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Abstract

In the quantum-Bayesian interpretation of quantum theory (or QBism), the
Born rule cannot be interpreted as a rule for setting measurement-outcome
probabilities from an objective quantum state. But if not, what is the role
of the rule? In this paper, the argument is given that it should be seen as an
empirical addition to Bayesian reasoning itself. Particularly, it is shown how
to view the Born rule as a normative rule in addition to usual Dutch-book
coherence. It is a rule that takes into account how one should assign proba-
bilities to the consequences of various intended measurements on a physical
system, but explicitly in terms of prior probabilities for and conditional prob-
abilities consequent upon the imagined outcomes of a special counterfactual
reference measurement. This interpretation is exemplified by representing
quantum states in terms of probabilities for the outcomes of a fixed, fiducial
symmetric informationally complete measurement. The extent to which the
general form of the new normative rule implies the full state-space structure
of quantum mechanics is explored.

1 Introduction: Unperformed Measurements

Have No Outcomes

In the opening chapter on quantum mechanics in the famous Feynman Lec-
tures on Physics (Feynman, Leighton, and Sands, 1965), Richard Feynman
wrote

We choose to examine a phenomenon which is impossible, abso-
lutely impossible, to explain in any classical way, and which has in
it the heart of quantum mechanics. In reality, it contains the only
mystery. We cannot make the mystery go away by “explaining”
how it works. We will just tell you how it works. In telling you
how it works we will have told you about the basic peculiarities
of all quantum mechanics.

With these words, Feynman plunged into a discussion of the double-slit ex-
periment using individual electrons. Imagine if you will, however, someone
well versed in the quantum foundations debates of the last 30 years - since the
Aspect experiment say (Aspect, Dalibard, and Roger, 1982) - yet naively un-
aware of when Feynman wrote this. What might he conclude that Feynman



was talking about? Would it be the double-slit experiment? Probably not.
To the modern mind- set, a good guess would be that Feynman was talking
about something to do with quantum entanglement or Bell- inequality vio-
lations. In the history of foundational thinking, the double-slit experiment
has fallen by the wayside.

So, what is it that quantum entanglement teaches us (via EPR-type consid-
erations and Bell-inequality violations) that the double-slit experiment does
not? A common answer is that quantum mechanics does not admit a “local
hidden-variable” formulation.1 By this one usually means the conjunction
of two statements (Bell, 1964, 1981): (1) that experiments in one region of
spacetime cannot instantaneously affect matters of fact at far away regions
of spacetime, and (2) that there exist “hidden variables” that in some way
“explain” measured values or their probabilities. Bell-inequality violations
imply that one or the other or some combination of both these statements
fails. This, many would say, is the deepest “mystery” of quantum mechanics.

This mystery has two sides. A number of physicists who care about these
things think it is locality (condition 1) that has to be abandoned through
the force of the experimentally observed Bell-inequality violations, i.e., they
think there really are “spooky actions at a distance.”2 Yet, there are others
who think the abandonment of condition 2 is the more warranted conclu-
sion (Peres, 1978; Wheeler, 1982; Zeilinger, 1996; Mermin, 1999; Zukowski,
2005; Plotnitsky, 2006; D’Ariano, 2009; Demopoulos, 2010). Among these
are the quantum Bayesians (Schack, Brun, and Caves, 2001; Caves, Fuchs,
and Schack, 2002a, 2007; Fuchs, 2002a, 2003, 2010a, 2010b, 2012; Schack,

1Too quick, some would say (Norsen, 2006). However, the conclusion drawn there
(that a Bell-inequality violation implies the failure of locality, full stop) is based in part
on taking the EPR criterion of reality or variants of it as sacrosanct. As will become clear
in this review, we do not take it so.

2Indeed, it flavors almost everything they think of quantum mechanics, including the
interpretation of the toy models they use to better understand the theory. For instance,
Popescu-Rohrlich boxes (Popescu and Rohrlich, 1994) are imaginary devices that give
rise to greater-than-quantum violations of various Bell inequalities. Importantly, another
common name for these devices is the term “nonlocal boxes” (Barrett and Pironio, 2005).
Their exact definition comes via the magnitude of a Bell-inequality violation, which entails
the non-pre-existence of values or a violation of locality or both, but the commonly used
name opts only to recognize nonlocality. They are not called no-hidden-variable boxes, for
instance.
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2003; Fuchs and Schack, 2004; Appleby, 2005b, 2005c; Timpson, 2008; Mer-
min, 2012).3 Giving up on hidden variables implies, in particular, that mea-
sured values do not preexist the act of measurement. A measurement does
not merely “read off” the values, but enacts or creates them by the process
itself. In a phrase inspired by Asher Peres (Peres, 1978), “unperformed mea-
surements have no outcomes.”

Among the various arguments the quantum Bayesians use to come to this
conclusion, not least in importance is a thorough-going personalist account
of all probabilities (Ramsey, 1931; de Finetti, 1931, 1990; Savage, 1954;
Bernardo and Smith, 1994; Jeffrey, 2004), including probabilities for quan-
tum measurement outcomes and even the probability-1 assignments among
these (Caves, Fuchs, and Schack, 2007). From the quantum-Bayesian point
of view, this is the only sound interpretation of probability. Moreover, this
move for quantum probabilities frees up the quantum state from any objec-
tivist obligations. In so doing it wipes out the mystery of quantum-state
change at a distance (Einstein, 1951; Fuchs and Peres, 2000; Timpson, 2008)
and much of the mystery of wave function collapse as well (Fuchs, 2002a,
2010b, 2013).

Apparently Feynman too saw something of a truth in the idea that “un-
performed measurements have no outcomes.” Yet, he did so because of the
double-slit experiment. Later in the lecture he wrote,

Is it true, or is it not true that the electron either goes through
hole 1 or it goes through hole 2? The only answer that can
be given is that we have found from experiment that there is a
certain special way that we have to think in order that we do
not get into inconsistencies. What we must say (to avoid making

3For alternative developments of several Bayesian-inspired ideas in quantum mechanics,
see Youssef (2001), Baez (2003), Leifer (2006, 2007), Pitowsky (2003, 2005), Srednicki
(2005), Caticha (2007), Leifer and Spekkens (2011), Porta Mana (2007), Rau (2009), Goyal
(2008), Warmuth and Kuzmin (2009), and Bub (2011). We keep these citations separately
because of various distinctions within each from what we are calling quantum Bayesianism
- these distinctions range from (1) the particular strains of Bayesianism each adopts to
(2) whether quantum mechanics is a generalized probability theory or rather simply an
application within Bayesian probability per se to (3) the level of the agent’s involvement in
bringing about the outcomes of quantum measurements. There are nonetheless sometimes
striking kinships between the ideas of these papers and the effort here, and the references
are well worth studying.
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wrong predictions) is the following. If one looks at the holes or,
more accurately, if one has a piece of apparatus which is capable
of determining whether the electrons go through hole 1 or hole
2, then one can say that it goes either through hole 1 or hole 2.
But, when one does not try to tell which way the electron goes,
when there is nothing in the experiment to disturb the electrons,
then one may not say that an electron goes either through hole 1
or hole 2. If one does say that, and starts to make any deductions
from the statement, he will make errors in the analysis. This is
the logical tightrope on which we must walk if we wish to describe
nature successfully.

Returning to our quote from Feynman’s opening chapter on quantum me-
chanics, we are left with the feeling that this is the very thing Feynman saw
to be the “basic peculiarity of all quantum mechanics.”

One should ask though, is his conclusion really compelled by so simple a
phenomenon as the double slit? How could simple “interference” be so far
reaching in its metaphysical implications? Water waves interfere and there
is no great mystery there. Most importantly, the double-slit experiment is a
story of measurement on a single quantum system, whereas the story of EPR
and Bell is that of measurement on two seemingly disconnected systems.

Two systems are introduced for good reason. Without the guarantee of ar-
bitrarily distant parts within the experiment (so that one can conceive of
measurements on one and draw inferences about the other) what justifica-
tion would one have to think that changing the conditions of the experiment
(from one slit closed to both slits open) should not make a deep concep-
tual difference to its analysis? Without such a guarantee for underwriting
a belief that some matter of fact stays constant in the consideration of two
experiments, one, it might seem, would be quite justified in responding, “Of
course, you change an experiment, and you get a different probability dis-
tribution arising from it. So what?”4 It seems that Feynman’s logical path

4This is a point Koopman (1957) and Ballentine (1986) seem to stop the discussion with.
For instance, Ballentine writes, “One is well advised to beware of probability statements
of the form, P (X), instead of P (X ∣C). The second argument may be safely omitted only
if the conditional event or information is clear from the context, and only if it is constant
throughout the problem. This is not the case in the double-slit experiment ..... We observe
from experiment that P (X ∣C3) ≠ P (X ∣C1)+P (X ∣C2). This fact, however, has no bearing
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from example to conclusion, a conclusion that we indeed agree with, is simply
unwarranted. The argument just does not seem to hold to the same stringent
standards as Bell-inequality analyses.

This dismissal of Feynman’s argument is premature. The argument is just
not so easily appreciated without the proper mind-set. The key point is that
the so-called interference in the example is not in a material field (of course it
was never purported to be) but in something so ethereal as probability itself
(a logical, not a physical, construct). Most particularly, Feynman makes use
of a beautiful and novel move: He analyzes the probabilities in an experi-
ment that will be done in terms of the probabilities from experiments that
will not be done. He does not simply conditionalize the probabilities to the
two situations and let it go at that.5 Rather he tries to see the probabili-
ties in the two situations not as functions of a condition, but functions (or
at least relations) of each other. This is an important point. There is no
necessity that the world gives a relation between these probabilities, yet it
does: Quantum mechanics is what makes the link precise. Feynman seems
to hint at the idea that the essence of the quantum mechanical formalism is
to provide a tool for analyzing the factual in terms of a counterfactual.

Here is the way Feynman put it in a paper titled, “The Concept of Probability
in Quantum Mechanics,” (Feynman, 1951):

I should say, that in spite of the implication of the title of this talk
the concept of probability is not altered in quantum mechanics.
When I say the probability of a certain outcome of an experiment
is p, I mean the conventional thing, that is, if the experiment is
repeated many times one expects that the fraction of those which
give the outcome in question is roughly p.6 I will not be at all
concerned with analyzing or defining this concept in more detail,

on the validity of ... probability theory.”
5See footnote 4.
6Note that Feynman was not a frequentist in his thinking about probability. For in-

stance, in the Lectures on Physics, chapter 1-6, he says (Feynman, Leighton, and Sands,
1965)

An experimental physicist usually says that an “experimentally determined”
probability has an “error,” and writes

P (H) = NH

N
± 1

2
√
N
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for no departure from the concept used in classical statistics is
required.

What is changed, and changed radically, is the method of calcu-
lating probabilities.

We believe that Feynman is thinking here explicitly about the relation be-
tween outcomes of factual and counterfactual measurements. The “radical
change” is that these outcomes are related by the complex-amplitudes formal-
ism developed by Feynman, rather than by the ordinary rules of probability
theory. As shown in Sec. 2, Bayesian probability theory by itself does not
provide any relation between the probabilities for the outcomes of factual
and counterfactual measurements. Rather than changing the way probabili-
ties are calculated, the complex-amplitudes formalism provides a connection
between probabilities which, a priori, need not be connected at all. The
following phrase, adapted from Feynman?s words, captures therefore more
accurately the starting point of this paper.

The concept of probability is not altered in quantum mechanics
(it is personalistic Bayesian probability). What is radical is the
recipe it gives for calculating new probabilities from old.

We plan to show in this review that quantum mechanics gives a resource that
raw Bayesian probability theory does not: It gives a rule for forming proba-
bilities for the outcomes of factualizable7 experiments (experiments that may
actually be performed) from the probabilities one assigns for the outcomes
of a designated counterfactual experiment (an experiment only imagined,
and though possible to do, never actually performed). So, yes, unperformed

There is an implication in such an expression that there is a “true” or “cor-
rect” probability which could be computed if we knew enough, and that the
observation may be in “error” due to a fluctuation. There is, however, no
way to make such thinking logically consistent. It is probably better to realize
that the probability concept is in a sense subjective, that it is always based on
uncertain knowledge, and that its quantitative evaluation is subject to change
as we obtain more information.

