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Abstract

We combine the “evolving constants” approach to the construction of observ-
ables in canonical quantum gravity with the Page-Wootters formulation of
quantum mechanics with a relational time for generally covariant systems.
This overcomes the objections levied by Kuchař against the latter formal-
ism. The construction is formulated entirely in terms of Dirac observables,
avoiding in all cases the physical observation of quantities that do not be-
long in the physical Hilbert space. We work out explicitly the example of
the parametrized particle, including the calculation of the propagator. The
resulting theory also predicts a fundamental mechanism of decoherence.

In generally covariant systems, like general relativity, when one works out
the canonical formulation the Hamiltonian is a constraint, i.e., it vanishes
identically. This implies that the parameter that usually plays the role of
time in canonical formulations is not adequate to de- scribe the dynamics
of the system. This constitutes one of the aspects of the “problem of time”
for generally covariant systems (see Kuchař [1] for a good review). Page and
Wootters proposed an approach to deal with this issue [2]. The proposal
consists in building a quantum theory of the system of interest by promoting
all variables of the system to quantum operators and then choosing one of
the variables to be a “clock” and computing conditional probabilities for the
other variables to take certain values when the clock takes a given value. This
proposal ran into technical difficulties when applied in detail to constrained
systems, as emphasized by Kuchař[1]. Basically, the problem consists in what
to choose as the variables to be promoted to operators, in particular, which
one to choose as a clock. In a constrained system the physically observable
variables are those that have vanishing Poisson brackets with the constraints
(this implies they are invariant under the symmetries of the theory, they
are “gauge invariant”). However, if one of the constraints is the Hamilto-
nian, then quantities that have vanishing Poisson brackets with it do not
evolve and therefore are poor candidates for being clocks. Page and Woot-
ters tried to circumvent this by considering “kinematical” variables (that do
not have vanishing Poisson brackets with the constraints and therefore ap-
pear “to evolve”). But this brings about other problems. Such variables can
be promoted to quantum operators acting on the space of wave functions
that are not necessarily annihilated by the constraints (“kinematical Hilbert
space”). Within such space, the states that are annihilated by the constraints



are usually distributional (at least in simple examples that can be worked
out explicitly). Therefore they may not admit a probabilistic interpretation.
Kuchař showed, by analyzing the example of a parametrized particle, that
these issues had as a consequence the construction of propagators that “do
not propagate” and therefore the resulting quantum theory is not realistic.
Here we would like to revisit the Page-Wootters construction but using a
different set of physical quantities. The quantities we will choose are rela-
tional Dirac observables such as the “evolving constants” introduced in [3]
(an idea that goes back to DeWitt, Bergmann, and Einstein). The proposal
can be summarized as follows. In a totally constrained theory, the values
of fields are not physically observable. On the other hand, if one chooses
a one-parameter family of observables such that their value coincides with
the value of a dynamical variable when the parameter takes the value of an-
other dynamical variable, which one uses to characterize the evolution, such
observables can be used in the Page-Wootters construction. They have the
advantage that there is a sense in which they “evolve.” That is, unlike the
proposal of Rovelli, we will not consider the “parameter” to be the physical
time, but we will use it to make sense of the conditional probabilities that
arise in the Page-Wootters formulation when one introduces a real quantum
clock. In fact at the end of the day the parameter drops out from the for-
mulation, and one integrates over all possible values of it (if one has more
than one constraint, one needs to introduce more parameters). Therefore,
one does not need to observe any dynamical variable that is not quantum
mechanical or is not a Dirac observable. We will show in an example that
this construction can be carried out in detail.

