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1 Classical measurement theory

1.1 Basic concepts

Although these notes are concerned with quantum measurements, we begin
with a discussion of some elementary notions of measurement for classical
systems. These are systems that operate at a level where quantum effects
are not apparent. The purpose of this discussion is to introduce some ideas,
which carry over to quantum theory, concerning states, conditional and non-
conditional distributions, and stochastic processes. It will also make the
distinct features of quantum measurements plainer.

A classical system can be described by a set of system variables, which we
will call the system configuration. For example, for a system of N interact-
ing particles these could be the N position and momentum vectors of the
particles. The possible values of these variables form the configuration space
S for the system. In the above dynamical example, the configuration space
would be R6N , where R is the real line.1 Alternatively, to take the simplest
possible example, there may be a single system variable X that takes just
two values, X = 0 or X = 1, so that the configuration space would be {0,1}.
Physically, this binary variable could represent a coin on a table, with X = 0
and X = 1 corresponding to heads and tails, respectively.

We define the state of a classical system to be a probability distribution on
configuration space. Say (as in the example of the coin) that there is a single
system variable X ∈ S that is discrete. Then we write the probability that X
has the value x as pr[X = x]. Here, in general, Pr[E] is the probability of
an event E. When no confusion is likely to arise, we write pr[X = x] simply
as ℘(x). Here we are following the convention of representing variables by
upper-case letters and the corresponding arguments in probability distribu-
tions by the corresponding lower-case letters. If X is a continuous variable,
then we define a probability density ℘(x) by ℘(x)dx = Pr[X ∈ (x,x + dx)].
In either case, the state of the system is represented by the function ℘(x)
for all values of x. When we choose to be more careful, we write this as
{℘(x) ∶ x ∈ S}, or as {℘(x) ∶ x}.

1This space is often called ‘phase space’, with ‘configuration space’ referring only to
the space of positions. We will not use ‘configuration space’ with this meaning.



The system state, as we have defined it, represents an observer’s knowledge
about the system variables. Unless the probability distribution is non-zero
only for a single configuration, we say that it represents a state of uncertainty
or incomplete knowledge. That is, in these notes we adopt the position that
probabilities are subjective: they represent degrees of certainty rather than
objective properties of the world. This point of view may be unfamiliar and
lead to uncomfortable ideas. For example, different observers, with differ-
ent knowledge about a system, would in general assign different states to
the same system. This is not a problem for these observers, as long as the
different states are consistent. This is the case as long as their supports on
configuration space are not disjoint (that is, as long as they all assign a non-
zero probability to at least one set of values for the system variables). This
guarantees that there is at least one state of complete knowledge (that is,
one configuration) that all observers agree is a possible state.

We now consider measurement of a classical system. With a perfect measure-
ment of X, the observer would simply find out its value, say x′. The system
state would then be a state of complete knowledge about this variable. For
discrete variables this is represented by the Kronecker δ-function ℘(x) = δx,x′ ,
whereas for a continuous variable it is represented by the Dirac δ-function
℘(x) = δ(x − x′). For comparison with the quantum case (in following sec-
tions), it is more enlightening to consider imperfect measurements. Suppose
that one only has access to the values of the system variables indirectly,
through an apparatus variable Y . The state of the apparatus is also specified
by a probability distribution ℘(y). By some physical process, the apparatus
variable becomes statistically dependent on the system variable. That is, the
configuration of the apparatus is correlated (perhaps imperfectly) with the
configuration of the system. If the apparatus variable is observed, {℘(y) ∶ y}
is simply the probability distribution of measurement outcomes.

One way of thinking about the system?apparatus correlation is illustrated
in Fig. 1.1. The correlation is defined by a functional relationship among
the readout variable, Y , the system variable X, before the measurement,
and a random variable Ξ, which represents extra noise in the measurement
outcome. We can specify this by a function

Y = G(X,Ξ) (1.1)

together with a probability distribution ℘(ξ) for the noise.
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Figure 1: System-apparatus correlation in a typical classical measurement.

Here, the noise is assumed to be independent of the system, and is assumed
not to affect the system. That is, we restrict our consideration for the moment
to non-disturbing measurements, for which X after the measurement is the
same as X before the measurement.

1.2 Example: binary variables

To illustrate the above theory, consider the case of binary variables. As we
will see, this is relevant in the quantum setting also. For this case, the state
of the system ℘(x) is completely specified by the probability ℘(x ∶= 0), since
℘(x ∶= 1) = 1−℘(x ∶= 0) . Here we have introduced another abuse of notation,
namely that ℘(x ∶= a) means ℘(x) evaluated at x = a, where a is any num-
ber or variable. In other words, it is another way of writing Pr[X = a] (for
the case of discrete variables). The convenience of this notation will become
evident.

We assume that the apparatus and noise are also described by binary vari-
ables with values 0 and 1. We take the output variable Y to be the binary
addition (that is, addition modulo 2) of the system variable X and the noise
variable Xi. In the language of binary logic, this is called the ‘exclusive or’
(XOR) of these two variables, and is written as

Y =X ⊕Ξ (1.2)

We specify the noise by ℘(ξ ∶= 0) = µ.

Equation 1.2 implies that the readout variable Y will reproduce the system
variable X if Ξ = 0, If Ξ = 1, the readout variable is (in the language of
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logic) the negation of the system variable. That is to say, the readout has
undergone a bit-flip error, so that Y = 1 when X = 0 and vice versa. We can
thus interpret µ as the probability that the readout variable is ‘correct’. If
no noise is added by the measurement apparatus, so that ℘(ξ ∶= 0) = 1, we
call the measurement ideal.

It should be intuitively clear that the apparatus state (i.e. the readout dis-
tribution) ℘(y) is determined by the function G together with the noise
probability ℘(ξ) and the system state before the measurement, ℘(x). This
last state is called the a-priori state, or prior state. In the example above we
find that

℘(y ∶= 1) = µ℘(x ∶= 1) + (1 − µ)℘(x ∶= 0) (1.3)

℘(y ∶= 0) = µ℘(x ∶= 0) + (1 − µ)℘(x ∶= 0) (1.4)

This may be written more succinctly by inverting Eq. (1.2) to obtain Ξ =
X ⊕ Y and writing

℘(y) =
1

∑
x=0

℘(ξ ∶= x⊕ y)℘(x) (1.5)

In the case of a binary variable X with distribution ℘x, it is easy to verify
that the mean is given by E[X] = ℘(x ∶= 1). Here we are using E to represent
‘expectation of’. That is, in the general case,

E[X] =∑
x

xPr[X = x] =∑
x

x℘(x) (1.6)

More generally,

E[f(X)] =∑
x

f(x)Pr[X = x] =∑
x

f(x)℘(x) (1.7)

Using this notation, we define the variance of a variable as

Var[X] ≡ E[X2] − (E[X])2 (1.8)

We can then show that

E[Y ] = (1 − µ) + (2µ − 1)E[X] (1.9)

Var[Y ] = µ(1 − µ) + (2µ − 1)2Var[X] (1.10)
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Equation (1.9) shows that the average measurement result is the system
variable mean, scaled by a factor of 2µ − 1, plus a constant offset of 1 − µ.
The scaling factor also appears in the variance equation (1.10), together
with a constant (the first term) due to the noise added by the measurement
process. When the measurement is ideal (µ = 1) , the mean and variance
of the readout variable directly reflect the statistics of the measured system
state.

1.3 Bayesian inference

We stated above that we are considering, at present, non-disturbing mea-
surements, in which the system variable X is unaffected by the measure-
ment. However, this does not mean that the system state is unaffected by
the measurement. Recall that the state represents the observer’s incomplete
knowledge of the system, and the point of making a measurement is (usually)
to obtain more knowledge. Thus we should expect the state to change given
that a certain readout is obtained.

The concept we are introducing here is the conditional state of the system,
also known as the state conditioned on the readout. This state is sometimes
called the a-posteriori state, or posterior state. The key to finding the con-
ditioned state is to use Bayesian inference. Here, inference means that one
infers information about the system from the readout, and Bayesian infer-
ence means doing this using Bayes’ theorem. This theorem is an elementary
consequence of basic probability theory, via the double application of the
conditional-probability definition

Pr(A∣B) = Pr(A ∩B)
Pr(B)

(1.11)

where A and B are events, A∩B is their intersection and A∣B is to be read a
‘A given B’. In an obvious generalization of this notation from events to the
values of system variables, Bayes’ theorem says that the conditional system
state may be written in terms of the a-priori (or prior) system state ℘(x) as

℘′(x∣y) = ℘(y∣x)℘(x)
℘(y)

(1.12)
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Here the prime emphasizes that this is an a-posteriori state, and (sticking to
the discrete ?case as usual)

℘(y) =∑
x

℘(y∣x)℘(x) (1.13)

as required for the conditional state to be normalized.

The crucial part of Bayesian inference is the known conditional probabil-
ity ℘(y∣x), also known as the ‘forward probability’. This is related to the
measurement noise and the function G as follows:

℘(y∣x) =∑
ξ

℘(y∣x, ξ)℘(ξ) =∑
ξ

δy,G(x,ξ)℘(ξ) (1.14)

Here wp(y∣x, ξ) means the state of y given the values of x and ξ. If the output
function Y = G(X,Ξ) is invertible in the sense that there is a function G−1

such that Ξ = G−1(X,Y ), then we can further simplify this as

℘(y∣x) =∑
ξ

δξ,G−1(x,y)℘(ξ) = ℘(ξ ∶= G−1(x, y)) (1.15)

Thus we obtain finally for the conditional system state

℘′(x∣y) = ℘(ξ ∶= G−1(x, y)℘(x)
℘(y)

(1.16)

As well as defining the conditional post-measurement system state, we can
define an unconditional posterior state by averaging over the possible mea-
surement results:

℘′(x) =∑
y

℘′(x∣y)℘(y) =∑
y

℘(ξ ∶= G−1(x, y)℘(x) (1.17)

The terms conditional and unconditional are sometimes replaced by the terms
selective and non-selective, respectively. In this case of a non-disturbing
measurement, it is clear that

℘′(x) = ℘x (1.18)

That is, the unconditional posterior state is always the same as the prior
state. This is the counterpart of the statement that the system variable X is
unaffected by the measurement.

6



1.4 Example: continuous variables

We now turn to the case of continuous state variables. Suppose one is in-
terested in determining the position of a particle on the real line. Let the
a-priori state of this system be the probability density ℘(x). As explained
earlier, this means that, if an ideal measurement of the position X is made,
then the probability that a value between x and x + dx will be obtained
℘(x)dx.

As in the binary case, we introduce an apparatus with configuration Y and a
noise variable Ξ, both real numbers. To define the measurement we specify
the output function, G(X,Ξ), for example

Y =X +Ξ (1.19)

so that Ξ = G−1(X,Y ) = Y −X. We must also specify the probability density
for the noise variable ξ, and a common choice is a zero-mean Gaussian with
a variance ∆2.

℘(ξ) = (2π∆2)−1/2e−ξ
2/(2∆2) (1.20)

The post-measurement apparatus state is given by the continuous analogue
of Eq. (1.13),

℘(y) = ∫
infty

−∞
℘(y∣x)℘(x)dx (1.21)

From these results it follows that the mean and variance of the state ℘(y)
are E[X] and Var[X]+∆2, respectively. This clearly shows the effect of the
noise.

Finding the conditional states in this case is difficult in general. However, it
is greatly simplified if the a-priori system state is Gaussian:

℘(x) = (2πσ2)−1/2 exp(−(x − x̄)2

2σ2
) (1.22)

because then the conditional states are still Gaussian. In this case, the
conditional mean and variance given a result y are, respectvely,

x̄′ = σ
2y +∆2x̄

∆2 + σ2
, (σ′)2 = σ2∆2

∆2 + σ2
(1.23)

We then have that, in the limit ∆→ 0, the conditional state ℘′(x∣y) converges
to δ(x − y), and an ideal measurement is recovered.
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1.5 Most general formulation of classical measurements

As stated above, so far we have considered only non-disturbing classical mea-
surements; that is, measurements with no back-action on the system. How-
ever, it is easy to consider classical measurements that do have a back-action
on the system. For example, one could measure whether or not a can has
gasoline fumes in it by dropping a lit match inside. The result (nothing, or
flames) will certainly reveal whether or not there was gasoline inside the can,
but the final state of the system after the measurement will have no gasoline
fumes inside in either case.

We can generalize Bayes’ theorem to deal with this case by allowing a state-
changing operation to act upon the state after applying Bayes’ theorem. Say
the system state is ℘(x). For simplicity we will take X to be a discrete ran-
dom variable, with the configuration space being {0,1, ..., n − 1}. Say Y is
the result of the measurement as usual. Then this state-changing operation
is described by an n×n matrix By, whose element By(x∣x′) is the probability
that the measurement will cause the system to make a transition, from the
state in which X = x′ to the state in which X = x, given that the result Y = y
was obtained. Thus, for all x′ and all y,

By(x∣x′) ≥ 0 , ∑
x

By(x∣x′) = 1 (1.24)

The posterior system state is then given by

℘′(x∣y) =
By(x∣x′)℘(y∣x′)℘(x′)

℘(y)
(1.25)

where the expression for ℘(y) is unchanged from before.

