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Thought experiments that long puzzled the thermodynamics community are
now being performed in the lab—and they?re forging a deeper understanding
of the second law.

Almost 25 years ago, Rolf Landauer argued in the pages of this magazine
that information is physical (see Physics Today, May 1991, page 23). It is
stored in physical systems such as books and memory sticks, transmitted
by physical means—for instance, via electrical or optical signals—and pro-
cessed in physical devices. Therefore, he concluded, it must obey the laws of
physics, in particular the laws of thermodynamics.

But what is information? A simple, intuitive answer is “what you don’t al-
ready know.” If someone tells you that Earth is spherical, you surely would
not learn much; the message has low information content. However, if you
are told that the price of oil will double tomorrow, then, assuming that to be
true, you would learn a great deal; the message has high information content.

Mathematically, a system’s information content can be quantified by the so-
called information entropy H, introduced by Claude Shannon in 1948. The
larger the information entropy, the greater the information content. [1] Con-
sider the simplest possible information-storage device: a system with two
distinct states—for example, up and down, left and right, or magnetized and
unmagnetized. If the system is known with certainty to be in a particular
state, then no new information can be gained by probing the system, and
the information entropy is zero.

On the other hand, if the two states can be occupied with equal probability,
the actual state is initially undetermined, and an examination of the system
will provide information about its state. In that case, the information en-
tropy is equal to ln (2), where ln denotes the natural logarithm. That value
corresponds to the information associated with the simplest uncertain situ-
ation, a random binary choice, and is called a bit. A two-state system can
thus store up to one bit of information.

In deriving his information entropy, Shannon took a cue from the second law
of thermodynamics. As formulated by Rudolf Clausius in 1850, the second
law is based on the empirical observation that spontaneous processes have
a preferred direction. [2] Everyone who’s left a cup of hot tea on a table



has noted that heat flows spontaneously from a hotter body (the cup) to a
colder one (the room) but never the other way around. Clausius character-
ized the irreversibility of such natural macroscopic processes by defining the
thermodynamic entropy S, a quantity that, unlike energy, is not conserved
and can only increase in isolated systems; it may decrease only in systems
that exchange energy with the environment. That asymmetry imposes re-
strictions on the types of physical phenomena that are possible. In 1851, for
instance, William Thomson (Lord Kelvin) devised an equivalent formulation
of the second law that limits the amount of work that can be produced by a
cyclic engine.

An interesting question, then, is whether the thermodynamic consequences
of the second law extend to information. Is it possible to extract useful me-
chanical work from a system just by observing its state? If so, how much?
And at a more fundamental level, are the thermodynamic and information
entropies related?

The first hint of a connection between information and thermodynamics may
be traced back to James Clerk Maxwell?s now-famous demon, [3] introduced
in 1867. The demon is an intelligent creature able to monitor individual
molecules of a gas contained in two neighboring chambers, as shown in figure
1.

2



Figure 1: Maxwell?s demon. By detecting the positions and velocities of gas molecules
in two neighboring chambers and using that information to time the opening and closing
of a trapdoor that separates them, a tiny, intelligent being could, in theory, sort molecules
by velocity. By doing so, it could create a temperature difference across the chambers
that could be used to perform mechanical work. If the trapdoor is frictionless, the sorting
requires no work from the demon himself, in apparent violation of the second law of
thermodynamics. (Image from ref. 3, H. S. Leff, A. F. Rex.)

Initially, the two chambers are at the same temperature, defined by the mean
kinetic energy of the molecules and proportional to their mean-square veloc-
ity. Some of the particles, however, travel faster than others. By opening
and closing a molecule-sized trapdoor in the partitioning wall, the demon
can collect the faster molecules in one chamber and the slower ones in the
other. The two chambers then contain gases with different temperatures,
and that temperature difference may be used to power a heat engine and
produce mechanical work.

By gathering information about the particles’ positions and velocities and us-
ing that knowledge to sort them, the demon is able to decrease the entropy
of the system and convert information into energy. Assuming the trapdoor
is frictionless, the demon is able to do all that without performing any work
himself—an apparent violation of the second law of thermodynamics.