Let us start by defining the evolving constants in a classical theory. Fol-
lowing Rovelli we consider a totally constrained system with a phase space
qi, pi. We now pick a parameter we call t. We are interested in defining a
one- parameter family of Dirac observables that reproduces the value of one
of the dynamical variables, for instance qi, when another variable playing the
role of a clock takes the value t. For concreteness, we can choose q1 to play
the role of a clock. We denote the one-parameter family of Dirac observables
Qi(t) = Qi(t, qn, pn). These have vanishing Poisson bracket with the Hamil-
tonian constraint, {Qi(t, qn, pn),C(qn, pn)} = 0. They are also such that if
one evaluates Qi(t, t, q2....qn, pn) ≡ qi. (We refer to the observables as Qi for
simplicity, they can include momenta as well, but they must have vanishing
Poisson brackets with the clock variable, an assumption that may be relaxed
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with further elaboration).

We then proceed to quantize the variables of the problem. Namely, we pro-
mote all Qi(t)’s and P i(t)’s to quantum self-adjoint operators acting on a
Hilbert space of wave function Ψ(qi) that are annihilated by the constraints.
The variable t will remain classical. In realistic situations, like general rel-
ativity, this is convenient since usual choices of “time” are given by global
variables that are not easily associated with a quantum operator to begin
with. The restriction to self-adjoint operators limits importantly the choices
of possible parameters t, as was discussed in [4]. In particular, if one does
not insist on self-adjointness one runs into problems in the definition of con-
ditional probabilities (related to the “false tracks” discussed in [5]). If the
quantization can be accomplished, then one can introduce a basis of eigen-
states (parametrized by t) of the evolving constants and introduce projectors
that materialize the physical properties associated with each of the evolving
constants.

Having quantized the evolving constants, we will choose one of the variables
Qi(t) to be a quantum clock, and we will call it T (t). We then introduce the
conditional probability as in [6,7]:

P (Qi = Qi
0∣T = T0) ≡ lim

τ→∞

∫
τ

−τ dtTr(PQi
0
(t)PT0(t)ρPT0(t))

∫
τ

−τ dtTr(PT0(t)ρ)
(1)

where PQi
0
(t) is the projector on the eigenspace associated with the eigen-

value Qi
0 at time t and similarly for PT0(t). These conditional probabilities

are positive and add to one. At this stage ρ is the density matrix of the total
system. To make contact with usual expressions later on, we will assume a
specific form of the density matrix.

By construction the conditional probability is a gauge invariant quantity
since the density matrix, ρ in the above expression, is assumed to be an-
nihilated by the constraints, e.g., Ĉρ = 0. Note that we are treating the
variable t as an unobservable quantity and summing over all possible values
of it. This picture is much more satisfactory than the one that emerges from
considering evolving constants alone without the conditional probability in-
terpretation, since in that picture one assumes that a quantum variable like
q1 takes a definite classical value. This would not usually be the case since
q1 has a nonvanishing Poisson bracket with the constraint, and on the con-
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straint surface we expect q1 to have infinite uncertainty. Returning to the
above expression, it should be noted that the improper limits of integration
may cause problems at the time of computing the conditional probabilities.
This can be controlled by simply considering integrals in temporal do- mains
that are much larger than the region of physical interest.

It is worthwhile expanding on the meaning of the probabilities (1) since there
has been some confusion in the literature [8]. One may interpret that the
numerator of (1) is the sum of joint probabilities of O and T for all values
of t. This would be incorrect since the events in different t?s are not mutu-
ally exclusive. The probability (1) corresponds to a physically measurable
quantity, and that such quantity is actually the only thing one can expect
to measure in systems where one does not have direct access to the “ideal”
time t. The experimental setup we have in mind is to consider an ensemble
of noninteracting systems with two quantum variables each to be measured,
O and T . Each system is equipped with a recording device that takes a
single snapshot of O and T at a random unknown value of the ideal time
t. One takes a large number of such systems, launches them all in the same
quantum state, “waits for a long time,” and concludes the experiment. The
recordings taken by the devices are then collected and analyzed all together.
One computes how many times n(Tj,Oj) each reading with a given value
T = Tj, O = Oj occurs (to simplify things, for the moment let us assume
T,O have discrete spectra; for continuous spectra one would have to con-
sider values in a small finite interval of the value of interest). If one takes
each of those values n(Tj,Oj) and divides them by the number of systems in
the ensemble, one obtains, in the limit of infinite systems, a joint probability
P (Oj, Tj) that is represented by the above expression.