7We coin this term because it stands as a better counterpoint to the term “counterfac-
tual” than the term “actualizable” seems to. We also want to capture the following idea a
little more plainly: Both measurements being spoken of here are only potential measure-
ments - it is just that one will always be considered in the imaginary realm, whereas the
other may one day become a fact of the matter if it is actually performed.

6



measurements have no outcomes as Peres expressed; nonetheless, imagining
their performance can aid in analyzing the probabilities one ought to assign
for an experiment that may factually be performed. Quantum mechanics
can thus be seen as providing an empirical addition to the laws of Bayesian
probability.

In this review, we offer a development along quantum-Bayesian lines of Feyn-
man’s ideas by making intimate use of a potential8 representation of quantum
states unknown in his time: It is one based on symmetric informationally
complete observables (SICs) (Caves, 1999; Zauner, 1999; Fuchs, 2004; Renes
et al., 2004; Appleby, 2005a; Appleby, Dang, and Fuchs, 2007). The goal is
to make it more transparent than ever that the content of the Born rule is
not that it gives a procedure for setting probabilities (from some indepen-
dent entity called “the quantum state”), but that it represents a “method of
calculating probabilities,” new ones from old.

That this must be the meaning of the Born rule more generally for quan-
tum Bayesianism has been argued from several angles by Caves, Fuchs, and
Schack (2007) and Fuchs (2013). What is new in this review is the em-
phasis on a single designated observable for the counterfactual thinking, as
well as a detailed exploration of the rule for combining probabilities in this
picture. Particularly, we will see that a significant part of the structure of
quantum-state space arises from the consistency of that rule, a single formula
we designate the urgleichung (German for “primal equation”). We are thus
putting a simple Feynman-style scenario (if not the double-slit experiment
per se, nonetheless one wherein probabilities for the outcomes of factualizable
experiments are obtained from probabilities in a family of designated coun-
terfactual ones) at the heart of quantum mechanics. If our considerations
turn out to give rise to the full formalism of quantum theory, we will be able
to say with Feynman that this scenario contains the “basic peculiarities of
all quantum mechanics.”

The plan of the paper is as follows. In Sec. 2, we review the personalist
Bayesian account of probability, showing how some Dutch-book arguments
work and emphasizing a point we have not seen emphasized before: Bayes’s
rule and the law of total probability, Eqs. (1) and (3), are not necessities in

8We say “potential” because so far the representation has been seen to exist only for
finite dimensional quantum systems with dimension 100; see Sec. 3.
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a Bayesian account of probability. These rules are enforceable when there
is a conditional lottery in the picture that can be gambled upon. But when
there is no such lottery, the rules hold no force; without a conditional lottery
there is nothing in Dutch-book coherence itself that can be used to compel
the rules.

In Sec. 3, we review the notion of a SIC and show a sense in which it is
a special measurement. Most importantly we delineate the full structure of
quantum-state space in SIC terms. It turns out that, by making use of a SIC
instead of any other informationally complete measurement, the formalism
be- comes uniquely simple and compact. We also show that unitary time
evolution, when written in SIC terms, looks (formally at least) almost iden-
tical to classical stochastic evolution.

In Sec. 4, we introduce the idea of thinking of an imaginary (counterfactual)
SIC behind all quantum measurements, so as to give an imaginary condi-
tional lottery with which to define conditional probabilities. We then show
how to write the Born rule in these terms and find it strikingly similar to the
law of total probability, Eq. (3). We then note how this move in interpreta-
tion is radically different from the one offered by the followers of “objective
chance” in the sense of Lewis (1986a, 1986b).

In Sec. 5, we show that one can derive some of the features of quantum-state
space by taking this modified or quantum law of total probability as a postu-
late. Particularly, we show that with a small number of further assumptions,
it gives rise to a generalized Bloch sphere and seems to define an underlying
“dimensionality” for a system that matches the one given by its quantum
mechanical state space. We also demonstrate other features of the geometry
these considerations give rise to.

In Sec. 6, we give a brief discussion of where we stand at this stage of re-
search. Finally in Sec. 7, we conclude by mapping out a tentative path
toward a formal expression of the ontology underlying a quantum-Bayesian
vision of quantum mechanics: It has to do with the Peres phrase “unper-
formed measurements have no outcomes,” but tempered with a kind of “re-
alism” that he probably would not have accepted forthrightly.9 It is not a

9We say this because of Peres’s openly acknowledged positivist tendencies. See Chap-
ters 22 and 23 in Fuchs (2010a) where Peres would sometimes call himself a “recalcitrant
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realism that we expect to be immediately accepted by most modern philoso-
phers of science either.10 This is because it is already clear that whatever it
will ultimately turn out to be, it is based on (a) a rejection of the ontology
of the block universe (James, 1940, 1956a, 1956b), and (b) a rejection of the
ontology of the detached observer (Laurikainen, 1988; Pauli, 1994; Gieser,
2005). The realism in vogue in philosophy-of-science circles, which makes
heavy use of both these ele- ments, is, as Wolfgang Pauli once said, “too
narrow a concept” for our purposes (Pauli, 1994). Reality, the stuff of which
the world is made, the stuff that was here before agents and observers, is
more interesting than that.

2 Personalist Bayesian Probability

From the Bayesian point of view, probability is a degree of belief as measured
by action. More precisely, we say one has (explicitly or implicitly) assigned
a probability p(A) to an event A if, before knowing the value of A, one is
willing to either buy or sell a lottery ticket of the form

worth $1 if A

for an amount $p(A).11 The personalist Bayesian position adds only that this
is the full meaning of probability; it is nothing more and nothing less than
this definition. Particularly, nothing intrinsic to the event or proposition A
can help declare p(A) right or wrong, or more or less rational. The value
p(A) is solely a statement about the agent who assigns it.

Nonetheless, even for a personalist Bayesian, probabilities do not wave in
the wind. Probabilities are held together by a normative principle: That
whenever an agent declares probabilities for various events [say A, ¬B (“not
B”), A ∨B, (“A or B”), A ∧B (“A and C”), etc] he should strive to never
gamble (i.e., buy and sell lottery tickets) so as to incur what he believes will
be a sure loss. This normative principle is known as Dutch-book coherence.

positivist.” Also see the opening remarks of Peres (2005).
10See Nagel (1989), Price (1997), and Dennett (2004) for introductions to the “view

from nowhere” and “view from nowhen” weltanschauungen.
11In other words, the personalist Bayesian agent regards $p(A) as the fair price of the

lottery ticket. He would regard it as advantageous to buy it for any price less than $p(A),
or to sell it for any price greater than $p(A).
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And from it, one can derive the usual calculus of probability theory.

This package of views about probability (that in value it is personal, but that
in function it is akin to the laws of logic) had its origin in the mid-1920s and
early 1930s with the work of Ramsey (1931) and de Finetti (1931). Keynes
(1951) characterizes Ramsey’s position succinctly:

(Ramsey) succeeds in showing that the calculus of probabilities
simply amounts to a set of rules for ensuring that the system of
degrees of belief which we hold shall be a consistent system. Thus
the calculus of probabilities belongs to formal logic. But the basis
of our degrees of belief - or the a priori, as they used to be called
- is part of our human outfit, perhaps given us merely by natural
selection, analogous to our perceptions and our memories rather
than to formal logic.

We now go through some of the derivation of the probability calculus from
Dutch-book coherence so that we may better make a point concerning quan-
tum mechanics afterward.12 We first establish that our normative principle
requires 0 ≤ P (A) ≤ 1. Suppose P (A) < 0. This means an agent will sell a
ticket for negative money, i.e., he will pay someone $p(A) to take the ticket
off his hands. Regardless of whether A occurs or not, the agent will then
be sure he will lose money. This violates the normative principle. Now take
the case P (A) > 1. This means the agent will buy a ticket for more than it
is worth even in the best case, again a sure loss for him and a violation of
the normative principle. So, probability in the sense of ticket pricing should
obey the usual range of values.

Now we establish the probability sum rule. Suppose our agent believes two
events A and B to be mutually exclusive; i.e., he is sure that if A occurs,
B will not, or if B occurs, A will not. We can contemplate three distinct
lottery tickets:

worth $1 if A ∨B

worth $1 if A

worth $1 if B

12Here we basically follow the development in Richard Jeffrey’s posthumously published
book Subjective Probability, The Real Thing (Skyrms, 1987a; Jeffrey, 2004), but with our
own emphasis.
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Clearly the value of the first ticket should be the same as the total value
of the other two. For instance, suppose an agent had set P (A ∨B), P (A),
and P (B) such that P (A ∨ B) > P (A) + P (B). Then, by definition, when
confronted with a seller of the first ticket, he must be willing to buy it, and
when confronted with a buyer of the other two tickets, he must be willing
to sell them. But then the agent’s initial balance sheet would be negative:
= $P (A ∨B) + $P (A) + $P (B) < $0. And whether A or B or neither event
occurs, it would not improve his finances: If a dollar flows in (because of the
bought ticket), it will also flow out (because of the agent’s responsibilities
for the sold tickets), and still the balance sheet is negative. The agent is
sure of a loss. A similar argument goes through if the agent had set his
ticket prices so that P (A ∨ B) < P (A) + P (B). Thus whatever values are
set, the normative principle prescribes that it had better be the case that
P (A ∨B) = P (A) + P (B).

Consider now the following lottery ticket of a slightly different structure:

worth $
m

n
if A

where m ≤ n are integers. Does Dutch-book coherence say anything about
the value of this ticket in comparison to the value of the standard ticket, i.e.,
one worth $1 if A? It does. An argument quite like the one above dictates
that it should be valued $(m/n)P (A). If a real number α were in place of
the m/n, a similar result follows from a limiting argument.

Now we come to the most interesting case, which is Bayes’s rule relating joint
to conditional probabilities:

p(A ∧B) = p(A)p(B∣A) (1)

Like the rest of the structure of probability theory within the Bayesian con-
ception, this rule must arise from an application of Dutch-book coherence.

That application is a conditional lottery (Kyburg and Smokler, 1980). In
such a lottery, it is revealed to the agent first whether or not the event A
happens. If A obtains, the lottery proceeds to the revelation of event B,
and finally all monies are settled up. If, on the other hand, ¬A obtains,
the remainder of the lottery is called off, and the monies put down for any
“conditional tickets” are returned. That is to say, the meaning of p(B∣A) is
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taken to be the price $p(B∣A) at which one is willing to buy or sell a lottery
ticket of the following form:

worth $1 if A ∧B, but return price if ¬A

Explicitly inserting the definition of p(B∣A), this becomes

worth $1 if A ∧B, but return $p(B∣A)if¬A

Now comes the coherence argument. If you think about it, the price for this
ticket had better be the same as the total price for these two tickets:

worth $1 if A ∧B

worth $p(B∣A) if ¬A

That is to say, to guard against a sure loss, we must have

p(B∣A) = p(A ∧B) + P (B∣A)p(¬A)

= p(A ∧B) + P (B∣A) − p(B∣A)p(A) (2)

Consequently, Eq. (1) should hold whenever there is a conditional lottery
under consideration.

When a conditional lottery is not without consequence. - But what if, in the
above scenario introduced to derive Bayes’s rule, the conditional lottery is
called off because the draw that was to give rise to the event A does not take
place? In this case the probabilities p(A) and p(B∣A) refer to a counterfac-
tual and there is no reason to assume the validity of Eq. (1).

It is worth investigating the idea of counterfactuals in more detail. Suppose
an agent makes a measurement of a variable X that takes on mutually ex-
clusive values x, followed by a measurement of a variable Y with mutually
exclusive values y. A Dutch bookie asks him to commit on various uncondi-
tional and conditional lottery tickets. What can we say of the probabilities
he ought to ascribe? A minor variation of the Dutch-book arguments above
tells us that whatever values of p(x), p(y), and p(y∣x) he commits to, they
ought, if he is coherent, satisfy the law of total probability:

p(y) =∑
x

p(x)p(y∣x) (3)
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Imagine now that the X measurement is called off, so there will only be the Y
measurement. Is the agent still normatively committed to buying and selling
Y -lottery tickets for the price $p(y) in Eq. (3) that he originally expressed?
Not at all. That would clearly be irrational in some situations. The action
bringing about the result of the X measurement might change the situation
for bringing about Y so that he simply would not gamble on it in the same
way. To hold fast to the $p(y) valuation of a Y -lottery ticket then is not a
necessity enforced by coherence, but a judgment that might or might not be
the right thing to do.