The proper resolution of the paradox wouldn’t come for another 115 years,
but in 1929 a second thought experiment, contrived by Leo Szilard, provided
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crucial insight. Szilard’s take on the demon involves a gas consisting of just
a single molecule. [4] The wall separating the identical chambers is replaced
by a movable piston, held in place with a pin. The result is a two-state
system analogous to a bit: Initially, the particle occupies each chamber with
probability one-half. By looking into the container, the demon acquires in-
formation about the actual state of the system. If the molecule is found in
the left chamber, the demon attaches a weight to the left side of the piston,
as illustrated in figure 2, and releases the pin. As the gas expands, the piston
is pushed rightward and the weight is pulled upward against gravity. If the
molecule is found in the right chamber, the weight is attached to the right-
hand side of the piston.

Figure 2: Szilard’s engine. A crafty observer can turn a single particle in a box into an
engine that converts information into mechanical work. If, say, the particle is found on
the box’s left-hand side, the observer inserts a movable wall and attaches a weight to its
left side. The free expansion of the one-particle gas pushes the wall to the right, lifts the
weight, and thereby performs work against gravity. (Adapted from ref. 12, J. V. Koski et
al.)

The second law of thermodynamics limits the maximum amount of work that
can be produced by the engine to kBT ln (2). Here,kB is Boltzmann?s con-
stant and T is the temperature of the gas. The “2” arises because there are
two chambers in Szilard’s system. Thus, kBT ln (2) is the maximum amount
of energy that can be obtained from one bit of information. Historically,
that result is the first clear link between information and energy. In modern
language, it suggests that the thermodynamic and information entropies are
essentially equivalent, S = kBH, with the factor kB introduced for dimen-
sional reasons. (The information entropy H is dimensionless.)

The equivalence might appear strange at first glance, since S is related to the
amount of heat reversibly exchanged with a reservoir and H characterizes the
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information content of a message sent through a communication channel. In
1957, however, Edwin Jaynes established a general relationship between the
two using statistical inference. His approach can be illustrated by considering
one of the classic problems of thermodynamics: determining the maximum
work Wmax that can be extracted from a heat engine.

According to the second law, processes occurring at constant temperature
T have Wmax = −∆F = −(∆E − T∆S), where F is the free energy and E is
the energy. n other words, not all thermodynamic energy can be converted
to work, as can mechanical energy; there exists a nonusable part given by
T∆S. That result can be readily understood from the point of view of infor-
mation. Any thermodynamic system can be described either microscopically
or macroscopically. The microstate, characterized by the positions and veloc-
ities of all of a system?s constituent particles, contains complete information
about that system. But typical systems contain so many particles—on the or-
der of 1024—that the microstate isn’t experimentally accessible. By contrast,
the macrostate—defined by macroscopic parameters such as temperature,
pressure, and volume—is measurable but contains only partial information.

Jaynes recognized that entropy essentially quantifies the degree of ignorance
about the state of the system—that is, the amount of microstate information
that’s lost when one monitors the system macroscopically. Put another way,
energy can be entirely converted to work only if the microstate, and hence
the complete information about the system, is available. Jaynes’s observa-
tion provided a firm theoretical basis for Szilard’s notion of an equivalence
between thermodynamic and information entropies. And it showed that the
equivalence should, in principle, hold for any arbitrary system at equilibrium.
The fact that thermodynamic entropy can only increase in an isolated system
could be understood to imply that the information content of the system can
spontaneously only decrease.

It is useful to distinguish two complementary concepts: information gain
and information erasure. Let us again consider a two-state system, and let
us assume that the two states are occupied with equal probability one-half,
so that the system initially stores one bit of information.

Gaining, or writing, information is akin to copying information from one
place to another—mapping the system’s left and right states to the left and
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right states of a storage device, for example. Such one-to-one mapping can be
realized, in principle, without dissipating any heat. In statistical mechanics
parlance, one would say that the mapping conserves volume in phase space.

By contrast, erasing a bit of information involves mapping two states (say, left
and right) onto one (right), which is then occupied with probability one. That
process does not conserve the volume in phase space and is therefore dissipa-
tive. Applying the second law of thermodynamics, Landauer demonstrated
in 1961 that the erasure of one bit of information is necessarily accompanied
by the release of at least kBT ln (2) of heat into the environment.

Landauer’s Erasure Principle

The relationship between thermodynamic entropy and informa-
tion entropy prescribes an energetic cost of erasing a bit. Con-
sider a system (SYS) coupled to a reservoir (RES) at tempera-
ture T . According to the second law, any change in the com-
bined entropies of the system and the reservoir must be positive:
∆STOT = ∆SSY S +∆SRES ≥ 0. Because the reservoir, owing to its
large size, is always at equilibrium, we can invoke the Clausius
equality, ∆SRES = QRES/T . In other words, the heat flow to the
reservoir satisfies QRES ≥ −T∆SSY S.

