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Preface

Even in the twenty-first century, there are discussion on the foundations
of quantum mechanics many of them so heated that most physicists try
to stay away from them. Nevertheless, Kostas Vavouranakis and Kosmas
Kepesidis convinced me that as part of the master program “Theoretical
and Mathematical Physics” we should have a seminar on this topic which
was realized in the winter semester 2010/11. My condition for running this
seminar was that it should be at a “no nonsense” level and that I would stop
any violation immediately. Luckily I did not have to do this too often. In
fact, I was quite impressed by the material assembled by the participants.
So, here, I have collected the write-ups of the presentations in book form.
My editing has been minimal, mainly typesetting so individual style of the
contributors is still clearly visible. I would like to thank all participants of
the foundations seminar and hope that they enjoyed it and benefited from it
as much as I did!



1. Introduction - Robert C. Helling

1.1. Why this seminar?

Quantum physics enjoys the reputation of being mysterious and not under-
standable which is perpetuated by popular texts. When taking a lecture
course on the subject, however, there appears to be no mystery at all: For
a given system, the harmonic oscillator say, one immediately writes down
the Hamilton operator as a differential operator and computes its spectrum
and eigenfunctions which tells one everything about the problem at hand.
Diagonalizing the operator can be difficult in practice but this appears to be
merely a technical problem due to the fact that solving partial differential
equations is hard, there is no “mystery” associated to it.

So where does quantum mechanics get this reputation of being mysterious?
Is it only a historical misunderstanding that came about when our forefa-
thers, in particular Einstein, struggled with the formalism that was only
being invented at the time and which lead to a philosophical overloading of
the theory in connection with wrong prejudices about how the world should
be? “Shut up and calculate” is the approach (wrongly[17]attributed to Feyn-
man) to address (or better not to address) these worries which appear to be
only psychological and which seem to not appear or matter in real problems.
So why waste our time with a seminar on such non-questions?

There are a few points that the “just calculate the spectrum of the operator”
approach does not address and which we found worthwhile to understand a
bit better for ourselves: First of all, why does the formulation of quantum
physics with a Hilbert space and Hamilton operator work the way it does?
Would there have been alternatives? What is forced on us by mathematics
starting from some simple assumptions? The other big complex of questions
(and probably the origin of much of the confusion and mystery) is concerned
with the observation that our day to day macroscopic world appears to be
governed by the laws of classical physics and not by the equations of quan-
tum mechanics which do describe the world at small scales. But where is the
transition, how do the quantum and the classical world meet and interact?
The ‘measurement problem’ and ‘Schrödingers cat’ are prominent examples
of this set of questions. How can the quantum world of superpositions and
probabilities lead to our macroscopic observations in which measurements
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do have a definite outcome? One resolution is that maybe the whole world
is in fact quantum mechanical, not only on small but on all scales and the
classical appearance is only an illusion or at best an approximation. We will
see how this classicalness comes about.

Anything titled “Foundations of Quantum Mechanics” is likely to be a discus-
sion in philosophical terms, often with ill-defined concepts. When agreeing
to run this seminar, I insisted on a strict “no-nonsense” policy and I believe
we succeeded quite well in this respect. Part of which I would like to at-
tribute to the fact that we interpreted “Foundations” at least as often to be
“mathematical” rather than “philosophical”.

1.2. The Classical and the Quantum

1.2.1. Is the quantum world classical?

Before we go in the direction of explaining the classical world form a quantum
perspective, let us first entertain the possibility that it is in fact the other
way around: Maybe, deep in its heart, the quantum world is in fact classical.
It is just the fact that we have not seen all the relevant fine structure to
realize this. After all, in kinetic gas theory, one also deals with a probabilis-
tic theory that explains everything about how gases in a steam engine work
but probabilities and their associated vagueness only come about because
we ignore the detailed state of all the 1023 molecules that in their bouncing
around to make up the gas. If we measured all positions and momenta of the
molecules, the container of gas would be completely deterministic and the
statistical nature is only due to our ignorance, it is not fundamental. Maybe
the probabilities in quantum mechanics arise in a similar way.

This possibility, however, is ruled out by Bell-type measurements that max-
imally violate the associated inequalities, at least if one further assumes lo-
cality, the principle that there is no action at a distance. As long as we are
dealing with non-relativistic theories this is not fundamental but it seems to
hold in macroscopic physics: At least, we have learned to encode forces, that
like the gravitational force or the electromagnetic force seem to act between
separated systems in terms of fields. These fields then obey local field (dif-
ferential) equations. This seems to be just a trick, replacing the non- local
Coulomb law by the local Gauss-law (and the other Maxwell equations). But
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there is more to it: The field is itself a degree of freedom and has dynamics
of its own, the electromagnetic waves. Those come about when taking the
field as a real physical entity. Of course, one can still generalize the Coulomb
force to Liénard-Wiechert potentials but those are then again local in the
sense that they depend on the retarded positions and the effect of moving
charges around can only effect other charges at the speed of light and not
instantly.

The impossibility of having a classical, local theory is most easily seen in
the GHZ- M-experiment[12, 15] as presented by Coleman[6]. Consider the
following experimental set-up: Three students are each given a “detector”
being a box with a port and two buttons labeled ‘A’ and ‘B’ and two lights,
a red one and a green one. They take their detectors and travel very far in
different directions (so that we can assume they are causally disconnected).
Each day, they all receive a small package from a central entity (the mother-
ship, professor, etc.) which they plug into the port and then at their liberty
press one of the buttons which makes one of the light go on. They take notes
in their lab journal of which button they pressed which day and which of the
lights turned on as an effect.

Neither we nor the students have any clue about the inner workings of the de-
tectors or the packages. One might speculate that depending on the choice
of button the detector compares either the temperature of the package to
a reference or measures the weight of the package and shows green if it is
lighter than a kilogram. Or the package is empty or completely ignored by
the detector which is just a complicated coin throwing device. Or it does a
complicated mechanical measurement involving a very complicated system of
thousands of gear-wheels. Or the package contains some atoms in an atomic
trap and the device does some quantum measurement on them. But if quan-
tum mechanics is classical at it heart, the last choice would again be some
complicated classical measurement just in terms of the classical fine structure
instead of gear-wheels. We do not know and in fact it does not matter.

After many years of these measurements, the three students meet again and
compare their lab journals. They make two peculiar observations: First, on
days, on which all three happened to press the ‘A’ button, the total number
of green lights showing was always odd and thus the number of red lights
even. On days, however, on which only one of the students pressed ‘A’ and
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the other two pressed ‘B’ it was the other way around, an even number of
green and an odd number of red lights showing. They could not find any
correlation between who pressed which button and the light of that person
himself, only with the total number.

Can this experiment be explained in terms of classical, local physics? In that
case, we could say the detector, depending on the choice of button, measures
either the ‘A’ aspect or the ‘B’ aspect of the package (which itself could be
random). This makes implicitly use of locality: What is measured by student
one only depends on his package and his choice of button. It does not depend
on which button is chosen by the other two students. Note that we do not
make any assumption on the packages and what they contain. Since they
come from some unknown preparation it could well be that the contents of
the three packages are correlated, for example that the contents is random
between days but on each day all three packages have the same content.

To formalize, if the red light shows denote the value of this aspect to be +1
and −1 for the green light. If for example on a particular day student one
presses the ‘A’ button and sees a green light we denote this by a1 = −1 while
student three who pressed ‘B’ sees red which we write as b3 = +1. In this
notation, the two observations of the students read

a1a2a3 = −1 a1b2b3 = b1a2b3 = b1b2a3 = 1

Since the only possible values can be ±1 we can express the second observation
also as

a1 = b2b3 a2 = b1b3 a3 = b1b2

But multiplying these three equations leads to a contradiction with the first
observations, since then

a1a2a3 = b2b3b1b3b1b2 = 1 ≠ −1

This seems to be impossible. But there is a simple quantum experiment which
yields exactly this outcome: The packages are prepared to each contain a spin
1/2 system that is set-up such that the total wave function is

∣ψ⟩ = 1√
2
(∣↑↑↑⟩ − ∣↓↓↓⟩)
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Then, depending on the button, the detector measures either

σx = (0 1
1 0

) or σy = ( 0 i
−i 0

) (1.1)

The state ∣ψ⟩ is obviously a −1 eigenstate of three ‘A’ measurements σx ⊗
σx ⊗ σx since that operator exchanges the two terms. Swapping two of the
σx of σy still exchanges the two terms but the factor i2 = −1 makes the eigen-
value +1 while two minus-signs cancel. Thus, ∣ψ⟩ is also a +1 eigenvalue of
σx⊗σy⊗σy or permutations and the measurements come out as observed by
the students. The contradiction of the classical analysis does not arise since
quantum mechanically, if the σx component of a spin is measured it does
not make sense to assign a value to σy as it is done in the above calculation.
Thus the terms are not defined unless measured but on each day either only
a1 or b1 has a value. The spin components are not ‘realistic’, they do not
have a value unless observed.

We conclude that using quantum mechanics it is possible to build devices
(like the packages and detectors in the example) that cannot be built in an
all classical world, at least not unless one allows action at a distance such
that the measurement of student one can depend on the choice of button
at the detector of students two and three. Thus quantum physics cannot
secretly be a classical, local theory.

This tension between realism, contextuality (the requirement that the out-
come of measuring a property A should not depend on whether simultane-
ously one also measures the compatible properties B or C) and locality in the
quantum theory is the subject of the chapter on the EPR paradox, Bell type
inequalities, and the Kochen-Specker theorem by Isabel Krebs and Matthias
Schlaffer.

1.2.2. Are there distinct classical and quantum worlds....

Many textbooks of quantum physics would at least implicitly answer this
question affirmatively. This is at the heart of the traditional understanding
of quantum mechanics, the “Copenhagen interpretation”: One starts with
a quantum system that follows some unitary time evolution of the wave
function ∣ψ⟩ governed by the Schrödinger equation. Then, one decides to
measure an observable represented by a hermitian operator A. The outcome
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is one of the eigenvalues ai of the operator (with probability ⟨ψ∣Pi ∣ψ⟩ where
Pi is the projector to the ai-eigen-space). This measurement makes the wave
function collapse such that after the measurement it is the projected wave
function

Pi ∣ψ⟩√
⟨ψ∣Pi ∣ψ⟩

(1.2)

such that subsequent measurements of A always yield the same result ai
unless some other observable that does not commute with A is measured
intermediately.

This traditional view has obvious short-comings: There are two different,
conflicting time-evolutions of quantum states, the unitary one for unobserved
states and the col- lapsing one during measurement. And what operation
does constitute a measurement that yields a definite, classical outcome for a
quantum state? Is it the detector with its macroscopic size or does it need
a human brain that reads out (and hopefully understands) the result of the
measurement? What about the computer that stores the outcome before
some real person looks at it? Apparently, somewhere there should be some
sort of transition from the quantum world with its typical superpositions to
a classical world where measurements have definite outcomes.

1.2.3. ....or is the classical world secretly quantum?

Reflecting on the differences between the appearance of a classical world and
a quantum world one finds the differences are not as obvious as one might
have thought. We have seen already above that from statistical mechanics
we are used to deal with probabilistic states also in the classical theory by
generalizing the notion of a state from points in phase space to probability
measures on phase space (of which δ-function supported measures are just
special cases). It is perfectly fine to describe the state of a coin after throwing
it to be 50% heads and 50% tails. That does not mean that looking at the
coin one sees a blurry image but it means that statistically half of the times
the outcome is heads and the other half tails and stays with that outcome
until the coin is thrown again. (One could have issues with this frequen-
tist notion of probability but the reader can replace this with his favorite
interpretation of probability like the fair price one would be willing to pay
to play a game that pays one dollar for heads and nothing for tails). This
is the same as in quantum mechanics where a wave function with a wide
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spread does not describe a thick, squashed electron but an electron whose
position measurement can yield a wide variety of results (note well that I did
not write “an electron whose unknown position has a wide rage of possible
values” as the notion of position of the electron will in general not be defined
unless measured). The fact one is dealing with a probabilistic theory is thus
not distinguishing quantum mechanics from classical mechanics. One might
argue that in the quantum theory, the probabilistic nature is fundamental
and in the classical theory is just arises as one did not care to measure the
precise state. But to me it seems this distinction between “fundamental” and
“effective” does not carry very far when defined operationally.

The next apparent difference between classical physics and quantum me-
chanics is that in the quantum case, one can take arbitrary superpositions
of Hilbert space vectors that represent states (more on that relation below)
exemplified in Schrödinger’s cat that is in a state which is a superposition
of alive and dead. One is tempted to say that one has never seen such a
superposition in the macroscopic world. But on second thoughts it is not
really clear what such a macroscopic superposition would look like: Ideas
about semi-transparent cross-fades of two cats that I might see looking at
both states are not warranted even by quantum mechanics, they also do not
occur in the microscopic realm. In a double-slit there are not two half, semi-
transparent electrons going through each slit, rather whenever you bother to
check, you detect an electron either in slit one or slit two. The same holds
for the cat: Either there is no interaction between the superimposed cat and
your eyes or your eyes after looking at the cat will also be in a superimposed
state of either seeing a dead or seeing a living cat. The part state of your eyes
that see a dead cat see no trace of a living cat. You never see both states at
once. So the conclusion of this discussion has to be that a superposition looks
exactly like the states it is composed of, it is just that the looking observer
is then also in a superposition.