In fact, one might regard holding fast to the initial value $p(y) in spite of
the nullification of the conditional lottery as the formal definition of precisely
what it means to judge an unperformed measurement to have an outcome.
It means one judges that looking at the value of X is incidental to the whole
affair, and this is reflected in the way one gambles on Y (Fuchs and Schack,
2012a). So, if q(y) represents the probabilities with which the agent gambles
supposing the X lottery nullified, then a formal statement of the Peresian
phrase that the unperformed X measurement had no outcome (i.e., measuring
X matters, and it matters even if one makes no note of the outcome) is that

q(y) ≠ p(y) (4)

Still one might imagine situations in which even if an agent judges that
equality does not hold for them, he nonetheless judges that q(y) and p(y)
should bear a precise relation to each other. In Sec. 4, we show that in
fact the positive content of the Born rule as an addition to Bayesianism
is to connect the probabilities for two measurements, one factual and one
counterfactual, for which Dutch-book coherence alone does not provide a
precise relationship.

3 Expressing Quantum-State Space in terms

of SICs

Let Hd be a finite-dimensional Hilbert space associated with some physical
system. A quantum state for the system is usually expressed as a unit-trace
positive semidefinite linear operator ρ ∈ L(Hd). However, through the use of
a SIC as a reference observable, we can find an alternative representation of
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quantum states directly in terms of an associated set of probability distribu-
tions.

A SIC is an example of a generalized measurement or positive operator-valued
measure (POVM) (Peres, 1993). A POVM is a collection {Ei}, i = 1, ..., n, of
positive semi-definite operators Ei on Hd such that

∑
i

Ei = I (5)

where n is in general unrelated to d and may be larger or smaller than d.
Supposing a quantum state ρ, the probability of the measurement outcome
labeled i is then given by

p(i) = TrρEi (6)

The POVMs represent the most general kinds of quantum measurement that
can be made on a system. A von Neumann measurement is a special POVM
where the Ei are mutually orthogonal projection operators. Mathematically,
any POVM can be written as a unitary interaction with an ancillary quantum
system, followed by a von Neumann measurement on the ancillary system
(Nielsen and Chuang, 2000).

We can provide an injective mapping between the convex set of density op-
erators and the set of probability distributions13

∥p⟫ = (p(1), p(2), ..., p(d2))T (7)

over d2 outcomes (the probability simplex ∆d2) by first fixing any so-called
minimal informationally complete fiducial measurement {Ei}, i = 1, ..., d2.
This is a POVM with all the Ei linearly independent. With respect to such
a measurement, the probabilities p(i) for its outcomes completely specify ρ.
This follows because the Ei form a basis for L(Hd), and the probabilities
TrρEi can be viewed as instances of the Hilbert-Schmidt inner product

(A,B) = TrA†B (8)

13Please note our pseudo-Dirac notation ∥v⟫ for vectors in a real vector space of d2

dimensions. The relevant probability simplex for us, the one we are mapping quantum
states ρ to, denoted ∆d2 , is a convex body within this linear vector space. Its points may
be expressed with the notation ∥p⟫ as well. The choice of a pseudo-Dirac notation for
probability distributions also emphasizes that one should think of the valid ∥p⟫ as a direct
expression of the set of quantum states.
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The quantities p(i) thus merely express the projections of the vector ρ onto
the basis vectors Ei. These projections completely fix the vector ρ.

One can see how to calculate ρ in terms of the vector ∥p⟫ in the following
way. Since the Ei form a basis, there must be some expansion

ρ =∑
j

αjEj (9)

where the αj are real numbers making up a vector ∥α⟫. Thus,

p(i) =∑
j

αjTrEiEj (10)

If we let a matrix M be defined by entries

Mij = TrEiEj (11)

this just becomes
∥p⟫ =M∥α⟫ (12)

Using the fact that M is invertible because the Ei are linearly independent,
we have finally

∥α⟫ =M−1∥p⟫ (13)

The most important point of this exercise is that with such a mapping es-
tablished, one has every right to think of a quantum state as a probability
distribution. Fuchs (2002a) argued that conceptually it is nothing more.
However, the mapping ρ ↦ ∥p⟫, although injective, cannot be surjective;
only some probability distributions in the simplex are valid for representing
quantum states (see Fig. 1). Understanding the range of shapes available
under these mappings (Bengtsson and Życzkowski, 2006) is an important
problem. If quantum states are nothing more than probability distributions,
a significant part of understanding quantum mechanics is understanding what
restrictions there are on the set of valid distributions.

Informationally complete measurements abound - they come in all forms and
sizes. What is the best measurement one can use for a mapping ρ ↦ ∥p⟫?
One would not want to unduly burden the representation with extra terms
and calculations if one does not have to. For instance, it would be advanta-
geous if one could take the informationally complete measurement {Ei} so
that M is simply a diagonal matrix or even the identity matrix itself. But
these maximal simplifications cannot be achieved.
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Figure 1: The planar surface represents the convex set of all probability distributions
over d2 outcomes - the probability simplex ∆d2 . With respect to any fiducial POVM, the
probability distributions valid for representing the set of quantum states, however, form
a smaller convex set within the simplex, here depicted as an ellipsoid. In actual fact,
however, the convex shape is quite complex. The choice of a SIC for defining the mapping
makes the shape as simple as it can be with respect to the natural geometry of the simplex.

If one cannot make M diagonal, one might still want to make M as close to
the identity as possible. A convenient measure for how far M is from the
identity is the squared Frobenius distance:

F =∑
ij

(δij −Mij)
2 =∑

i

(1 −TrE2
i )

2 +∑
i≠j

(TrEiEj)
2 (14)

We can place a lower bound on this quantity with the help of a special
instance of the Schwarz inequality: If λr is any set of n non-negative numbers,
then

∑
r

λ2r ≥
1

n
(∑
r

λr)

2

(15)

with equality if and only if λ1 = ⋯ = λn. Applying the inequality (15) to each
term in Eq. (14) gives

F ≥
1

d2
(1 −TrE2

i )
2
+

1

d4 − d2
(∑
i≠j

TrEiEj)

2

(16)

Equality holds in this if and only if there are constants m and n such that
TrE2

i =m for all i and TrEiEj = n for all i ≠ j. We have

d = TrI2 =∑
ij

TrEiEj =∑
i

TrE2
i +∑

i≠j
TrEiEj (17)
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Dividing both sides of Eq. (17) by d2 gives

1

d
=m + (d2 − 1)n (18)

On the other hand, with the conditions for F achieving its lower bound
fulfilled, the Ei must all have the same trace. For

TrEk =∑
i

TrEkEi =m + (d2 − 1)n (19)

Consequently,

TrEk =
1

d
(20)

Now how large can m be? Take a positive semidefinite matrix A with TrA = 1
and eigenvalues λi. Then λi ≤ 1, and clearly TrA2 ≤ TrA with equality if and
only if the largest λi is equal to 1. Hence, dEk will give the largest allowed
value m if Ei = (1/d)Πi, where

Πi = ∣ψi⟩ ⟨ψi∣ (21)

for some rank-1 projection operator Πi. If this holds, n takes the form

n =
1

d2(d + 1)
(22)

In total we have shown that a measurement {Ei}, i = 1, ..., d2, will only if
achieve the best lower bound for F if and only if

Ei =
1

d
Πi (23)

with

TrΠiΠj = ∣ ⟨ψi ∣ψj⟩ ∣
2 =

dδik + 1

d + 1
(24)

It turns out that measurements of this variety also have the property of being
necessarily informationally complete (Caves, 1999). This follows from the
fact that the Ei are linearly independent. Suppose there are some numbers
αi such that

∑
i

αiEi = 0 (25)
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Taking the trace of this equation, we infer that

∑
i

αi = 0 (26)

Now multiply Eq. (25) by an arbitrary Ek and take the trace of the result.
We get

1

d2
∑
i

αi
dδik + 1

d + 1
= 0 (27)

which, in view of Eq. (26), gives αk = 0. So the Ei are linearly dependent.

These kinds of measurements are presently a hot topic of study in quantum
information theory and have come to be known as “symmetric information-
ally complete” quantum measurements (Caves, 1999). As such, the measure-
ment {Ei}, the associated set of projection operators {Πi}, and even the set
of {∣ψi⟩} are often simply called SIC. We adopt that terminology here.

Here is an example of a SIC in dimension 2, expressed in terms of the Pauli
operators:

∣ψ1⟩ ⟨ψ1∣ =
1

2
(I +

1
√

3
(σx + σy + σz))

∣ψ2⟩ ⟨ψ2∣ =
1

2
(I +

1
√

3
(σx − σy − σz))

∣ψ3⟩ ⟨ψ3∣ =
1

2
(I +

1
√

3
(−σx − σy + σz))

∣ψ4⟩ ⟨ψ4∣ =
1

2
(I +

1
√

3
(−σx + σy − σz)) (28)

i.e., the vectors ∣ψi⟩ are spin-1/2 eigenstates of the spin components along
the four diagonals of a cube.

And here is an example of a SIC in dimension 3 (Tabia, 2012). Taking
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ω = e2πi/3 to be a third root of unity and ω̄ to be its complex conjugate, let

∣ψ1⟩ =
⎛
⎜
⎝

0
1
−1

⎞
⎟
⎠
, ∣ψ2⟩ =

⎛
⎜
⎝

−1
0
1

⎞
⎟
⎠
, ∣ψ3⟩ =

⎛
⎜
⎝

1
−1
0

⎞
⎟
⎠

∣ψ4⟩ =
⎛
⎜
⎝

0
ω
−ω̄

⎞
⎟
⎠
, ∣ψ5⟩ =

⎛
⎜
⎝

−1
0
ω̄

⎞
⎟
⎠
, ∣ψ6⟩ =

⎛
⎜
⎝

1
−ω
0

⎞
⎟
⎠

(29)

∣ψ7⟩ =
⎛
⎜
⎝

0
ω̄
−ω

⎞
⎟
⎠
, ∣ψ8⟩ =

⎛
⎜
⎝

−1
0
ω

⎞
⎟
⎠
, ∣ψ9⟩ =

⎛
⎜
⎝

1
−ω̄
0

⎞
⎟
⎠

be defined up to normalization. One can check by quick inspection that (after
normalization) these vectors do indeed satisfy Eq. (24).

Do SICs exist for every finite dimension d? Despite many efforts in the last
14 years [see Caves (1999), Zauner (1999), Fuchs (2004), Renes et al. (2004),
Appleby (2005a), and Appleby, Dang, and Fuchs (2007) and particularly the
extensive reference lists in Scott and Grassl (2010) and Appleby et al. (2012)]
no one presently knows. However, there is a strong feeling in the community
that they do, as analytical proofs have been obtained for all dimensions d =
2-16, 19, 24, 28, 31, 35, 37, 43,and 48,14 and within a numerical precision of
10−38, they have been observed by computational means (Scott and Grassl,
2010) in all dimensions d = 2-67. To lesser numerical precision Schnetter
(2013) also found SICs in d = 68-76, 78-81, 83-85, 87, 89, 93, and 100.

We now spell out in some detail what the set of quantum states written as
SIC probability vectors ∥p⟫ looks like. Perhaps the most remarkable thing
about a SIC is the level of simplicity it lends to Eq. (13). On top of the
theoretical justification that SICs are as near as possible to an orthonormal
basis, from Eqs. (6), (23), and (24) one gets the simple expression (Caves,
2002; Fuchs, 2004)

ρ =∑
i

((d + 1)p(i) −
1

d
)Πi (30)

14Dimensions 2-5 were published in Zauner (1999). Dimensions 6-15, 24, 28, 35, and 48
are due to M. Grassl in various publications; see Scott and Grassl (2010) and Appleby et
al. (2012). Dimensions 7, 19, 31, 37, and 43 are due to D. M. Appleby, with the latter
three as yet unpublished (Appleby et al., 2012).
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The components (d+1)p(i)−1/d are obtained by a universal scalar readjust-
ment from the probabilities p(i). This will have important implications.