We can then write the conditional probabilities that yield the correlation
functions (propagators), namely, the probability that the system was ob-
served at Qi

1 at time T1 and it will be observed at Qi
2 at time T2 as

P (Qi
2∣T2,Q

i
1, T1, ρ) ≡ lim

τ→∞

∫
τ

−τ dt ∫
τ

−τ dt
′Tr(PQi

2,T2
(t)PQi

1,T1
(t′)ρPQi

1,T1
(t′))

∫
τ

−τ dt ∫
τ

−τ dt
′Tr(PT2(t)PQi

1,T1
(t′)ρPQi

1,T1
(t′))

(2)

This is the standard definition of a propagator associated with a history once
a reduction postulate after the measurement of Qi

1,T1 (see [6]) is assumed.
Notice that, in particular, no assumption about the relative ordering of the
unobservable variables t and t′ is needed. We will show that it yields the
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correct propagator in an example.

Until now, recovering the correct propagator has been problematic in the con-
ditional probability approach. For instance, Kuchař [1] computed a similar
expression using the original Page and Wootters [2] prescription (in that case,
however there is no t or t′ and no integrals over them) where the quantities
Qi were kinematical operators that did not commute with the constraint and
showed that one obtained an incorrect propagator. Essentially, the system
did not move, the propagator being proportional to a Dirac delta function,
e.g., δ(Qi

2 −Qi
1)δ(T2 −T1). Page [9] has responded to this criticism by claim-

ing that in the conditional probability framework one cannot compute two
time probabilities. We believe that the framework can indeed accommodate
such probabilities and therefore becomes more powerful when formulated in
terms of evolving constants and indeed yields the correct propagators.

The example we will consider is a simple model of two noninteracting nonrel-
ativistic free particles in one spatial dimension that has been “parametrized,”
that is, Newtonian time is introduced as a canonical variable conjugate to
the energy. The reader may question how relevant these simplified examples
are to the issue of interest, namely, the problem of time in quantum gravity.
To quote Kuchař [1] “The nature of the conditional probability interpretation
is so clear from these examples that it is hardly necessary to spell out how
the formalism looks in quantum gravity”. The reader will confirm this point
of view while seeing how one gets the result for the propagator virtually
without using any special features of the model in question. In particular,
although the model does have a naturally defined time variable, we only use
it to easily construct the evolving constants. The latter are known to exist
in many examples (e.g., [4]) where there is no natural decomposition of the
constraint into the “p0 +H” form.

The system has three configuration variables q0, q1, q2 and the corresponding
canonical momenta p0, p1, p2. There is a constraint

φ = p0 +
p2

1

2m1

+ p2
2

2m2

The gauge invariant quantities, which have vanishing Poisson brackets with
the constraint, are

Q1 = q1 − p1q0/m1 , Q2 = q2 − p2q0/m2
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and p1 and p2. These Dirac observables represent the initial position and
momenta of the particles. We then define evolving constants

X1(t) = Q1 +
p1t

m1

, X2(t) = Q2 +
p2t

m2

We can check that they have a vanishing Poisson bracket with the constraint
and that when t = q0 then X1(t = q0) = q1 and X2(t = q0) = q2. The quanti-
zation of the model is immediate [4]. The states that are annihilated by the
quantum version of the constraints are given by ψ(p1, p2) times a prefactor
δ(p0+p2

1/(2m1)+p2
2/(2m2)) and the Hilbert space is that of square integrable

functions ψ(p1, p2), or equivalently in Fourier space by functions ψ̃(q1, q2).
The resulting states are normalizable with respect to the Rieffel induced in-
ner product. In this Hilbert space the evolving constants are well defined
operators. Their common eigenstates are of the product form,

