

4. Time reversal invariance, at least at the linear level.

A simple evolution rule that realizes these is

Xn = 2Xn−1 −Xn−2 + [Xn?1, Xn?2] (3)

This rule is not unique, but it is nearly so. It is easy to derive the general
rule satisfying the four requirements just mentioned.

The rule (1) can only have a linear term and a quadratic term. The quadratic
term must be a function of Xn−1 and Xn−2 that vanishes when they are equal
and is antisymmetric. The unique term that does this is the commutator
[Xn?1, Xn?2]. When the commutator vanishes there is only a linear term
which by ( 2) must be equal to a linear integral combination of Xn−1 and
Xn−2. The general evolution rule satisfying the first three requirements is
then

Xn = aXn−1 + (1− a)Xn−2 + g[Xn?1, Xn?2] (4)

where a and g must be integers to keep the coefficients of Xn integers.

We pick a = 2 and g = 1 to get (3). The justification for the choice of the
linear term is time reversal invariance. With this choice (3) can be written
as

∆2Xn = Xn +Xn−2 − 2Xn−1 = [Xn?1, Xn?2] (5)

The linear term, ∆2Xn s invariant under a time reversal transformation
around a time n− 1, given by

Xn−1+â ↔ Xn−1−â (6)

under which ∆2Xn → ∆2Xn.

The whole dynamics is approximately invariant under a related transforma-
tion Xn−1+â ↔ −Xn−1−â. An exactly time invariant version of dynamics
would be Xn = 2Xn−1−Xn−2 +[Xn, Xn?2], but this is much harder to evolve.
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Here is a way to understand how state and law are combined under this
evolution rule. Let us call the Hamiltonian at time n,

Hn = Xn−2 (7)

and define the state at time n to be

ρ = Xn −Xn−1 (8)

We can define the rate of change of the state as

∆ρn = ρn − ρn−1 = ∆2Xn (9)

Then the evolution rule (3) is expressed as

∆ρn = [ρn−1, Hn] (10)

Thus it appears that the matrix we call Hn is generating evolution on the
state called ρ. Another equivalent way to express the evolution is

∆2ρn = [∆ρn−1, Xn−2] (11)

17.2.1 Quasi-Hamiltonian evolution

Equations (9,10) holds at all time steps. But this is not really Heisenberg
evolution because the operator we are calling the Hamiltonian evolves as the
state evolves. But, as we will now show, if we choose the initial conditions
so ρ is in a certain sense small compared to H, then the H evolves more
slowly than ρ and so for short times it appears as if the state is evolving
with respect to a fixed Hamiltonian, so that (8,10) are, for a finite time, well
approximated by a Heisenberg-like equation of motion,

∆ρn = [ρn−1, H0] (12)

To show this we introduce a norm on matrices ‖X‖ which is equal to the
number of non-zero entries. Then, if p(X) is the probability that a matrix
element is non-zero, then

p(X) =
‖X‖

N(N − 1)/2
(13)

Pick an arbitrary time and call it n = 0. Call

X0 = H0 , ρ1 = A (14)

Then define

Ȧ = [A,H0], Ä = [Ȧ,H0], · · · A(p) = [A(p−1), H0] (15)
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17.2.2 The first steps

Let us follow the first few steps of evolution

X0 = H0 ρ1 = A

X1 = H0 + A ρ2 = A+ Ȧ

X2 = H0 + 2A+ Ȧ ρ3 = A+ 2Ȧ+ Ä+ [Ȧ, A]

X3 = H0 + 3A+ 3Ȧ+ Ä+ [Ȧ, A] ρ4 = A+ 3Ȧ+ 3Ä+ A(3) + [Ȧ, A]

+ [Ä, A] + [2Ȧ+ Ä+ [Ȧ, A], 2A+ Ȧ]

X4 = H0 + 4A+ 6Ȧ+ 4Ä+ A(3)

+2[Ȧ, A] + [Ä, A]

+[2Ȧ+ Ä+ [Ȧ, A], 2A+ Ȧ] (16)

Clearly terms are rapidly proliferating. To make sense of them, begin by
noting that there are two kinds of terms in the ρns. First there are terms
that involve single powers of A(p). These come from commutators with H0

and can be considered to be the effect of evolution with a fixed hamiltonian,
H0. Then there are terms involving commutators of two or more A(p). These
register the effect of the changing evolution law. As we will now show, there
are natural choices of H0 and A such that the latter remain unimportant for
a large number of time steps.