For a two-state system that stores one bit of information, the
initial information entropy is Hi = ln (2). After erasure, the in-
formation entropy vanishes, Hf = 0, so ∆H = − ln (2). Assuming
an equivalence between thermodynamic entropy S and informa-
tion entropy H, we can write ∆SSY S = kB∆H = kB ln (2), where
kB is Boltzmann’s constant. We hence obtain QRES ≥ kBT ln (2).
In other words, the heat dissipated into the reservoir during the
erasure of one bit of information in the system is always larger
than kBT ln (2).

That theoretical result, known as Landauer’s erasure principle, illustrates a
fundamental difference between the process of writing and erasing informa-
tion.

Landauer’s principle was central to solving the paradox of Maxwell’s de-
mon. In 1982 Charles Bennett noted that the demon has to memorize the
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information he acquires about the gas molecules. [5] Bennett argued that
after a full cycle of information gathering and energy production, the de-
mon’s memory has to be reset to its initial state to allow for a new iteration.
According to Landauer’s principle, the erasure process will always dissipate
more energy than the demon produces during one cycle, in full agreement
with the second law of thermodynamics. Oliver Penrose had put forward
a similar argument about a decade earlier. [5] Before Bennett’s resolution,
it was widely believed—following arguments put forward by Leon Brillouin
and Dennis Gabor—that the energetic price of the measurement would save
the second law. [6] Bennett showed, however, that there is no fundamental
energetic limitation on the measurement process.

For almost a century and a half, Maxwell’s demon belonged to the realm
of gedanken experiments; tracking and manipulating individual microscopic
particles were impossible. As Erwin Schrödinger famously wrote:

We never experiment with just one electron or atom or (small)
molecule. In thought-experiments we sometimes assume that we
do; this invariably entails ridiculous consequences.... In the first
place it is fair to state that we are not experimenting with single
particles, any more than we can raise Ichthyosauria in the zoo.
[7]

However, owing to remarkable technological progress achieved in recent decades,
experiments with atoms and small particles have now become feasible. Maxwell?’
demon, Szilard’s engine, and Landauer’s erasure principle can now be rigor-
ously studied in lab experiments.

One of the first such experiments was performed by Mark Raizen and cowork-
ers at the University of Texas at Austin. [8] They confined an ensemble of
atoms in a magnetic trap, as shown schematically in figure 3.
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Figure 3: Bringing Maxwell’s demon to life. A pair of laser beams can be tuned to
atomic transitions and configured to create a one-way potential barrier; atoms may cross
unimpeded in one direction—right to left in this figure—but not in the other. (a) When the
barrier is introduced at the periphery of a V-shaped magnetic trap, the atoms that cross
the barrier will be those that have converted nearly all their kinetic energy to potential
energy—in other words, the cold ones. (b-c) By slowly sweeping the barrier across the
trap, one can sort cold atoms (blue) from hot ones (red), reminiscent of James Clerk
Maxwell’s famous thought experiment, or cool an entire atomic ensemble. Because the
cold atoms do work against the optical barrier as it moves, their kinetic energy remains
small even as they return to the deep portion of the potential well. (Adapted from ref. 8,
M. G. Raizen.)

Initially, all the atoms are in the same internal state. The group then in-
troduced a one-way optical barrier, composed of two laser beams arranged
side by side: One beam promotes atoms to an excited state, and the other
is tuned such that it has no effect on excited atoms but repels atoms in the
ground state. An atom (red) approaching from the excitation-beam side gets
promoted to an excited state, passes unimpeded through the second beam,
and then relaxes to the ground state by emitting a photon. An atom ap-
proaching from the other side, by contrast, encounters the repelling beam
first and is turned around—it can’t get through. The two beams behave as
an atom diode.

In the schematic shown in figure 3, the barrier is configured to allow atoms to
cross only from right to left. When it is introduced from the far left, where
the trap potential is very large, atoms reaching the barrier will have con-
verted almost all their kinetic energy into potential energy and will therefore
get trapped in a very cool state. Because the atoms do work on the optical
barrier as it moves, they remain cool as the barrier is swept from left to right.