So then, if it is not the statistical nature and not a nebulous vagueness of
super- imposed quantum states that amount to the difference between the
classical and the quantum world what is it? This leaves the possibility to have
interference in quantum theory, the fact that the wave function has a phase
that makes it possible to get less output from opening up more possibilities.
This is what the double slit experiment demonstrates. If ψ1 and ψ2 are the
wave functions describing the particle going through slit one or two, then
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the classically available information are the intensities ∣ψ1(x)∣2 and ∣ψ2(x)∣2
which would classically add once both slits are open ∣ψ1(x)∣2+ ∣ψ2(x)∣2. Here,
x is the position on the screen. Classically, if a result can arise from two
mutually exclusive possibilities then the probability of one or the other oc-
curring is the sum of the individual probabilities. In the quantum theory,
however, it is the amplitudes that add and the resulting probabilities are

∣psi1(x) + psi2(x)∣2 = ∣ψ1(x)∣2 + ∣ψ2(x)∣2 + 2Re(ψ̄1(x)ψ2(x))

There are interference fringes with no particle arriving on the screen at places
where particles do arrive when only one of the slits is open: With both slits
open, there is destructive interference. It is this effect that in the end makes it
possible to build the above described quantum experiment that is classically
impossible. The interference term 2Re(ψ̄1(x)ψ2(x)) depends crucially on
the relative phase between ψ1 and ψ2. If that is disturbed (for example by
interaction with the environment as we will see below) then we come back
to the classical addition of probabilities: Let us assume we try to observe if
the particle went through slit two. Then ψ2 has to interact with some sort
of detector. There will be a back-reaction and if the rate of particles going
through that slit is not to be disturbed, the back-reaction can only be a phase

ψ̃2(x) = eiϕψ2(x)

But of course ϕ is not observed and we have to express our lack of knowledge
by averaging over it. This results in

1

2π ∫
dϕRe(ψ̄1(x)eiϕψ2(x)) = 0

and the interference is gone (at least on the average unless we obtain more
knowledge about ϕ).

This example turns out to be generic. Systems behave quantum mechani-
cally (that is show interferences, violate Bell-type inequalities, etc.) if their
constituents have undisturbed (“coherent”) relative phases while they start
to behave classically as soon as these phase relations are lost.

As time evolution in quantum theory is unitary and thus invertible, of course
nothing can get lost in a strict sense. The only thing that can happen is
that this phase information is transferred to other degrees of freedom which
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we will collectively call the “environment” (which specifically can include the
macroscopic number of degrees of freedom of a measuring device).

This leaking of phase information is harder to prevent the more degrees of
freedom the system can possible interact with and this in the end explains
why we hardly see macroscopic interferences and the world around us appears
to be classical: It is due to “decoherence” of the relative phases of Hilbert
space vectors.

The individual contributions in the seminar investigate all these issues in
much more detail.

1.3. What lies ahead?

The first two chapters on “algebraic quantum theory” and the the “Stone-von
Neumann Theorem” deal with the question why the mathematical formalism
of quantum physics is the way it is. We start without an a priori Hilbert
space just with a set of the possible measuring apparatuses that we identify
with the elements of an abstract (C∗)-algebra of observables A.

In this abstract setting, a state is nothing but a linear map ω ∶ A → C
that maps observables to their expectation values. For the expectation value
interpretation to be consistent it should be positive, that is, it should map
positive operators of the form A∗A to non-negative numbers and it should be
normalized ω(1) = 1. One might be worried that there is more information
in a state about an operator than the expectation value like for example the
variance. But of course the variance can itself be expressed as expectation
values of the operator itself and its square.

As discussed in the contribution by Sebastian Seehars, from A and ω it is
then possible to construct a Hilbert space on which the observables A are
realized via a map π(A), as (bounded) operators and which contains a vector
∣Ω⟩ such that the state ω is realized as expectation value ω(A) = ⟨Ω∣π(A) ∣Ω⟩.
That is, the Hilbert space arises here as a representation of the algebra of
observables. This representation is irreducible if the state ω is pure.

If the algebra is already an algebra of operators on a Hilbert space (which
is in particular the case if it is a finite dimensional matrix algebra) then any
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state can be written as ω(A) = TR(ρA) with a density matrix (operator),
that is a hermitian operator ρ that is positive and has Trρ = 1.

Over and over in this seminar, we are dealing with the situation that the
whole “world” we are describing falls into several parts like the system and
the environment or the system and the measuring device or simply ‘what
we are interested in’ and ‘the rest’. Mathematically, this means we write
the total Hilbert-space as a tensor product H = H1 ⊗ H2. Then there are
certain observables which only act on one part of the world, like only on the
system or only on the measuring device. These are of the form A = A1 ⊗ 1

(or B = 1 ⊗ B2 for that matter). Taken together, they form a sub-algebra
A1 ⊗ 1 and of course one can restrict any state ω to only this sub-algebra
ω1(A1) = ω(A1⊗1). This state is then described by a reduced density matrix
ρ1 = TrH2(ρ) on H1 such that ω1(A1) = TrH2(ρ1A1).

Two remarks are in order. One should note that the partial trace does not
arise because of some averaging over some non-observed environment but is
a consequence of the choice only to test the state ω on observables of part of
the world by restricting attention to the sub-algebra A1 Second, I would like
to stress the the decomposition of H as a tensor product and the associated
restriction of A to A1 s not set in the mathematical structure of H but is
rather a choice of the observer who decides which observables to observe.
In that sense, the reduced density matrix, which we will later find to have
classical properties in many cases, is the result of a subjective choice of the
restriction of attention rather than intrinsic in the world or its mathematical
description.

Taking this abstract approach to observables and states clarifies an issue of
locality that is often confused: The information about locality is encoded
in the observables, not in the states. For the bipartite system above with
H = H1 ⊗H2 the local observables are those of the form A1 ⊗ 1 or 1 ⊗ A2

while the states or wave functions ψ ∈ H are always global objects. There
is no such thing as “the state of particle 1” (where H1 is the Hilbert space
of particle one), at least not when one makes measurements not of the form
A1⊗1, but that also measure properties of particle two. The only thing that
exists is the global state of both particles that can contain correlations and
entanglement. This is no particularity of quantum physics: Also classically,
we are used to non-local correlations in the state: When in the morning
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picking a random pair of socks from a drawer and putting them on, the color
of the socks on both feet is correlated, for most people at least, even if the
feet are at a space-like distance. Looking at the color of the left sock does
not transfer any information about sock’s color from the left to the right foot.

The contribution by Dennis Schimmel analyzes the construction of the Hilbert
space and operators for the most common case that the algebra A is gener-
ated by variables x and p obeying canonical commutation relations (properly
interpreted in terms of the Weyl algebra). It contains a proof of the Stone-von
Neumann theorem stating that (up to unitary equivalence) there is only one
irreducible Hilbert-space representation of these operators, the Schrödinger
representation where x is the multiplication operator in position space and
p is id/dx.

The next contribution by Mario Flory investigates the possibilities that arise
when one considers a quantum mechanical system not only as a system by
itself but one allows it to interact with further degrees of freedom that arise
when one allows the Hilbert space to grow a further tensor factor describ-
ing this “environment”. Specifically, in that case one can not only measure
the eigenvalues of a hermitian operator acting on the system but one can
generalize the projection valued measure of the spectral decomposition of
the observable to positive operator valued measures (POVMs). As an exam-
ple, it is explained how one can distinguish two not necessarily orthogonal
Hilbert-space vectors (at the price of possibly reaching an inconclusive an-
swer).

By allowing a system to interact with other degrees of freedom one can
also significantly generalize the possible time evolutions: While for a closed
system, only unitary transformations are possible, in connection with an en-
vironment any strictly positive, normalized linear map acting on the density
matrix is possible (when considering this density matrix as a reduced density
matrix of the world which undergoes itself a unitary time evolution). Again
POVMs play a role.

1.3.1. Measurements

A measurement is the observation of properties of the state of a system by
an observer. That is, the state of the observer after the measurement should
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be influenced by the state of the system under observation. Otherwise, the
measurement has not been effective. The “measurement problem” arises as we
think of ourselves as observers as macroscopic, classical objects. Therefore,
the quantum state of the system has to influence our classical state via the
measurement. This appears to be problematic as the quantum state can
be a superposition of two states of which the related classical states of the
observer are macroscopically different. If the measurement is a linear process,
a superposition on the system side should also lead to a superposition of the
observer after the measurement, an operation that is not possible classically.
The chapter on the measurement problem by Anupam Prasad Verdurmudi
and David Jahn deals with this problem in detail.

1.3.2. lternatives to Copenhagen I: Decoherence

Modern approaches to the problem of the transition between the quantum
and the classical realm as manifested in the measurement problem try to get
rid of the collapse of the wave-function that is postulated by the traditional
“Copenhagen”-interpretation for the moment of the measurement. The col-
lapse turns a quantum state to a probabilistic classical state but at the price
of an ad hoc assumption to give up the usual time evolution in favor of the
projection to the eigenstate of the observed operator.

At the heart of the decoherence approach is the idea that the collapse mech-
anism is the effective description of a dynamical process that is described
within the unitary evolution of quantum mechanics. The irreversibility of
the collapse comes about since the collapse appears only when degrees of
freedom attributed to “the environment” are not measured. The world con-
sisting jointly of system and environment behaves quantum mechanically at
all times but when the system alone is considered it looks as if a classical
collapse has occurred.

Taking ψ1 and ψ2 to be basis vectors in a Hilbert space, the superposition

1√
2
(ψ1 + eiϕψ2)

(with a possible relative phase ϕ as above) corresponds to the density matrix

ρ = 1

2
( 1 eiϕ

e−iϕ 1
)
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Again, as above, averaging over ϕ removes the off-diagonal entries. The same
happens upon enlarging the Hilbert-space by a tensor factor. If that has basis
elements e1 and e2, then entangling the above state with this environment
(for example a detector in a double slit experiment such that e1 corresponds
to the state of a detector that found the particle going through slit one while
e2 is the state of the detector that found the particle went trough slit two)
leads to the state

1

sqrt2
(ψ1 ⊗ e1 + eiϕψ2 ⊗ e2)

If one considers now the reduced density matrix of the system only by ignor-
ing the environment (not reading out the detector) one finds

ρ′ = 1

2
(1 0

0 1
)

In a sense, this mixed state is classical: It corresponds to adding the prob-
abilities of finding ψ1 or ψ2 rather than the amplitudes as we found above.
We could equivalently generate it by throwing a classical coin and then de-
pending on the outcome take ψ1 or ψ2. The interferences, the signs of the
quantumness of nature are gone as the relative phase ϕ has disappeared.1

By forgetting about the relative phase between ψ1 and ψ2, we have turned the
quantum superposition into a classical probabilistic “either or” alternative.
Still, half of the times one goes to check which is realized one finds the first
but like in the weekly lottery nobody expects that any of the thirteen million
other possible outcomes of drawing six balls from a collection of 49 influences
the outcome that we perceive as realized. With respect to interference effects
- the only difference between the quantum world and a probabilistic classical
world - the state ρ′ is on the classical side.

The resulting state ρ′ is exactly the same that would have resulted from a
1This is somewhat curious: Strictly speaking, a pure state is not a non-zero vector ψ

in the Hilbert-space but the equivalence class of all non-zero scalar multiples of ψ, the
ray through ψ since to compute expectations one only needs the projector ρ = ∣ψ⟩ ⟨ψ∣ /∣ψ∣2
which is invariant under scalar multiplications. To form superpositions, however, only
knowing the rays that interfere is not enough, one needs the actual vectors. With the rays
one can only form classical statistical mixtures, for quantum superpositions one needs the
vectors. The physical difference between the two only becomes important when taking
into account other vectors/states to interfere with.
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collapse of the wave function in the Copenhagen interpretation: With prob-
ability one half it is the state described by ψ1 and with probability one half
it is the state described by ψ2.

The idea behind the “decoherence” approach to the quantum-classical tran-
sition is that this behavior is generic when a system is coupled to many
unobserved degrees of freedom: The interaction with the environment turns
off the off-diagonal entries in the density matrix thereby rendering a quan-
tum state classical. This is explained in detail in the chapter on decoherence
by Kostas Vavouranakis and Kosmas Kepesidis.

It should be stressed once more that this transition is subjective in the follow-
ing sense: The diagonalization happens in the reduced density matrix that
describes the state of the “system”, while not taking into account the state
of the environment. The world (defined as system plus environment) as a
whole is a closed system and thus has a unitary time evolution under which
pure quantum (superposition) states stay pure for all times. Only when re-
stricting attention to the system it appears classical but the quantumness
can be recovered by also observing the environment with which the system
is entangled.