We can unify the Bayesian part and the back-action part of the above ex-
pression by defining a new n × n matrix Oy with elements

Oy(x∣x′) = By(x∣x′)℘(y∣x′) (1.26)

which maps a normalized probability distribution ℘(x) onto an unnormalized
probability distribution:

℘̃′(x∣y) =∑
x

Oy(x∣x′)℘(x′) (1.27)
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Here we are introducing the convention of using a tilde to indicate an unnor-
malized state, with a norm of less than unity. This norm is equal to

℘(y) =∑
x
∑
x′
Oy(x∣x′)℘(x′) (1.28)

the probability of obtaining the result Y = y. Maps that take states to
(possibly unnormalized) states are known as positive maps. The normalized
conditional system state is

℘′(x∣y) =∑
x

Oy(x∣x′)℘(x′)
℘(y)

(1.29)

From the properties of Oy, it follows that it is possible to find an n-vector Ey
with positive elements Ey(x), such that the probability formula simplifies:

∑
x
∑
x′
Oy(x∣x′)℘(x′) =∑

x

Ey(x)℘(x) (1.30)

Specifically, in terms of Eq. (1.26),

Ey(x) = ℘(y∣x) (1.31)

This satisfies the completeness condition

∀x, ∑
y

Ey(x) = 1 (1.32)

This is the only mathematical restriction on {Oy ∶ y} (apart from requir-
ing that it be a positive map). The unconditional system state after the
measurement is

℘′(x) =∑
y
∑
x′
Oy(x∣x′)℘(x′) =∑

x′
O(x∣x′)℘(x′) (1.33)

Here the unconditional evolution map O is

O =∑
y

Oy (1.34)

It turns out that O is the identity if and only if there is no back-action.
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2 Quantum measurement theory

2.1 Probability and quantum mechanics

As we have discussed, with a classical system an ideal measurement can
determine with certainty the values of all of the system variables. In this sit-
uation of complete knowledge, all subsequent ideal measurement results are
determined with certainty. In consequence, measurement and probability do
not play a significant role in the foundation of classical mechanics (although
they do play a very significant role in practical applications of classical me-
chanics, where noise is inevitable).

The situation is very different in quantum mechanics. Here, for any sort of
measurement, there are systems about which one has maximal knowledge,
but for which the result of the measurement is not determined. The best one
can do is to give the probability distributions for measurement outcomes.
From this it might be inferred that a state of maximal knowledge about a
quantum system is not a state of complete knowledge. That is, that there
are ‘hidden’ variables about which one has incomplete knowledge, even when
one has maximal knowledge, and these hidden variables determine the mea-
surement outcomes.

Although it is possible to build a perfectly consistent interpretation of quan-
tum mechanics based on this idea, most physicists reject the idea. Probably
the chief reason for this rejection is that in 1964 John Bell showed that any
such deterministic hidden-variables theory must be nonlocal (that is, it must
violate local causality). That is, in such a theory, an agent with control over
some local macroscopic parameters (such as the orientation of a magnet) can,
under particular circumstances, instantaneously affect the hidden variables
at an arbitrarily distant point in space. It can be shown that this effect
cannot allow faster-than-light signaling, and hence does not lead to causal
paradoxes within Einstein’s theory of relativity. Nevertheless, it is clearly
against the spirit of relativity theory. It should be noted, however, that this
result is not restricted to hidden-variable interpretations; any interpretation
of quantum mechanics that allows the concept of local causality to be for-
mulated will be found to violate it.

Another, perhaps better, justification for ignoring hidden-variables theories
is that there are infinitely many of them. While some are more natural than
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others, there is, at this stage, no compelling reason to choose one over all of
the others. Thus one would be forced to make a somewhat arbitrary choice
as to which hidden-variables interpretation to adopt, and each interpreta-
tion would have its own unique explanation as to the nature of quantum-
mechanical uncertainty.

Rather than grappling with these difficulties, in these notes we take an op-
erational approach. That is, we treat quantum mechanics as simply an al-
gorithm for calculating what one expects to happen when one performs a
measurement. We treat uncertainty about future measurement outcomes as
a primitive in the theory, rather than ascribing it to lack of knowledge about
existing hidden variables.

We will still talk of a quantum state as representing our knowledge about a
system, even though strictly it is our knowledge about the outcomes of our
future measurements on that system. Also it is still useful, in many cases,
to think of a quantum state of maximal knowledge as being like a classi-
cal state of incomplete knowledge about a system. Very crudely, this is the
idea of ‘quantum noise’. We assume that you are familiar with basic quan-
tum mechanics- pure states, mixed states, time-evolution, entanglement, etc.
However, before moving to quantum measurements, we note an important
point of terminology. The matrix representation ρ of a mixed quantum state
is usually called (for historical reasons) the density operator, or density ma-
trix. We will call it the state matrix, because it generalizes the state vector
for pure states.

Finally, just as in the classical case, observers with different knowledge may
assign different states simultaneously to a single system. The most natural
way to extend the concept of consistency to the quantum case is to replace
the common state of maximal knowledge with a common pure state. That is,
the condition for the consistency of a collection of states {ρj} from different
observers is that there exists a positive ε and a ket ∣ψ⟩ such that, for all j,
ρj − ε ∣ψ⟩ ⟨ψ∣ is a positive operator. In other words, each observer’s state ρj
can be written as a mixture of the pure state ∣ψ⟩ ⟨ψ∣ and some other states.
From this definition, it turns out that two different pure states cannot be
consistent states for any system.
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2.2 Projective measurements

The traditional description of measurement in quantum mechanics is in terms
of projective measurements, as follows. Consider a measurement of the phys-
ical quantity Λ. First we note that the associated operator Λ̂ (often called
an observable) can be diagonalized as

Λ̂ =∑
λ

λΠ̂λ (2.1)

where {λ} are the eigenvalues of Λ̂ which are real and which we have as-
sumed for convenience are discrete. Π̂λ is called the projection operator, or
projector, onto the subspace of eigenstates of Π̂λ with eigenvalue λ. If the
spectrum (set of eigenvalues {λ} is non-degenerate, then the projector would
simply be the rank-1 projector π̂ = ∣λ⟩ ⟨λ∣. We will call this special case von
Neumann measurements.

In the more general case, where the eigenvalues of Π̂λ are Nλ-fold degener-
ate, Π̂λ is a rank-Nλ projector, and can be written as ∑NλJ=1 ∣λ, j⟩ ⟨λ, j∣. For
example, in the simplest model of the hydrogen atom, if Λ is the energy
then λ would be the principal quantum number n and j would code for the
angular-momentum and spin quantum numbers l,m and s of states with the
same energy. The projectors are orthonormal, obeying

Π̂λΠ̂λ′ = δλ, λ′Π̂λ (2.2)

The existence of this orthonormal basis is a consequence of the spectral the-
orem (see Box 1.1). When one measures Λ, the result one obtains is one
of the eigenvalues λ. Say the measurement begins at time t and takes a
time T . Assuming that the system does not evolve significantly from other
causes during the measurement, the probability for obtaining that particular
eigenvalue is

Pr[Λ(t) = λ] = ℘λ = Tr[ρ(t)Π̂λ] (2.3)

After the measurement, the conditional (a-posteriori) state of the system
given the result λ is

ρλ(t + T ) = Π̂λρ(t)Π̂λ

Pr[Λ(t) = λ]
(2.4)

That is to say, the final state has been projected by Π̂λ into the corresponding
subspace of the total Hilbert space. This is known as the projection postu-
late, or sometimes as state collapse, or state reduction. The last term is best
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avoided, since it invites confusion with other discussions in quantum me-
chanics.See discussions in my textbook http://www.johnboccio.com/TQM/

QM_1.pdf.

Box 1.1 Spectral Theorem

The spectral theorem states that any normal operator N̂ has a complete set of eigenstates
that are orthonormal. A normal operator is an operator such that [N̂ , N̂ †] = 0. That is,
for every such N̂ there is a basis {∣ν, j⟩ν, j} for the Hilbert space such that, with ν ∈ C,

N̂ ∣ν, j⟩ = ν ∣ν, j⟩

Here the extra index j is necessary because the eigenvalues ν may be degenerate. The
general diagonal form of N̂ is

N̂ =∑
ν

νΠ̂ν

where the Π̂ν = ∑j ∣ν, j⟩ ⟨ν, j∣ form a set of orthogonal projectors obeying

Π̂νΠ̂ν′ = δν,ν′Π̂ν

Hermitian operators (for which N̂ = N̂ †) are a special class of normal operators. It

can be shown that a normal operator that is not Hermitian can be written in the form

N̂ = R̂ + iĤ, where R̂ and Ĥ are commuting Hermitian operators. For any two opera-

tors that commute, there is some complete basis comprising states that are eigenstates

of both operators, which in this case will be a basis ∣ν, j⟩ diagonalizing N̂ . As will be

discussed in Section 2.2, operators that share eigenstates are simultaneously measurable.

Thus it is apparent that a non-Hermitian normal operator is really just a compact way to

represent two simultaneously observable quantities by having eigenvalues ν in the com-

plex plane rather than the real line. By considering vectors or other multi-component

objects, any number of commuting operators can be combined to represent the corre-

sponding simultaneously observable quantities. This demonstrates that, for projective

quantum measurement theory, the important thing is not an operator representing the

observables, but rather the projector Π̂r corresponding to a result r.

This process should be compared to the classical Bayesian update rule, Eq.
(1.12). A consequence of this postulate is that, if the measurement is imme-
diately repeated, then

Pr[Λ(t + T ) = λ′∣Λ(t) = λ] = Tr[ρλ(t + T )Π̂λ′] = δλ,λ′ (2.5)

That is to say, the same result is guaranteed. Moreover, the system state will
not be changed by the second measurement. For a deeper understanding of
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the above theory, see Box 1.2.

Box 1.2 Gleason’s theorem

It is interesting to ask how much of quantum measurement theory one can derive from
assuming that quantum measurements are described by a complete set of projectors, one
for each result r. Obviously there must be some rule for obtaining a probability ℘r from
a projector Π̂r, such that ∑r ℘r = 1. Gleason proved that, if one considers measurements
with at least three outcomes (requiring a Hilbert-space dimension of at least three), then
it follows that there exists a non-negative operator ρ of unit trace such that

℘r = Tr[Π̂rρ]

That is, the probability rule (1.37) can be derived, not assumed.

It must be noted, however, that Gleason required an additional assumption: non-

contextuality. This means that ℘r depends only on Π̂r, being independent of the other

projectors which complete the set. That is, if two measurements each have one outcome

represented by the same projector Π̂r, the probabilities for those outcomes are necessar-

ily the same, even if the measurements cannot be performed simultaneously.

Gleason’s theorem shows that the state matrix ρ is a consequence of the structure of

Hilbert space, if we require probabilities to be assigned to projection operators. It sug-

gests that, rather than introducing pure states and then generalizing to mixed states,

the state matrix ρ can be taken as fundamental.

For pure states, ρ(t) = ∣ψ(t)⟩ ⟨ψ(t)∣, the formulae (2.3) and (2.4) can be
more simply expressed as

Pr[Λt = λ] = ℘r = ⟨ψ(t)∣ Π̂λ ∣ψ(t)⟩ (2.6)

and

∣ψλ(t + T )⟩ = Π̂λ ∣ψ(t)⟩√℘λ
(2.7)

However, if one wishes to describe the unconditional state of the system (that
is, the state if one makes the measurement, but ignores the result) then one
must use the state matrix:

ρ(t + T ) =∑
λ

Pr[Λ(t) = λ]ρλ(t + T ) =∑
λ

Π̂λρ(t)Π̂λ (2.8)

Thus, if the state were pure at time t, and we make a measurement, but ignore
the result, then in general the state at time t + T will be mixed. That is,
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projective measurement, unlike unitary evolution,2 is generally an entropy-
increasing process unless one keeps track of the measurement results. This is
in contrast to non-disturbing measurements in classical mechanics, where (as
we have seen) the unconditional a-posteriori state is identical to the a-priori
state (1.17). It turns out that a projective measurement of Λ decreases the
purity go Tr[ρ2] of the unconditional state unless the a-priori state ρ(t) can
be diagonalized in the same basis as can Λ̂.

From the above measurement theory, it is simple to show that the mean value
for the result Λ is

⟨Λ⟩ =∑
λ

Pr[Λ = λ]λ =∑
λ

Tr[ρΠ̂λ]λ

= Tr [ρ(∑
λ

λΠ̂λ)] = Tr[ρΛ̂] (2.9)

Here we are using angle brackets as an alternative notation for expectation
value when dealing with quantum observables. In a similar way it can be
shown that

⟨Λ2⟩ =∑
λ

λ2Pr[Λ = λ] = Tr[ρΛ̂2] (2.10)

Thus the mean value and variance can be derived rather than postulated,
provided that they are interpreted in terms of the moments of the results of
a projective measurement of Λ.

Continuous spectra. The above results can easily be generalized to treat
physical quantities with a continuous spectrum, such as the position X̂ of a
particle on a line. Considering this non-degenerate case for simplicity, the
spectral theorem becomes

X̂ = ∫
∞

−∞
xΠ̂(x)dx = ∫

∞

−∞
x ∣x⟩ ⟨x∣dx (2.11)

Note that Π̂(x) is not strictly a projector, but a projector density, since the
orthogonality conditions are

Π̂(x)Π̂(x′) = δ(x − x′)Π̂(x) (2.12)

2Of course unitary evolution can change the entropy of a subsystem.
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or, in terms of the unnormalizable improper states ∣x⟩,

⟨x ∣x′⟩ = δ(x − x′) (2.13)

These states are discussed in more detail in my textbook http://www.johnboccio.

com/TQM/QM_1.pdf.