ψx1,x2;t = ⟨p1, p2 ∣x1, x2; t⟩

= 1

2π
exp(−i [p1x1 + p2x2 − t(

p2
1

2m1

+ p2
2

2m2

)]) (3)

with eigenvalues x1, x2 for X̂1, X̂2, at some value of t. With these we can
construct the projectors that appear in the conditional probability,

Px1(t) = ∫
x1+

x1−
dz1∫

∞

−∞

dz2 ∣z1, z2; t⟩ ⟨z1, z2; t∣

and similarly for Px2(t). The limits of integration xi± correspond to xi±∆xi/2
where Deltaxi is introduced since, if one is dealing with variables that have
continuum spectrum, one cannot ask for “the probability that qi takes a
given value xi,” but rather within an interval of width Deltaxi centered at
such value. Let us con- sider a physical state given by a Gaussian for both
variables centered at two distant phase-space points X0

1 and x0
2 and p0

1 and
p0

2, e.g., ρ0 = ∣ψ0⟩ ⟨ψ0∣, with

ψ̃0(q1, q2) =
2

∏
j=1

exp(−
(qj − x0

j)2

∆2
j

+ ip0
jqj)

We can then compute the quantity in the numerator of (1) (notice that the
denominator is just given by the numerator integrated in Qi

2 from −∞ to ∞,
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so for brevity we only show explicit calculations for the numerator),

Num(P (x′2∣x′1, x2, x1), ρ0)

=
τ

∫
0

dt′dt

x2+

∫
x2−

dy2dz2 ⟨x′2, t′ ∣ y2, t⟩ψ0
y2,t(ψ

0
z2,t)

∗

× ⟨z2, t ∣x′2, t′⟩
x2+

∫
x2−

dy1dz1 ⟨x′1, t′ ∣ y1, t⟩ψ0
y1,t(ψ

0
z1,t)

∗

× ⟨z1, t ∣x′1, t′⟩ (4)

where ψ0
wi,t

≡ ⟨wi, t ∣ψi0⟩ for i = 1,2, and we have used the fact that the
density matrix for this model is of direct product form, namely ∣ψ0⟩ = ∣ψ1

0, ψ
2
0⟩.

Usually one would like to consider systems with this property which implies
that the system under study and the clock do not interact (we are choosing
x1 as the clock variable). The interval ∆x1 must be taken much larger than
∆1 the width of the Gaussian in the state in order for the measurement of the
clock variable not to “destroy the state of the clock.” A measurement with
more precision implies a faster loss of the (desired) classicality of the clock.
In the case of x2 we assume we are studying a microscopic variable (m2 <<
m1), i.e., that is behaving quantum mechanically, therefore we may and will
assume ∆x2 much smaller than the width of the Gaussian ∆2 to simplify the
calculation of the integrals by substituting mean values. Carrying out the
integrations explicitly,

Num(P (x′2∣x′1, x2, x1), ρ0)

∼ ∫
τ

0
dt′dt ∣ ⟨x′2, t′ ∣x2, t⟩ ∣2∆x2

2Θ∆x1

× (x̄0
1 −

p1

m1

t − x1) ∣Ψ0
x′1,t′ ∣2 (5)

where Θ is a rectangular function that is unity in the interval of width ∆x1

around its argument and zero other- wise. We have assumed that evolution
times are small such that the value of ∆x1 does not change significantly. We
have approximated the integrals in y1 and z1 by integrals from −∞ to ∞
since the Gaussian has a smaller support than the region of integration. The
Θ function arises since the approximation is good only if the peak of the
Gaussian is within the integration region, otherwise the integral is close to
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zero. Putting together numerator and denominator we get

P (x′2∣x′1, x2, x1, ρ0) ∼ lim
τ→∞
∫

τ

0
dt′ ∣ ⟨x′2, t′ ∣x2, t(x1)⟩ ∣2Px′1(t

′)∆x2 (6)

where t(x1) is the central value of t determined by the Θ function and

Px′1(t
′) ≡

Tr(Px′1(t
′)ρ0)