The decoherence chapter shows how the decoherence comes about dynami-
cally by having the system interact with the environmental degrees of free-
dom and computes the time scale at which this happens. It also answers the
question of the pointer basis: The density matrix being a hermitean operator
can always be diagonalized. That is, one can always find a basis in which
all off-diagonal entries are zero, we do not need decoherence to explain this.
Thus, strictly speaking, the diagonalization is not the important fact about
decoherence. It is the fact that in a particular given basis the matrix becomes
diagonal. This basis is identified as the basis that the system-environment
interaction measures: Take the the system-environment interaction in the
interaction picture to be of the form

H =∑
k

H(k) ⊗Hk

where k runs over the degrees of freedom of the environment and all H(k)
act on the “system” while Hk only acts on the kth degree of freedom of
the environment. Decoherence happens now if all the H(k) commute and is
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effective in the basis that simultaneously diagonalizes all these interaction
Hamiltonians. For example, if the environment acts as spatial noise, that
is if the interaction is realized by potentials H(k) = v(k)(x) decoherence
happens in position space and the state at different x loses its relative phase
exponentially fast.

1.3.3. Alternatives to Copenhagen II: Consistent Histories, Many
Worlds and Bohmian Mechanics

The approach termed “Consistent Histories” is another interpretational frame-
work originating in ideas about quantum cosmology. It aims to single out
families of “histories” of events for which the classical addition of probabili-
ties is possible while the time evolution is that of the Schrödinger equation.
In the chapter by Hao Wu about this approach a mathematical criterion for
consistency is developed.

The idea of the Many Worlds interpretation goes back to H. Everett. It can
be closely linked to the decoherence approach discussed above and realizes
the probabilistic final state ρ′ after decoherence as an ensemble of worlds
whose frequency realizes the probabilities on the diagonal of the reduced
density matrix. The reality of these many parallel worlds can be debated.
Whether they are just a figure of speech to give the probabilities a frequentist
meaning or whether it makes sense to assume them to exists although being
unobservable from the other worlds is a matter of opinion. This is explained
in the chapter by Max Jeblick.

A radically different approach is taken by Bohmian mechanics. There, one
insists on the positions of particles to be realistic, that is to have a value
even at times when not observed. The lesson of the Bell inequalities is then
that one has to sacrifice locality. This is done as follows: The wave function
ψ is computed as always using the Schrödinger equation. For Hamiltonians
of the form

H = 1
2p

2 + V (x)

one can define a conserved probability current. The Bohmian idea is then to
interpret this current as arising from the motion of particles via

j⃗ = ∣ψ∣2v⃗
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that is to postulate particles with velocities

˙⃗Q = v⃗ = Im(∇ψ
ψ

)

An ensemble of particles that is distributed according to the density ψ(t = 0)∣2
at initial time will be distributed like ∣ψ(t)∣2 at any time. The vector Q is
interpreted as the position of the particles that are actually observed for
example as black points on a photographic plate observing the spatial distri-
butions of particles behind a double slit.

Locality is lost as the wave function depends on the positions of all particles
and thus the equation giving the velocity of the iith particle depends on the
simultaneous position of all other particles. All this is explained in the con-
tribution by Henry Hanson and Franz Thoma.

The Bohmian interpretation is not followed by the majority of physicists.
Points of criticism are the sacrifice of locality which many consider not natu-
ral and which makes it difficult to generalize this approach to the relativistic
realm as well to the situation of quantum field theory where particles can
be created and annihilated. Furthermore, it is not obvious what a certain
observation measures, the wave function or the position Q. It is claimed that
Q is observed when one sees the particle nature of the system, however, if one
wants to describe the measurement quantum mechanically it should not mea-
sure v since the evolution of the wave function does not depend on Q (since
there is no feedback of Q into the Schrödinger equation). In addition, for
time-reversal invariant systems (effectively those without a magnetic field),
one can take the Hamilton operator to be real and thus its eigenfunctions
can be choses real as well (or with a constant phase). But for those ˙⃗Q = 0
and the particles donÕt move. This is the case even for the eigenfunctions
of the harmonic oscillator and the hydrogen atom. In Bohmian quantum
mechanics, the particles stand still even though there is a strong force acting
on them. If the position Q is observable at all (otherwise its status as a
physical ontological entity is doubtful) this should be experimentally check-
able. Finally, the realism of the Bohmian approach only applies to position.
Other observables like momentum or spin do not (and cannot) have realistic
values unless measured. This is explained as “only positions are character-
istic properties of particles” but is unclear what singles out these particular
observables to receive this special treatment.
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2. Algebraic quantum theory - Sebastian Seehars

In introductory lectures of quantum mechanics one usually starts by pos-
tulating that the state of a quantum system is given by an element of a
(projective) Hilbert space called the ‘wave function’. We can act on the
system—and thus on its state—by a linear operator on this Hilbert space or
by measuring an observable. In the algebraic approach to quantum theory,
however, one starts with an abstract algebra of observables and then finds
the Hilbert space as a derived concept, i.e. a representation of the observable
algebra.

2.1. Algebras of Observables

In an n-dimensional HIlbert space, the algebra of observables consists of the
complex n × n matrices, that is of Mat(n × n,C).

If the Hilbert space is infinite dimensional, it is conventional to use the alge-
bra B(H) of bounded operators, where an operator A is called ‘bounded’ if
its operator norm

∥A∥ = supψ∈H,ψ≠0 (
∥Aψ∥
∥ψ∥

)

is finite. This boundedness condition is automatic in the finite dimensional
case. In any case, B(H) has the structure of a C∗-algebra.

Definition 1 A vector space A over C with operation ○ ∶ A × A → A ;
(a, b)↦ a ○ b, such that the following holds:

● ○-operation is bilinear:

(αa) ○ b = α(a ○ b)
(a + a′) ○ b = a ○ b + a′ ○ b
a ○ (αb) = α(a ○ b)
(a ○ (b + b′) = a ○ b + a ○ b′

● ○-operation is associative: a ○ (b ○ c) = (a ○ b) ○ c

is called associative C-algebra A.
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Definition 2 Let A be an associative C-algebra, ∥ ⋅ ∥ be a norm on the C-
vector space A. Let operation ∗ ∶ A → A; a ↦ a∗. Then (A, ∥ ⋅ ∥,∗) is called
C∗-algebra A, if the following holds:

● ∗-operation is C-antilinear : λ ∈ C, a ∈ A ∶ (λa)∗ = λ̄a∗,

● ∗-operation is an involution: a∗∗ = a,

● (ab)∗ = b∗a∗,

● submultiplicity: ∥ab∥ ≤ ∥a∥∥b∥,

● ∥a∗∥ = ∥a∥,

● ∥a∗a∥ = ∥a2∥.

It is easy to see, that e.g., (Mat(n × n,C), †, ∥ ⋅ ∥op) is a C∗-algebra, where †
is the hermitian conjugate and ∥ ⋅ ∥op ∶= sup∥φ∥=1∥Aφ∥. In general, we can also
replace Mat(n × n,C) by B(H) and still get a C∗-algebra.

2.2. States

In the algebraic framework, states are defined as expectation value function-
als, mapping from the C∗-algebra to the complex numbers:

● τ is normalized: τ(1) = 1

● τ is positive: ∀a ∈ A ∶ τ(a∗a) ≥ 0

One can show:

1. A×A→ C; (a, b)↦ τ(b∗a) is positive semi-definite, hermitian, sesquilin-
ear form;

2. ∣τ(b∗a)∣2 ≤ τ(a∗a)τ(B∗b);

3. τ(a∗) = τ(a);

4. ∣τ(a)∣2 ≤ τ(a∗a)

Remark 4 If we have an algebra A of bounded operators on a Hilbert space,
every density-operator ρ (ρ ≥ 0,Tr(ρ) = 1) induces a state by τ ∶ A → C;a ↦
Tr(ρa) (and vice versa in finite dimensions).
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2.3. Gelfand-Neumark-Segal Construction

In order to construct the connection of this abstract algebra notion to our
standard quantum mechanics formalism, we still need a correspondence be-
tween the algebra and the linear operators. This connection will be given in
terms of a “representation”.

Definition 5 Let A,B be algebras with involution and unit 1. A map
π ∶ A→B is called ∗-homomorphism, if the following holds:

● π is C-linear map: for λ ∈ C ∶ π(λa) = λπ(a)

● π(ab) = π(a)π(b)

● π(a∗) = (π(a))∗

Definition 6 A representation is a ∗-homomorphism π ∶ A → L(D), where
A is C∗-algebra, D is dense in H, H is Hilbert space, L(D) is the space of
linear operators on D and π(1) = 1.

Construct scalar product and Hilbert space

From section 2.2 we know that the map (a, b)↦ τ(a∗b) is only positive semi-
definite. But for a scalar product, we need positive definiteness. Therefore
define the nullspace Nτ :

Nτ ∶= {a ∈ A∣τ(a∗a) = 0}

and the quotient-set A/Nτ , where this is a set of equivalence classes [a]:

[a] = {b ∈ A∣∃n ∈Nτ ∶ b = a + n}

Let?s now pick two equivalence classes [a] and [b] and two elements of the
nullspace n and m and evaluate the following quantity:

τ((a + n)∗(b +m)) = τ(a∗b) + τ(a∗m) + τ(n∗b) + τ(n∗m)

For τ to be a well defined scalar product on the quotient set, we therefore need
that the last three terms on the right hand side vanish. But by employing
the Cauchy-Schwarz inequality ∣τ(a∗b)∣2 ≤ τ(a∗a)τ(b∗b), we can easily see
that:

∣τ(a∗m)∣2 ≤ τ(a∗a)τ(m∗m) = 0
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Similar equations also hold for the other two terms.

Now, we can define the scalar product ⟨⋅, ⋅⟩τ :

⟨⋅, ⋅⟩τ ∶ A/Nτ ×A/Nτ → C; ([a], [b])↦ τ(a∗b)

and the Hilbert space Hτ :

Hτ = (A/Nτ , ⟨⋅, ⋅⟩τ)

Construct representation

There is a general way to define the representation πτ :

πτ ∶ A→ L(Hτ); πτ(a)
²
∈L(Hτ )

[b]
∈̄Hτ

∶= [ab]
±
∈Hτ

The question arises, whether or not the [ab] notation is well defined, whether
[ab] = [a′b] if [a] = [a′]. To see this, pick b1, b2 ∈ A, n ∈ Nτ , such that
b1 = b2 + n. Now take another a ∈ A:

ab1 = ab2 + an⇔ ab1 ∼ ab2, if an ∈Nτ

Check if an ∈Nτ :
an ∈Nτ ⇔ τ((an)∗an) != 0

∣τ((an)∗an)∣2 = ∣τ(n∗a∗an)∣2 = ∣τ((a∗an)∗n)∣2 ≤ τ((a∗an)∗a∗an) τ(n∗n)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

=0

= 0

Also, we define a unit vector ∣Ω⟩ = [1]. Then one can show:

τ(a) = τ(1∗a1) = ⟨[1], [a1]⟩ = ⟨Ωτ , aΩτ ⟩

Definition 7 Let τ be a state of the C∗-algebra A. The representation
(H, ⟨⋅, ⋅⟩, πτ ,Ωτ) is called GNS-representation.

2.4. Example

Consider A = Mat(2 × 2,C) with state τ ∶ A → C;a ↦ Tr(ρa), where ρ is a
density matrix.
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First look at Nτ : for a ∈Nτ the following holds:

τ(a∗a) = 0⇔ Tr(ρa∗a) = 0

Since the trace is invariant under a change of basis, we can choose ρ to be
diagonal:

ρ = (ρ1 0
0 ρ2

)

⇒ 0 = Tr((ρ1 0
0 ρ2

)(a
∗
1 a∗3
a∗2 a∗4

)(a1 a2

a3 a4
))

= ρ1(∣a1∣2 + ∣a3∣2) + ρ2(∣a2∣2 + ∣a4∣2)

(a) pure state

For a pure state, we can choose w.l.o.g.: ρ1 = 1, ρ2 = 0 ∶ ρ = (1 0
0 0

).

⇒ 0∣a1∣2 + ∣a3∣2 ⇔ a1 = a3 = 0

⇒Nτ = {a ∈ A∣a1 = a3 = 0}

A/Nτ ∋ [a] ∶ a ∼ b = (a1 a2

a3 a4
) + (0 n2

0 n4
)

Out of every equivalence-class [a], choose (a1 0
a3 0

) to represent the class and

think of it as a C2-vector.

The scalar-product ⟨⋅, ⋅⟩τ is then defined by:

⟨⋅, ⋅⟩τ ∶ A/Nτ ×A/Nτ → C; ([a], [b])↦ τ(a∗b)

τ(a∗b) = Tr((1 0
0 0

)(a
∗
1 a∗3

0 0
)(b1 0
b3 0

)) = a∗1b1 + a∗3b3 = (a∗1 a∗3) ⋅ (
b1

b3
)

It follows that the Hilbert space takes the form Hτ = (A/Nτ , ⟨⋅, ⋅⟩τ). Think
of the Hilbert space as C2 with its regular scalar-product.

The linear operators on Hτ are now defined by the representation πτ :

πτ ∶ A→ L(Hτ);πτ(a)[b] = [ab]
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(a1 a2

a3 a4
)(b1 0
b3 0

) = (a1b1 + a2b3 0
a3b1 + a4b3 0

) = a(b1

b3
)

⇒ πτ(a)[b] = a(
b1

b3
)

and we can think of elements in L(Hτ) as two by two matrices.