The measurement outcomes are likewise described by probability densities.
For example, if the system is in a pure state ∣ψ(t)⟩, the probability that an
ideal measurement of position gives a result between x and x + dx is

℘(x)dx = Tr[∣ψ(t)⟩ ⟨ψ(t)∣ Π̂(x)]dx = ∣ψ(x, t)∣2dx (2.14)

Here we have defined the wavefunction ψ(x, t) = ⟨x ∣ψ(t)⟩. Unfortunately it
is not possible to assign a proper a-posteriori state to the system, since ∣x⟩ is
unnormalizable. This problem can be avoided by considering an approximate
measurement of position with finite accuracy ∆, as will always be the case
in practice. This can still be described as a projective measurement, for
example by using the (now discrete) set of projectors

Π̂j = ∫
xj+1

xj
Π̂(x)dx (2.15)

where, for all j, xj+1 = xj +∆. We note that the ˆ∣pij as defined here form an
orthonormal set.

Simultaneous measurements. Heisenbergs uncertainty relation (see my text-
book http://www.johnboccio.com/TQM/QM_1.pdf) shows that it is impos-
sible for both the position and the momentum of a particle to be known
exactly (have zero variance). This is often used as an argument for saying
that it is impossible simultaneously to measure position and momentum. We
will see in the following sections that this is not strictly true. Nevertheless,
it is the case that it is impossible to carry out a simultaneous projective mea-
surement of position and momentum, and this is the case of interest here.

For two quantities A and B to be measurable simultaneously, it is sufficient
(and necessary) for them to be measurable consecutively, such that the joint
probability of the results a and b does not depend on the order of the mea-
surement. Considering a system in a pure state for simplicity, we thus require
for all a and b and all ∣ψ⟩ that

Π̂aΠ̂b ∣ψ⟩ = eiθΠ̂bΠ̂a ∣ψ⟩ (2.16)
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for some θ. By considering the norm of these two vectors (which must be
equal) it can be seen that eiθ must equal unity. This implies that

∀a, b, [Π̂a, Π̂b] = 0 (2.17)

This is equivalent to the condition that Â, B̂] = 0, and means that there is a
basis, say {∣φk⟩}, in which both Â and B̂ are diagonal. That is,

Â =∑
k

ak ∣φk⟩ ⟨φk∣ , B̂ =∑
k

bk ∣φk⟩ ⟨φk∣ (2.18)

where the eigenvalues ak may be degenerate (that is, there may exist k and
k′ such that ak = ak′) and similarly for bk. Thus, one way of making a
simultaneous measurement of A and B is to make a measurement of K̂ =
∑k k ∣φk⟩ ⟨φk∣, and from the result of k determine the appropriate values ak
and bk for A and B.

2.3 Systems and meters

The standard (projective) presentation of quantum measurements is inad-
equate for a number of reasons. A prosaic, but very practical, reason is
that very few measurements can be made in such a way that the apparatus
adds no classical noise to the measurement result. A more interesting reason
is that there are many measurements in which the a-posteriori conditional
system state is clearly not left in the eigenstate of the measured quantity
corresponding to the measurement result. For example, in photon counting
by a photodetector, at the end of the measurements all photons have been
absorbed, so that the system (e.g., the cavity that originally contained the
photons) is left in the vacuum state, not a state containing the number n
of photons counted. Another interesting reason is that non-projective mea-
surements allow far greater flexibility than do projective measurements. For
example, the simultaneous measurement of position and momentum is a per-
fectly acceptable idea, so long as the respective accuracies do not violate the
Heisenberg uncertainty principle, as we will discuss below.

The fundamental reason why projective measurements are inadequate for de-
scribing real measurements is that experimenters never directly measure the
system of interest. Rather, the system of interest (such as an atom) interacts
with its environment (the continuum of electromagnetic field modes), and
the experimenter observes the effect of the system on the environment (the
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radiated field). Of course, one could argue that the experimenter does not
observe the radiated field, but rather that the field interacts with a photode-
tector, which triggers a current in a circuit, which is coupled to a display
panel, which radiates more photons, which interact with the experimenter?s
retina, and so on. Such a chain of systems is known as a von Neumann chain.
The point is that, at some stage before reaching the mind of the observer, one
has to cut the chain by applying the projection postulate. This cut, known
as Heisenberg’s cut, is the point at which one considers the measurement as
having been made.

If one were to apply a projection postulate directly to the atom, one would
obtain wrong predictions. However, assuming a projective measurement
of the field will yield results negligibly different from those obtained as-
suming a projective measurement at any later stage. This is because of
the rapid decoherence of macroscopic material objects such as photode-
tectors. Decoherence is discussed in more detail in my textbook http:

//www.johnboccio.com/TQM/QM_1.pdf. For this reason, it is sufficient to
consider the field to be measured projectively. Because the field has inter-
acted with the system, their quantum states are correlated (indeed, they are
entangled, provided that their initial states are pure enough). The projective
measurement of the field is then effectively a measurement of the atom. The
latter measurement, however, is not projective, and we need a more general
formalism to describe it.

Let the initial system state vector be ∣ψ(t)⟩, and say that there is a second
quantum system, which we will call the meter, or apparatus, with the initial
state ∣θ(t)⟩. Thus the initial (unentangled) combined state is

∣Ψ(t)⟩ = ∣θ(t)⟩ ∣ψ(t)⟩ (2.19)

Let these two systems be coupled together for a time T1 by a unitary evolution
operator Û(t + T1, t), which we will write as Û(T1). Thus the combined
system-meter state after this coupling is

∣Ψ(t + T1)⟩ = Û(T1) ∣θ(t)⟩ ∣ψ(t)⟩ (2.20)

This cannot in general be written in the factorized form of Eq. (2.19).

Now let the meter be measured projectively over a time interval T2, and say
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T = T1 + T2. We assume that the evolution of the system and meter over the
time T2 is negligible (this could be either because T2 << T1, or because the
coupling Hamiltonian is time-dependent). Let the projection operators for
the meter be rank-1 operators, so that Π̂r = π̂r ⊗ Î. The order of the tensor
product is meter then system, as in Eq. (2.19), and π̂r = ∣r⟩ ⟨r∣. Here r denotes
the value of the observed quantity R. The set {∣r⟩} forms an orthonormal
basis for the meter Hilbert space. Then the final combined state is

∣Ψr(t + T )⟩ = ∣r⟩ ⟨r∣ Û(T1) ∣θ(t)⟩ ∣ψ(t)⟩√℘r
(2.21)

where the probability of obtaining the value r for the result R is

Pr[R = r] = ℘r = ⟨ψ(t)∣ ⟨θ(t)∣ Û †(T1)[∣r⟩ ⟨r∣⊗ Î]Û(T1) ∣θ(t)⟩ ∣ψ(t)⟩ (2.22)

The measurement on the meter disentangles the system and the meter, so
that the final state (2.21) can be written as

∣Ψr(t + T )⟩ = ∣r⟩ M̂r ∣ψ(t)⟩√℘r
(2.23)

where M̂r is an operator that acts only in the system Hilbert space, defined
by

M̂r = ⟨r∣ Û(T1) ∣θ(t)⟩ (2.24)

We call it a measurement operator. The probability distribution (2.22) for R
can similarly be written as

℘r = ⟨ψ(t)∣ M̂ †
rM̂r ∣ψ(t)⟩ (2.25)

2.4 Example: binary measurement

To understand the ideas just introduced, it is helpful to consider a specific ex-
ample. We choose one analogous to the classical discrete binary measurement
discussed in Section 1.2. The quantum analogue of a system with a single
binary system variable is a quantum system in a two-dimensional Hilbert
space. Let {∣x⟩ ∶ x = 0,1} be an orthonormal basis for this Hilbert space. An
obvious physical realization is a spin-half particle. The spin in any direction
is restricted to one of two possible values, ±h̵/2. These correspond to the
spin being up (+) or down (-) with respect to the given direction. Choosing
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a particular direction (z is conventional), we label these states as ∣0⟩ and
∣1⟩, respectively. Other physical realizations include an atom with only two
relevant levels, or a single electromagnetic cavity mode containing no photon
or one photon. The latter two examples will be discussed in detail in Section
5.

Now consider a measured system S and a measurement apparatus A, both
described by two-dimensional Hilbert spaces. We will use x for the system
states and y for the apparatus states. Following the above formalism, we
assume that initially both systems are in pure states, so that the joint state
of the system at time t is

∣Ψ(t)⟩ = ∣θ(t)⟩ ∣ψ(t)⟩ =∑
x,ξ

sxaξ ∣y ∶= ξ⟩ ∣x⟩ (2.26)

Note that we have used an analogous notation to the classical case, so that
∣y ∶= ξ⟩ is the apparatus state ∣y⟩ with y taking the value ξ. To make a
measurement, the system and apparatus states must become correlated. We
will discuss how this may take place physically in Section 5. For now we
simply postulate that, as a result of the unitary interaction between the
system and the apparatus, we have

∣Ψ(t + T1)⟩ = Ĝ ∣Ψ(t)⟩ =∑
x,ξ

sxaξ ∣y ∶= G(x, ξ)⟩ ∣x⟩ (2.27)

where Ĝ is a unitary operator defined by

Ĝ ∣y ∶= ξ⟩ ∣x⟩ = ∣y ∶= G(x, ξ)⟩ ∣x⟩ (2.28)

Note that the interaction between the system and the apparatus has been
specified by reference to a particular basis for the system and apparatus,
{∣y⟩ ∣x⟩}. We will refer to this (for the system, or apparatus, or both to-
gether) as the measurement basis. As defined Ĝ is unitary if there exists an
inverse function G−1 in the sense that, for all y, y = G(x,G−1(x, y)). The
invertibility condition is the same as we used in Section 1.3 for the classical
binary measurement model.

As an example, consider G(x, ξ) = x⊕ ξ, as in the classical case, where again
this indicates binary addition. In this case Ĝ = Ĝ−1. The system state is un-
known and is thus arbitrary. However, the apparatus is assumed to be under
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our control and can be prepared in a fiducial state. This means a standard
state for the purpose of measurement. Often the fiducial state is a particular
state in the measurement basis, and we will assume that it is ∣y ∶= 0⟩, so that
aξ = δξ,0. In this case the state after the interaction is

∣Ψ(t + T1)⟩ =∑
x

sx ∣y ∶= x⟩ ∣x⟩ (2.29)

and there is a perfect correlation between the system and the apparatus. Let
us say a projective measurement (of duration T2) of the apparatus state in the
measurement basis is made. This will give the result y with probability ∣sy ∣2,
that is, with exactly the probability that a projective measurement directly
on the system in the measurement basis would have given. Moreover, the
conditioned system state at time t + T (where T = T1 + T2 as above), given
the result y, is

∣ψy(t + T )⟩ = ∣x ∶= y⟩ (2.30)

Again, this is as would have occurred with the appropriate projective mea-
surement of duration T on the system, as in Eq. (2.7).

This example is a special case of a model introduced by von Neumann. It
would appear to be simply a more complicated version of the description of
standard projective measurements. However, as we now show, it enables us
to describe a more general class of measurements in which extra noise ap-
pears in the result due to the measurement apparatus.

Suppose that for some reason it is not possible to prepare the apparatus in
one of the measurement basis states. In that case we must use the general
result given in Eq. (2.27). Using Eq. (2.24), we find

M̂y ∣ψ(t)⟩ = ⟨y ∣Ψ(t + T1)⟩ =∑
x,ξ

δy,G(x,ξ)aξsx ∣x⟩

=∑
x

aG−1(x,y)sx ∣x⟩ =∑
x

aG−1(x′,y) ∣x′⟩ ⟨x′∣∑
x

sx ∣x⟩ (2.31)

Thus we have the measurement operator

M̂y =∑
x

aG−1(x,y) ∣x⟩ ⟨x∣ (2.32)

For the particular case G−1(x, y) = x⊕ y, this simplifies to

M̂y =∑
x

iaξ ∣x ∶= y ⊕ ξ⟩ ⟨x ∶= y ⊕ ξ∣ (2.33)
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Returning to the more general form of Eq. (2.31), we find that the probability
for the result y is

℘(y) = ⟨ψ(t)∣ M̂ †
yM̂y ∣ψ(t)⟩ =∑

x

∣sx∣2∣aG1(x,y)∣2 (2.34)

If we define

℘(ξ) = ∣aξ ∣2 (2.35)

℘(x) = ∣sx∣2 = Tr[ρ(t) ∣x⟩ ⟨x∣] (2.36)

where ρ(t) = ∣ψ(t)⟩ ⟨ψ(t)∣ is the system state matrix, then the probability
distribution for measurement results may then be written as

℘(y) =∑
x

℘(ξ ∶= G−1(x, y))℘(x) (2.37)

This is the same form as for the classical binary measurement scheme; see
Eq. (1.13) and Eq. (1.15). Here the noise distribution arises from quantum
noise associated with the fiducial (purposefully prepared) apparatus state. It
is quantum noise because the initial apparatus state is still a pure state. The
noise arises from the fact that it is not prepared in one of the measurement
basis states. Of course, the apparatus may be prepared in a mixed state, in
which case the noise added to the measurement result may have a classical
origin. This is discussed below in Section 4.