∫
∞

−∞
dtTr(Px′1(t′)ρ0)

can be interpreted as the probability that the external (unobservable) time
q0 is t′ when the variable we take as clock reads x′1. This would be controlled
by the position of the peak and width of the Gaussian in the quantum state
we chose. If instead of a Gaussian one had a Dirac delta, then we would
recover the correct ordinary nonrelativistic propagator,

P (x′2∣x′1, x2, x1, ρ0) ∼ ⟨x′2, t′(x′1) ∣x2, t(x1)⟩∆2

where t(x1) is determined by our choice of initial state to approximate the
ordinary nonrelativistic time corresponding to the position x1. The resulting
expression is an approximation to the integral in x2 of the ordinary prop-
agator, therefore the factor ∆x2. As is expected in relational treatments,
one only obtains the traditional propagator at leading order. The use of real
clocks leads to loss of quantum coherence, as is well known [7], and therefore
to corrections to the ordinary propagator. The origin of the loss of coher-
ence is that, although the evolution is unitary in terms of the parameter t,
it is not in terms of the real clock T . Even if one starts with a pure state
initially, the lack of a perfect correlation of the variables T and t will lead to
a statistical mixture. Notice that up to now discus- sions of loss of coherence
due to real clocks did not involve the presence of constraints, since they were
framed for the gravitational case in the context of uniform and consistent
discretizations [6], where constraints are eliminated. Here we confirm not
only the presence but the inevitability of these effects in totally constrained
systems like general relativity.

Let us sketch how the above proposal could be implemented in the case of
general relativity. We consider the theory in vacuum coupled to a clock. We
characterize the clock by its worldline Xµ(τ) and T (τ) its proper time. The
action is the Einstein-Hilbert action for general relativity plus a term for the
clock of the form

S = −m∫ dτ
√
−ẊµẊνgµν(X(τ)) − Ṫ 2

8



where the dots mean total derivative with respect to the parameter τ , and
m is the mass of the clock. The equations of motion state that Xµ(τ) is a
geodesic of the metric gµν and an equation stating that T is proportional to
the proper time. As usual, we are assuming that the clock is a probe and
therefore ignore backreaction. Classically this is certainly a good approxi-
mation. In this system we have only introduced a clock, not a complete co-
ordinate system; one can ask only certain relational questions. For instance,
what is the value of a geometric scalar (e.g., the Kretschmann invariant) K
at the space-time position of the clock when the clock measures a given value
of time T . To complete our proposal, one needs to find evolving constants
S, functions of the metric, and its first derivatives, parametrized with four
real parameters xµ such that when they equal certain combinations of the
metric and its derivatives the evolving constants reproduce the geometric
quantity S we want to measure. The explicit construction of these quantities
in general relativity can be onerous, but progress can be done by perturba-
tive techniques, for example (see [10]). One can then define the relational
probabilities that the geometric quantity of interest takes the value S0 when
the clock measures time T0,

P (S0∣T0) = ∫
d4xTr(√−gρ)Tr(PS0(x)PT0(x)ρPT0(x))

∫ d4xTr(√−gρ)Tr(PT0(x)ρ)

Defining a propagator needs more work, namely, setting up a full coordinate
system (i.e. introducing rulers in addition to clocks or considering a cloud
of clocks as in [11]). The calculational complexity would be important but
modern loop quantum gravity techniques may allow a proper calculation (the
Marseille group has developed an attractive framework for the discussion of
propagators in loop quantum gravity [12]). The expressions of the condi-
tional probabilities in a situation like general relativity will not only include
loss of coherence in time but also spatially, as has been analyzed in field
theory in [13].

Summarizing, we have shown that one can formulate a completely relational
picture of evolution in generally covariant systems framed entirely in the
physical space of states and that yields the correct propagators in model
systems and opens the possibility of assigning probabilities to histories and
consistently characterizing the dynamics of quantum general relativity. The
resulting theory also pre- dicts a fundamental mechanism of decoherence sim-
ilarly as the one originally discussed in [6].
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