(b) mixed state

Now use 0 < ρ1, ρ2 < 1 as density matrix. Then the condition for a ∈ Nτ

yields:
a1 = a2 = a3 = a4 = 0 ∶Nτ = {0}

In this case, A/Nτ = A and the scalar product takes the form:

⟨⋅, ⋅⟩τ ∶ A ×A→ C; ([a], [b])↦ τ(a∗b)
τ(a∗b) = Tr(ρa∗b) = ρ1(a∗1b1 + a∗3b3) + ρ2(a∗2b2 + a∗4b4)

and with A being the underlying vector space of the C∗-algebra A, the Hilbert
space is Hτ = (A, ⟨⋅, ⋅⟩τ).

The representation πτ acts as:

πτ ∶ A→ L(Hτ);πτ(a)[b] = [ab] = a ⋅ b
and therefore is a regular matrix multiplication.

The idea is now to rewrite these equations to see how the “mixedness” of the
state translates to a “mixedness” of the Hilbert space. Therefore, write the
states b ∈ Hτ as 4-vectors:

∣b⟩ =
⎛
⎜⎜⎜
⎝

b1

b2

b3

b4

⎞
⎟⎟⎟
⎠

As a scalar product, one has:

⟨a, b⟩ = (a∗1 a∗2 a∗3 a∗4)
⎛
⎜⎜⎜
⎝

ρ1 0 0 0
0 ρ1 0 0
0 0 ρ2 0
0 0 0 ρ2

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

b1

b2

b3

b4

⎞
⎟⎟⎟
⎠

= ρ1⟨(
a1

a3
) ,(b1

b3
)⟩ + ρ2⟨(

a2

a4
) ,(b2

b4
)⟩
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and the operator πτ(a) acting on the state ∣b⟩ reads:

a ∣b⟩ = ( a 0
0 a

)

where the matrix is a block-diagonal matrix. Now let’s define the unit vector
∣Ω⟩:

∣Ω⟩ = [1] = (1 0
0 1

) =
⎛
⎜⎜⎜
⎝

1
0
0
1

⎞
⎟⎟⎟
⎠

⇒ ⟨a⟩ = ⟨Ω, aΩ⟩ = (1 0 0 1)
⎛
⎜⎜⎜
⎝

ρ1 0 0 0
0 ρ1 0 0
0 0 ρ2 0
0 0 0 ρ2

⎞
⎟⎟⎟
⎠
( a 0

0 a
)
⎛
⎜⎜⎜
⎝

1
0
0
1

⎞
⎟⎟⎟
⎠

⇒ ⟨a⟩ = ρ1 (1 0)a(1
0
) + ρ2 (0 1)a(0

1
)

This can be interpreted as evaluating the expectation value of a in the pure
states (0 1) and (1 0) first and then calculating their weighted average.

2.5. Product States

Consider composed systems 1 and 2 with respective Hilbert spaces (H1, ⟨⋅, ⋅⟩1)
and (H2, ⟨⋅, ⋅⟩2). The product space H = H1 ⊗H2 has scalar-product:

⟨x⊗ y, x′ ⊗ y′⟩ = ⟨x,x′⟩1⟨y, y′⟩2

and linear operators take the form:

a ∈ L(H1), b ∈ L(H2) ∶ (a⊗ b)(∣x⊗ y⟩) = ∣ax⟩⊗ ∣by⟩

Now we want to carry this over to the algebraic formulation. Given two
representations (H1, φ) and (H2, ψ), where φ ∶ A → L(H1) and ψ ∶ B →
L(H2), then there exists the representation π ∶ A⊗B→ L(H1⊗H2); π(a⊗b) =
φ(a) ⊗ ψb. In a similar way, one can define a norm on C = A ⊗B. (This is
of course just a hand-waving argument and has to be made mathematically
rigorous, but I don’t want to do this here.)
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Let’s consider states on such a C∗-tensor product C = A⊗B. The most naive
way to define a linear functional τ ∶ C → C is the following: given µ ∶ A → C
and ν ∶B→ C define the product state τ as:

τ ∶ C→ C; τ(a⊗ b) ∶= µ(a)ν(b)

If we want to measure only on one part of the product space, say on A, we
have to use as observables c:

C ∋ c = a®
∈A

⊗ id®
identity on B

and they lead to states
τA(a) = τ(a⊗ id)

For the specific example discussed in section 4, this amounts to

A =B =Mat(2 × 2,C) ∶ C =Mat(2 × 2,C)⊗Mat(2 × 2,C)

τA(a) = τ(c) = Tr(ρc) = Tr(ρ(a⊗ id)) = Tr(ρ̃a); where ρ̃ = TrBρ

So from our decision to ignore subpart B, we got a similar description as the
one for A being no product space, but with ρ getting replaced by ρ̃, where
the partial trace over the subsystem B is performed on ρ. The fact that the
Hilbert space H splits nicely into the desired H1 ⊗H2 is not canonical, but
arises from our restriction to the subalgebra with elements a⊗ id.

Other states on C are:

● τ is a correlated state, if ∃a ∈ A, b ∈B, such that τ(a⊗b) ≠ τA(a)τB(b),

● τ is a decomposable, if it can be expressed by a convex combination of
product states

● and entangled, if not.

2.6. Further reading

For the real deal on C∗-algebras check out the paper of C. Baer and C.
Becker[2] There is a sript of Klaus Fredenhagen (in German, though) on
“Algebraische Quantenfeldtheorie”, where the first chapter is relevant[10].
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3. The Stone-von Neumann uniqueness theorem
- Dennis Schimmel

3.1. The Canonical Commutation Relation (CCR)

If we build up Quantum Mechanics from the CCR ([Q,P ] = i), we have not
said anything about wavefunctions. Indeed, the concept of wavefunctions in
L2 and Q as multiplication operator and P as differential is but one special
representation of the CCR (the “Schrödinger-representation”). But there is in
principle no special reason to pick this representation instead of any other.
In particular, if we pick any other representation, with a different Hilbert
space, is that even physically equivalent to the Schrödinger-representation?
The Stone-von Neumann Uniqueness Theorem states exactly this equiva-
lence.

There are some technical difficulties, as the CCR implies that at least one of
Q or P is unbounded. This means that we cannot use the weak C∗-algebra
structure.

But there is an elegant way around this problem: we look at the exponenti-
ated version of the CCR: Take two one-parameter groups U(α) = exp (iαP ),
V (β) = exp (iβQ) with U(α)V (β) = exp (iαβ)V (β)U(α).

3.2. Uniqueness Theorem

If {U(a)∣a ∈ R} and {V (a)∣a ∈ R} are (weakly) Lebesgue-measurable families
of unitary operators acting irreducibly on a separable Hilbert space H, such
that

U(a)U(b) = U(a + b)

V (a)V (b) = V (a + b)

U(a)V (b) = exp (iab)V (b)U(a)

If {Ũ(a)∣a ∈ R} and {Ṽ (a)∣a ∈ R} are (weakly) Lebesgue-measurable families
of unitary operators acting irreducibly on a separable Hilbert space H′, such
that

Ũ(a)Ũ(b) = Ũ(a + b)

Ṽ (a)Ṽ (b) = Ṽ (a + b)
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Ũ(a)Ṽ (b) = exp (iab)Ṽ (b)Ũ(a)

hen there exists a Hilbert space isomorphism W ∶ H → H′, which intertwines
the action of U and V , that is:

WU(a)W −1 = Ũ(a)

WV (a)W −1 = Ṽ (a)

3.3. Remarks

1. One of these representations can be taken to be the Schrödinger-representation
withH = L2(R), (U(α)ψ)(x) = ψ(x−α) and (V (β)ψ)(x) = exp (−iβx)ψ(x).

2. The result can be generalized to a finite number of degrees of freedom
(in the sense that n particles in Rm have a finite number of degrees of
freedom), but not to an infinite number (QFT).

3. The operators Q,P can be recovered by “differentiating”, i.e.,

P = d

dt
U(t)∣t=0

3.4. Sketch of Proof

The idea is to show that every representation can be built out of some linear
subspaces of the Hilbert space and unitary operators acting on these. In this
construction, an irreducible representation is completely characterized by a
single vector and a single family of operators. The isomorphism between
representations is then the identification of the vectors and the families of
operators. The complete proof by J. v. Neumann can be found in [23] (in
German).

3.4.1. Step 1:

Introduce the Weyl-System S(α,β) ∶= exp (−1
2iαβ)U(α)V (β) and show cer-

tain properties via straightforward calculations using the assumptions about
U and V and their commutator:

1. S(α,β)S(γ, δ) = exp ( i2(αδ − γβ))S(α + γ, β + δ)
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2. S(0,0) = 1, this follows directly from the above via setting α = β = γ =
δ = 0

3. (S(α,β))−1 = S(−α,−β), from above via setting γ = −α, δ = −β

4. S∗(α,β) = S(−α,−β)

Further, if we have an isomorphism between S and S̃, we obviously have an
isomorphism between U,V and Ũ , Ṽ (Simply set α = 0 to obtain U , β = 0 to
obtain V .

3.4.2. Step 2:

Introduce A(a) ∶= ∫ dαdβ a(α,β)S(α,β) for a ∈ L1(R2) and calculate prop-
erties of A (We denote a as K(A) (although we do not yet know, if this
exists)):

1. α′A(a) = A(α′a)

2. A∗(a) = A(a(−α,−β))

3. A(a)S(u, v) = A(exp ( i2(αv − βu))a(α − u,β − v))

4. S(u, v)A(a) = A(exp (−i2 (αv − βu))a(α − u,β − v))

5. A(a) +A(b) = A(a(α,β) + b(α,β))

6. A(a) ⋅A(b) = A (∫ dξ dη exp i
2(αη − βξa(α − ξ, β − η)b(ξ, η))

7. A(a) = 0 implies a = 0.

Since this is rather difficult to prove, I will give a short sketch of the
important steps:

A(a) = 0 implies 0 = S(−u,−v)A(a)S(u, v). From the above properties
one can calculate:

S(−u,−v)A(a)S(u, v) = A(exp (i(αv − βu))a(α,β))

This implies

0 = ∫ dαdβ exp (i(αv − βu))a(α,β)⟨S(α,β)g, g⟩ ∀f, g ∈ H
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[In principle, knowing functional analysis, we are done: The expression
above can be read as the Fourier-transform of a(α,β)⟨S(α,β)g, g⟩, and
we know that this yields the desired result.]

Thus for P = ∑ ck,l exp (i(kα + lβ)), where we sum only over finitely
many terms:

0 = ∫ dαdβ P (α,β)a(α,β)⟨S(α,β)f, g⟩

Extend this via dominated convergence to other, more general P , in
particular a step-function. Then we obtain: a = 0 almost everywhere,
which is the best we can hope for.

3.4.3. Step 3:

Consider now a special choice of a. With this choice we can build up H by
using one vector, applying the S’s and then taking linear combinations. Thus
the whole representation is “squeezed” into one vector:

1. Define Ã by Ã = A(exp (−1
4α

2 − 1
4β

2)). For this Ã we have Ã∗ = Ã, Ã ≠ 0

(as A(a) = 0 implies K(A) = 0) and ÃS(u, v)Ã = 2π exp (−1
4u

2 − 1
4v

2)Ã,
in particular Ã2 = 2πÃ.

2. Consider the “eigenvectors” of A, that is solutions of Ãf = 2πf . As a
is bounded, the set M ∶= {f ∈ H∣Af = 2πf} is a closed linear subspace.
Thus each element f of M can be written as f = Ã( 1

2πf).

3. A direct calculation gives:

⟨S(α,β)f,S(γ, δ)g⟩ = exp (−1
4(α − γ)

2 − 1
4(β − δ)

2 + i
2(αδ − βγ))⟨f, g⟩

for f, g ∈M . This implies that for an orthonormal basis {φn} of M :

⟨S(α,β)φn, S(γ, δ)φm⟩ = exp (−1
4(α − γ)

2 − 1
4(β − δ)

2 + i
2(αδ − βγ))δnm

4. Now we want to see which part of our total Hilbert space cannot be
reached by applying some S to a vector inside of M (it will turn out
that Lin(SM) is the total Hilbert space). For this define

Pn ∶= {h ∈ H∣∃α ∈ C ∶ αh = S(φn)}
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Then SPn = Pn (as S2(α,β) ∝ S(γ, δ)) and S−1(α,β) ∝ S(γ, δ). Thus
from a simple calculation (using Ã∗ = Ã): ∀f ∈ (Lin(Pn))⊥ : Ãf = 0
(Consider ⟨Ag, f⟩ for some g ∈ H and f ∈ (Lin(Pn))⊥. With Ã2 = 2πÃ
we have Ag ∈M . Using Ã∗ = Ã we obtain Ãf = 0 ∀g ∈ H). This implies
that (Lin(Pn))⊥ = {0} (as the properties of Ã [point 4.3.1] also apply
when we restrict Ã to (Lin(Pn))⊥ which is a sub-Hilbert space of H
and a subrepresentation of the S). ThusM = H (This is not surprising,
since Lin(Sξ) is an irreducible representation for some ξ ∈M and H is
an irreducible representation which contains Lin(Sξ).