Still, one cannot place just any probability distribution p(i) into Eq. (30)
and expect to obtain a positive semidefinite ρ. Only some probability vectors
∥p⟫ are valid ones. Which ones are they? For instance, p(i) ≤ 1/d follows
from Eqs. (6) and (20) alone, and this already restricts the class of valid
probability assignments. But there are more requirements than that.

In preparation for characterizing the set of valid probability vectors ∥p⟫, we
note that since the Πk form a basis on the space of operators, we can define
operator multiplication in terms of them. This is done by introducing the
so-called structure coefficients αijk for the algebra:

ΠiΠj =∑
k

αijkΠk (31)

A couple of properties immediately follow. Taking the trace of both sides of
Eq. (31), one has

∑
k

αijk =
dδik + 1

d + 1
(32)

Using this, one gets straightforwardly that

Tr(ΠiΠjΠk) =
1

d + 1
(dαijk +

dδik + 1

d + 1
) (33)

In other words,

αijk =
1

d
((d + 1)Tr(ΠiΠjΠk) −

dδik + 1

d + 1
) (34)

For the analog of Eq. (32) but with summation over the first or second index,
one gets

∑
i

αijk = dδjk and ∑
j

αijk = dδik (35)

With Eqs. (31)-(35) in hand, one sees a direct connection between the struc-
ture of the algebra of quantum states when written in operator language
and the structure of quantum states when written in probability-vector lan-
guage. The complete convex set of quantum states is fixed by the set of its
extreme points, i.e., the pure quantum states or rank-1 projection operators.
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To characterize this set algebraically, one method is to note that these are
the only Hermitian operators satisfying ρ2 = ρ. Using Eq. (30), we find that
a quantum state ∥p⟫ is pure if and only if its components satisfy these d2

simultaneous quadratic equations:

p(k) =
1

3
(d + 1)∑

ij

αijkp(i)p(j) +
2

3d(d + 1)
(36)

Another way to characterize this algebraic variety (an algebraic variety is
defined as the set of solutions of a system of polynomial equations) is to
make use of a theorem of Flammia (2004) and Jones and Linden (2005): A
Hermitian operator A is a rank-1 projection operator if and only if TrA2 =

TrA3 = 1.15 So, in fact our d2 simultaneous quadratic equations reduce to
just two equations instead, one a quadratic and one a cubic:

∑
i

p(i)2 =
2

d(d + 1)
(37)

and

∑
ijk

αijkp(i)p(j)p(k) =
4

d(d + 1)2
(38)

Note that Eqs. (36) and (38) are complex equations, but one could sym-
metrize them and make them purely real if one wanted to.

There are also some advantages to working out these equations more explic-
itly in terms of the completely sym- metric 3-index tensor

cijk = Re Tr(ΠiΠjΠk) (39)

In terms of these quantities, the analogs of Eqs. (36) and (38) become

p(k) =
(d + 1)2

3d
∑
ij

cijkp(i)p(j) −
1

3d
(40)

15The theorem is nearly trivial to prove once one’s attention is ??drawn to it: Since A
is Hermitian, it has a real eigenvalue spectrum λi. From the first condition, one has that

∑i λ
2
i = 1; from the second, ∑i λ

3
i = 1. The first condition, however, implies that ∣λi∣ ≤ 1 for

all i. Consequently 1−λi ≥ 0 for all i. Now taking the difference of the two conditions, one
sees that ∑i(λ2i (1−λi) = 0. In order for this to hold, it must be the case that λi is always
0 or 1 exclusively. That there is only one nonzero eigenvalue then follows from using the
first condition again. Thus the theorem is proved. However, it seems to not have been
widely recognized previous to 2004 and 2005.
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and

∑
ijk

cijkp(i)p(j)p(k) =
d + 7

(d + 1)3
(41)

respectively. The reason for noting this comes from the simplicity of the
d2 matrices Ck with matrix entries (Ck)ij = cijk from Eq. (39), which was
explored by Appleby, Flammia, and Fuchs (2011). To give an idea of the
results, we note for instance that, for each value of k, Ck turns out to have
the form (Appleby, Flammia, and Fuchs, 2011)

Ck = ∥mk⟫⟪mk∥ +
d

2(d + 1)
Qk (42)

where the kth vector ∥mk⟫ is defined by

∥mk⟫ = (
1

d + 1
, ....,1, ....,

1

d + 1
)
T

(43)

and Qk is a (2d−2)-dimensional projection operator on the real vector space
embedding the probability simplex ∆d2 . Furthermore, using this, one obtains
a useful expression for the pure states; they are probabilities satisfying a
simple class of quadratic equations

p(k) = dp(k)2 + 1
2(d + 1)⟪p∥Qk∥p⟫ (44)

With Eqs. (37), (40), and (41) we have now discussed the extreme points of
the convex set of quantum states - the pure states. The remainder of the set
of quantum states is then constructed by taking convex combinations of the
pure states. This is an implicit expression of quantum-state space. But SICs
can also help give an explicit parametrization of the convex set.

We can see this by starting not with density operators, but with “square
roots” of density operators. This is useful because a matrix ρ is positive
semidefinite if and only if it can be written as ρ = B2 for some Hermitian B.
Thus, let

B +∑
i

biΠi (45)

with bi a set of real numbers. Then

ρ =∑
k

(∑
ij

bibjαijk)Πk (46)

22



will represent a density operator so long as Trρ = 1. This condition requires
simply that

(∑
i

bi)

2

+ d∑
i

b2i = d + 1 (47)

so that the vectors (b1, ..., bd2) lie on the surface of an ellipsoid.

Putting these ingredients together with Eq. (6), we have the following
parametrization of valid probability vectors ∥p⟫:

p(k) =
1

d
∑
ij

cijkbibj (48)

Here the cijk are the triple-product constants defined in Eq. (39) and the bi
satisfy the constraint (47).

Finally, we note what the Hilbert-Schmidt inner product of two quantum
states looks like in SIC terms. If a quantum state ρ is mapped to ∥p⟫ via a
SIC, and a quantum state σ is mapped to ∥q⟫, then

Trρσ = d(d + 1)∑
i

p(i)q(i) − 1 = d(d + 1)⟪p∥q⟫ − 1 (49)

Notice a particular consequence of this: Since Trρσ ≥ 0, the distributions
associated with distinct quantum states can never be too nonoverlapping:

⟪p∥q⟫ ≥
1

d(d + 1)
(50)

With this development we gave a broad outline of the shape of quantum-state
space in SIC terms. We do this because that shape is our target. Particularly,
we are obliged to answer the following question: If one takes the view that
quantum states are nothing more than probability distributions with the
restrictions (47) and (48), what could motivate that restriction? That is,
what could motivate it other than knowing the usual formalism for quantum
mechanics? The answer has to do with rewriting the Born rule in terms of
SICs, which we do in Sec. 4.

Unitary time evolution. - We now take a moment to move beyond statics
and rewrite quantum dynamics in SIC terms: We do this because the result
will have a striking resemblance to the Born rule itself, once developed in the

23



next section.

Suppose we start with a density operator ρ and let it evolve under unitary
time evolution to a new density operator σ = UρU †. If ρ has a representation
p(i) with respect to a certain given SIC, σ will have a SIC representation as
well - we call it q(j). We use the different index j (contrasting with i) to
help indicate that we are talking about the quantum system at a later time
than the original.

What is the form of the mapping that takes ∥p⟫ to ∥q⟫? It is simple enough
to find with the help of Eqs. (23) and (30):

q(j) =
1

d
TrσΠj =

1

d
∑
i

((d + 1)p(i) −
1

d
)Tr(UΠiU

†Πj) (51)

If we now define

rU(j∣i) =
1

d
Tr(UΠiU

†Πj) (52)

and remember, e.g., Eq. (21), we have that

0 ≤ rU(j∣i) ≤ 1 (53)

and

∑
j

rU(j∣i) = 1 ∀ i and ∑
i

rU(j∣i) = 1 ∀ j (54)

In other words, the d2 × d2 matrix [rU(j∣i)] is a doubly stochastic matrix
(Horn and Johnson, 1985).

Most importantly, one has

q(j) = (d + 1)
d2

∑
i=1
p(i)rU(j∣i) −

1

d
(55)

Without the d+1 factor and the 1/d term, Eq. (55) would represent classical
stochastic evolution. Unitary time evolution in a SIC representation is thus
formally close to classical stochastic evolution. As we shall shortly see, this
teaches us something about unitarity and its connection to the Born rule
itself.
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4 Expressing the Born Rule in terms of SICs

In this section we come to the main focus of the review: We rewrite the Born
rule in terms of SICs, using the expansion in Eq. (30). We first do it for an
arbitrary von Neumann measurement - that is, any measurement specified by
a set of rank-1 projection operators Pj = ∣j⟩ ⟨j∣ , j = 1, ...., d. Expressing the
Born rule the usual way, we obtain these probabilities for the measurement
outcomes:

q(j) = TrρPj (56)

Then, by defining
r(j∣i) = TrΠiPj (57)

one sees that the Born rule becomes

q(j) = (d + 1)
d2

∑
i=1
p(i)r(j∣i) − 1 (58)

We now take a moment to seek out a good interpretation of this equation. It
should be viewed in terms of the considerations developed in Sec. 2. Imagine
that before performing the Pj measurement, which we call the “measurement
on the ground,” we were to perform a SIC measurement Πi. We call the latter
the “measurement in the sky.”

Starting with an initial quantum state ρ, we assign a probability distribution
p(i) to the outcomes of the SIC measurement. In order to be able to say
something about probabilities conditional on a particular outcome of the SIC
measurement, we need to specify the post-measurement quantum state for
that outcome, i.e., the quantum operation associated with the measurement.
Since the quantum operation associated with a POVM is not determined by
the POVM, we are free to make the most convenient choice. Here we adopt
the standard Lüders rule (Busch, Grabowski, and Lahti, 1995; Busch and
Lahti, 2009) that ρ transforms to Πi when outcome i occurs. The conditional
probability for getting j in the subsequent von Neumann measurement on
the ground, consequent upon i, is then precisely r(j∣i) as defined in Eq. (57).
With these assignments, Dutch-book coherence demands an assignment s(j)
or the outcomes on the ground that satisfies

s(j) =
d2

∑
i=1
p(i)r(j∣i) (59)
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i.e., a probability that comes about via the law of total probability, Eq. (3).

But now imagine the measurement in the sky nullified, i.e., imagine it does
not occur after all, and that the quantum system goes directly to the mea-
surement device on the ground. Quantum mechanics tells us to make the
probability assignment q(j) given in Eq. (58) instead. So

q(j) = (d + 1)s(j) − 1 (60)

That q(j) ≠ s(j) holds, for any assignment s(j) ≠ 1/d, is a formal expression
of the idea that the “unperformed SIC had no outcomes,” as explained in
Sec. 2. But Eq. (60) tells us more detailed information than this. It
expresses a kind of “empirically extended coherence,” not implied by Dutch-
book coherence alone, but formally similar to the kind of relation one gets
from Dutch-book coherence. It contains a surprising amount of information
about the structure of quantum mechanics.

To support this, we try to glean some insight from Eq. (60). The most
obvious thing one can note is that ∥s⟫ cannot be too sharp a probability
distribution. Otherwise, q(j) will violate the bounds 0 ≤ q(j) ≤ 1 set by
Dutch-book coherence. In particular,

1

d + 1
≤ s(j) ≤

2

d + 1
(61)

This in turn has implications for the range of values possible for p(i) and
r(j∣i). Indeed if either of these distributions become too sharp (in the latter
case, for too many values of i), again the bounds will be violated. This sug-
gests that an essential part of quantum-state space structure, as expressed
by its extreme points satisfying Eqs. (37) and (38), arises from the very re-
quirement that q(j) be a proper probability distribution. In the next section,
we explore this question in greater depth.

First though, we must note the most general form of the Born rule, when
the measurement on the ground is not restricted to being of the simple von
Neumann variety. So, let

q(j) = TrρFj (62)

and
r(J ∣i) = TrΠiFj (63)
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for some general POVM {Fj} on the ground, with any number of outcomes,
j = 1, ...,m. Then the Born rule becomes

q(j) = (d + 1)
d2

∑
i=1
p(i)r(j∣i) −

1

d

d2

∑
i=1
r(j∣i) (64)

As stated, this is the most general form of the quantum law of total probabil-
ity. It has two terms, a term composed of the classical law of total probability,
and a term dependent only upon the sum of the conditional probabilities.