The system state conditioned on the result y is

∣ψy(tT )⟩ =
M̂y ∣ψ(t)⟩√

℘(y)
= ∑x

aG−1(x,y)sx ∣x⟩√
℘(y)

(2.38)

If, from this, we calculate the probability ∣ ⟨x ∣ψy(tT )⟩ ∣2 for the system to have
X = x after the measurement giving the result y, we find this probability to
be given by

℘′(x∣y) = ℘(y∣x)℘(x)
℘(y)

(2.39)

Again, this is the same as the classical result derived using Bayes’ theorem.
The interesting point is that the projection postulate does that work for us
in the quantum case. Moreover, it gives us the full a-posteriori conditional
state, from which the expectation value of any observable (not just X) can
be calculated. The quantum measurement here is thus more than simply a
reproduction of the classical measurement, since the conditional state (2.38)
cannot be derived from Bayes’ theorem.
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2.5 Measurement operators and effects

As discussed in Section 2.3, the system and apparatus are no longer entangled
at the end of the measurement. Thus it is not necessary to continue to include
the meter in our description of the measurement. Rather we can specify the
measurement completely in terms of the measurement operators M̂r. The
conditional state of the system, given that the result R has the value r, after
a measurement of duration T , is

∣ψr(tT )⟩ =
M̂r ∣ψ(t)⟩√℘r

(2.40)

As seen above, the probabilities are given by the expectation of another
operator, defined in terms of the measurement operators by

Êr = M̂ †
rM̂r (2.41)

These operators are known as probability operators, or effects. The fact that

∑r ℘r must equal unity for all initial states gives a completeness condition on
the measurement operators:

∑
r

Êr = ÎS (2.42)

This restriction, that {Êr ∶ r} be a resolution of the identity for the system
Hilbert space, is the only restriction on the set of measurement operators
(apart from the fact that they must be positive, of course).

The set of all effects {Êr ∶ r} constitutes an effect-valued measure more
commonly known as a probability-operator-valued measure (POM3) on the
space of results r. This simply means that, rather than a probability dis-
tribution (or probability-valued measure) over the space of results, we have
a probability-operator-valued measure. Note that we have left behind the
notion of ‘observables’ in this formulation of measurement. The possible
measurement results r are not the eigenvalues of an Hermitian operator rep-
resenting an observable; they are simply labels representing possible results.
Depending on the circumstances, it might be convenient to represent the
result R by an integer, a real number, a complex number, or an even more
exotic quantity.

3The abbreviation POVM is used also, and, in both cases, PO is sometimes understood
to denote ‘positive operator’ rather than ‘probability operator’.

23



If one were making only a single measurement, then the conditioned state
∣ψr⟩ would be irrelevant. However, one often wishes to consider a sequence of
measurements, in which case the conditioned system state is vital. In terms
of the state matrix ρ, which allows the possibility of mixed initial states, the
conditioned state is

ρr(t + T ) = J [M̂r]ρ(t)
℘r

(2.43)

where ℘r = Tr[ρ(t)Êr] and, for arbitrary operators A and B,

J [Â]B̂ ≡ ÂB̂Â† (2.44)

The superoperator
Or = J [M̂r] (2.45)

is known as the operation for r. It is called a superoperator because it takes
an operator (here ρ) to another operator. Operations can be identified with
the class of superoperators that take physical states to physical states. (See
Box 1.3.) This very important class is also known as completely positive
maps. If the measurement were performed but the result R ignored, the final
state of the system would be

ρ(t + T ) =∑
r

℘rρr(t + T ) =∑
r

J [M̂r]ρ(t) ≡ Oρ(t) (2.46)

Here O is also an operation, and is trace-preserving.

For non-projective measurements, there is no guarantee that repeating the
measurement will yield the same result. In fact, the final state of the system
may be completely unrelated to either the initial state of the system or the
result obtained. This is best illustrated by an example.

Example 1. Consider the set of measurement operators {M̂r} defined by
M̂r = ∣0⟩ ⟨r∣, where r ∈ {0,1,2, ....} and {∣r⟩} is a complete basis for the system
Hilbert space. Then the effects for the measurements are projectors Êr = Π̂r =
∣r⟩ ⟨r∣, which obviously obey the completeness condition (2.42). The probabil-
ity of obtainingR = r is just ⟨r∣ρ(t) ∣r⟩. However, the final state of the system,
regardless of the result r, is ρr(t + T ) = ∣0⟩ ⟨0∣. Lest it be thought that this
is an artificial example, it in fact arises very naturally from counting photons.
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Box 1.3 Superoperators and operations

A superoperator S is an operator on the space of Hilbert-space operators:

Â→ Â′
= SÂ (2.47)

A superoperator S must satisfy three conditions in order to correspond to a physical
processes (such as measurement or dynamics).

1. S is trace-preserving or decreasing, i.e., 0 ≤ Tr[Sρ] ≤ 1 for any state ρ. Moreover
Tr[Sρ] is the probability that the process occurs.

2. S is a convex linear map on operators. That is, for probabilities ℘j , we have that
S∑j ℘jρj = ∑j ℘jSρj .

3. S is completely positive, i.e., not only does S map positive operators to positive
operators for the system of interest S, but so does (I ⊗ S). I is the identity
superoperator for arbitrary second system R.

The final property deserves comment. It might have been thought that positivity of a
superoperator would be sufficient to represent a physical process. However, it is always
possible that a system S is entangled with another system R before the physical process
represented by S acts on system S. It must still be the case that the total state of both
systems remains a physical state with a positive state matrix. This gives condition 3.

If a superoperator satisfies these three properties then it is called an operation, and has
the Kraus representation, or operator sum representation,

S(ρ) =∑
j

K̂jρK̂
†
j (2.48)

for some set of operators K̂j satisfying

Î −∑
j

K̂†
j K̂j ≥ 0 (2.49)

There is another important representation theorem for operations, which follows from
the Gelfand-Naimark-Segal theorem. Consider, as above, an apparatus or ancilla system
A in addition to the quantum system of interest S. Then there is a pure state ∣θ⟩A of A

and some unitary evolution, ÛSA, describing the coupling of system S to system A, such
that

SρS = TrA [(ÎS ⊗ Π̂A)ÛSA(ρS ⊗ ∣θ⟩A ⟨θ∣)Û †
SA] (2.50)

where Π̂A is some projector for the ancilla system A. This is essentially the converse of

the construction of operations for measurements from a system-apparatus coupling in

Section 2.3.

There R is the number of photons, and, because photons are typically ab-
sorbed in order to be counted, the number of photons left after the measure-
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ment has finished is zero.

In the above example, the effects are still projection operators. However,
there are other measurements in which this is not the case.

Example 2. Consider a two-dimensional Hilbert space with the basis ∣0⟩ , ∣1⟩.
Consider a continuous measurement result φ that can take values between 0
and 2π. We define the measurement operators M̂φ = ∣φ⟩ ⟨φ∣ /

√
π, where ∣φ⟩ is

defined by
∣φ⟩ = 1√

2
[∣0⟩ + eiφ ∣1⟩] (2.51)

In this case the effects are

Êφ =
∣φ⟩ ⟨φ∣
π

(2.52)

and the completeness condition, which is easy to verify, is

∫
2π

0
dφ Êφ = ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣ = Î (2.53)

Although Êφ is proportional to a projection operator it is not equal to one.

It does not square to itself: (Êφdφ)2 = Êφdφ(dφ/π). Neither are different

effects orthogonal in general: ÊφÊφ′ ≠ 0 unless φ′ = φ + π. Thus, even if the
system is initially in the state ∣φ⟩, there is a finite probability for any result
to be obtained except φ + π.

The effects Êr need not even be proportional to projectors, as the next ex-
ample shows.

Example 3. Consider again an infinite-dimensional Hilbert space, but now
use the continuous basis ∣x⟩ (see Section 2.2 and my textbook), for which
⟨x ∣x′⟩ = δ(x − x′). Define an effect

Êy = ∫
∞

−∞
dx (2π∆2)−1/2 exp [−(y − x)2/(2∆2)] ∣x⟩ ⟨x∣ (2.54)

This describes an imprecise measurement of position. It is easy to verify
that the effects are not proportional to projectors by showing that Ê2

y is not

proportional to Êy. Nevertheless, they are positive operators and obey the
completeness relation

∫
∞

−∞
dy Êy = Î (2.55)
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The previous examples indicate some of the flexibility that arises from not
requiring the effects to be projectors. As mentioned above, another example
of the power offered by generalized measurements is the simultaneous mea-
surement of position X̂ and momentum P̂ . This is possible provided that
the two measurement results have a certain amount of error. A simple model
for this was first described by Arthurs and Kelly.

Example 4. The model of Arthurs and Kelly consists of two meters that
are allowed to interact instantaneously with the system. The interaction
couples one of the meters to position and the other to momentum, encoding
the results of the measurement in the final states of the meters. Projective
measurements are then made on each of the meter states separately. These
measurements can be carried out simultaneously since operators for distinct
meters commute. For appropriate meter states, this measurement forces the
conditional state of the system into a Gaussian state (defined below). We
assume some appropriate length scale such that the positions and momenta
for the system are dimensionless, and satisfy [X̂, P̂ ] = i.

The appropriate unitary interaction is

Û = exp [−i(X̂P̂1 + P̂ P̂2)] (2.56)

Here the subscripts refer to the two detectors, which are initially in minimum-
uncertainty states (see my textbook) ∣d1⟩ and ∣d2⟩, respectively. Specifically,
we choose the wavefunctions in the position representation to be

⟨xj ∣dj⟩ = (π
2
)
−1/4

e−x
2
j (2.57)

After the interaction, the detectors are measured in the position basis. The
measurement result is thus the pair of numbers (X1,X2). Following the
theory given above, the measurement operator for this result is

M̂(x1, x2) = ⟨x1∣ ⟨x2∣ Û ∣d1⟩ ∣d1⟩ (2.58)

With a little effort it is possible to show that M̂(x1, x2) is proportional to a
projection operator:

M̂(x1, x2) = 1√
2π

∣(x1, x2)⟩ ⟨(x1, x2)∣ (2.59)
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Here the state ∣(x1, x2)⟩ is a minimum-uncertainty state for the system, with
a position probability amplitude distribution

⟨x ∣ (x1, x2)⟩ = (π)−1/4 exp [ixx2 − 1
2(x − x1)2] (2.60)

This is a state with mean position and momentum given by x1 and x2,
respectively, and with the variances in position and momentum equal to
1/2. The corresponding probability density for the observed values, (x1, x2),
is found from the effect density

Ê(x1, x2)dx1dx2 = 1
2π ∣(x1, x2)⟩ ⟨(x1, x2)∣dx1dx2 (2.61)

where

∫
∞

−∞
dx1 ∫

∞

−∞
dx2 Ê(x1, x2) = Î (2.62)

From this POM we can show that

E[X1] = ⟨X̂⟩ , E[X2
1 ] = ⟨X̂2⟩ + 1

2 (2.63)

E[X2] = ⟨P̂ ⟩ , E[X2
2 ] = ⟨P̂ 2⟩ + 1

2 (2.64)

where ⟨Â⟩ = Tr[Âρ] is the quantum expectation, while E is a classical average
computed by evaluating an integral over the probability density ℘(x1, x2).
Thus the readout variables X1 and X2 give, respectively, the position and
momentum of the system with additional noise.

It is more conventional to denote the state ∣(x1, x2)⟩ by ∣α⟩, where the single
complex parameter α is given by α = (x1 + ix2)/

√
2. In this form the states

are known as coherent states (see my textbook). The corresponding effect
density is F̂ (α) = ∣α⟩ ⟨α∣ /π and the resulting probability density ℘(α)d2α =
Tr[F̂ (α)ρ]d2α. This is known as the Q-function in quantum optics. For a
general choice of initial pure states for the detectors, the probability density
for observed results is known as the Husimi function.

2.6 Non-selective evolution and choice of basis

Recall that in the analysis above, using system and meter states, the com-
bined state prior to the measurement of the meter was

∣Ψ(t + T1)⟩ = Û(T1) ∣θ(t)⟩ ∣ψ(t)⟩ (2.65)
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As explained there, it is not possible to assign a state vector to the system
at time t+T1, because it is entangled with the meter. However, it is possible
to assign a state matrix to the system. This state matrix is found by taking
the partial trace over the meter:

ρ(t + T1) = TrA[∣Ψ(t + T1)⟩ ⟨Ψ(t + T1)∣
≡∑

j

⟨φj ∣Ψ(t + T1)⟩ ⟨Ψ(t + T1) ∣φj⟩A A (2.66)

where {∣φj⟩A ∶ j} is an arbitrary set of basis states for the meter. But this
basis can of course be the basis {∣r⟩ ∶ r} appropriate for a measurement of
R on the meter. Thus the reduced system state ρ(t + T1) is the same as the
average system state ρ(t+T ) (for T ≥ T1) of Eq. (2.50), which is obtained by
averaging over the measurement results. That is, the non-selective system
state after the measurement does not depend on the basis in which the meter
is measured.