3.4.4. Step 4:

Since the above construction is completely general, this can be done for both
representations. But in the “projections” the desired isomorphism between
S and S̃ is obvious, since then each element of the Hilbert space and each
operator S is characterized only by coefficients (which can be equated) and
numbers α,β corresponding to the action of S(α,β) on the vector giving the
one-dimensional subspace.

In formulas we do the following: M and thus H can be segmented by the
Pn. So if we can identify the Pn from H with those from H′ in a sensible
way (preserving the Hilbert space and representation structure), we have
found the isomorphism we were looking for. The Hilbert space structure, in
particular the scalar product is conserved for vectors inside Lin(SM) (as its
result only depends on on the scalar product of φ1 with φj and the parameters
of the S). We define fα,β ∶= S(α,β)φn. But then the isomorphism is obvious:
identify the fα,β from H with the f ′α,β from H′. This identification preserves
everything we need. If we do this identification only for a basis of H, it is
obvious that the result is unique for every vector.

For irreducible representations we thus actually obtain isomorphy.

Note: For the Schrödinger-Representation we have

φ1 = φ1(q) = π−1/4 exp(−1

2
q2)

fα,β = fα,β(q) = π−1/4 exp(−1

2
q2+) − (α + iβ)q + (−α

2

2
+ iαβ

2
))
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3.4.5. Generalization to more degrees of freedom

For a system of k ∈ N degrees of freedom, we have as CCR’s:

[Pm, Pn] = 0 = [Qm,Qn]

[Qm, Pn] = iδnm
We can introduce one Un for each Pn and one Vm for each Qm. Setting

S(α1,⋯, αk, β1,⋯, βk)
∶= exp (−1

2i(α1β1 +⋯ + αkβk))U(α1)⋯U(αk)B(β1)⋯V (βk)

A ∶= ∫ dα1⋯dαkdβ1⋯dβk

exp (−1
4(α

2
1 +⋯ + α2

k + β2
1 +⋯ + β2

k))S(α1,⋯, αk, β1,⋯, βk)

we can apply the same reasoning as above. This reasoning cannot be done
for k =∞ (as shown by Haag’s theorem).

4. POVMs and superoperators - Mario Flory

In this talk, it was described how positive operator valued measures (POVMs)
can be used to generalize our understanding of what a measurement actually
is. The connection between ordinary POVMs and the more special, but also
more familiar projection valued measures (PVMs) was discussed, and the
important Neumark’s theorem was stated. Later, we discussed how POVMs
(under the name of Kraus operators) are connected to the time evolution
of some subsystem of a larger Hilbert space. This helped us to refine our
understanding of the Schrödinger’s cat paradox.

4.1. Introduction

The kind of measurement that we are used to in the mathematical description
of quantum mechanics is represented by a hermitian operator which is applied
to quantum states. Via the spectral decomposition, such an operator can be
described as a sum of mutually commuting projection operators, weighted
with the possible outcomes of the measurement. Two important questions
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which arise in the study of such measurements will be answered in this talk,
and the answer will in both cases be: positive operator valued measures, or
a little bit shorter: POVMs!

The first question is: Can we generalize our understanding of measurements?
In particular, if we perform an ordinary measurement on a given Hilbert
space, how can we describe the action of the measurement on a subsystem
without referring to the whole Hilbert space? The answer to this question
will be given in section 4.3 by Neumark’s theorem which will tell us that
on the subsystem, the action of a projective measurement will always be
described by a POVM (which we will define in section 4.2).

The second question is: If the Schrödinger equation tells us that the evolution
of a closed quantum system is governed by a unitary transformation, how can
we describe the evolution of a subsystem? We will see in the sections 4.4 and
4.5 that the answer to this is that the evolution of the subsystem is described
by so called Kraus operators which by definition also form a POVM.

4.2. Positive operator valued measures (POVMs)

4.2.1. Definition

On a finite dimensional Hilbert space H (which will be sufficient for this
talk), a POVM is a set of operators {Em} (m = 1,2, ...) with the following
properties [18]:

E†
m = Em for all m

⟨ψ∣Em ∣ψ⟩ ≥ 0 for all m and all ∣ψ⟩ ∈ H
We say the Em are positive operators.

∑
m

Em = 1 This is called a partition of unity

The underlying philosophy is the following: Imagine we have a given measurement-
apparatus (which shall be represented by the POVM), with a set of possi-
ble measurement- results. Then we assign a POVM element Em to every
possible outcome, and we choose the Em so that the probability of the
corresponding outcome for a state ∣ψ⟩ is given by the expectation value
Prob(m) = ⟨ψ∣Em ∣ψ⟩. The requirements that we imposed upon the POVM
elements ensure that all these probabilities are positive and add up to one
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[18]. Note that the condition of hermiticity is redundant if the condition
of positivity is given, but above it was nonetheless separately stated for the
sake of clarity. Before looking at an application-example, we will clarify
some more mathematical details. Afterwards, in section 4.3 we will discuss
Neumark’s theorem and hence get a better understanding of the meaning
of POVMs. For a detailed description of how any possible POVM on the
2-dimensional Hilbert space of photon-polarization can be implemented in
an actual measurement, see [1]. For the definition of POVMs in the case of
infinite-dimensional Hilbert spaces see [8].

4.2.2. Measurement operators

There always exists a set of measurement operators {Mm} which describes
the POVM {Em} via

Em =M †
mMm

We write Mm =
√
Em. Such a set need not be unique, but for every POVM

it is possible to find one, due to the positivity of the operators Em. [18]

As we know, the probabilities for the different possible outcomes of the mea-
surement are already given by the POVM elements, the measurement oper-
ators are only needed if we are interested in the new state after the mea-
surement, which in the case of the result corresponding to Em is given by
([18])

∣ψm⟩ = Mm ∣ψ⟩
√

⟨ψ∣M †
mMm ∣ψ⟩

So obviously the state after the measurement depends on the result of the
measurement, this corresponds to the collapse of the wave function in the
Copenhagen interpretation of quantum mechanics. Please note that in the
case of POVMs the word “collapse” may not be fully adequate, as the re-
peated application of a POVM-measurement on a certain quantum system
will not always yield the same result again, in contrast to the projection
valued measures discussed in the next section. Nevertheless, such a kind of
(time) evolution of a quantum system is not unitary and not time-invertible,
in contrast to the time evolution described by the Schrödinger equation.

In general, the initial state may be described by a density matrix. If we now
imagine that a measurement has been performed, but we have forgotten the
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result, then the state after the measurement has again to be described by a
density matrix ([21])

ρ′ =∑
m

MmρM
†
m

We will recover exactly the same equation later as (4.1) in a completely
different context. Note that:

Tr[ρ′] = Tr [∑
m

MmρM
†
m] =∑

m

Tr[M †
mMmρ] = Tr [∑

m

Emρ] = Tr[ρ]

4.2.3. Projection valued measures (PVMs)

Usually, an observable is described by a hermitian operator A with decom-
position

A =∑
m

amPm

in which am is the mth eigenvalue, and Pm is the projection operator on the
corresponding eigenspace of A, with the properties P †

m = Pm, PmPn = δmnPm
and ∑mPm = 1. Such a PVM is a special case of a POVM with Mm =
Em = Pm. Note the following differences between POVMs and PVMs: The
operators Pm are mutually orthogonal, while this need not be the case for the
Em. Therefore, the number of projection operators Pm in the decomposition
of A is limited by the dimension of H, while the number of Em is unlimited.
Also, if a PVM is applied to a certain quantum state repeatedly, it will always
yield the same result, while this need not be true for a general POVM.[18]

4.2.4. Application example

Suppose Alice sends Bob Q-bits in one of the two states

∣ψ1⟩ = ∣0⟩ and ∣ψ2⟩ =
1√
2
(∣0⟩ + ∣1⟩)

with the same probability of 1/2. We know that Bob is principally not able
to distinguish between ∣ψ1⟩ and ∣ψ2⟩ perfectly, as they are not orthogonal.
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But Bob can use a POVM of the form

E1 =
√

2

1 +
√

2
∣1⟩ ⟨1∣

E2 =
√

2

2(1 +
√

2)
(∣0⟩ − ∣1⟩)(⟨0∣ − ⟨1∣)

E3 = 1 −E1 −E2

So now, if Bob gets the result corresponding to E1 (E2) he can be sure that
he got the ∣ψ2⟩ (∣ψ1⟩) from Alice because E1 ∣ψ1⟩ = E2 ∣ψ2⟩ = 0. If he gets
the result E3,the measurement has to be discarded, but in contrast to any
possible PVM (like for example {∣0⟩ ⟨0∣ , ∣1⟩ ⟨1∣}, Bob exactly knows when he
has to ignore the outcome of a measurement, and therefore never makes a
mistake in distinguishing between the two possible states. [18]

How can this example be related to the usual projection valued measures
that we are familiar with? It turns out that, by adding one more dimension
to the Hilbert space, for example by coupling the measured state to a known
ancilla state, our given POVM can be described as a PVM in the larger
dimensional Hilbert space [21]. This statement can be generalized and is
related to Neumark’s theorem which will be dealt with in the next section.

In this particular example, we first need to calculate the spectral decompo-
sitions of the POVM elements [21]. It turns out that all of them have one
eigenvalue = 0 and can therefore be written in the form Ei = ∣ψ̃i⟩ ⟨ψ̃i∣ with
non normalized states ∣ψ̃i⟩. For i = 1,2 this is just the form in which they
are given, in the case i = 3 the fact that one eigenvalue is zero is noteworthy.
The prefactors in the definitions of E1 and E2 have to be chosen as large as
possible, in order to minimize the expectation value of E3, and therefore also
the probability to get an inconclusive result. But also, we have to ensure
that E3 is a positive operator, in order to be a POVM element. As it turns
out, one eigenvalue of E3 is zero because the prefactors of E1 and E2 are
chosen optimally. If they were larger, the second eigenvalue of E3 would be
negative and the POVM-conditions would be violated.
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Using the basis ∣1⟩ = (1
0
) and ∣0⟩ = (0

1
), we find

∣ψ̃1⟩ =

¿
ÁÁÀ

√
2

1 +
√

2
(1

0
)

∣ψ̃2⟩ =

¿
ÁÁÀ

√
2

2(1 +
√

2)
(−1

1
)

∣ψ̃3⟩ =
√

1√
2
(
√

2 − 1
1

)

If we add one dimension to our Hilbert space, then we have to extend E1, E2

and E3 to a set of 3-dimensional projection operators P1, P2 and P3 which
project onto mutually orthogonal subspaces of the Hilbert space, i.e., which
mutually commute and therefore can be composed to an ordinary observable
A = ∑m amPm. With the definition Pi = ∣φi⟩ ⟨φi∣, we now have to search for
an orthonormal set of 3-dimensional vectors

φi = (ψ̃i
?i

)

with a yet to be determined third component (we abandon the bra-ket no-
tation for a while). We know that if the rows of a square matrix form an
orthonormal basis (ONB), then the columns do so as well. So we can take
the rows of the 3 × 3-matrix (φ1, φ2, φ3) to be a set of two known vectors v1

and v2 and a completely unknown vector v3 = (?1, ?2, ?3)T . Indeed, the two
vectors v1 and v2 are already orthonormal with respect to each other. This
may seem surprising, but indeed it is a result of the requirement that our
POVM has to be a partition of unity [21]. The construction of v3 is now
quite easy: we just take an arbitrary vector which is not in span (v1, v2) (like
(1,0,0)T ) and then apply the Gram-Schmidt orthonormalization-procedure.
In our case, this yields

v3 = ((1 +
√

2)−1/2, (1 +
√

2)−1/2,1 − sqrt2)T

and therefore we find:

∣φ1⟩ =
⎛
⎜⎜⎜
⎝

√
√

2

1+
√

2

0
1√

2+
√

2

⎞
⎟⎟⎟
⎠

∣φ2⟩ =
⎛
⎜⎜⎜
⎝

−1√
1+
√

2
1√

2+
√

2
1√

1+
√

2

⎞
⎟⎟⎟
⎠

∣φ3⟩ =
⎛
⎜⎜
⎝

√
2−1
4√2
1
4√2

1 −
√

2

⎞
⎟⎟
⎠
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This finally yields

P1 =
⎛
⎜⎜
⎝

√
2

1+
√

2
0

4√2

1+
√

2

0 0 0
4√2

1+
√

2
0 1

1+
√

2

⎞
⎟⎟
⎠

P2 =
⎛
⎜⎜
⎝

1
2+
√

2
−1

2+
√

2
−1

4√2(1+
√

2)
−1

2+
√

2
1

2+
√

2
1

4√2(1+
√

2)
−1

4√2(1+
√

2)

1
4√2(1+

√
2)

1
1+
√

2

⎞
⎟⎟
⎠

P3 =
⎛
⎜⎜⎜
⎝

3−2
√

2
√

2

√
2−1
√

2

2
√

2−3
4√2√

2−1
√

2
1√
2

1−
√

2
4√2

2
√

2−3
4√2

1−
√

2
4√2

3 − 2
√

2

⎞
⎟⎟⎟
⎠

and the 2×2 parts in the upper left corners are exactly the representations of
the Ei. The measurement of one of the states ∣ψ1⟩ = (0,1)T or ∣ψ2⟩ = 1√

2
(1,1)T

with the given POVM in the original Hilbert space turns now out to be
analogous to the measurement of the states (0,1,0)T or 1√

2
(1,1,0)T with the

PVM given above in the extended 3-dimensional Hilbert space.