When the measurement on the ground is itself another SIC (any SIC) it
reduces to

q(j) = (d + 1)
d2

∑
i=1
p(i)r(j∣i) −

1

d
(65)

Notice the formal resemblance between this and Eq. (55) expressing unitary
time evolution.

Why empirically extended coherence instead of objective quantum states? -
What we are suggesting is that perhaps Eq. (64) should be taken as one
of the basic axioms of quantum theory, since it provides a particularly clear
way of thinking of the Born rule as an addition to Dutch-book coherence.
This addition is empirically based and gives extra normative rules, beyond
the standard rules of probability theory, to guide the agent’s behavior when
he interacts with the physical world.

But, one may well ask, what is wrong with the standard way of expressing
the Born rule? How is introducing an addition to Dutch-book coherence
conceptually any more palatable than introducing objective quantum states
or objective probability distributions? If the program is successful, then the
demand that q(j) be a proper probability distribution will place necessary
restrictions on p(i) and r(j∣i). This, a skeptic would say, is the very sign that
one is dealing with objective (or agent-independent) probabilities in the first
place. Why would a personalist Bayesian accept any a priori restrictions
on his probability assignments? And particularly, restrictions supposedly of
empirical origin? It is true that through an axiom like Eq. (64) one gets
a restriction on the ranges of the various probabilities one can contemplate
holding. But that restriction in no way diminishes the functional role of
prior beliefs in the makings of an agent’s particular assignments p(i) and
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r(j∣i). That is, this addition to Dutch-book coherence preserves the points
ex- pressed in the quote by Keynes in Sec. 2 in a way that objective chance
cannot.

Take the usual notion of objective chance, as given operational meaning
through David Lewis’s “principal principle” (Lewis, 1986a, 1986b). If an
event A has objective chance ch(A) = x, hen the subjective, personalist
probability an agent (any agent) should ascribe to A on the condition of
knowing the chance proposition is

Prob(A∣“ch(A) = x′′ ∧E) = x (66)

where E is any “admissible” proposition. There is some debate about what
precisely constitutes an admissible proposition, but an example of a proposi-
tion universally accepted to be admissible in spite of these interpretive details
is

E = “All my experience causes me to believe A with probability 75%”

That is, upon knowing an objective chance, all prior beliefs should be overrid-
den. Regardless of the agent’s firmly held belief about A, that belief becomes
irrelevant once he is apprised of the objective chance.

When it comes to quantum mechanics, philosophers of science who find some-
thing digestible in Lewis’s idea, often view the Born rule itself as a healthy
serving of principal principle. Only, it has the quantum state ρ filling the
role of chance. That is, for any agent contemplating performing a measure-
ment {Pj}, his subjective, personal probabilities for the outcomes j should
condition on knowledge of the quantum state just as one conditions with the
principal principle:

Prob(j∣ρ ∧E) = TrρPj (67)

where E is any admissible proposition. Beliefs are beliefs, but quantum states
are something else: They are the facts of nature that power a quantum version
of the principal principle. In other words, in this context one has conceptually

ρ→ “ch(j) = TrρPj” (68)

But the quantum-Bayesian view cannot sanction this. The essential point
for a quantum Bayesian is that there is no such thing as the true quantum
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state. There are potentially as many states for a given quantum system as
there are agents. And that point is not diminished by accepting the addition
to Dutch-book coherence described in this review. Indeed, it is just as with
standard (nonquantum) probabilities, where their subjectivity is not dimin-
ished by normatively satisfying standard Dutch-book coherence.

The most telling reason for this arises directly from quantum statistical prac-
tice. The way one comes to a quantum-state assignment is ineliminably de-
pendent on one’s priors (Fuchs, 2002a; Caves, Fuchs, and Schack, 2007; Fuchs
et al., 2009). Quantum states are not God given, but have to be fought for
via measurement, updating, calibration, computation, and any number of
related activities. The only place quantum states are “given” outright (that
is to say, the model on which much of the notion of an objective quantum
state arises from in the first place) is in a textbook homework problem. For
instance, a textbook exercise might read, “Assume a hydrogen atom in its
ground state. Calculate . . ..” But outside the textbook it is not difficult
to come up with examples where two agents looking at the same data, dif-
fering only in their prior beliefs, will asymptotically update to distinct (even
orthogonal) pure quantum- state assignments for the same system (Fuchs et
al., 2009).16 Thus the basis for one’s particular quantum-state assignment is
always outside the formal apparatus of quantum mechanics.17

This is the key difference between the set of ideas being developed here and
the position of the objectivists: added relations for probabilities, yes, but not
one of those probabilities can be objective in the sense of being any less a
function of the agent. A way to put it more prosaically is that these norma-

16Here is a simple if contrived example. Consider a two-qubit system for which two
agents have distinct quantum-state assignments ρ+ and ρ−, defined by ρ± = 1

2
(∣0⟩ ⟨0∣⊗2 ±

∣±⟩ ⟨±∣⊗2) where ∣±⟩ = 2−1/2(∣0⟩ ± ∣1⟩). These state assignments are “compatible” (Brun,
Finkelstein, and Mermin, 2002; Caves, Fuchs, and Schack, 2002b), yet suppose the first
qubit is measured in the basis {∣0⟩ , ∣1⟩} and outcome 1 is found. The two agents’ postmea-
surement states for the second qubit are ∣+⟩ and ∣−⟩, respectively. See Fuchs et al. (2009)
for a more thorough discussion.

17Nor does it help to repeat over and over as one commonly hears coming from the
philosophy-of-physics community, “quantum probabilities are specified by physical law.”
The simple reply is, “No, they are not.” The phrase has no meaning once one has accepted
that quantum states are born in probabilistic considerations, rather than being the parents
of them, as laboratory practice clearly shows (Paris and Řeháček, 2004; Kaznady and
James, 2009).
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tive considerations may narrow the agent from the full probability simplex
to the set of quantum states, but beyond that, the formal apparatus of quan-
tum theory gives him no guidance on which quantum state he should choose.
Instead, the role of a normative reading of the Born rule is as it is with the
usual Dutch book. Here is the way L. J. Savage put it (Savage, 1954, p. 57).

According to the personalistic view, the role of the mathematical
theory of probability is to enable the person using it to detect
inconsistencies in his own real or envisaged behavior. It is also
understood that, having detected an inconsistency, he will re-
move it. An inconsistency is typically removable in many different
ways, among which the theory gives no guidance for choosing.

If an agent does not satisfy Eq. (64) with his personal probability assign-
ments, then he is not properly recognizing the change of conditions (or per-
haps we could say “context”18) that a potential SIC measurement would
bring about. The theory gives no guidance for which of his probabilities
should be adjusted or how, but it does say that they must be adjusted or
“undesirable consequences” will become unavoidable.

Expanding on this point, Bernardo and Smith (1994) put it this way.

Bayesian Statistics offers a rationalist theory of personalistic be-
liefs in contexts of uncertainty, with the central aim of character-
izing how an individual should act in order to avoid certain kinds
of undesirable behavioral inconsistencies .... The goal, in effect, is
to establish rules and procedures for individuals concerned with
disciplined uncertainty accounting. The theory is not descrip-
tive, in the sense of claiming to model actual behavior. Rather,
it is prescriptive, in the sense of saying “if you wish to avoid the
possibility of these undesirable consequences you must act in the
following way.”

So much, indeed, we imagine for the full formal structure of quantum me-
chanics (including dynamics, tensor-product structure, etc.) - that it is all
or nearly all an addition to Dutch-book coherence. And specifying those

18We add this alternative formulation so as to place the discussion within the context
of various other analyses of the idea of “contextuality” (Mermin, 1993; Grangier, 2002,
2005; Appleby, 2005d; Spekkens, 2005, 2008; Ferrie and Emerson, 2008, 2009).
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undesirable consequences is a significant part of the project of specifying the
ontology underlying the quantum-Bayesian position. But that is a goal we
leave for future work. Let us now explore the consequences of adopting Eq.
(64) as a basic statement, acting as if we do not yet know the underlying
Hilbert-space structure that gave rise to it.

5 Deriving Quantum-State Space from Em-

pirically Extended Coherence

We now examine how far we can go toward deriving the structure of quantum-
state space from the conceptual apparatus portrayed in Fig. 2. In this devel-
opment we do not make use of amplitudes, Hilbert space, or any other part
of the usual apparatus of quantum mechanics. Remember that we are rep-
resenting quantum states by probability vectors ∥p⟫ lying in the probability
simplex ∆d2 . The set of pure states is given by the solutions of either Eq.
(40) or Eqs. (37) and (38), and can thus be thought of as an algebraic variety
within ∆d2 . The set of all quantum states, pure or mixed, is the convex hull
of the set of pure states, i.e., the set of all convex combinations of vectors ∥p⟫
representing pure states. We want to explore how much of this structure can
be recovered from the considerations summarized in Fig. 2. We have to add
at least three other assumptions on the nature of quantum measurement, but
at first, we try to forget as much about quantum mechanics as we can.

Namely, start with Fig. 2 but forget about quantum mechanics and forget
about SICs. Simply visualize an imaginary experiment in the sky S, sup-
plemented with various real experiments we might perform on the ground
G. We postulate that the probabilities we ascribe for the outcomes of G are
determined by the probabilities we ascribe to the imaginary outcomes in the
sky, and the conditional probabilities for the outcomes of G consequent upon
them, were the measurement in the sky factualized. In particular, we take
the quantum law of total probability, Eq. (64), as a postulate.

Assumption 0: The urgleichung (see Fig. 2). Degrees of belief for outcomes
in the sky and degrees of belief for outcomes on the ground are related by
the following normative rule:
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Figure 2: The basic conceptual apparatus of this review. The measurement on the
ground, with outcomes j = 1, ...,m, is some potential measurement that could be performed
in the laboratory, i.e., one that could be factualized. The measurement in the sky, on
the other hand, with outcomes i = 1, ..., n, is a fixed measurement one can contemplate
independently. The probability distributions p(i) and r(j∣i) represent how an agent would
gamble if a conditional lottery based on the measurement in the sky were operative. The
probability distribution q(j) represents instead how the agent would gamble on outcomes
of the ground measurement if the measurement in the sky and the associated conditional
lottery were nullified, i.e., they were to never take place at all. In the quantum case, the
measurement in the sky is a SIC with n = d2 outcomes; the measurement on the ground
is any POVM. In pure Bayesian reasoning, there is no necessity that q(j) be related
to p(i) and r(j∣i) at all. In quantum mechanics, however, there is the specific relation

q(j) = (d+1)∑d2

i=1 p(i)r(j∣i)− (1/d)∑
d2

i=1 r(j∣i). This equation contains the sum content of
the Born rule to which it is equivalent.

q(j) = (d + 1)
d2

∑
i=1
p(i)r(j∣i) −

1

d

d2

∑
i=1
r(j∣i) (69)

We call this postulate the “urgleichung” (German for primal equation) to em-
phasize its primary status to all our thinking. As before, p(i) represents the
probabilities in the sky and q(j) represents the probabilities on the ground.
The index i is assumed to range from 1 to d2, for some fixed natural number
d. The range of j will not be fixed, but in any case considered will be de-
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noted as running from 1 to m. (For example, for some cases m might be d2,
for some cases it might be d, but it need be neither and may be something
else entirely - it will depend upon which experiment we are talking about for
G.) We write r(j∣i) to represent the conditional probability for obtaining j
on the ground, given that the experiment in the sky was actually performed
and resulted in outcome i. When we want to suppress components, we write
vectors ∥p⟫ and ∥q⟫, and write R for the matrix with entries r(j∣i). By
definition, R is a stochastic matrix, i.e., ∑j r(j∣i) = 1, but not necessarily a
doubly stochastic matrix, i.e., ∑i r(j∣i) = 1 does not necessarily hold (Horn
and Johnson, 1985).