17.2.3 Norms and probabilities

Let us pick X0 = H0 to be a random matrix chosen from the ensemble with

p(H0) =
1

N
(17)

so that it corresponds to the critical region in random graph theory of a
graph which is minimally connected. Then

‖H0‖ = N (18)

We will pick A to have a norm of order unity, so that X1 differs from X0 = H0

by just a few entries or links. Then

‖A‖ = M ∈ O(1) so that p(A) ≈ M

N2
(19)
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Let us assume that there are no further correlations between H0 and A so
that,

p(Ȧ) = Np(A)p(H0) ≈ M

N2
(20)

so that
‖Ȧ‖ ≈M (21)

It then follows that all the
‖A(p)‖ ≈M (22)

Notice that because these A(p) are so sparse

p([A, Ȧ]) = p([A(p), A(q)]) = np(A)2 =
M

N3
(23)

Hence the norm of these commutators is

‖[A(p), A(q)]‖ =
M

N
� 1 (24)

This means that there are no entries in most of these commutators.

17.2.4 Breakdown of the distinction between law and state

Now after n evolution steps we will have a time dependent Hamiltonian
Hn = Xn−2 of the form

Hn = H0 + δHn (25)

where the time dependent part has the form,

δHn = δHn(M) + δHn(M2) + · · · (26)

where (Mp) signifies the terms of order Mp. The leading term collects terms
of order M which come from commutators of the form [A(p), H0].

δHn(M) =
n−3∑
p=1

cpA
(p) (27)

Here the cp are integer coefficients.

Any one of the A(p) terms likely has no effect on the evolution of the ρ′s,
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but there are n of them so δHn will start to be significant when n is large
enough. Hence, ignoring the O(M2) terms, we have

p(δHn(M)) = mN
M

N2

1

N
=
nM

N2
(28)

These will be negligible compared to the terms in H0 if

p(δHn(M))

p(H0)
=
nM

N
< 1 (29)

so the approximation in which we neglect the terms in δHn(M) is good as
long as

n <
N

M
(30)

We can reach the same conclusion by computing the ratio of p(A(p)) to
p([A(p), A(q)]).

Similarly we can compute the importance of the order M2 terms in δHn.
These come from commutators of the form [A(p), A(q)]. Any one of these is
most likely vanishing, but ?there are n2 of them.

We have

p(δHn(M)) = n2N

(
M

N2

)2

=
n2M2

N3
(31)

These can be neglected relative to the entries in H0 so long as

p(δHn(M2))

p(H0)
=
n2M2

N2
< 1 (32)

which leads us to the same condition (30). Indeed, the order M q terms in
δHn comes from ??q− 1 commutators of factors A(p) for p < q, so these have
probabilities

p(δHn(M q)) = nqN q−1

(
M

N2

)q
=
nqM q

N q+1
(33)

These are each negligible compared to the matrix elements of H0 so long as
(30) holds. One can also show this for the sum (26). Assuming the matrices
are random so that the commutators are uncorrelated in the limit of large N
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we can write,

p(δHn) = p(δHn(M)) + p(δHn(M2) + · · · )

=
1

N

{
nM

N
+

(
nM

N

)2

+ · · ·

}

<
1

N

{
∞∑
q=1

(
nM

N

)q}
=

1

N

nM
N

1− nM
N

(34)

Hence
p(δHn)

p(H0)
<

nM
N

1− nM
N

(35)

which is small so long as (30) holds. This means that the Hamiltonian
evolution law (12) is a good approximation to the exact dynamics so long as
(30) holds.

17.3 Conclusions

In the introduction of this discussion we argued for that a cosmological theory
must be formulated in a way in which the usual distinction between dynam-
ics and state, or between kinematics and dynamics, breaks down. In the rest
of this discussion we illustrated these ideas with a simple toy model. In it
we addressed the problem of what determines the meta-law by which effec-
tive laws evolve by specifying four simple properties that almost completely
determine it. We conjecture that the remaining freedom is unimportant, be-
cause there may be a principle of universality among the remaining choices,
in the sense that the predictions made by each of them can be mapped to
each other.

There remain of course open questions, among which are to demonstrate this
conjecture of universality.
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