4.3. Neumark’s theorem

Theorem: Any POVM on a Hilbert space HA can be realized by a PVM in
a larger Hilbert space H containing HA.

Please note: As mentioned in the introduction, the reverse is also true: Every
PVM on a Hilbert space H leads to a POVM on any subspace HA. [18][21]

Therefore, if we want to understand the effect of measurements on a sub-
system without referring to the whole Hilbert space, POVMs appear to be a
necessary and indeed very useful generalization of PVMs.

4.3.1. Consider the case H = HA ⊗HB
Suppose that we have given an initial state ρAB = ρA ⊗ ρB and a PVM
described by the set of operators Pm acting on H. It is our aim to describe
the probability to get the result corresponding to index m only by making
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use of operators and states on HA. We therefore define a set of operators Fm
on HA such that [21]:

Prob(m) = TrAB[PmρAB] = TrA[TrB[PmρAB]] ≡ TrA[FmρA]

It is easy to find such Fm by writing the above equation in terms of compo-
nents:

∑
i,j

(Fm)ji(ρA)ij = ∑
i,j,µ,ν

(Pm)ji,νµ(ρB)µν(ρA)ij

⇒ (Fm)ji =∑
µ,ν

(Pm)ji,νµ(ρB)µν

Here the indices i, j(µ, ν) denote components corresponding to base vectors
in HA (HB). Based on this definition of the Fm, it is easy to compute the
following properties:

● Fm = F †
m

● Fm is a positive operator aor all m

● ∑mFm = 1A

Proof 1: (Fm)∗ij = ∑µ,ν(Pm)∗ij,µν(ρB)∗µν = ∑µ,ν(Pm)ij,µν(ρB)µν = (Fm)ji ◻

Proof 2: We set the basis such that ρB = ∑µ pµ ∣µB⟩ ⟨µB ∣. Then: ⟨ψA∣Fm ∣ψA⟩ =
∑µ pµ(⟨ψA∣⊗ ⟨µB ∣)Pm(∣ψA⟩⊗ ∣µB⟩) ≥ 0 ∀ψA ∈ HA ◻

Proof 3: (∑mFm)ij = ∑µ,ν [∑m(Pm)ij,µν] (ρB)µν = ∑µ,ν(1AB)ij,µν(ρB)µν =
(Tr[1ABρB])ij = (1A)ij ◻

Therefore, the set Fm indeed forms a POVM. In the proofs we used the her-
miticity of the Pm and ρB as well as the positivity of ρB and the fact that
TrB[ρB] = 1. [21]

4.4. Superoperators and unitary evolution

Postulate: The time evolution of a closed quantum system is governed by
unitary transformations. [18]
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But this need not be true in a subsystem A of a Hilbert space H = HA⊗HB!
Suppose our initial state is given by a density matrix

ρAB = ρA ⊗ ∣0⟩ ⟨0∣B

After the unitary evolution defined by a unitary operator UAB on H, the new
state in subsystem A is given by

ρ′A = TrB (UABρABU †
AB) =∑

µ

⟨µB ∣UAB ∣0⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡Mµ

ρA ⟨0∣U †
AB ∣µB⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡M†

µ

where the vectors ∣µB⟩ form an orthonormal basis in HB. Now we define
a superoperator $(ρA) ≡ ρ′A describing the time evolution of ρA entirely in
terms of operators acting on HA by

$(ρA) =∑
µ

MµρAM
†
µ (4.1)

in this example. The Mµ are called Kraus operators and satisfy

(M †
µMµ) is hermitian and positive for all µ

∑
µ

M †
µMµ = 1A

therefore they are the measurement operators of a POVM [21]. This is how
unitary time evolution acts on the subsystem A.

Now, we want to investigate the opposite question: What are the allowed
time- evolutions ρA ↦ ρ′A = $(ρA) of systems (that are possibly only sub-
systems of the whole universe) if the criterium is that physical states are
mapped to physical states, i.e., that density matrices (positive and normal-
ized) are mapped again to density matrices (rather than general matrices).
In particular, we should at least demand[21, 5]

(0) $(ρA) is linear

(1) ρA is hermitian ⇒ $(ρA) is hermitian

(2) TrA(ρA) = 1⇒ Tr($(ρA)) = 1

(3a) ρA is positive ⇒ $(ρA) is positve
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It turns out that condition (3a) is not sufficient: It does not imply that if
we trivially extend the Hilbert space by another tensor factor and leave the
state there untouched, positivity is preserved on the whole state. Thus, we
have to demand it explicitly (this condition is called complete positivity):

(3b) ρA and ρC are positive ⇒ ($⊗ 1)(ρA ⊗ ρC) = $(ρA)⊗ ρC is positive for
any extension HC

There are in fact examples of operators which satisfy (3a) but not (3b), as
for example $(ρ) = ρT [21]. Also, whether (0) is a necessary condition or not
is a much more subtle question than it may have become clear up to now,
for a detailed discussion see [21].

Kraus representation theorem: Every operator $ satisfying (0), (1), (2) and
(3b) (called a super operator) has an operator-sum representation (4.1) and
therefore also a unitary representation on a larger Hilbert space H [21][5].
Thus any time evolution that maps density matrices to density matrices can
be thought of as arising as the evolution of a subsystem of a possibly larger
Hilbert space that evolves unitarily.

Proof: In order to prove this important result, we first introduce the so
called relative state method [21]: We suppose to have given a Hilbert space
H = HA⊗HB with dim(HB) ≥ dim(HA) and a state ∣ψ⟩AB = ∑i ∣iA⟩⊗ ∣i′B⟩ ∈ H,
where the vectors ∣iA⟩ and ∣i′B⟩ are the first dim(HA) base-vectors in the
Hilbert spaces HA and HB respectively. In order to express ∣ψ⟩AB in this
simple way (with a single sum ∑i instead of a double sum) we have to choose
the orthonormal basis ∣i′B⟩ of HB appropriately, the possibility ?to do this is
ensured by the Schmidt decomposition theorem.

Now if ∣φA⟩ = ∑i ai ∣iA⟩ inHA, we define the relative state ∣φ∗B⟩ = ∑i a∗i ∣i′B⟩ ∈
HB such that ∣φA⟩ = ⟨φ∗B ∣ψAB⟩. This is called a partial scalar product. So
for

(OA ⊗ 1B) ∣ψAB⟩ =∑
i

OA ∣iA⟩⊗ ∣i′B⟩

we find by applying the relative state method:

OA ∣φA⟩ = ⟨φ∗B ∣ (OA ⊗ 1b) ∣ψAB⟩
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Now we apply this method in the proof of the Kraus-representation-theorem.
Our superoperator $ acts in the following way:

($A ⊗ 1B) ρAB
°

≡∣ψAB⟩⟨ψAB ∣

=∑
µ

qµ ∣ΦµAB⟩ ⟨ΦµAB ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ρ′AB

Note that the pure state form ρAB = ∣ψAB⟩ ⟨ψAB ∣ can, for a given density
matrix in subspace HA, always be achieved by choosing the dimension of HB
large enough. Via the relative state method, we obtain

$A(∣φA⟩ ⟨φA∣) = ⟨φ∗b ∣ ($A ⊗ 1B)ρAB ∣φ∗B⟩ =∑
m

u
√
qµ ⟨φ∗B ∣ΦµAB⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡Mµ∣φA⟩

⟨ΦµAB ∣φ∗B⟩
√
qµ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⟨φA∣M

†
µ

These Mµ have the following properties:

● they define a linear map ∣φA⟩→
√
qµ ⟨φ∗B ∣ΦµAB⟩

● $A(∣φA⟩ ⟨φA∣) = ∑µMµ ∣φA⟩ ⟨φA∣M †
µ ∀ ∣φA⟩ ∈ H⇒ $A(ρA) = ∑µMµρAM

†
µ

if $ is linear,

● ∑µMµM
†
µ = 1A, because $A is trace preserving for any ρA. ⇒ $A has

an operator-sum - respectively Kraus-representation (4.1)[21].

Now we still have to prove that from a operator-sum representation there
follows a unitary representation on a larger Hilbert space H = HA ⊗HC such
that Mµ = ⟨µC ∣UAC ∣0C⟩. Note that the Hilbert space HC with which we
extend HA need not be equal to the Hilbert space HB which we used in the
proof of the Kraus-representation. We define a operator UAC such that

UAC(∣φA⟩⊗ ∣0C⟩) ≡∑
µ

Mµ ∣φA⟩⊗ ∣µC⟩

with some normalized state ∣0C⟩ ∈ HC . It can easily be checked that the
operator UAC that is defined via this equation preserves the inner product:

(⟨0C ∣⊗ ∣φ2A⟩U †
AC)(UAC ∣φ1A⟩⊗ ∣0C⟩) = .... = ⟨φ2A ∣φ1A⟩

From this it follows that UAC can be extended to be a unitary operator on
the whole Hilbert space, and indeed from the so defined operator we can
obtain back the Kraus operators Mµ by performing the same steps as above.
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[21] ◻

So, in this section we found that while the evolution of a closed quantum sys-
tem is governed by unitary transformations (which can always be inverted,
such that the evolution is reversed), the evolution of a subsystem is gov-
erned by much more general superoperators which are closely related to the
formalism of POVMs. One important fact that has not yet been explicitly
stated is that in general the inverse of a superoperator $ need not exist, or
be again a superoperator itself. Therefore, it may not be possible to reverse
the time evolution in a subsystem of a larger quantum system, so to say the
subsystem “forgets” its past. This resolves some philosophical problems of
quantum mechanics, as a unitary time evolution can be reversed, but the
often postulated collapse of the wavefunction is an irreversible process. [21]

Also, it should be pointed out that the description of the time evolution of a
sub- system discussed above leads to a large variety of possible transforma-
tions that can be expressed via superoperators, unitary as well as non-unitary
ones. But of course there cannot be superoperators describing a time evo-
lution which violates a basic quantum mechanical principle like for example
the no-cloning theorem.

So far, we have only used superoperators mapping density matrices of a
(sub)space HA on density matrices of the same Hilbert space HA. But this is
not the most general case possible. If we have a given Hilbert space H with
two distinct subspaces HA and HA′ , then it is possible (if a unitary transfor-
mation on H is given) to find a corresponding superoperator $ which maps a
density matrix ρA (defined on HA) on a density matrix ρ′A (defined on HA′).
Imagine for example a large laboratory (mathematically described by H) in
which the state of a single Q-bit (HA) at the beginning of an experiment de-
termines the state of some apparatus (HA′) after the experiment. Then there
exists a superoperator $ mapping the initial state in HA on the final state in
HA′ . In the following section, when we will have a look on Schrödinger’s cat,
we will consider the cat together with the nucleus as one subsystem, but as
shown above we could as well consider them to be two distinct subsystems.
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4.5. Schrödinger’s cat?s revival

I assume the reader to be familiar with the basic concept of the paradox
known as “Schrödinger’s cat”. The cat together with the nucleus can be
described roughly by a two dimensional Hilbert space with base-vectors ∣↑⟩
which means the nucleus is not decayed, the cat is still alive, and the vector
∣↓⟩ which corresponds to a decayed atom and a dead cat. Now we assume
this subsystem to be in contact with the environment which acts as some
kind of thermal bath. We now have to come up with a reasonable model
of the (unitary) evolution of the whole system. For this purpose, we will
describe the environment via a 3-dimensional Hilbert space with basevectors
∣0⟩E, ∣1⟩E, ∣2⟩E. With a high probability (for sufficiently small timesteps),
no molecule is scattered off the cat, so that the whole system stays in the
same state, but with a small probability p a molecule is scattered off the cat
and the environment switches to another state, which depends on the state
of the cat. Also, the state of the cat will never be changed by interaction
with the environment. For example, if cats could be killed by the hit of an
air-molecule, this would be a severe shortcoming in Darwinian evolution. In
formulas, this model reads:

∣↑⟩ ∣0⟩E →
√

1 − p ∣↑⟩ ∣0⟩E +
√
p ∣↑⟩ ∣1⟩E

∣↓⟩ ∣0⟩E →
√

1 − p ∣↓⟩ ∣0⟩E +
√
p ∣↓⟩ ∣2⟩E

As can easily be checked, the evolution described by this rules is indeed inner
product preserving and can therefore be extended to a unitary transforma-
tion. Via the usual steps, we find the Kraus operators on the 2-dimensional
Hilbert space of the cat

M0 =
√

1 − p(1 0
0 1

) M1 =
√
p(1 0

0 0
) M2 =

√
p(0 0

0 1
)

They are indeed the measurement operators of a POVM, as again can easily
be checked. Suppose the initial (pure!) state of our feline subsystem is

ρA = 1

2
(∣↑⟩ − ∣↓⟩)(⟨↑∣ − ⟨↓∣) = 1

2
( 1 −1
−1 1

)

Now via the Kraus-representation, we find that after one timestep the new
density matrix is