One of the main features we require, of course, is that ?calculated by Eq.
(69), ∥q⟫ must satisfy 0 ≤ q(j) ≤ 1 for all j. We call

0 ≤ (d + 1)
d2

∑
i=1
p(i)r(j∣i) −

1

d

d2

∑
i=1
r(j∣i) ≤ 1 (70)

the fundamental inequality.

We define two sets P and R, the first consisting of priors for the sky ∥p⟫
and the second consisting of stochastic matrices R.19 We sometimes call P
our state space, and its elements states. What we want to pin down are the
properties of P and R under the assumption that they are consistent and
maximal, by which we mean the following. We say that

(1) P andR are consistent if all pairs (∥p⟫,R) ∈ P×R obey the fundamental
inequality.

(2) P and R are maximal whenever P ′ ⊆ P and R′ ⊆ R imply P ′ = P and
R′ =R for any consistent P ′ and R′

With respect to consistent sets P and R, for convenient terminology, we call
a general ∥p⟫ ∈ ∆d2 valid if it is within the state space P; if it is not within
P, we call it invalid.

The key idea behind the demand for maximality is that we want the urgle-
ichung Eq. (69) to be as least exclusionary as possible in limiting an agent’s

19The matrices R could also be regarded as part of the agent’s prior, but since we keep
R fixed once the measurement on the ground is fixed, we reserve the term “prior” for
members of the set P.
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probability assignments. There is, of course, no guarantee without further
assumptions there will be a unique maximal P and R consistent with the fun-
damental inequality, or even whether there will be a unique set of them up
to rotations or other kinds of transformations, but we can say some things.

One important result follows immediately: If P and R are consistent and
maximal, both sets must be convex. For instance, if ∥p⟫ and ∥p′⟫ satisfy Eq.
(70) for all R ∈R it is clear that, for any x ∈ [0,1], ∥p′′⟫ = x∥p⟫ + (1 − x)∥p′⟫
will as well. Thus, if ∥p′′⟫ were not in P, the set would not have been max-
imal to begin with.20 Furthermore, maximality and the boundedness of Eq.
(70) ensure that P and R are closed sets, thus convex sets with extreme
points (Appleby, Ericsson, and Fuchs, 2011).

Now is there any obvious connection between P and R? We define the state
of maximal ignorance

∥c⟫ = (
1

d2
,

1

d2
, .......,

1

d2
)
T

(71)

and make the assumption that one can be completely ignorant of the out-
comes in the sky.

Assumption 1: The state of maximal ignorance ∥c⟫ is included in P.

Suppose now that the experiment in the sky really is performed as well as the
experiment on the ground. Before either experiment, the agent is ignorant
of both the outcome i in the sky and the outcome j on the ground. Using
Bayes’s rule, he can find the conditional probability for i given j, which has

20It is important to recognize that the considerations leading to the convexity of the state
space here are distinct from the arguments one finds in the “convex sets” and “operational”
approaches to quantum theory. See, for instance, Holevo (1982) and Busch, Grabowski,
and Lahti (1995) and more recently the Barnum, Barrett, Leifer, and Wilce (BBLW) school
starting in Barnum et al. (2006), as well as the work of Hardy (2001). There the emphasis
is on the idea that a state of ignorance about a finer preparation is a preparation itself. The
present argument even differs from some of our own earlier Bayesian considerations (where
care was taken not to view “preparation” as an objective matter of fact, independent of
prior beliefs, as talk of preparation would seem to imply) (Fuchs, 2002a; Schack, 2003).
Here, instead, the emphasis is on the closure of the fundamental inequality, i.e., maximal
P and R
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the form of a posterior probability,

Prob(i∣j) =
r((j∣i)

∑k r(j∣k)
(72)

We now make the next assumption.

Assumption 2: Principle of reciprocity. Posteriors from maximal ignorance
are priors. For any R ∈R, a posterior probability Prob(i∣j) as in Eq. (72) is a
valid prior p(i) for the outcomes of the measurement in the sky. Moreover, for
each valid p(i), there exists some R ∈R and some j such that p(i) = Prob(i∣j)
as in Eq. (72).

Quantum mechanics certainly has this property. Suppose a completely mixed
state for our quantum system and a POVM G = {Gj} measured on the
ground. Upon noting an outcome j on the ground, the agent uses Eqs. (63)
and (72) to infer

Prob(i∣j) =
TrΠiGj

dTrGj

(73)

Defining

ρj =
Gj

TrGj

(74)

this says that

Prob(i∣j) =
1

d
TrρjΠi (75)

In other words, Prob(i∣j) is itself a SIC representation of a quantum state.
Moreover, ρj can be any quantum state whatsoever, simply by adjusting
which POVM G is under consideration.

5.1 Basis distributions

Since we are free to contemplate any measurement on the ground, we consider
the case where the ground measurement is set to be the same as the reference
measurement in the sky. We denote r(j∣i) by rS(j∣i) in this special case.
Remembering that the probabilities on the ground q(j) refer to the case in
which the measurement in the sky remains counterfactual, we must then have
that p(j) = q(j) for any valid ∥p⟫, or, using the urgleichung Eq. (69),

p(j) = (d + 1)∑
i

p(i)rS(j∣i) −
1

d
∑
i

rS(j∣i) (76)
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where we used that the rS(j∣i) depend only on the measurements and not
on the prior ∥p⟫. Take the case where p(i) = 1/d2 specifically. Substituting
for p(i) into Eq. (76), we find that rS(j∣i) must satisfy

∑
i

rS(j∣i) = 1 (77)

Therefore, when going back to more general priors ∥p⟫, one has in fact the
simpler relation

p(j) = (d + 1)∑
i

p(i)rS(j∣i) −
1

d
(78)

Introducing an appropriately sized matrix M of the form

M =

⎛
⎜
⎜
⎜
⎝

(d + 1) − 1
d −1

d ⋯ −1
d

−1
d (d + 1) − 1

d ⋯ −1
d

⋮ ⋱ ⋮

−1
d −1

d ⋯ (d + 1) − 1
d

⎞
⎟
⎟
⎟
⎠

(79)

we can rewrite Eq. (78) in vector form,

MRS∥p⟫ = ∥p⟫ (80)

where RS is a matrix with matrix elements rS(j∣i).

Now, we make a minor assumption on our state space.

Assumption 3: The elements ∥p⟫ ∈ P span the full simplex ∆d2 .

This is a very natural assumption: If P did not span the simplex, one would
be justified in simply using a smaller simplex for all considerations.

With assumption 3, the only way Eq. (80) can be satisfied is if

MRS = I (81)

Since M is a circulant matrix, its inverse is a circulant matrix as well, and
one can easily work out that

rS(j∣i) =
1

d + 1
(δij +

1

d
) (82)
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It follows by the principle of reciprocity (our assumption 2) then that among
the distributions in P, along with the uniform distribution, there are at least
d2 other ones, namely,

∥ek⟫ = (
1

d(d + 1)
, ...,

1

d
, ...,

1

d(d + 1)
)

T

(83)

with a 1/d in the kth slot and 1/d(d + 1) in all other slots. We call these d2

special distributions, appropriately enough, the basis distributions.

Notice that, in the special case of quantum mechanics, the basis distributions
are just the SIC states themselves, now justified in a more general setting.
Also, like the SIC states, we have

∑
i

ek(i)
2 =

2

d(d + 1)
∀k (84)

in accordance with Eq. (37).

In Sec. 5.2 we consider arbitrary extreme points of the set P of valid states.

5.2 A Bloch sphere

Consider a class of measurements for the ground that have a property we
call in-step unpredictability (ISU). The property is as follows: Whenever one
assigns a uniform distribution for the measurement in the sky, one also assigns
a uniform distribution for the measurement on the ground. This is meant
to express the idea that the measurement on the ground has no in-built bias
with respect to one’s expectations of the sky. (In the full-blown quantum
mechanical setting, this corresponds to a POVM {Gj} such that TrGj is a
constant value - von Neumann measurements with d outcomes being one
special case of this.)

Denote the r(j∣i) and corresponding matrix R in this special case by rISU(j∣i)
and RISU , respectively, and suppose the measurement being spoken of has
m outcomes. Our requirement is that

1

m
=

(d + 1)

d2
∑
i

rISU(j∣i) −
1

d
∑
i

rISU(j∣i) (85)
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To meet this, we must have

∑
i

rISU(j∣i) =
d2

m
(86)

and the urgleichung Eq. (69) becomes

q(j) = (d + 1)∑
i

p(i)rISU(j∣i) −
d

m
(87)

Suppose now that a prior ∥s⟫ for the sky happens to arise in accordance with
Eq. (72) for one of these ISU measurements. That is,

s(i) =
rISU(j∣i)

∑k rISU(j∣k)
(88)

for some RISU and some j. hen Eq. (87) tells us that for any ∥p⟫ ∈ P we
must have

0 ≤
d2

m
(d + 1)∑

i

p(i)s(i) −
d

m
≤ 1 (89)

In other words, for any ∥s⟫ of our specified variety and any ∥p⟫ ∈ P, the
following constraint must be satisfied:

1

d(d + 1)
≤∑

i

p(i)s(i) ≤
d +m

d2(d + 1)
(90)

Think particularly of the case where ∥s⟫ = ∥p⟫. Then we must have

∑
i

p(i)2 ≤
d +m

d2(d + 1)
(91)

Now suppose there are ISU measurements (distinct from simply bringing the
sky measurement down to the ground) that have the basis distributions ∥ek⟫
as their posteriors as defined in assumption 2, the principle of reciprocity. If
this is so, then according to Eq. (84) the bound in Eq. (91) will be violated
unless m ≥ d. Moreover, it will not be tight for the basis states unless m = d
precisely.

Thinking of a basis distribution as the prototype of an extreme-point state
(after all, they give the most predictability possible for the measurement in
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the sky), this motivates the next assumption.

Assumption 4: Every extreme point ∥p⟫ ∈ P arises as in Eq. (88) as the
posterior of an ISU measurement with m = d and achieves equality in Eq.
(91).

Thus, for any two extreme points ∥p⟫ and ∥s⟫, we assume

1

d(d + 1)
≤∑

i

p(i)s(i) ≤
2

d(d + 1)
(92)

with equality on the right-hand side when ∥s⟫ = ∥p⟫.21

Thus, the extreme points of P live on a sphere

∑
i

p(i)2 ≤
2

d(d + 1)
(93)

Further trivial aspects of quantum-state space follow immediately from the
requirement of Eq. (92) for any two extreme points. For instance, since the
basis distributions are among the set of valid states, for any other valid state
∥p⟫ no component in it can be too large. This follows because

⟪p∥ek⟫ =
1

d(d + 1)
+

1

d + 1
p(k) (94)

The right-hand side of Eq. (92) then requires

p(k) ≤
1

d
(95)

But, do we have enough to get us all the way to Eq. (41) in addition to Eq.
(37)? We analyze aspects of this in Sec. 5.3. First, however, we focus on the
significance of the sphere.

21It should be noted that this inequality establishes the fact that if P at least contains
the actual quantum-state space, it can contain no more than that. That is, the full set of
quantum states is, in fact, a maximal set. Suppose a SIC exists, yet ∥s⟫ corresponds to
some non-positive-semidefinite operator via the mapping in Eq. (30). Then there will be
some ∥p⟫ ∈ P corresponding to a pure quantum state such that the left-hand side of Eq.
(92) is violated. This follows immediately from the definition of positive semidefiniteness
and the expression for Hilbert-Schmidt inner products in Eq. (49).
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What we have postulated in a natural way is that the extreme points of P
must live on a d2−1 sphere centered at the zero vector. But then it comes for
free that these extreme points must also live on a smaller-radius d2−2 sphere
centered at the state of maximal ignorance ∥c⟫ defined in Eq. (71). This is
because the ∥p⟫ live on the probability simplex ∆d2 . Let ∥w⟫ = ∥p⟫ − ∥c⟫,
where ∥p⟫ is any point satisfying Eq. (93). Then

r2 = ⟪w∥w⟫ =
d − 1

d2(d + 1)
(96)

gives the radius of the lower-dimensional sphere.

The sphere in Eq. (96) is actually the more natural sphere for us to consider
as most of the sphere in Eq. (93) (all but a set of measure zero) is thrown away
anyway. In fact, it may legitimately be considered the higher-dimensional
analog of the Bloch sphere from the quantum-Bayesian point of view. Indeed,
when d = 2, we have a 2-sphere, and it is isomorphic to the usual Bloch sphere.