Different measurement bases for the meter can be related by a unitary trans-
formation thus:

∣r⟩ =∑
s

U∗
r,s ∣s⟩ (2.67)

where U is a c-number matrix satisfying ∑r Ur,sU∗
r,q = δs,q. In terms of the

measurement operators M̂s, this amounts to a unitary rearrangement to M̂r

defined by
M̂r =∑

s

Ur,sM̂s (2.68)

The binary example. Although the unconditional system state is the same
regardless of how the meter is measured, the conditional system states are
quite different. This can be illustrated using the binary measurement exam-
ple of Section 2.4. Consider the simple case in which the fiducial apparatus
state is the measurement basis state ∣0⟩A = ∣y ∶= 0⟩. The measurement basis
states are eigenstates of the apparatus operator

Ŷ =
1

∑
y=0

y ∣y⟩ ⟨y∣ (2.69)

Then, if the apparatus is measured in the measurement basis, the measure-
ment operators are

M̂y = ⟨y∣ Ĝ ∣0⟩A A = ∣x ∶= y⟩ ⟨x ∶= y∣ (2.70)
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As stated before, these simply project or ‘collapse’ the system into its mea-
surement basis, the eigenstates of

X̂ =
1

∑
x=0

x ∣x⟩ ⟨x∣ (2.71)

Now consider an alternative orthonormal basis for the apparatus, namely the
eigenstates of the complementary operator

P̂A =
1

∑
p=0

p ∣p⟩A ⟨p∣ (2.72)

Here the eigenstates for the apparatus are

∣p⟩A = 2−1/2(∣y ∶= 0⟩ + eiπp ∣y ∶= 1⟩ (2.73)

and X̂ and P̂ are complementary in the sense that X̂ is maximally uncertain
for a system in a P̂ -eigenstate, and vice versa. In this case the measurement
operators are, in the measurement (x) basis,

M̂p = 2−1/2(∣0⟩ ⟨0∣ + e−iπp ∣1⟩ ⟨1∣) (2.74)

Clearly, measurement of the apparatus in the complementary basis does not
collapse the system into a pure state in the measurement basis. In fact,
it does not change the occupation probabilities for the measurement basis
states at all. This is because the measurement yields no information about
the system, since the probabilities for the two results are independent of the
system:

Pr[PA = p] = ⟨ψ(t)∣ M̂ †
pM̂p ∣ψ(t)⟩ = 1/2 (2.75)

This ‘measurement’ merely changes the relative phase of these states by π if
and only if p = 1:

M̂p∑x sx ∣x⟩√
Pr[PA = p]

=∑
x

sxe
−iπpx ∣x⟩ (2.76)

That is to say, with probability 1/2, the relative phase of the system states
is flipped. In this guise, the interaction between the system and the appara-
tus is seen not to collapse the system into a measurement eigenstate, but to
introduce noise into a complementary system property: the relative phase.

This dual interpretation of an interaction between a system and another sys-
tem (the meter) is very common. The non-selective evolution reduces the
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system to a mixture diagonal in some basis. One interpretation (realized by
measuring the meter in an appropriate way) is that the system is collapsed
into a particular state in that basis, but an equally valid interpretation (re-
alized by measuring the meter in a complementary way) is that the meter is
merely adding noise into the relative phases of the system components in this
basis. In the following section, we will see how both of these interpretations
can be seen simultaneously in the Heisenberg picture.

3 Representing outcomes as operators

3.1 ‘Correlations without correlata’

We have already met the idea that an operator can represent an outcome in
Section 2.2, where it was shown that

⟨f(Λ)⟩ = Tr[f(Λ̂)ρ] (3.1)

That is, if an operator Λ̂ represents an observable Λ, then any function of the
result of a measurement of Λ is represented by that function of the operator
Λ̂. Here ρ is the state of the system at the time of the measurements. Clearly,
if ρ evolves after the measurement has finished, then the formula (3.1) using
this new ρ might no longer give the correct expectation values for the results
that had been obtained.

This problem can be circumvented by using the system-meter model of mea-
surement we have presented. Let us assume an entangled system-meter state
of the form

∣Ψ(t + T1)⟩ =∑
λ

∣λ⟩A Π̂λ ∣ψ(t)⟩S (3.2)

where {∣λ⟩A ∶ λ} is an orthonormal set of apparatus states and {Π̂λ ∶ λ} is
the set of eigenprojectors of the system observable ΛS. This is the ideal
correlation for the apparatus to ‘measure’ ΛS. The apparatus observable
represented by

Λ̂A =∑
λ

λ ∣λ⟩A ⟨λ∣ (3.3)

has identical moments to the system observable ΛS for the original system
state ∣ψ(t)⟩, or indeed for the (mixed) system state at time t + T1 derived
from Eq. (3.2).
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What has been gained by introducing the meter is that Λ̂A will continue
to represent the result Λ of the measurement made at time t, fort all times
in the future, regardless of the system evolution. We require only that the
statistics of Λ̂A do not change after the measurement; that is, that ΛA be a so-
called QND (quantum non-demolition) observable. Since meter operators by
definition commute with system operators, the meter operator is a classical
quantity insofar as the system is concerned - a c-number rather than a q-
number. For instance, one could consider a Hamiltonian, acting some time
after the measurement, of the form

Ĥ = Λ̂A ⊗ F̂S (3.4)

where F̂S is an Hermitian system operator, and not have to worry about the
operator ordering. In fact, insofar as the system is concerned, this Hamilto-
nian is equivalent to the Hamiltonian

Ĥ = ΛF̂S (3.5)

where here Λ is the measurement result (a random variable) obtained in the
projective measurement of the system at time t.

This idea of representing measurement results by meter operators is not
limited to projective measurements of the system. Say one has the entangled
state between system and meter

∣Ψ(t + T1)⟩ = Û(T1) ∣θ(t)⟩A ∣ψ(t)⟩S (3.6)

and one measures the meter in the (assumed non-degenerate) eigenbasis
{∣r⟩A} of the operator

R̂A =∑
r

r ∣r⟩A ⟨r∣ (3.7)

Then the operator R̂A represents the outcome of the measurement that, for
the system, is described using the measurement operators M̂r = ⟨r∣ Û(T1) ∣θ⟩.
Recall that the results r are just labels, which need not be real numbers, so
R̂A is not necessarily an Hermitian operator. If the result R is a complex
number, then R̂A is a normal operator (see Box 1.1). If R is a real vector,
then R̂A is a vector of commuting Hermitian operators.

It is important to note that R̂A represents the measurement outcome whether
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or not the projective measurement of the apparatus is made. That is, it is
possible to represent a measurement outcome simply by modeling the appa-
ratus, without including the extra step of apparatus state collapse. In this
sense, the von Neumann chain can be avoided, not by placing the Heisenberg
cut between apparatus and higher links (towards the observer’s conscious-
ness), but by ignoring these higher links altogether. The price to be paid
for this parsimony is a high one: the loss of any notion of actual outcomes.
The measurement result R remains a random variable (represented by the
operator R̂A) that never takes any particular one of its ‘possible’ values r.
Within this philosophical viewpoint one denies the existence of events, but
nevertheless calculates their statistics; in other words, ‘correlations with cor-
relate’.

3.2 Measurement in the Heisenberg picture

The ‘measurement without collapse’ formulation outlined above is obviously
the ideal one for working in the Heisenberg picture. In the Heisenberg pic-
ture, the state vector or state matrix is constant, while operators evolve in
time (see my textbook). However, this was formulated only for unitary evo-
lution; if one wishes to describe a measurement for which some particular
result is obtained, this can be done only by invoking state collapse. That is,
one must still allow the state to change, even though one is working in the
Heisenberg picture. But if one is content to describe a measurement simply
as the coupling of the system to the meter, with the result being represented
by a meter operator, then state collapse never occurs. Consequently, it is pos-
sible to describe all evolution, including measurement, in terms of changing
operators. Of course, to do this, one needs to consider system and apparatus
operators, not just system operators.

The necessity of using apparatus operators might not be obvious to the
reader. After all, when considering unitary evolution of the system alone, we
can use essentially the same transformation in the Schrödinger and Heisen-
berg pictures: ρ→ ÛρÛ † and O → Û †OÛ , respectively.This suggests that for
measurement the analogue of ρ → ρ′r = M̂rρM̂

†
r would be O → O′

r = M̂
†
rOM̂r.

However, this construction does not work when one considers operator prod-
ucts. The correct post-measurement expectation for ÂB̂, weighted by the
probability for outcome r, is

Tr[ÂB̂ρ′r] = Tr[M̂ †
r ÂB̂M̂rρ] (3.8)
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In general, this is quite different from

Tr[Â′
rB̂

′
rρ] = Tr[M̂ †

r ÂM̂rM̂
†
r B̂M̂rρ] (3.9)

because, in general, M̂r is not unitary.

The correct Heisenberg formulation of measurement is as follows. The total
state (of system plus apparatus) remains equal to the initial state, which is
usually taken to factorize as

ρtotal(t) = ρS ⊗ ρA (3.10)

The measurement outcome is described, as above, by the apparatus operator

R̂A(t) =∑
r

r ∣r⟩A ⟨r∣ (3.11)

which here is for time t, before the measurement interaction between system
and apparatus. This interaction, of duration T1, changes R̂A to

R̂A(t + T ) = Û †(T1)[R̂A(t)⊗ ÎS]Û(T1) (3.12)

=∑
r

rÛ †(T1)(∣r⟩A ⟨r∣⊗ ÎS)Û(T1) (3.13)

Here T is any time greater than or equal to T1, since we are assuming that
the measurement interaction ceases at time t + T1 and that R̂A is a QND
observable for all subsequent evolution of the meter.

The Heisenberg-picture operator R̂A(t + T ) with respect to ρtotal(t) has the
same statistics as does the Schrödinger-picture operator with respect to
ρtotal(t + T ), evolved according to the measurement interaction. Hence, if
the initial apparatus state is pure,

ρA = ∣θ⟩A ⟨θ∣ (3.14)

as we assumed, then these statistics are identical to those of the random
variable RA, the result of a measurement on the system with measurement
operators {M̂r}.

Being an apparatus operator, R̂A(s) commutes with system operators at all
times s. For s ≤ t (that is, before the system and apparatus interact), it is
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also uncorrelated with all system operators. That is, for s ≤ t, expectation
values factorize:

⟨ÔS(t)f(R̂A(t))⟩ = ⟨ÔS(t)⟩⟨f(R̂A(t))⟩ (3.15)

Here ÔS is an arbitrary system operator and f is an arbitrary function. For
s > t, this is no longer true. In particular, for s = t + T the correlation with
the system is the same as one would calculate using state collapse, namely

⟨ÔS(t + T )f(R̂A(t + T ))⟩ =∑
r

℘rf(r)Tr[ÔSρr(t + T )] (3.16)

where ρr(t + T ) is the a-posteriori conditioned system state.

It should be noted that these two descriptions of measurement, in terms of
changing operators or changing states, have classical equivalents. They are
descriptions in terms of changing system variables or changing probability
distributions for these variables. We have already used these two descriptions
in Section 1.1. Specifically, we began with the ‘Heisenberg’ description, with
correlations arising between system and apparatus variables, and then moved
to the complementary ‘Schrödinger’ description with system state collapse
derived using Bayes’ theorem.

In the Heisenberg picture, an important difference between quantum and
classical measurement stands out. The back-action of the measurement on
the system is seen in changes in the system operators, rather than changes
in the system state. Classically, a non-disturbing measurement does not
introduce any noise into the system. Hence classically there may be no
change in the system variables, but in the quantum case any measurement
will necessarily cause changes to the system operators. This quantum back-
action is best illustrated by example, as we will do in the next subsection. The
same distinction between quantum and classical mechanics is also present in
the Schrödinger picture.

3.3 The binary example

To illustrate the description of measurement in the Heisenberg picture, we
use again the example of a binary measurement. Rather than using X̂ for
the system and Ŷ for the apparatus, we use X̂S and X̂A. Similarly, we use P̂S
and P̂A for the complementary operators. These are defined by the relation
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between the eigenstates ∣x⟩ and ∣p⟩ defined in Section 2.6. The operators X̂
and P̂ each act as a displacement in the complementary basis, by which we
mean that, for binary variables k and n,

exp (iπkX̂) ∣p⟩ = ∣p⊕ k⟩ (3.17)

exp (iπnP̂ ) ∣x⟩ = ∣x⊕ n⟩ (3.18)

We then find that the measurement interaction between the system and the
apparatus can be realized by

Ĝ = exp (iπX̂S ⊗ P̂A) (3.19)

In the Heisenberg picture, this unitary operator transforms the operators
according to Ô(t + T1) = Ĝ†Ô(t)Ĝ, where Ô is an arbitrary operator. Thus
we find

X̂S(t + T1) = X̂S(t) (3.20)

P̂S(t + T1) = P̂S(t)⊕ P̂A(t) (3.21)

X̂A(t + T1) = X̂S(t)⊕ X̂A(t) (3.22)

P̂A(t + T1) = P̂A(t) (3.23)

The binary addition ⊕ is defined for operators by, for example,

X̂S ⊕ X̂A =∑
x,y

(x⊕ y) ∣x⟩S ⟨x∣⊗ ∣y⟩A ⟨y∣ (3.24)

If we make the identifications

X =XS , Y =XA(t + T1) , Ξ =XA(t) (3.25)

then Eq. (3.22) is identical in form and content to the classical Eq. (1.2).
The noise term is seen to arise from the initial apparatus state. Note that
X̂S is unchanged by the interaction. This quantity is a QND variable and
the measurement interaction realizes a QND measurement of X̂S. However,
unlike in the classical case, the system is affected by the measurement. This
quantum back-action is seen in the change in the complementary system
quantity, P̂S, in Eq. (3.21). The ‘quantum noise’ added to the system here
is P̂A, which is another QND variable. Clearly, if one were to measure P̂A,
one would gain no information about the system. (Indeed, one gains most
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information about the system by measuring the apparatus in the X̂A basis,
which is a basis complementary to the P̂A basis). However, by measuring P̂A,
one directly finds out the noise that has affected the system, as discussed in
Section 2.6. We see now that, in the Heisenberg picture, both interpretations
of the interaction, namely in terms of gaining information about the system
and in terms of adding noise to the system, can be seen simultaneously.