In the above scenario, the optical potential serves as the demon. If an atom
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is determined to be moving from right to left—that is, if it encounters the ex-
citation beam first, the trapdoor is opened. For all other atoms, the trapdoor
is closed. Information about the position and internal state of the atoms is
stored in the photons scattered by the atoms.

The optical demon is beholden to thermodynamic constraints. Each time an
atom scatters a photon, the entropy of the optical beam increases, because a
photon that was propagating coherently with the beam gets scattered in an
uncertain direction. Raizen’s group was able to show that this entropy in-
crease is always larger than the reduction of entropy produced by the cooling
of the atomic cloud. David Leigh and colleagues at the University of Edin-
burgh also realized a chemical version of Maxwell’s demon using a rotaxane
molecule. [9]

In 2010 Masaki Sano’s group at the University of Tokyo realized a Szilard
engine with a single, micron-sized colloidal particle bathed in a fluid of uni-
form temperature. [10] The particle was trapped in a tilted periodic optical
potential, which can be schematically understood as a spiral staircase, as
shown in figure 4. By gathering and then acting on information about the
fluctuations, however, one can coax the particle to climb. Sano and company
achieved that feat by monitoring the position of the particle in real time with
the help of a CCD camera. Each time they saw the particle jump upward,
they inserted an optical potential barrier—a virtual wall—that prevented the
particle from falling back down. Experimentally, the insertion of the wall is
realized by switching the phase of the optical potential. When the procedure
is repeated, the particle moves upward, on average, and does work against
the force exerted by the staircase potential. The Tokyo group’s system is
the first example of a device that uses information to extract energy from a
system coupled to a uniform thermal environment.
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Figure 4: Building Szilard’s engine with light and flow. (a) Left to its own devices, a
colloidal particle will, on average, move down a staircase potential, though energy fluctua-
tions occasionally will push the particle upward. (b) An intelligent demon can exploit the
upward fluctuations to do work: Each time the demon observes the particle making an
upward step, it inserts a wall that prevents the particle from regressing. (c) In an actual
experiment, the staircase is implemented with a tilted periodic optical potential (blue),
and the insertion of the barrier is realized with ? phase shifts of that potential (dotted
line). When fluctuations steer the particle into a so-called switching zone (shaded gray),
the phase shift promotes the particle to a higher-energy well. (Adapted from ref. 10.)

The year following the Tokyo experiment, the group of one of us (Ciliberto)
at the École Normale Supérieure (ENS) in Lyon, France, realized Landauer’s
thought experiment using a colloidal particle trapped in the double-well po-
tential produced by two strongly focused laser beams.11 Such a system has
two distinct states—the particle may be in the right or left well—and can
thus be used to store one bit of information. The bit can be erased by
implementing a protocol proposed by Bennett and illustrated in figure 5.
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Figure 5: Testing Landauer’s erasure principle. A colloidal particle confined with equal
probability to one of two optical potential wells constitutes one bit of information. Mod-
ulating (a-b), tilting (c-e), and then restoring (f) the barrier between the wells places the
particle in the right well with probability close to one, irrespective of the particle’s initial
position. The final configuration corresponds to zero bits of information. In the limit of
long erasure cycles, the heat dissipated during the erasure process approaches, but does
not fall below, kBT ln (2), as predicted by Rolf Landauer. (Adapted from ref. 11.)
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First, the potential barrier between the two wells is lowered by varying the
laser intensity. Next, the particle is pushed to the right by a gentle flow
induced with a piezoelectric motor. In effect, the flow inclines the trapping
potential. Finally, the potential is brought back to its initial shape. The
particle, regardless of which well it started off in, will end up in the right
well with unit probability.

For a full erasure cycle, the average heat dissipated into the environment is
equal to the average work needed to modulate the form of the double-well
potential. The ENS group evaluated that quantity from the measured parti-
cle trajectory and the known force applied to the particle. (As in the Tokyo
experiment, the position of the particle was recorded with the help of a cam-
era.) In the limit of long erasure times, heat dissipation approaches, but is
always larger than, the Landauer bound.

The above examples of gedanken-turned-real experiments provide a firm em-
pirical foundation for the physics of information and tangible evidence of the
intimate connection between information and energy. They have been fol-
lowed by additional experiments and simulations along similar lines.12 (See,
for example, Physics Today, August 2014, page 60.) Collectively, that body
of experimental work further demonstrates the equivalence of information
and thermodynamic entropies at thermal equilibrium.