It is natural to think of the following statement:

∑
i

p(i)2 ≤
2

d(d + 1)
for all ∥p⟫ ∈ P (97)

in information theoretic terms. This is because two well- known measures
of the uncertainty associated with a probability assignment [the Renyi and
Daróczy entropies (Aczél and Daróczy, 1975) of order 2] are simple func-
tions of the left-hand side of it. To put it in a short phrase (Caves et al.,
1996; Fuchs, 2010a), “In quantum mechanics, maximal in- formation is not
complete and cannot be completed.” The sharpest predictability one can
have for the outcome of a SIC measurement is specified by Eq. (37). This
is an old idea, of course, but quantified here in yet another way. It is re-
lated to the basic idea underlying the toy model of Spekkens (2007), with
its “knowledge balance principle.” In that model, which combines local hid-
den variables with an “epistemic constraint” on an agent’s knowledge of the
variables’ values, more than 20 well-known quantum information theoretic
phenomena [like no cloning (Dieks, 1982; Wootters and Zurek, 1982), no
broadcasting (Barnum et al., 1996), teleportation (Bennett et al., 1993), cor-
relation monogamy (Coffman, Kundu, and Wootters, 2000), and “nonlocality
without entanglement” (Bennett et al., 1999), etc.] are readily reproduced,
at least in a qualitative way.
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Despite the toy model’s successes, however, we suspect that an information
constraint alone cannot support the more sweeping part of the quantum-
Bayesian program, that “the possible outcomes cannot correspond to actual-
ities, existing objectively prior to asking the question,” i.e., that unperformed
measurements have no outcomes. There are crucial differences between the
present considerations having to do with an addition to Dutch-book coher-
ence and “epistemic restriction” approaches. First, it is hard to see how
that line of thought can get beyond the possibility of an underlying hidden-
variable model (as the toy model illustrates). Second, and more importantly,
in the present approach the Bloch sphere may well express an epistemic con-
straint - a constraint on an agent?s advised certainty. But the epistemic
constraint is itself a result of a deeper consideration to do with the coherence
between factual and counterfactual gambles, not a starting point. Further-
more, the constraint is not expressible in terms of a single information func-
tion; instead it involves pairs of distributions. Below we explain this point
further.

5.3 An underlying dimensionality?

The state space implied by Eq. (92) does not lead to the full sphere in Eq.
(96). According to the left-hand side of Eq. (92), when two points are too
far away from each other, at least one of them cannot be in P. Before we
explore the implications of this more carefully, we note that Eq. (96) by
itself tells us that we cannot have the full sphere. An argument due to Plunk
(2002) established the fact that the radius of the sphere is such that the
sphere extends beyond the boundary of the probability simplex ∆d2 . Hence,
P is contained within a nontrivial intersection of sphere and simplex.

Returning to the left-hand side of Eq. (92), it signifies that the “most or-
thogonal” two valid distributions ∥p⟫ and ∥q⟫ can ever be is

⟪p∥q⟫ =∑
i

p(i)q(i) =
1

d(d + 1)
(98)

Their overlap can never approach zero; they can never be truly orthogonal.
Now suppose we have a collection of distributions ∥pk⟫, k = 1, ...., n, all of
which live on the sphere - that is, they individually satisfy Eq. (93). We can
ask, how large can the number n be while maintaining that each of the ∥pk⟫
be maximally orthogonal to each other? Another way to put it is what is the
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maximum number of “mutually maximally distant” states?

In other words, we require

⟪pk∥pl⟫ =∑
i

p(i)q(i) =
δkl + 1

d(d + 1)
(99)

for as many values as possible. It turns out that there is a nontrivial con-
straint on how large n can be, and it is nothing other than n = d, the same
thing one sees in quantum mechanics.

To see this, we reference again the center of the probability simplex with all
our vectors. Define

∥wk⟫ = ∥pk⟫ − ∥c⟫ (100)

In these terms, our constraint becomes

⟪wk∥wl⟫ =∑
i

p(i)q(i) =
dδkl − 1

d2(d + 1)
(101)

We are thus asking for a set of vectors whose Gram matrix G = [⟪wk∥wl⟫] is
an n × n matrix of the form

G =

⎛
⎜
⎜
⎜
⎝

a b b ⋯ b
b a b ⋯ b
⋮ ⋱ ⋮

b b b ⋯ a

⎞
⎟
⎟
⎟
⎠

(102)

with

a =
d − 1

d2(d + 1)
and b =

−1

d2(d + 1)
(103)

Using an elementary theorem in linear algebra, a matrix G is the Gram
matrix of a set of vectors if and only if G is positive semidefinite (Horn and
Johnson, 1985). Moreover, the rank of G represents the number of linearly
independent such vectors.

Since G in Eq. (102) is a circulant matrix, its eigenvalues can be readily
calculated:

λ0 = a + (n − 1)b =
d − n

d2(d + 1)
(104)
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while the n − 1 other eigenvalues are

λk = a − b =
1

d(d + 1)
(105)

To make G positive semidefinite then, we must have n ≤ d, with n = d being
the maximal value. At that point G is a rank-(d − 1) matrix, so that only
d − 1 of the ∥wl⟫ are linearly independent.

On the other hand, all d vectors ∥pk⟫ = ∥wk⟫ + ∥c⟫ are actually linearly
independent. To see this, suppose there are numbers αi, such that∑iαi∥pi⟫ =

0. Acting from the left on this equation with ⟪c∥, one obtains

∑
i

αi = 0 (106)

and acting on it with ⟪pk∥, we obtain

0 =
2

d(d + 1)
αk +

1

d(d + 1)
∑
i≠k
αi

=
1

d(d + 1)
αk +

1

d(d + 1)
∑
i

αi =
1

d(d + 1)
αk (107)

So αk = 0 for all k as required.

This result is suggestive of a “dimension” for the valid states on the surface of
the sphere: it admits no more than d maximally equidistant points. At this
stage, however, “dimension” must remain in quotes. Ultimately one must
see that the Hausdorff dimension of the manifold of valid extreme states is
2d − 2 (i.e., what it is in quantum theory), and the present result does not
get that far.

5.4 Further results and ongoing work

In summary, from the urgleichung Eq. (69) and four further assumptions, we
derived that the basis distributions ∥ek⟫ should be among the valid states P,
that for any ∥p⟫ ∈ P the probabilities are bounded above by p(k) ≤ 1/d, and
that the extreme points of the valid ∥p⟫ should live on the surface of a sphere
that at times pokes outside the probability simplex. We derived that for any
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two valid distributions ∥p⟫ and ∥s⟫ (including the case where ∥p⟫ = ∥s⟫), it
must hold that

1

d(d + 1)
≤∑

i

p(i)s(i) ≤
2

d(d + 1)
(108)

From the latter, it follows that no more than d extreme points ∥p⟫ can ever
be mutually maximally distant from each other.

What really needs to be derived is that the extreme points of such a convex
set correspond to an algebraic variety of the form given in Eq. (40), with a
set of cijk that can be written in the form of Eq. (39). The key idea is to
supplement assumption 0 with as little extra structure as possible for getting
all the way to full-blown quantum mechanics. Many questions remain, at
both the technical and conceptual levels.

One such question is that of the origin of the urgleichung Eq. (69). A small
step toward a deeper understanding of the particular form Eq. (69) takes
was made by Fuchs and Schack (2011), where the starting point is again the
setup in Fig. 2, but without the assumption that the number of outcomes
for the measurement in the sky is a perfect square d2. The fundamental
postulate in Fuchs and Schack (2011) is the “generalized urgleichung”

q(j) =
n

∑
i=1

[αp(i) − β]r(j∣i) (109)

where α and β are fixed non-negative real numbers. Then it was shown that
the numerical relations between the constants α,β, and n, and, in particular,
the fact that n is a perfect square, follow from a set of simple assumptions
given purely in terms of the personalist probabilities a Bayesian agent may
assign to the outcomes of certain experiments. In this section we have only
scratched the surface of the problem of characterizing maximal consistent
sets, i.e., maximal subsets of the probability simplex consistent with the ur-
gleichung as defined at the beginning of the section. Maximal consistent sets
are an active area of ongoing re- search. For example, Appleby, Huangjun
Zhu, and one of us have shown recently that quantum-state space is a maxi-
mally consistent set if and only if a SIC exists, and that hidden within every
maximally consistent set is a subgroup of the orthogonal group (Appleby,
Fuchs, and Zhu, 2013). Much work, however, remains to be done.
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6 Summary: From Quantum Interference to

Quantum-Bayesian Coherence

In this review, we have given a new way to think of quantum interference:
Particularly, we have shown how to view it as an empirical addition to Dutch-
book coherence, operative when one calculates probabilities for the outcomes
of a factualizable quantum experiment in terms of one explicitly assumed
counterfactual. We did this and not once did we use the idea of a probability
amplitude. Thus we have brought the idea of quantum interference formally
much closer to its roots in probabilistic considerations. For this, we made
use of the mathematical machinery of SIC measurements.

In doing so we showed that the Born rule can be viewed as a relation be-
tween probabilities, rather than a setter of probabilities from a quantum
state regarded as more firm or secure than probability itself, i.e., rather than
facilitating a probability assignment from the true quantum state. From the
quantum-Bayesian point of view there is no such thing as the true quantum
state, there being as many quantum states for a system as there are agents
interested in considering it. This last point makes it particularly clear why
we needed a way of viewing the Born rule as an extension of Dutch-book
coherence: One can easily invent situations where two agents will update to
divergent quantum states (even pure states, and even orthogonal pure states,
see footnote 17) by looking at the same empirical data (Fuchs, 2002a; Fuchs
and Schack, 2004; Fuchs et al., 2009) - a quantum state is always ultimately
dependent on the agent’s priors.

But, as we have seen, there is much more to do. We gave an indication that
the urgleichung Eq. (69) and considerations to do with it already specify a
significant fraction of the structure of quantum states - and for that reason
one might want to take it as one of the fundamental axioms of quantum
mechanics. We did not, however, get all the way back to a set based on the
manifold of pure quantum states, Eq. (40). A further open question con-
cerns the origin of the urgleichung. An intriguing idea would be to justify it
Dutch-book style in terms of bought and returned lottery tickets consequent
upon the nullification step in our standard scenario. Then the positive con-
tent of the Born rule might be viewed as a kind of cost excised whenever one
factualizes a SIC. But this is just speculation.
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What is firm is that we have a new setting for quantifying the old idea that,
in quantum mechanics, unperformed measurements have no outcomes.

7 Outlook: The Paulian Idea and the Jame-

sian Pluriverse

This review has focused on adding a new girder to the developing structure
of quantum Bayesianism (“QBism” hereafter). As such, we have taken much
of the previously developed program as a background for the present efforts.
For instance, the core arguments for why we choose a more “personalist
Bayesianism” rather than a so-called “objective Bayesianism” can be found
in Fuchs (2002a, 2013) and Fuchs and Schack (2004), and the argument for
why a subjective, personalist account of certainty is crucial for breaking the
impasse set by the EPR criterion of reality is explained in Caves, Fuchs, and
Schack (2007) and Fuchs (2013).

William James wrote

Of every would be describer of the universe one has a right to
ask immediately two general questions. The first is: “What are
the materials of your universe’s composition?” And the second:
“In what manner or manners do you represent them to be con-
nected?” - William James, notebook entry, 1903 or 1904.

Fearing James?s injunction, in this section we discuss anew the term “mea-
surement,” which we have been using uncritically in this review. Providing a
deeper understanding of the proclamation “unperformed measurements have
no outcomes” is the first step toward characterizing “the materials of our
Universe’s composition.”

We take our cue from Bell (1990). Despite our liberal use of the term so far,
we think the word measurement should indeed be banished from fundamen-
tal discussions of quantum theory.22 However, it is not because the word is
“unprofessionally vague and ambiguous,” as Bell stated (Bell, 1987). Rather,
it is because, from the QBist perspective, the word suggests a misleading no-
tion of the very subject matter of quantum mechanics.