4 Most general formulation of quantum measurements

4.1 Operations and effects

The theory of measurements we have presented thus far is not quite the most
general, but can easily be generalized to make it so. This generalization is
necessary to deal with some cases in which the initial meter state is not pure,
or the measurement on the meter is not a von Neumann measurement. In
such cases the conditioned system state may be impure, even if the initial
system state was pure. We call these inefficient measurements.

To give the most general formulation4 we must dispense with the measure-
ment operators M̂r and use only operations and effects. The operation Or
for the result r is a completely positive superoperator (see Box 1.3), not
restricted to the form of Eq. (2.45). It can nevertheless be shown that an
operation can always be written as

Or =∑
j

J [Ω̂r,j] (4.1)

for some set of operators {Ω̂r,j ∶ j}.

For a given operation Or, the set {Ω̂r,j ∶ j} is not unique. For this reason

it would be wrong to think of the operators Ω̂r,j as measurement operators.
Rather, the operation is the basic element in this theory, which takes the
a-priori system state to the conditioned a-posteriori state:

ρ̃r(t + T ) = Orρ(t) (4.2)

4It is possible to be even more general by allowing the apparatus to be initially corre-
lated with the system. We do not consider this situation because it removes an essential
distinction between apparatus and system, namely that the former is in a fiducial state
known to the experimenter, while the latter can be in an arbitrary state (perhaps known
to a different experimenter). If the two are initially correlated they should be considered
jointly as the system.
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The state in Eq. (4.2) is unnormalized. Its norm is the probability ℘r for
obtaining the result R = r,

℘r = Tr[Orρ(t)] (4.3)

so that the normalized state is

ρr(t + T ) = Orρ(t)
℘r

(4.4)

As for efficient measurements in Section 2.5, it is possible to define a proba-
bility operator, or effect, Êr, such that, for all ρ,

Tr[Or, ρ] = Tr[ρÊr] (4.5)

It is easy to verify that
Êr =∑

j

Ω̂†
r,jΩ̂r,j (4.6)

which is obviously Hermitian and positive. The completeness condition

∑
r

Êr = Î (4.7)

is the only mathematical restriction on the set of operations Or.

The unconditional system state after the measurement is

ρ(t + T ) =∑
r

Orρ(t) = Oρ(t) (4.8)

Here the non-selective operation can be written

O =∑
r,j

J [Ω̂r,j] (4.9)

In terms of the unitary operator Û(T1) coupling system to apparatus, this
operation can also be defined by

Oρ ≡ TrA[Û(T1)(ρ⊗ ρA)Û †(T1)] (4.10)

where ρA is the initial apparatus state matrix.

This completes our formal description of quantum measurement theory. Note
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that the above formulae, from Eq. (4.1) to Eq. (4.9), are exact analogues of
the classical formulae from Eq. (1.26) to Eq. (1.34). The most general formu-
lation of classical measurement was achieved simply by adding back-action
to Bayes’ theorem. The most general formulation of quantum measurement
should thus be regarded as the quantum generalization of Bayes’ theorem, in
which back-action is an inseparable part of the measurement. This difference
arises simply from the fact that a quantum state is represented by a positive
matrix, whereas a classical state is represented by a positive vector (i.e. a
vector of probabilities). This analogy is summarized in Table 1.

Concept Quantum formula Bayseian formula
Initial state ρ(t), a positive operator ℘(t), a positive operator

such that Tr[ρ(t)] = 1 ∑x ℘(x; t) = 1
Measurement result R, a random variable R, a random variable
For each r define an operation Or a matrix Or

such that ρ̃r(t + T ) = Orρ(t) ≥ 0 ℘̃r(t + T )Or℘(t) ≥ 0
Pr[R = r] ℘(r) = Tr[ρ̃r(t + T )] ℘(r) = ∑x ℘̃r(x; t + T )

can be written as ℘(r) = Tr[ρ(t)Êr] ℘(r) = ∑x ℘(x; t)Er(x)

where ∑r Êr = Î ∀x,∑rEr(x) = 1
Conditioned state ρr(t + T ) = ρ̃r(t + T )/℘(r) ℘r(t + T ) = ℘̃r(t + T )/℘(r)
Interpretation a matter of debate! Bayes’ rule: Er(x) = ℘(r∣x)

Table 1: Quantum measurement theory as generalized Bayesian analysis

We now give a final example to show how generalized measurements such as
these arise in practice, and why the terminology inefficient is appropriate for
those measurements for which measurement operators cannot be employed.
It is based on Example 1 in Section 2.5, which is a description of efficient
photon counting if ∣n⟩ is interpreted as the state with n photons.

Say one has an inefficient photon detector, which has only a probability η of
detecting each photon. If the perfect detector would detect n photons, then,
from the binomial expansion, the imperfect detector would detect r photons
with probability

℘(r∣n) = ηr(1 − η)n−r(n
r
) (4.11)

Thus, if r photons are counted at the end of the measurement, the probability
that n photons ‘would have been’ counted by the perfect detector is, by Bayes’
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theorem,

℘(n∣r) = ℘(r∣n) ⟨n∣ρ(t) ∣n⟩
∑m ℘(r∣m) ⟨m∣ρ(t) ∣m⟩

(4.12)

Hence, the conditioned system state is the mixture

ρr(t + T ) =∑
n

℘(n∣r)J [∣0⟩ ⟨n∣]ρ(t)
⟨n∣ρ(t) ∣n⟩

(4.13)

=∑
n

℘(r∣n)J [∣0⟩ ⟨n∣]ρ(t)
∑m ℘(r∣m) ⟨m∣ρ(t) ∣m⟩

(4.14)

= Orρ(t)
Tr[ρ(t)Êr]

(4.15)

where the operations and effects are, respectively,

Or =∑
n

ηr(1 − η)n−r(n
r
)J [∣0⟩ ⟨n∣] (4.16)

Êr =∑
n

ηr(1 − η)n−r(n
r
) ∣n⟩ ⟨n∣ (4.17)

4.2 Classification of measurements

The formalism of operations and effects encompasses an enormous, even be-
wildering, variety of measurements. By placing restrictions on the opera-
tions, different classes of measurements may be defined. In this section, we
review some of these classes and their relation to one another. We restrict
our consideration to eight classes, identified and defined in Table 2.
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Symbol Name Definition

E Efficient ∀r, ∃M̂r, Or = J [M̂r]

C Complete ∀ρ, ∀r, Orρ∝ Or Î

S Sharp ∀r, rank(Êr) = 1

O Of an observable X ∀r, Êr = Er(X̂)

BAE Back-action-evading O with ∀ρ, ∀x ∈ λ(X̂), Tr[Π̂xρ] = Tr[Π̂x,Oρ]

MD Minimally disturbing E with ∀r, M̂r = M̂
†
r

P Projective MD and O
V N von Neumann P and S

Table 2: Quantum measurement theory as generalized Bayesian analysis

Their complicated inter-relations are defined graphically by the Venn dia-
gram in Fig. 2.

Figure 2: A Venn diagram for the eight classes of quantum measurements described in
Table 2.

Some classes of measurement are characterized by the disturbance imposed
on the system by the measurement (‘efficient’, ‘complete’, and ‘minimally
disturbing’). Others are characterized by the sort of information the mea-
surement yields (‘sharp’ and ‘of an observable X’), and so can be defined
using the effects only. The remainder are characterized by both the sort of in-
formation obtained and the disturbance of the system (‘back-action-evading’,
‘projective’, and ‘von Neumann’). Some of these classes are well known (such
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as back-action-evading measurements) while others are not (such as complete
measurements). Below, we briefly discuss each of the eight. This also allows
us to discuss various concepts relevant to quantum measurement theory.

[E]: Efficient measurements. As already discussed, efficient measurements
are ones for which each operation is defined in terms of a measurement op-
erator: Or = J [M̂r]. These measurements take pure states to pure states.
Any noise in efficient measurements can be interpreted as quantum noise.
The complementary set is that of inefficient measurements, which introduce
classical noise or uncertainty into the measurement.

It is only for the class of efficient measurements that one can derive the
following powerful theorem:

H[ρ(t)] ≥∑
r

℘rH[ρr(t + T )] (4.18)

Here, H[ρ] is any measure of the mixedness of ρ that is invariant under
unitary transformations of ρ and satisfies

H[w1ρ1 +w2ρ2] ≥ w1H[ρ1] +w2H[ρ2] (4.19)

for arbitrary state matrices ρj and positive weights wj summing to unity. Ex-
amples of such measures are the entropy −Tr[ρ log ρ] and the ‘linear entropy’
1−Tr[ρ2].5 The interpretation of this theorem is that, as long as no classical
noise is introduced in the measurement, the a-posteriori conditional state is
on average less mixed than (or just as mixed as) the a-priori state. That is,
the measurement refines one’s knowledge of the system, as one would hope.
Note that it is not true that the conditional a-posteriori state is always less
mixed than the a-priori state.

[C]: Complete measurements. The definition of complete measurements in
Table 2 implies that, for all results r, the conditioned a-posteriori state

ρr(t + T ) = Orρ(t)
Tr[Êrρ(t)]

(4.20)

is independent of ρ(t). In other words, at the end of the measurement, no
information remains in the system about its initial state. This is the sense

5An even stronger version of this theorem, using majorization to classify the relative
mixedness of two states, has also been proven.
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in which the measurement is complete: no further measurements could yield
any more information about the initial system state.

The definition of complete measurements implies that the operations must
be of the form

Or =∑
j,k

J [∣θrk⟩ ⟨φrj ∣] (4.21)

where θ and φ denote (possibly unnormalized) system states. From this, it
is easy to see that the conditioned state, independently of ρ(t), is

ρr(t + T ) = ∑k ∣θrk⟩ ⟨θrk∣
∑k ⟨θrk ∣ θrk⟩

(4.22)

The concept of complete measurements (or, more particularly, ‘incomplete
measurements’) is very important when discussing adaptive measurements.

[S]: Sharp measurements. The definition of sharp measurements in Table 2
implies that the effects are rank-1 positive operators. That is to say, each
effect is of the form Êr = ∣φr⟩ ⟨φr∣, for some (possibly unnormalized) state
∣φr⟩. This implies that the operations must be of the form

Or =∑
k

J [∣θrk⟩ ⟨φr∣] (4.23)

From this it is apparent that sharp measurements are a subclass of complete
measurements. Also, it is apparent that, for efficient measurements, sharp-
ness and completeness are identical properties.

The significance of sharpness is that a sharp measurement cannot be an un-
sharp version of a different measurement. That is, the results of a sharp mea-
surement cannot be generated by making a different measurement and then
rendering it ‘unsharp’ by classically processing the results. Mathematically,
a sharp measurement {Êr} is one for which there is no other measurement
{Ê′

s ∶ s} such that
Êr =∑

s

wr∣sÊ′
s (4.24)

where wr∣s is the probability that r is reported as the measurement result
when the second measurement result is s. The object {wr∣s} is sometimes
called a stochastic map from {s} to {r}. We also require that this stochastic
map {wr∣s} be nontrivial. A trivial stochastic map is a deterministic one for
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which w2
r∣s = wr∣s for all r and s, which simply relabels measurement results.

Another fact about sharp measurements is that it is always possible to pre-
pare the system in a state such that a given result r cannot be obtained.
Note, however, that there is no requirement that the effects be orthogonal,
so it is not necessarily possible to prepare the system such that a given result
r is guaranteed.

[O]: Measurements of an observable. If an effect Êr is a function of an Her-
mitian operator X̂, then the probability of obtaining the result r is given
by

℘r = Tr[Er(X̂)ρ(t)] =∑
x

Er(x)Tr[Π̂xρ(t)] (4.25)

where {x} are the (assumed discrete for simplicity) eigenvalues of X̂ and Π̂x

the corresponding projectors. If all of the effects are functions of the same
operator X̂, then it is evident that the measurement is equivalent to a (pos-
sibly unsharp) measurement of the observable X. That is, the result R could
be obtained by making a projective measurement of X and then processing
the result. Note that this definition places no restriction on the state of the
system after the measurement.