$(ρA) = ... =
1

2
( 1 −(1 − p)
−(1 − p) 1

)
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This looks like a promising beginning! Now, we define a scattering-rate Γ
and a timestep ∆t ≪ 1 such that p = Γ∆t. Then after a finite time t = n∆t
with large n, the cat has acquired the state

ρ′A = $n(ρA) =
1

2
( 1 − (1 − Γt

n
)n

− (1 − Γt
n
)n 1

)→ 1

2
(1 0

0 1
)

So obviously, via interaction with the environment, the initial pure state
(which describes the seemingly paradoxical quantum-superposition of life and
death of a macroscopic object) has become a mixed state! Of course, we still
don’t know whether the cat will be alive or dead before we have opened the
box, but the kind of uncertainty expressed by a mixed state density matrix is
classical rather than the kind of uncertainty expressed by a pure state density
matrix. [21]

5. The measurement problem - David Jahn and
Anupam Prasad

5.1. Introduction

The purpose of a measurement is, in general, to determine properties of
the physical system under investigation. In Quantum Mechanics this simple
statement should be overthought. What are “properties” of a system? In
classical mechanics, all observables are objective, i.e., they are always well
defined and belong to the system or more special to the particle under ob-
servation. Moreover, anyone could measure the desired observable with any
precision, without affecting the underlying system S. In other words, the
properties of the systems are independent of the measurement. If one tries
to do a quantum theory of measurement one has first of all to answer the ques-
tion: What is the referent of quantum mechanics: measurement outcomes
(the epistemic option) or object systems (the ontic, or realistic option)? In
the latter case we think of QM as still describing individual particles. Here
the measurement problem arises. In this branch we have furthermore to de-
cide whether we think if quantum mechanics is universal. Do all physical
systems obey the rules of quantum mechanics? If this is the case, measure-
ment should be describable within QM. Here, serious problems immediately
arise, i.e., not every observable in quantum mechanics is objective. There-
fore, if the apparatus displays a value, this value need not correspond to the
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observable before the measurement. Immediately, the question arises, how
to explain and interpret the displayed value. The main idea is to define a
function pET (X) which gives the probability of occurance of a measurement
result in the set X if the system is in the state T and the observable E is
measured. Those probabilities overcome the problem of objectiveness, in the
sense of propensities, i.e., expressing tendencies in the behavior of individual
objects. In the following we will attempt to state the basic ideas of this
theory and mention the problems that occur.

5.2. Theory of the Measurement Process

5.2.1. Setting

Figure 5.1: For (b) The states of the Apparatus A are macroscopically distinct. PA
therefore can have some well defined values (in this example 1,2,3, ... )

The starting point to formulate the theory of measurement is to consider a
system S in a state T ∈ H. If we want to measure an observable E we have
to couple the (possibly microscopical) system S to a macroscopic measur-
ing device, denoted by apparatus A from now on. The observable one can
macroscopically observe, for example some pointer on some scale is called
pointer observable PA. This pointer observable must be correlated in some
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consistent way to the observable E of the system. If the PA has some specific
value, we say that E has the corresponding value.

5.2.2. Definitions

In order to work on a basis as general as possible we should define the observ-
ables (E) and states (T ). These definitions which should be familiar from
the last talk on projection valued measures.

Definition 8 F a σ-Algebra, E ∶ F→ L(H) is a projection valued measure
(POV) on (Ω,F) ∶⇔

(i) E(X) ≥ o ∀X ∈ F

(ii) (Xi) ∈ F countably many pairwise disjoint sets⇒ E(∪(Xi)) = ∑iE(Xi)

(iii) E(Ω) = Id

Note: A POV is a map from a σ-algebra F of Ω to the linear operators on
our Hilbert space H

As we have seen last time the self-adjoint operators can be identified (by the
spectral theorem) with the POV’s. This gives a one to one correspondence
between the self-adjoint operators and the POV: A ↔ EA. We know from
quantum mechanics that observables are always self-adjoint operators.

Definition 9 T ∈ S(H) is called a state of the system if it is a positive
trace class operator.

We know that for a self-adjoint operator A and a system in a pure state φ ∈ H
the measurement result of A should be ∣ ⟨φ∣A ∣φ⟩ ∣2. In our broader context
we define

Definition 10 For all E POV and all states T ∈ S(H) we can define

pET ∶ F→ [0,1]
X → pET (X) = Tr(TE(X))

pET (X) is the probability that a measurement of E performed on our System
S in the state T leads to a result in X. Notice, that this coincides with what
we?ve known for a long time. The language is just a bit more formal.
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A short illustration of this fact comes here: Assume A to be a observable
with a basis of Eigenvectors φij, each eigenvalue with a n(i)-fold degeneracy,
in other words

Aφij = aφij ∀j = 1....n(i)
assume T to be a pure state T = P [φ] = ∣φ⟩ ⟨φ∣

clearly EA({ai}) =∑
j

∣φij⟩ ⟨φij ∣

pAT (X) = Tr(TA(X)) = ∑
ai∈X

Tr(∣φ⟩ ⟨φ∣EA({ai}))

= ∑
ai∈X

⟨φ∣EA({ai}) ∣φ⟩ =∑
ij

⟨φ ∣φij⟩ ⟨φij ∣φ⟩

This is clearly what you would have expected.

5.2.3. Isolated System Problem

Directly from the start occurs the so called “isolated system problem”. The
System and the apparatus are considered to be isolated from the environment.
(Otherwise the environment would interact with the system and therefore in-
fluence the result of the measurement.) We could describe system and appa-
ratus to be in the state T and the environment to be in the state Tε. Formally
the isolated compound system and environment can be described by a tensor
state W = T ⊗ Tε. Only if the time evolution is of the form Ut = US

t ⊗ U ε
T

i.e., the interaction Hamiltonian between system and environment vanishes,
system and environment will stay unentangled. (This is certainly not the
case! More on that in the talk on decoherence) Therefore the environment
does influence quantum measurements in some way.

5.2.4. Definite Outcome Problem

We know that for a given observable A we could find a basis of Eigenfunctions
φij. Any pure state in H can be written as a superposition ∣φ⟩ = ∑I ci ∣φi⟩.
Thus, in general A has no definite value. (Only if all ci = 0 except one,
say cj, we could say that the system is in state ∣φj⟩). We know that our
pointer observable PA which is correlated to A does show a definite value
every time we look at it. What does this value mean? This problem is called
the “definite outcomes problem”.
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In short: The probabilistic structure of quantum mechanics gives us that even
for pure states T = p[φ] clearly pET = ∣ ⟨φ∣E(X) ∣φ⟩ ∣ is only in special cases
0 or 1. The interpretation of this is that the system S in state T does not
possess the property E(X) (or its complement property). (In other words
the value of the pointer is neither in X or in Ω−X, respectively.) Once more
we see the nonobjectivity of E.

5.2.5. Description of the Measurement Process

As above the System S is in the state T ∈ S(HS), the apparatus A in the state
TA ∈ S(HA). The pair of observables is denoted by E and PA. Now we have
two measure spaces, one associated with E and one with PA respectively.
Those are denoted by (Ω,F) and (ΩA,FA). The pointer function associates
values in ΩA with those in Ω, i.e., f ∶ ΩA → Ω. V is denoting the measurement
coupling during the measurement.

V ∶ T ⊗ TA → V (T ⊗ TA) (5.1)

By this coupling the states after measurement can be obtained by taking
partial traces. (R takes the partial trace w.r.t. the unobserved degrees of
freedom. Thus the final states are RS(V (T ⊗ TA)) and RA(V (T ⊗ TA)).
Obviously the measurement coupling uniquely defines the final states after
the measurement. This means also pPA

RA(V (T⊗TA))
is completely defined. (For

a given PA).

Definition 11 M = ⟨HAPATA, V, f⟩ is called a measurement scheme if
the following two conditions are satisfied

● M should satisfy pPA
RA(V (T⊗TA))

(f−1(X)) = pET (X) ∀X ∈ F

● The measurement E should yield a definite result. The pointer observ-
able should have a definite value. “pointer objectification”.

5.3. Measurement Schemes

Definition 12 M = ⟨HAPATA, V, f⟩ which only satisfies the first of the two
properties of a measurement scheme given above is called premeasurement
of E.

For any observable E there exists a unitary, (V unitary) premeasurement
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scheme. There have been several constructions. The first and probably
easiest one was given by von-Neumann in 1932.

5.3.1. The von-Neumann pre-measurement scheme

Let O be a discrete (∃Ω0 s.t. O(Ω/Ω0) = 0) (and sharp) observable. For O
there exists a basis of eigenfunctions on with: (For simplicity of the argument
without any degeneracies)

O ∣on⟩ = on ∣on⟩

With this observable on S we associate a pointer observable PO. This is done
s.t. if the System is in the state ∣on⟩ our pointer points to some specific value
on a scale, lets denote this state by ∣An⟩. Initially we assume the apparatus
to be in the “ready state”. It waits for a measurement. The system is initially
prepared to be in the state ∣on⟩. We know that the time-evolution in quantum
mechanics is always unitary. Therefore our composite state evolves as follows:

∣on⟩⊗ ∣A0⟩→ ∣õn⟩⊗ ∣An⟩

Now it is immediately clear, that we run in trouble, if the System is initially
in a superposition state, like

∣Ψ⟩ = 1√
2
(∣ol⟩ + ∣ok⟩)

After the measurement interaction the state evolves to:

∣Ψ⟩⊗ ∣A0⟩→
1√
2
(∣õl⟩ ∣Al⟩ + ∣õk⟩) ∣Ak⟩

Here the trouble comes. What is the value our pointer observable should
show? Should it point to l or to k ? Both results are equally likely. This
is the core of the problem of “definite outcomes”. This is not solved within
the measurement theory. So far, assuming QM is universal and not applying
any wave packed reduction postulate right here, this is an (so far) unsolved
problem. Immediately the question arises: Is this measurement scheme too
oversimplified? What about the environment? Maybe decoherence could
make the pointer to decide to which value it should point. The short answer
is: no.
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5.4. The Measurement Problem Revisited

In this part of the talk we will take a look at the measurement (or macro-
objectification) problem under very general assumptions. As we will see,
without resorting to any of the usual assumptions of ideality, the assump-
tion of the general validity of the linear nature of quantum mechanics while
performing measurements on a microsystem leads to a fundamental contra-
diction.

5.4.1. Preliminaries

As we have seen in David?s talk, in the von Neumann measurement scheme
for an ideal measurement process, we consider a system S, one of its observ-
ables O (∣on⟩ are the corresponding eigenvectors) and we denote by M the
apparatus devised to measure O. We assume that M has a “ready-state”,
∣M0⟩, a state in which the apparatus is ready to measure the observable and
a set of mutually orthogonal states ∣Mn⟩ (also orthogonal to ∣M0⟩ which cor-
respond to different macroscopic configurations of the instrument.

We finally assume that the interaction between S and M is linear and that
it yields a perfect correlation between the initial state of S and the final state
of the apparatus.

∣on⟩ ∣M0⟩→ ∣õn⟩ ∣Mn⟩ (5.2)

Therefore, if the final state of the apparatus is ∣Mn⟩ then one can say that
the system is in state ∣on⟩.

The measurement problem arises when the system, prior to the measurement,
is not in a state corresponding to one of the eigenvectors, like in (5.2), but
in a superposition of them,

∣m + n⟩ = 1√
2
(∣om⟩ + ∣on⟩) (5.3)

In this case, the final state of the system+apparatus is given by an entangled
state,

∣m + n⟩⊗ ∣M0⟩ =
1√
2
(∣om⟩+ ∣on⟩)⊗ ∣M0⟩→

1√
2
(∣õm⟩⊗ ∣Mm⟩+ ∣õn⟩⊗ ∣Mn⟩) (5.4)

The essence of the quantum measurement problem is that, under the as-
sumption that the theory is complete (i.e., that the wave-function contains
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all the information about the system), it does not make sense to say that the
system has any of the properties associated with ∣Mm⟩ and ∣Mn⟩ or in other
words, the system is not in a definite macroscopic configuration.

The standard way out of this dilemma is to say that after the measurement
process, the final term in (5.4) reduces to either ∣õm⟩⊗∣Mm⟩ or ∣õn⟩⊗∣Mn⟩ with
a probability which is the square modulus of the corresponding coefficient in
the superposition (in our case 1/2). This is the wave-packet reduction pos-
tulate and it contradicts the general validity of the Schrödinger equation. It
has been suggested that the problem derives from the over-simplified model
of the von Neumann measurement scheme. In particular, the following as-
sumptions have been criticized,

● The measuring apparatus can be prepared in a precise state ∣M0⟩ since
the instrument is a macroscopic object with many degrees of freedom,
it is impossible to know its precise state at any given time.

● One can safely neglect the interactions between the apparatus and the
surrounding environment.

● The final states of the apparatus, corresponding to perceptively dif-
ferent macroscopic configurations of the apparatus itself, are orthogo-
nal: actually, different states usually correspond to different positions
of some component of the instrument, and since no wavefunction can
have compact support in configuration space (because of the quantum
evolution), wavefunctions corresponding to different states cannot, in
general, be orthogonal.

● The final state of the apparatus gets perfectly correlated to the initial
state of the microscopic system: this is an highly idealized characteristic
which is not shared by any realistic physical instrument.

We will now address the above criticisms and show that even under very
general assumptions the measurement problem cannot be avoided.