The experiments with demons and colloidal bits coincided with a surge of
theoretical activity. [13] In particular, the insights from Maxwell’s demon
and Szilard’s engine were generalized to other types of thermodynamic sys-
tems. In 2008 Takahiro Sagawa and Masahito Ueda formalized the idea
that information gained through microlevel measurements can be used to
extract added work from a heat engine. [14] Their formula for the maximum
extractable work, Wmax = −(∆E −T∆S)+kBTI, includes an extra term rep-
resenting the so-called mutual information I. Roughly speaking, I quantifies
the amount of information obtained via measurements.

Sagawa and Ueda’s result extends the second law to explicitly incorporate in-
formation; it shows that information, entropy, and energy should be treated
on equal footings. Applied to the theory of heat engines with feedback, the
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formula indicates that the maximum extractable work is

Wmax = (1 −
T1
T2
)Q2 + kBT1I

where T1 and T2 are the temperatures of the cold and hot reservoirs and Q2

is the heat absorbed from the hot reservoir.

In the absence of information gain, when I = 0, the formula reduces to the
familiar expression for the efficiency η =Wmax/Q2 of a Carnot engine. With
feedback, however, the engine can produce additional mechanical work and,
remarkably, can even produce work from a single reservoir (T1 = T2), which
is impossible in standard thermodynamics. The prospect of generic informa-
tion engines in which the entropy-decreasing function of the cold reservoir
is performed instead by the feedback process—which can be regarded as an
information reservoir—is one of the more surprising predictions of the new
formulation.

Landauer’s principle applies not only to information erasure but to any log-
ically irreversible procedure that produces fewer outputs than inputs. It
predicts, for instance, that any Boolean gate operation that maps multiple
input states onto the same output state—such as AND, NAND, and OR—
will dissipate kBT ln (2) of heat per processed bit.

Landauer?s principle therefore has important technological consequences.
Nowadays, laptop computers are a part of everyday experience. But heat
production by microprocessors used in modern computers is a major factor
hindering their miniaturization; it gets increasingly difficult to evacuate heat
as a microprocessor’s size, and therefore surface area, is reduced. Although
heat-generation rates in microchips are still several orders of magnitude larger
than the Landauer limit, they are steadily decreasing. The switching energy
of a complementary metal oxide—semiconductor FET is predicted to reach
the Landauer bound by 2035, an indication that engineers will soon face
a fundamental physical limitation imposed by the second law of thermody-
namics. [15] That’s remarkable considering that kBT ln (2) is about 3×10−21

joules at room temperature and hence 22 orders of magnitude smaller than
typical amounts of energy dissipated on our macroscopic scale.

Manmade computers are not the only existing information-processing de-
vices. Scientists have long realized that living biological cells can be viewed
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as biochemical information processors; some may even outperform our cur-
rent technology. [16] Cells, for instance, can reproduce and copy themselves,
acquire and process information from external stimuli, and communicate and
exchange information with other cells. Recently, Pankaj Mehta and David
Schwab used Landauer?s principle to evaluate the energetic cost a cell must
pay to compute the steady-state concentration of a chemical ligand in its
surrounding environment. [17] That cost arguably sets strong constraints on
the design of cellular computing networks, since it implies a tradeoff between
a network’s information-processing capability and its energy consumption.

Another important problem is the investigation of ultrasensitive switches
in molecular biology. One example is the flagellar motor of Escherichia coli
bacteria, which switches between clockwise and counterclockwise rotation de-
pending on the intracellular concentration of a regulator protein. (See the ar-
ticle by Howard Berg, Physics Today, January 2000, page 24.) The switching
mechanisms are highly complex and not fully understood. A mathematical
framework that treats the flagellar motor as a Maxwell?s demon can be used
to calculate the rate of energy consumption needed for both protein sensing
and switching and can provide a quantitative description of the switching
statistics.[18]

Some 150 years after its inception, Maxwell’s demon is still vibrant. To-
gether with Landauer’s principle, it continues to influence modern research.
Having only recently become an experimental science, the thermodynamics
of information has potential to deliver new insights in physics, chemistry,
and biology. Conceivably, it may even be extended to the realm of quantum
mechanics, where it could pave the way for a full-fledged thermodynamics of
quantum information.

We gratefully acknowledge support from the German Research Foundation,
the European Union, the French National Research Agency, and the Euro-
pean Research Council.
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