The class labelled O in Fig. 2 should be understood to be the class of mea-
surements that are measurements of some observable X. Note that, by virtue
of the definition here, a measurement in this class may be a measurement of
more than one observable. For example, it is obvious from the above defini-
tion that any measurement of X2 is also a measurement of X. However, if
X̂ has eigenvalues of equal magnitude but opposite sign, then the converse is
not true. This is because, for example, it is not possible to write the effects
for a projective measurement of X̂, which are

Êx = ∣x⟩ ⟨x∣ = δX̂,x (4.26)

as a function of Ŝ = X̂2. This is the case even though the projectors for the
latter are functions of X̂:

Ês =∑
x

δx2,x ∣x⟩ ⟨x∣ = δX̂2,x (4.27)

By binning results (corresponding to values of X with the same magnitude),
one can convert the measurement of X into a measurement of X2. However,
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it is not permissible to allow such binning in the above definition, because
then every measurement would be a measurement of any observable; simply
binning all the results together gives a single Ê = Î, which can be written as
a (trivial) function of any observable.

[BAE]: Back-action-evading measurements. Consider a measurement of an
observable X according to the above definition. A hypothetical projective
measurement of X before this measurement will not affect the results of
this measurement, because the effects are a function of X̂. However, the
converse is not necessarily true. Because the definition of ‘measurement of an
observable X’ is formulated in terms of the effects alone, it takes no account
of the disturbance or back-action of the measurement on the system. A
back-action-evading (BAE) measurement of X is one for which a projective
measurement of X after the measurement will have the same statistics as
one before. If the total (i.e., non-selective) operation for the measurement
in question is O = ∑rOr, then the requirement is that, for all rho and all
eigenvalues x of X̂,

Tr[Π̂xρ] = Tr[Π̂xOρ] (4.28)

This is the condition in Table 2, where we use λ(X̂) to denote the set of
eigenvalues of X̂.

A concept closely related to BAE measurement is QND measurement. Recall
from Section 3 that X is a QND (quantum non-demolition) observable if the
operator X̂ is a constant of motion (in the Heisenberg picture). Thus, we
can talk of a QND measurement of X̂ if the effects are functions of X̂ and

X̂ = Û †(T1)X̂Û(T1) (4.29)

where Û(T1) is the unitary operator describing the coupling of the system to
the meter, as in Section 3.2, so that X̂ is to be understood as X̂S ⊗ ÎA.

The condition for a back-action-evading measurement (4.28) is implied by
(and hence is weaker than) that for a quantum non-demolition measurement.
To see this, first note that a unitary transformation preserves eigenvalues, so
that Eq. (4.29) implies that, for all x,

Π̂x ⊗ ÎA = Û †(T1)(Π̂x ⊗ ÎA)Û(T1) (4.30)

Now post-multiply both sides of Eq. (4.30) by ρ⊗ ρA, where ρA is the initial
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apparatus state. This gives

(Π̂xρ)⊗ ρA = Û †(T1)(Π̂x ⊗ ÎA)Û(T1)(ρ⊗ ρA) (4.31)

Now pre- and post-multiply by Û(T1) and Û †(T1), respectively. This gives

Û(T1)[(Π̂xρ)⊗ ρA]Û †(T1) = (Π̂x ⊗ ÎA)Û(T1)(ρ⊗ ρA)Û †(T1) (4.32)

Taking the total trace of both sides then yields Eq. (4.28), from the result
in Eq. (4.10)

Often the terms back-action-evading (BAE) measurement and quantum non-
demolition (QND) measurement are used interchangeably, and indeed the
authors are not aware of any proposal for a BAE measurement that is not
also a QND measurement. The advantage of the BAE definition given above
is that it is formulated in terms of the operations and effects, as we required.

It is important not to confuse the non-selective and selective a-posteriori
states. The motivating definition (4.28) is formulated in terms of the non-
selective total operation O. The definition would be silly if we were to replace
this by the selective operation Or (even if an appropriate normalizing factor
were included). That is because, if the system were prepared in a state with a
non-zero variance in X, then the measurement would in general collapse the
state of the system into a new state with a smaller variance for X. That is,
the statistics of X would not remain the same. The actual definition ensures
that on average (that is, ignoring the measurement results) the statistics for
X are the same after the measurement as before.

[MD]: Minimally disturbing measurements. Minimally disturbing measure-
ments are a subclass of efficient measurements. The polar decomposition
theorem says that an arbitrary operator, such as the measurement operator
M̂r can be decomposed as

M̂r = ÛrV̂r (4.33)

where Ûr is unitary and V̂r =
√
Êr is Hermitian and positive. We can in-

terpret these two operators as follows. The Hermitian V̂r is responsible for
generating the necessary back-action (the ‘state collapse’) associated with
the information gained in obtaining the result r (since the statistics of the
results are determined solely by Êr, and hence solely by V̂r). The unitary Ûr
represents surplus back-action: an extra unitary transformation independent
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of the state.

A minimally disturbing measurement is one for which Ûr is (up to an irrele-
vant phase factor) the identity. That is,

M̂r =
√
Êr (4.34)

so that the only disturbance of the system is the necessary back-action de-
termined by the probability operators Êr. The name ‘minimally disturbing’
can be justified rigorously as follows. The fidelity between an a-priori state
of maximal knowledge ∣ψ⟩ and the a-posteriori state ρ̃r = Or ∣ψ⟩ ⟨ψ∣, averaged
over r and ψ, is

Faverage = ∫ dµHaar(ψ)∑
r

⟨ψ∣ ρ̃r ∣ψ⟩ (4.35)

Here dµHaar is the Haar measure over pure states, the unique measure which
is invariant under unitary transformations. For a given POM {Êr}, this is
maximized for efficient measurements with measurement operators given by
Eq. (4.34).

For minimally disturbing measurements, it is possible to complement the
relation (4.18) by the following equally powerful theorem:

H[ρ(t + T )] ≥H[ρ(t)] (4.36)

where ρ(t+T ) = ∑r ℘rρr(t+T ). That is, the unconditional a-posteriori state
is at least as mixed as the a-priori state - if one does not take note of the mea-
surement result, one’s information about the system can only decrease. This
does not hold for measurements in general; for the measurement in Example
1, the a-posteriori state is the pure state ∣0⟩ regardless of the a-priori state.
However, it does hold for a slightly broader class than minimally disturbing
measurements, namely measurements in which the surplus back-action Ur
in Eq. (4.33) is the same for all r. These can be thought of as minimally
disturbing measurements followed by a period of unitary evolution.

A minimally disturbing measurement of an observable X is a BAE measure-
ment of that observable, but, of course, minimally disturbing measurements
are not restricted to measurements of observables. Finally, it is an interest-
ing fact that the class of minimally disturbing measurements does not have
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the property of closure. Closure of a class means that, if an arbitrary mea-
surement in a class is followed by another measurement from the same class,
the ‘total’ measurement (with a two-fold result) is guaranteed to be still a
member of that class.

[P ]: Projective measurements. These are the measurements with which we
began our discussion of quantum measurements in Section 2.2. They are
sometimes referred to as orthodox measurements, and as Type I measure-
ments (all other measurements being Type II). From the definition that they
are minimally disturbing and a measurement of an observable, it follows that
the measurement operators M̂r and effects Êr are identical and equal to pro-
jectors Π̂r.

[V N ]: von Neumann measurements. Sometimes the term ‘von Neumann
measurement’ is used synonymously with the term ‘projective measurements’.
We reserve the term for sharp projective measurements (that is, those with
rank-1 projectors). This is because von Neumann actually got the projec-
tion postulate wrong for projectors of rank greater than 1, as was pointed
out (and corrected) by Lüders. von Neumann measurements are the only
measurements which are members of all of the above classes.

4.3 Classification exercise

Appreciating the relations among the above classes of measurements requires
a careful study of Fig. 2. To assist the reader in this study, we here provide
a prolonged exercise. The Venn diagram in Fig. 2 has 17 disjoint regions.
If there were no relations among the eight classes, there would be 28, that
is 256, regions. Thus the fact that there are only 17 testifies to the many
inter-relationships among classes.

Below, we have listed 17 different measurements, defined by their set of oper-
ations {Or}. Each measurement belongs in a distinct region of ‘measurement
space’ in Fig. 2. The object of the exercise is to number the 17 regions in
this figure with the number (from 1 to 17) corresponding to the appropriate
measurement in the list below.

All of the measurements are on an infinite-dimensional system, with basis
states {∣n⟩ ∶ n = 0,1,2, ...}, called number states. Any ket containing n or m
indicates a number state. Any ket containing a complex number ±α,β or γ
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indicates a coherent state, defined as

∣α⟩ = e−∣α∣2/2
∞
∑
n=0

αn√
n!

∣n⟩ (4.37)

See discussion in my textbook. It is also useful to define sets E and O, the
even and odd counting numbers, respectively. If the result r is denoted n,
then the resolution of the identity is ∑∞

n=0 Ên. If it is denoted α then it is

∫ d2α Êα. If denoted E,O then it is ÊE + ÊO.

We also use the following operators in the list below. The operator D̂β

denotes a displacement operator defined by how it affects a coherent state:

D̂β ∣α⟩ = ∣α + β⟩ (4.38)

for some non-zero complex number β. The number operator N̂ has the
number states as its eigenstates. The two operators Π̂E and Π̂O are defined
by

Π̂E,O = ∑
n∈E,O

∣n⟩ ⟨n∣ (4.39)

Finally, ℘η(n∣m) is as defined in Eq. (4.11) for some 0 < η < 1. Here is the
list.

1. Oα = π−1J [∣α⟩ ⟨α∣]

2. Oα = ∫ d
2β π−2e−∣α−β∣

2

J [∣β⟩ ⟨β∣]

3. Oα = π−1J [∣0⟩ ⟨α∣]

4. Oα = ∫ d
2γ π−2e−∣γ∣

2

J [∣γ⟩ ⟨α∣]

5. Oα = ∫ d
2γ π−1e−∣γ∣

2

∫ d
2β π−2e−∣α−β∣

2

J [∣γ⟩ ⟨β∣]

6. Oα = J [Ê
1/2
α ] , Êα = (2π)−1(∣α⟩ ⟨α∣ + ∣−α⟩ ⟨−α∣)

7. Oα = J [D̂βÊ
1/2
α ] , Êα = (2π)−1(∣α⟩ ⟨α∣ + ∣−α⟩ ⟨−α∣)

8. On = J [∣n⟩ ⟨n∣]

9. On = ∑
∞

m=0 ℘η(n∣m)J [∣m⟩ ⟨m∣]

10. On = ∑
∞

m=0 ℘η(n∣m)J [D̂β ∣m⟩ ⟨m∣]

11. On = J [∣0⟩ ⟨n∣]
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12. On = ∑
∞

m=0 2−(m+1)J [∣m⟩ ⟨n∣]

13. OE,O = J [Π̂E,O]

14. OE,O = J [e(iπN̂)Π̂E,O]

15. OE = ∑n∈EJ [∣0⟩ ⟨n∣] , OO = ∑n∈OJ [∣1⟩ ⟨n∣]

16. OE,O = J [D̂βΠ̂E,O]

17. OE,O = ∑n∈E,OJ [∣0⟩ ⟨n∣]

5 Measuring a single photon

In this section we give an experimental example of the quantum measure-
ment of a binary variable, as introduced in Section 2.4. This experiment was
realized as a ‘cavity QED’ system, a term used to denote the interaction be-
tween a discrete-level atomic system and a small number of electromagnetic
field modes, which are also treated as quantum systems. In the experiment
performed by the Haroche group in Paris in 1999, the measured system was
the state of an electromagnetic field in a microwave cavity. Apart from small
imperfections, the preparation procedure produced a pure state containing
no more than a single photon. Thus the state of the cavity field may be
written as ∣ψ⟩ = c0 ∣0⟩ + c1 ∣1⟩. The measured variable is the photon number
with result 0 or 1. The apparatus was an atom with three levels: ground
state ∣g⟩, excited state ∣e⟩, and an auxiliary state ∣i⟩. The final readout on
the apparatus determines whether the atom is in state ∣g⟩ by a selective ion-
ization process, which we will describe below. This final readout is not ideal
and thus we will need to add an extra classical noise to the description of the
measurement.

We begin with a brief description of the interaction between the cavity field
and a single two-level atom in order to specify how the correlation between
the system and the apparatus is established. If, through frequency or polar-
ization mismatching, the cavity mode does not couple to the auxiliary level
∣i⟩, then we can define the atomic lowering operator by σ̂ = ∣g⟩ ⟨e∣. The field
annihilation operator is â (see my textbook). The relevant parts of the total
Hamiltonian are

Ĥ = ωcâ†â + ωg ∣g⟩ ⟨g∣ + ωe ∣e⟩ ⟨e∣ + ωi ∣i⟩ ⟨i∣ + iΩ
2 (σ̂† + σ̂)(â − â†) (5.1)
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where Ω is known as the single-photon Rabi frequency(see my textbook)
and is proportional to the dipole moment of the atom and inversely propor-
tional to the square root of the volume of the cavity mode. We work in the
interaction frame (see my textbook) with the free Hamiltonian

Ĥ0 = ωcâ†â + ωg ∣g⟩ ⟨g∣ + (ωg + ωc) ∣e⟩ ⟨e∣ + (ωg + ωd) ∣i⟩ ⟨i∣ (5.2)

where ωd is the frequency of a ‘driving field’, a classical microwave field (to
be discussed later). The ‘interaction Hamiltonian’ V̂ = Ĥ − Ĥ0 becomes the
time-dependent Hamiltonian V̂IF(t) in the interaction frame. However, the
evolution it generates is well approximated by the time-independent Hamil-
tonian

V̂IF = Ω
2 (iσ̂

†â − iσ̂â†) +∆σ̂†σ̂ + δ ∣i⟩ ⟨i∣ (5.3)

where ∆ is the detuning ωi − ωg − ωc of the ∣e⟩ ↔ ∣g⟩ transition from the
cavity resonance, and δ = ωi − ωg − ωd is that of the ∣i⟩↔ ∣g⟩ transition from
the classical driving field. The necessary approximation (called the rotating-
wave approximation (see my textbook)) is to drop terms rotating (in the
complex plane) at high frequencies ∼ ωc >> ∆, δ,Ω. This is justified because
they average to zero over the time-scale on which evolution occurs in the
interaction frame.