22For a related argument, see N. D. Mermin’s “In Praise of Measurement” (Mermin,
2006).
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To make the point more clear, we put quantum theory aside for a moment
and consider instead basic Bayesian probability theory. There the subject
matter is an agent’s expectations for various outcomes. For instance, an
agent might write down a joint probability distribution P (hi, dj) for various
mutually exclusive hypotheses ji and data values dj appropriate to some phe-
nomenon. As discussed above, a major role of the theory is that it provides a
scheme (Dutch-book coherence) for how these probabilities should be related
to other probabilities, P (hi) and P (dj) say, as well as to any other degrees of
belief the agent has for other phenomena. The theory also prescribes that if
the agent is given a specific data value dj, he should update his expectations
for everything else within his interest. For instance, under the right condi-
tions (Diaconis and Zabell, 1982; Skyrms, 1987b; Fuchs and Schack, 2012a),
he should reassess his probabilities for the hi by conditionalizing:

Pnew(hi) =
P (hi, dj)

P (dj)
(110)

But what is this phrase “given a specific data value”? What does it really
mean in detail? Should not one specify a mechanism or at least a chain
of logical and/or physical connectives for how the raw fact signified by dj
comes into the field of the agent’s consciousness? And who is this “agent”
reassessing his probabilities anyway? Indeed, what is the precise definition
of an agent? How would one know one when one sees one? Can a dog be an
agent? Or must it be a person? Maybe it should be a person with a Ph.D.?23

Probability theory cannot answer these questions because they are not ques-
tions within the subject matter of the theory. Within probability theory,
the notions of agent and given a data value are primitive and irreducible.
The whole theory is constructed to guide agents’ decisions based on data.
Agents and data are at the bottom of the structure of probability theory -
they are not to be constructed from it, but rather agents are there to receive
the theory’s guidance, and data are there to designate the world external to
the agent.

QBism says that, if all of this is true of Bayesian probability theory in gen-
eral, it is true of quantum theory as well. As the foundations of probability
theory dismiss the questions of where data come from and what constitutes

23See Bell (1990).
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an agent (these questions never even come to its attention) so can the foun-
dations of quantum theory dis- miss them too.

A likely reaction at this point will be along these lines: “It is one thing to say
all this of probability theory, but quantum theory is a wholly different story.
Quantum mechanics is no simple branch of mathematics, like probability or
statistics. Nor can it plausibly be a theory about the insignificant specks of
life in our vast universe making gambles and decisions. Quantum mechanics
is one of our best theories of the world. It is one of the best maps we have
drawn yet of what is actually out there.” But this is where QBism differs.
Just as probability theory is not a theory of the world, so quantum theory
is not a theory of the world: It is a theory for the use of agents immersed in
and interacting with a world of a particular nature, the “quantum world.”

This last statement is crucial. Regarding the idea of a world external to the
agent, as Gardner (1983) says,

The hypothesis that there is an external world, not dependent
on human minds, made of something, is so obviously useful and
so strongly confirmed by experience down through the ages that
we can say without exaggerating that it is better confirmed than
any other empirical hypothesis. So useful is the posit that it is
almost impossible for anyone except a madman or a professional
metaphysician to comprehend a reason for doubting it.

Yet there is no implication in these words that quantum theory, for all its
success in chemistry, physical astronomy, laser making, etc., must be read
as a theory of the world. There is room for a significantly more interesting
form of dependence: Quantum theory is conditioned by the character of the
world, but yet is not a theory directly of it. Confusion on this very point is
what has caused most of the discomfort in quantum foundations in the 85
years since the theory’s coming to a relatively stable form in 1927.

Returning to our discussion of Bell and the word measurement, we want the
word banished because it subliminally whispers the philosophy of its origin:
That quantum mechanics should be conceived in a way that makes no ulti-
mate reference to agency, and that agents are constructed out of the theory,
rather than taken as the primitive entities the theory is meant to aid. In
a nutshell, the word deviously carries forward the impression that quantum
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mechanics should be viewed as a theory directly of the world, rather than as
a theory guiding agents in their interactions with the world.

Quantum mechanics, making no direct reference to the world but only to
our actions and gambles within it, has no explicit ontological content. Nev-
ertheless, the structure of quantum mechanics has fundamental implications
for the character of the world. The interpretation of the term measurement
is particularly relevant for questions of ontology. In the following, we look
more closely at what measurement means from a QBist perspective.

The Paulian idea and the Jamesian pluriverse. - The best way to begin a
more thoroughly QBist delineation of quantum mechanics is to start with
two quotes on personalist Bayesianism itself. The first is from Hampton,
Moore, and Thomas (1973):

Bruno de Finetti believes there is no need to assume that the
probability of some event has a uniquely determinable value. His
philosophical view of probability is that it expresses the feeling
of an individual and cannot have meaning except in relation to
him.

and the second from Lindley (1982):

The Bayesian, subjectivist, or coherent, paradigm is egocentric.
It is a tale of one person contemplating the world and not wishing
to be stupid (technically, incoherent). He realizes that to do this
his statements of uncertainty must be probabilistic.

These two quotes make it clear that personalist Bayesianism is a “single-user
theory.” Thus, QBism must inherit at least this much egocentrism in its
view of quantum states ρ. The “Paulian idea” (see Fig. 3) (Fuchs, 2010a),
which is also essential to the QBist view, goes further still. It says that
the outcomes to quantum measurements are single user as well. That is to
say, when an agent writes down her degrees of belief for the outcomes of a
quantum measurement, what she is writing down are her degrees of belief
about her potential personal experiences arising in consequence of her actions
upon the external world (Fuchs, 2007, 2010b, 2012; Mermin, 2012).
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Figure 3: The Paulian idea (Fuchs, 2010a) - in the form of a figure inspired by John
Archibald Wheeler (Patton and Wheeler, 1975). In contemplating a quantum measure-
ment, one makes a conceptual split in the world: one part is treated as an agent, and the
other as a kind of reagent or catalyst (one that brings about change in the agent). In older
terms, the former is an observer and the latter a quantum system of some finite dimension
d. [For arguments in support of finite fundamental theories see, e.g., Parikh and Verlinde
(2005), Zinn-Justin (2007), and Braunstein, Pirandola, and Życzkowski (2013).] A quan-
tum measurement consists first of the agent taking an action on the quantum system.
The action is formally captured by some POVM {Ei}. The action leads generally to an
incompletely predictable consequence, a particular personal experience Ei for the agent
(Fuchs, 2007). The quantum state ∣ψ⟩ makes no appearance but in the agent’s head; for it
only captures his degrees of belief concerning the consequences of his actions, and (in con-
trast to the quantum system itself) has no existence in the external world. Measurement
devices are depicted as prosthetic hands to make it clear that they should be considered an
integral part of the agent. (This contrasts with Bohr’s view where the measurement device
is always treated as a classically describable system external to the observer.) The sparks
between the measurement-device hand and the quantum system represent the idea that
the consequence of each quantum measurement is a unique creation within the previously
existing universe (Fuchs, 2007). Wolfgang Pauli characterized this picture as a “wider
form of the reality concept?” than that of Einstein?s, which he labeled “the ideal of the
detached observer” (Laurikainen, 1988; Pauli, 1994; Gieser, 2005). The particular charac-
ter of the catalysts (James’s “materials of your universe’s composition”) leaves its trace
in the formal rules that allow us to conceptualize factualizable measurements in terms of
a standard counterfactual one.
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Before exploring this further, we give a quick outline of some elements of
quantum theory, retaining the usual mathematical formulation of the theory,
but starting the process of changing the English descriptions of what the
term “quantum measurement” means.

The primitive notions of the theory are (a) the agent, (b) things external
to the agent, or, more commonly, “systems,” (c) the agent’s actions on the
systems, and (d) the consequences of those actions for her experience. The
formal structure of quantum mechanics is a theory of how the agent ought to
organize her Bayesian probabilities for the consequences of all her potential
actions on the things around her. Implicit in this is a theory of the structure
of actions. The theory works as follows: When the agent posits a system,
she posits a Hilbert space Hd as the arena for all her considerations. Actions
upon the system are captured by positive-operator valued measures {Ei}
on Hd. Potential consequences of the action are labeled by the individual
elements Ei within the set,24 i.e.,

action = {Ei} and consequence = Ek

Quantum mechanics organizes the agent’s beliefs by saying that she should
strive to find a single density operator ρ such that her degrees of belief will
always satisfy

Prob(consequence∣action) = Prob(Ek∣{Ei}) = TrρEk

no matter what action {Ei} is under consideration.

Regarding our usage of the word measurement, this means that one should
think of it simply as an action upon the system of interest. Actions lead to
consequences within the experience of the agent, and that is what a quan-
tum measurement is. A quantum measurement finds nothing, but very much
makes something.

Thus, in a QBist painting of quantum mechanics, quantum measurements
are “generative” in a real sense. Measurement outcomes come about for
the agent herself. Quantum mechanics is a single-user theory through and
through - first in the usual Bayesian sense with regard to personal beliefs, and

24There is a formal similarity between this and the development in Cox (1961), where
“questions” are treated as sets, and “answers” are treated as elements within the sets.

51



second in that quantum measurement outcomes are personal experiences.

Of course, as a single-user theory, quantum mechanics is available to any
agent to guide and better prepare her for her own encounters with the world.
Furthermore, although quantum mechanics has nothing to say about another
agent’s wholly personal experiences, it is important to distinguish between
an agent Bob’s experience, which is internal to him and accessible only to
himself, and his report of that experience, which he gives to Alice and so
becomes accessible to her as part of her own external world. Alice can then
use the report about Bob’s experience to update her own probability assign-
ments.

In the spirit of the Paulian idea, however, eliciting a report from another
agent means taking an action on him. Whenever “I” encounter a quantum
system, and take an action upon it, it catalyzes a consequence in my experi-
ence that my experience could not have foreseen. Similarly, by a Copernican-
style principle, I should assume the same for “you”: Whenever you encounter
a quantum system, taking an action upon it, it catalyzes a consequence in
your experience. To ourselves we are each agents. To another agent, we are
all physical systems. When we take actions upon each other the distinctions
between which of us are agents and which of us are physical systems are
symmetrical. Like with the Rubin vase, the best the eye can do is flit back
and forth between the two formulations.

Viewing quantum mechanics as a single-user theory does not mean there is
only one user. QBism does not lead to solipsism. Any charge of solipsism
is further refuted by two points central to the Paulian idea. (Fuchs, 2002b).
One is the conceptual split of the world into two parts (one an agent and
the other an external quantum system) that gets the discussion of quantum
measurement off the ground. If such a split were not needed for making
sense of the question of actions (actions upon what? in what? with respect
to what?), it would not have been made. Imagining a quantum measurement
without an autonomous quantum system participating in the process would
be as paradoxical as the Zen koan of the sound of a single hand clapping. The
second point is that once the agent chooses an action {Ei}, the particular
consequence Ek of it is beyond her control. That is to say, the particular
outcome of a quantum measurement is not a product of her desires, whims,
or fancies - this is the very reason she uses the calculus of probabilities: they
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quantify her uncertainty (Lindley, 2006), an uncertainty that, try as she
might, she cannot get around. So, implicit in this whole picture (this whole
Paulian idea) is an “external world ... made of something.” It is only that
quantum theory is a rather small theory: Its boundaries are set by being a
handbook for agents immersed within that “world made of something.”

But a small theory can still have grand importance, and quantum mechanics
most certainly does. This is because it tells us how a user of the theory sees
his role in the world. Even if quantum mechanics (viewed as an addition to
probability theory) is not a theory of the world itself, it is conditioned by the
particular character of this world. Its empirical content is exemplified by the
urgleichung Eq. (69), which takes one specific form rather than an infinity
of other possibilities. Even though quantum theory is now understood as a
theory of acts, decisions, and consequences (Savage, 1954), it tells us about
the character of our particular world. Apparently, the world is made of a stuff
that does not have preestablished “consequences” waiting around to respond
to our “actions” - it is a world in which the consequences are generated on the
fly. One starts to get a sense of a world picture that is part personal (truly
personal) and part the joint product of all that interacts. This is a world
of indeterminism, but one with no place for objective chance. From within
any part, the future is undetermined. If one of those parts is an agent, then
it is an agent in a situation of uncertainty. And where there is uncertainty,
agents should use the calculus of Bayesian probability in order to make the
best go at things.
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