Let us now assume that the atom is resonant with the cavity (∆ = 0), in
which case the Hamiltonian (5.3) (apart from the final term) is known as the
Jaynes-Cummings Hamiltonian. If this Hamiltonian acts for a time τ on an
initial state ∣1, g⟩, the final state is

e(−iV̂IFτ) ∣1, g⟩ = cos (Ωτ
2
) ∣1, g⟩ + sin (Ωτ

2
) ∣0, e⟩ (5.4)

where ∣n, g⟩ ≡ ∣n⟩ ∣g⟩ and ∣n, e⟩ ≡ ∣n⟩ ∣e⟩.

If the total interaction time τ = 2π/Ω, then the probability that the atom is
in the ground state again is unity, but the quantum state has acquired an
overall phase. That is to say, for this interaction time, the state changes as
∣1, g⟩→ − ∣1, g⟩. However, if the field is initially in the vacuum state, there is
no change: ∣0, g⟩→ ∣0, g⟩.

This sign difference in the evolution of states ∣0⟩ and ∣1⟩ provides the essential
correlation between the system and the apparatus that is used to build a
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measurement. If the field is in a superposition of vacuum and one photon,
the interaction with the atom produces the ‘conditional’ transformation

(c0 ∣0⟩ + c1 ∣1⟩)⊗ ∣g⟩ CÐ→ (c0 ∣0⟩ − c1 ∣1⟩)⊗ ∣g⟩ (5.5)

It is called conditional because the sign of the state is flipped if and only if
there is one photon present. Note that we are not using the term here in the
context of a measurement occurring.

As it stands this is not of the form of a binary quantum measurement dis-
cussed in Section 2.4 since the meter state (the atom) does not change at
all. In order to configure this interaction as a measurement, we need to find
a way to measure the relative phase shift introduced by the interaction be-
tween the field and the atom. This is done using the ‘auxiliary’ electronic
level, ∣i⟩, which does not interact with the cavity mode and cannot undergo
a conditional phase shift. We begin by using a classical microwave pulse R1

of frequency ωd, to prepare the atom in a superposition of the auxiliary state
and the ground state ∣g⟩ → (∣g⟩ + ∣i⟩)/

√
2. For the moment, we assume that

this is resonant, so that δ = 0 in Eq. (5.3). After the conditional interaction,
C, between the atom and the cavity field, another microwave pulse R2 of
frequency ωd again mixes the states ∣g⟩ and ∣i⟩. It reverses the action of R1,
taking ∣g⟩→ (∣g⟩ − ∣i⟩)/

√
2 and ∣i⟩→ (∣g⟩ + ∣i⟩)/

√
2.

Finally, a projective readout of the ground state ∣g⟩ is made, as shown in Fig.
3. The full measurement protocol can now be described:

(c0 ∣0⟩ + c1 ∣1⟩) ∣g⟩
R1Ð→ (c0 ∣0⟩ + c1 ∣1⟩) 1√

2
(∣i⟩ + ∣g⟩)

CÐ→ 1√
2
(c0 ∣0⟩ (∣i⟩ + ∣g⟩) + c1 ∣1⟩ (∣i⟩ − ∣g⟩)

R2Ð→ c0 ∣0⟩ ∣g⟩ + c1 ∣1⟩ ∣i⟩ (5.6)

An ideal measurement of the ground state of the atom gives a yes (no) result
with probability ∣c0∣2(∣c1∣2) and a measurement of the photon number has
been made without absorbing the photon.
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Figure 3: Schematic diagram of the Haroche single-photon measurement. A single atom
traverses 3 microwave fieldsR1,C andR2, the middle one described by a single-mode cavity
field. It then encounters two ionization detectors, De and Dg, which detect whether the
atom is in the excited state or ground state, respectively. The driving fields R1 and R2

are produced by the same microwave source, which locks their relative phase.

To compare this with the binary measurement discussed in Section 2.4, we use
the apparatus state encoding ∣g⟩ ↔ ∣0⟩A, ∣i⟩ ↔ ∣1⟩A. The overall interaction
(R2 ○C ○R1) between the system and the apparatus is then defined by Eq.
(2.28). We can then specify the apparatus operators X̂A and P̂A used in
Section 2.6,

X̂A = ∣i⟩ ⟨i∣ (5.7)

P̂A = 1
2(∣g⟩ − ∣i⟩)(⟨g∣ − ⟨i∣) (5.8)

Likewise the equivalent operators for the system can be defined in the photon-
number basis, X̂S = ∣1⟩ ⟨1∣, P̂S = (∣0⟩ − ∣1⟩)(⟨0∣ − ⟨1∣)/2. Provided that the
atom is initially restricted to the subspace spanned by {∣g⟩ , ∣i⟩}, the action
of R2 ○C ○R1 can be represented in terms of these operators by the unitary
operator

ÛR2○C○R1 = exp [iπX̂SP̂A] (5.9)

Certain aspects of the Paris experiment highlight the kinds of considerations
that distinguish an actual measurement from simple theoretical models. To
begin, it is necessary to prepare the states of the apparatus (the atoms)
appropriately. Rubidium atoms from a thermal beam are first prepared by
laser-induced optical pumping into the circular Rydberg states with principal
quantum numbers 50 (for level g) or 51 (for level e). The e→ g transition is
resonant with a cavity field at 51.1 GHz. The auxiliary level, i, corresponds
to a principal quantum number of 49 and the i → g transition is resonant
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at 54.3 GHz. Next it is necessary to control the duration of the interaction
between the system and the apparatus in order to establish the appropriate
correlation. To do this, the atoms transiting the cavity field must have a
velocity carefully matched to the cavity length. The optical-pumping lasers
controlling the circular states are pulsed, generating at a preset time an
atomic sample with on average 0.3-0.6 atoms. Together with velocity selec-
tion, this determines the atomic position at any time within ± 1 mm. The
single-photon Rabi frequency at the cavity centre is Ω/(2π) = 47 kHz. The
selected atomic velocity is 503 m s−1 and the beam waist inside the cavity
is 6 mm, giving an effective interaction time τ such that Ωτ = 2π. Finally,
a small external electric field Stark-shifts the atomic frequency out of reso-
nance with the cavity. This gives rise to an adjustable detuning ∆ in Eq.
(5.3), which allows fine control of the effective interaction. The experiment
is designed to detect the presence or absence of a single photon. Thus it is
necessary to prepare the cavity field in such a way as to ensure that such a
state is typical. The cavity is cooled to below 1.2 K, at which temperature
the average thermal excitation of photon number n̄ in the cavity mode is
0.15. The thermal state of a cavity field is a mixed state of the form

ρc = 1
1+n̄

∞
∑
n=0

e−nβ ∣n⟩ ⟨n∣ (5.10)

where β = h̵ωc/(kBT ). At these temperatures, β << 1 and we can assume that
the cavity field is essentially in the vacuum state ∣0⟩. The small components
of higher photon number lead to experimental errors. In order to generate an
average photon number large enough for one to see a single- photon signal,
it is necessary to excite a small field coherently. This is done by injecting
a ‘preparatory’ atom in the excited state, ∣e⟩, and arranging the interaction
time so that the atom-plus-cavity state is ∣0, e⟩ + ∣1, g⟩. The state of this
atom is then measured after the interaction. If it is found to be ∣g⟩, then a
single photon has been injected into the cavity field mode. If it is found to
be ∣e⟩, the cavity field mode is still the vacuum. Thus each run consists of
randomly preparing either a zero- or a one-photon state and measuring it.
Over many runs the results are accumulated, and binned according to what
initial field state was prepared. The statistics over many runs are then used
to generate the conditional probability of finding the atom in the state ∣g⟩
when there is one photon in the cavity. Another refinement of the exper-
iment is to use the detuning δ of the fields R1 and R2 to vary the quality
of the measurement. This is a standard technique in atomic physics known
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as Ramsey fringe interferometry, or just Ramsey interferometry. This is ex-
plained in Box 1.4, where ∣e⟩ plays the roles of ∣i⟩ in the present discussion.

Box 1.4 Ramsey fringe interferometry

Ramsey interferometry was developed to measure accurately the frequency ωeq of an
atomic transition. It works by producing a signal that depends on the difference δ
between the unknown frequency and a known frequency ωd. It is a standard technique
for atomic frequency standards with application to time standards. We here give a
simplified treatment of the essential physics behind the technique. Consider a two-level
atom, with ground and excited states ∣g⟩ and ∣e⟩, described in the interaction frame with
respect to

Ĥ0 = ωg ∣g⟩ ⟨g∣ + (ωg + ω + d) ∣e⟩ ⟨e∣ (5.11)

The atom is prepared in the ground state and injected through a classical field R1 with
frequency ωd that differs from the atomic resonance frequency ωeg by a small detuning
δ. The atomic velocity is chosen so that the atom interacts with the field for a precise
time τ . The interaction induces a superposition between the ground and excited states
of the form

∣g⟩→ α ∣g⟩ + β ∣e⟩ (5.12)

where the coefficients depend on τ and δ and the Rabi frequency for the transition. (The
Rabi frequency is roughly the dot product of the classical electric field with the electric
dipole moment of the atomic transition, divided by h̵. It also equals the single-photon
Rabi frequency times the square root of the mean number of photons in the field. For
a classical field in a mode with a large mode volume (as here), the former is very small
and the latter very large, giving a finite product.) If the detuning δ is small enough,
one can arrange to obtain α = β = 1/

√
2. The atom then evolves freely for a time T

during which the Hamiltonian in the interaction frame is V̂IF = δ ∣e⟩ ⟨e∣. This changes β
to βe−iδT . After this it interacts with another classical field, R2, of the same frequency,
which undoes the transformation R1. This means that we have to adjust T and/or the
phase of R2 so that, if δ = 0, all atoms emerge in the ground state. Then the state of the
atom after the second field is

cos (δT /2) ∣g⟩ − i sin (δT /2) ∣e⟩ (5.13)

The probability that an atom will emerge in the excited state when δ ≠ 0 is thus

℘e(δ) = sin2
(δT /2) (5.14)

By varying the frequency ωd of the driving fields R1 and R2, and sampling this probability

by repeated measurement, we produce interference fringes with a spacing proportional

to T −1. A complicating effect is that, for large detuning, the coefficients α and β are not

exactly 1/
√

2, but also depend on the detuning δ in both amplitude and phase, and this

causes the interference-fringe visibility to decrease.
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The extra Hamiltonian δ ∣i⟩ ⟨i∣ causes free evolution of the atomic dipole. Its
net effect is to introduce an extra phase factor δT , proportional to the time
T between applications of each of these fields. The probability of finding the
atom in state ∣g⟩ at the end of measurement is then given by

℘g = ℘0µ + ℘1(1 − µ) (5.15)

where ℘0 and ℘1 are the probabilities that the cavity contains no or one
photon, respectively, and µ = cos2 (δT ). If ℘0 = 1 or 0 at the start of the
measurement, then ℘g is an oscillatory function of the detuning δ, and the
phase of the oscillation distinguishes the two cases.

In Fig. 1.4 we show the experimental results from the Paris experiment.

Figure 4: The experimental results of the Paris single-photon experiment, showing the
probability of measuring the atom in the ground state versus detuning of the cavity field.
The dashed line corresponds to an initial field with a single photon, whereas the solid line
is for an initial vacuum field state.

Two cases are shown: in one case (dashed line) the initial state of the field
was prepared in a one-photon state (the preparatory atom exited in the
ground state), whereas in the second case (solid line) the field was prepared
in a zero-photon state (the preparatory atom exited in the excited state). In
both cases the probability of finding the apparatus atom in the ground state,
∣g⟩, is plotted as a function of the detuning of the R1 and R2 fields. Note
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that the two cases are π out of phase, as expected.

It is quite apparent from the data that the measurement is far from perfect.
The probabilities do not vary from zero to unity, so the contrast or visibility,
defined as (℘max−℘min)/(℘max+℘min), is not unity. A primary source of error
is the efficiency of the ionization detectors, which is as low as 30%. Also,
the interaction that correlates the field and the apparatus is not perfect,
and there is a 20% residual probability for the apparatus atom to absorb the
photon, rather than induce a π conditional phase shift. Other sources of error
are imperfections of the π/2 Ramsey pulses, samples containing two atoms
in the cavity, the residual thermal field in the cavity and the possibility that
the injected photon will escape from the cavity before the detection atom
enters.
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