5.4.2. The Microscopic System

For simplicity we will consider the simplest system on which non-trivial mea-
surements can be performed - a system S with a two dimensional Hilbert
space, HS - like the one describing the spin of an electron or the polarization
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states of a photon. We consider an observable O having two different eigen-
values with ∣u⟩ and ∣d⟩ being the associated eigenvectors. We will refer to the
property as “spin” and say that a particle has spin “up” when it is in state
∣u⟩ and spin “down” when it is in state ∣d⟩. We can also define superpositions
of the two states, for example,

∣u + d⟩ = 1√
2
(∣u⟩ + ∣d⟩) (5.5)

We will assume that the system can be prepared in any one of the above
considered states. We also assume that after the preparation, the system is
in a precise and known state and that it can be treated as isolated from the
rest of the universe, at least until the measurement process begins.

5.4.3. The Measuring Apparatus

The measuring apparatus is a macroscopic system that on interacting with
the microsystem ends up in a state which is more or less correlated with
the eigenstates of the observable it is devised to measure. The different
outcomes of the measurement are supposed to be correlated to perceptively
different macroscopic configurations of the apparatus - we will assume (or
imagine) for simplicity that our apparatus has a pointer that moves along a
scale whose position registers the result of the measurement.

Contrary to microsystems, the apparatus which is a macroscopic object has
many degrees of freedom, most of which (especially the microscopic ones) we
have no control over. Also, we can only have limited control over macroscopic
degrees of freedom like the pointer position. Moreover, the constituents of
the apparatus have existed in constant interaction with the environment for
a long time before the measurement. Taking all of the above into account,
we will indicate the state vectors we deal with as,

∣Aα⟩

Where A indicates the specific macroscopic configuration (position on the
scale) of the apparatus and α refers to the condition of the rest of the universe.
We will now discuss how A could be defined -

● We could say that A is the value X characterizing the projection oper-
ator ∣x⟩ ⟨x∣ which gives the exact position of the center of mass of the
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pointer. However, this is not possible as it is impossible to measure a
continuous variable with perfect accuracy.

● A possible improvement is saying that “the pointer is at position x”
when the wave-function is an eigenstate of the projection operator
which projects onto the interval ∆(x) = [x − δ, x + δ]. However, this
is also not possible as Hamiltonian evolution transforms any wave-
function with compact support into one with non-compact support

In order to overcome the above problems, we consider a very general physical
system - we define the set VA as the set of all normalized vectors ∣Aα⟩ for
which we are allowed to say that the pointer of the apparatus is in position A.
There is no restriction on the type of wave-functions that belong to VA. The
only physical restriction we put forward on the system is that if the pointer
admits two physically distinct positions (say A and B) then any two vectors
corresponding to these different positions should be almost orthogonal. We
can express this requirement mathematically as,

inf
∣Aα⟩∈VA,∣Bβ⟩∈VB

∥ ∣Aα⟩ − ∣Bβ⟩ ∥ ≥
√

2 − η , η ≪ 1 (5.6)

Here ∣Aα⟩ and ∣Bβ⟩ are normalized to 1. The above requirement is necessary
if we want that different macroscopic configurations of the pointer represent
mutually exclusive configurations of the microsystem.

The index α takes into account all the degrees of freedom that are not in our
control. Two vectors labelled by A but with different values for α, refer to
the “same” macroscopic configuration for our pointer but describe two differ-
ent states for the rest of the universe. For example, a certain atom of the
apparatus might be in the ground state for ∣Aα⟩ but might be in an excited
state for ∣Aβ⟩.

Since our microsystem has two spin states and we want the apparatus to dis-
tinguish between them, we must assume that our pointer admits two macro-
scopically distinct positions, U and D along the scale; in light of the previous
argument we define two sets VU and VD such that the first contains all the
(normalized) vectors for which we are allowed to say that the system is in
a state “up” and similarly the second for the state “down”. We define two
vectors chosen from the two different sets to be almost orthogonal in the
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sense of (5.6), i.e.,

inf
∣Uα⟩∈VU ,∣Dβ⟩∈VD

∥ ∣Uα⟩ − ∣Dβ⟩ ∥ ≥
√

2 − η , η ≪ 1 (5.7)

One property of the sets VU and VD which we can immediately see is that
they contain no vectors in common. If this were the case, then the distance
between any two such vectors would be zero and this would contradict (5.7).

5.4.4. Preparation Of The Apparatus

We denote the ready state of the apparatus as A0. The initial state of the
apparatus is given by,

∣A0α⟩ = ∣spin⟩⊗ ∣A0ᾱ⟩ (5.8)

where ᾱ refers to the state of the universe with the exception of the pointer
and the particle (microsystem) and ∣spin⟩ refers to the initial state-vector of
the particle.

In general, we have no control over ᾱ, so we do not know the precise ini-
tial state. We can say that any specific ᾱ occurs with a probability p(ᾱ)
which is also unknown to us. We will later discuss what requirements this
probability must satisfy. For the moment, the inital setup of the whole par-
ticle+apparatus+universe system will be described as,

{∣spin⟩⊗ ∣A0ᾱ⟩ , p(ᾱ)} (5.9)

5.4.5. The Measurement Process

If we assume that quantum mechanics governs all physical systems then the
measurement process, being an interaction between two quantum systems
is governed by a unitary operator U(tI , tF ) for an interaction that occurs
between the times tI and tF . Suppose that the initial state of the microsystem
is ∣u⟩ and the apparatus is in the ready-state, then we can say that during
the measurement process, the whole universe evolves in the following way,

∣u⟩⊗ ∣A0ᾱ⟩→ U(tI , tF )[∣u⟩⊗ ∣A0ᾱ⟩] = ∣Fuᾱ⟩ (5.10)

If the initial state of the microsystem it is,

∣d⟩⊗ ∣A0ᾱ⟩→ U(tI , tF )[∣d⟩⊗ ∣A0ᾱ⟩] = ∣Fdᾱ⟩ (5.11)
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● Since the evolution is unitary, once the initial state is specified, the
final state is unambiguously determined. Accordingly the final state is
also characterized by the same index ᾱ.

● Unlike the von Neumann measurement scheme, the final state is not
factorized,

∣Fuᾱ⟩ ≠ ∣u⟩⊗ ∣AU ᾱ⟩ (5.12)

● We allow for the fact that the measurement process can affect the
particle in a non-trivial way. The final state of the microsystem isn’t
the same as the initial state.

The only requirement we put forward is that the measuring apparatus should
be reliable to a high degree. This means that if the initial state is ∣u⟩ then
the final state ∣Fuᾱ⟩ should belong to VU in most of the cases and likewise
for an initial state ∣u⟩. We can formalize the reliability requirements in the
following way - Consider the set K of all subsets J of the possible values that
ᾱ can assume such that J is equipped with the following natural measure,

µ(J) = ∑
ᾱ∈J

p(ᾱ) (5.13)

And we define the following two sets,

J−U = {ᾱ ∶ ∣Fuᾱ⟩ ∉ VU} (5.14)
J−D = {ᾱ ∶ ∣Fdᾱ⟩ ∉ VD} (5.15)

J−
U/D

are the set of indices that correspond to the result that the pointer is
not in the position U/D after measurement despite the fact that the initial
state of the microsystem was ∣u/d⟩. We also define J+U as the complement
of J−U and J+D as the complement of J−D. The reliability requirement can be
expressed in the following way - given ε≪ 1

µ(J−U) ≤ ε µ(J−D) ≤ ε (5.16)

The parameter ε expresses the efficiency of the measuring apparatus and can
depend on the actual measurement process devised. It is easy to see that the
complement sets satisfy the following relations,

µ(J+U) ≥ 1 − ε µ(J+D) ≥ 1 − ε (5.17)
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We should also take into account the following sets, J− = J−U ∪ J−D and its
complement J+ = J+U ∩ J+D. They satisfy the following relations,

µ(J−) ≤ 2ε µ(J+) ≥ 1 − 2ε (5.18)

While we have taken into account the possibility of a wrong measurement,
we have also taken into account the case when the apparatus fails to interact
with the microsystem. In this case the vector belongs to J−.

In the case that the apparatus fails to detect the particle, there can be an
appreciable affect in many experimental situations (e.g., the efficiency of
photodetectors is usually quite low). We can easily circumvent this difficulty
by simply disregarding all cases in which a detector should register something
but it doesn’t. The previous analysis should therefore be interpreted as
referring only to cases where the apparatus registers an outcome.

5.4.6. Result and Conclusions

As stated earlier, the measurement problem arises when the microsystem is
prepared in a superposition state which is not the same as the individual ∣u⟩
or ∣d⟩ states. With such a state, due to the linearity of quantum evolution,
the resulting final state of the particle+apparatus system will be,

∣u + d⟩⊗ ∣A0ᾱ⟩→ U(tI , tF )[∣u + d⟩⊗ ∣A0ᾱ⟩]
= ∣F (u + d)ᾱ⟩

= 1√
2
[∣Fuᾱ⟩ + ∣Fdᾱ⟩] (5.19)

We will now prove that for each ᾱ belonging to J+, ∣F (u + d)ᾱ⟩ cannot belong
to either VU or VD. Suppose that ∣F (u + d)ᾱ⟩ ∈ VU (the proof for VD is
analogous). The distance between ∣F (u + d)ᾱ⟩ and ∣Fdᾱ⟩ is,

∥ ∣F (u + d)ᾱ⟩ − ∣Fdᾱ⟩ ∥ = ∥1/
√

2 ∣Fuᾱ⟩ + (1/
√

2 − 1) ∣Fdᾱ⟩ ∥ ≤ 1 (5.20)

Which contradicts our “almost orthogonal” requirement shown in (5.7) since
∣F (u + d)ᾱ⟩ ∈ VU and ∣Fdᾱ⟩ ∈ VD. This shows that for ᾱ ∈ J+, ∣F (u + d)ᾱ⟩ ∉
VU or VD.

We have therefore seen that for all ᾱ ∈ J+ and for all measurement processes
for which the apparatus registers an outcome, the vector ∣F (u + d)ᾱ⟩ does
not allow us to assign a definite macroscopic position to the pointer of the
apparatus.
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6. EPR, Bell’s inequality and the Kochen-Specker
theorem - Isabel Krebs and Matthias Schlaffer

6.1. Introduction

These are the notes to our presentation held in the Seminar “Foundations of
quantum mechanics”. When reading, be aware of possible faults and typos.

When quantum mechanics was developed in the beginning of the 20th century,
Al- bert Einstein, Boris Podolsky and Nathan Rosen wrote their famous
paper about the completeness of quantum theory [9]. In this paper they
argued that quantum mechanics cannot be complete theory. However this
argument was based on the assumption of locality and realism.

Later, in 1964 John S. Bell reformulated this idea in mathematical terms,
developing an inequality which must hold for any local and realistic theory.
He showed that this inequality was violated by the predictions of quantum
theory [3].

Finally Simon B. Kochen and Ernst Specker proved in 1986 that no realistic
and non-contextual theory can reproduce quantum mechanical predictions
[14]. Since the original proof is rather complicated and not very instructive,
we will present the much easier version formulated by Nathaniel D. Mermin
in 1990 [16].

6.2. Definitions

Locality: Systems that are separated by a space-like distance cannot
influence each other.

Realism: Every observable of a physical system has a definite value
at any time.

Non-contextuality: The result of a measurement of an observable A
does not depend on the measurement context, i.e., it does not depend
on whether A is simultaneously measured with B and C or D and
E where {A,B,C} and {A,D,E} are two sets of pairwise commuting
observables (the observables B and D do not commute in general).
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Complete theory: A theory is complete if for every element of reality
there is a corresponding element in the theory.

6.3. Einstein-Podolsky-Rosen argument

The EPR argument shows that, assuming locality and realism one can con-
clude that quantum mechanics is not a complete theory. In order to get to
this conclusion, they considered a gedanken experiment based on quantum
mechanics which uses a two particle entangled state.

While the observables in the original version were the positions and momenta
of the two particles, modern versions use two components of the spin of two
spin-1/2 particles in a singlet state

∣ψ⟩ = 1√
2
(∣↑↓⟩ − ∣↓↑⟩)

After interacting, the two particles are separated by a space-like distance.
The x- or y-component of the spin (σx and σy respectively) of each particle
can be measured by an apparatus. When measuring σx of the first particle
the result is either +1 or −1. If for example the result is +1 a measurement of
the σx of the second particle will always give the result −1 and vice versa. So
by performing a measurement on one particle information about the other
particle can be gained.

Since one can decide after the space-like separation of the particles whether
to measure the x- or y-component of the spin and locality is assumed one has
to conclude that the values of both components of the spin of both particles
must be predetermined.

In the EPR paper realism is defined as follows: “If, without in any way dis-
turbing a system, we can predict with certainty [...] the value of a physical
quantity, then there exists an element of physical reality corresponding to this
physical quantity.” [9]. According to this definition, the components of both
spins of the previously mentioned gedanken experiment have simultaneously
physical reality. However quantum mechanics states that if two observables
do not commute, it is impossible to know simultaneously the value of both of
them. EPR conclude that the quantum mechanical description is incomplete
because it does not provide information about these values.
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The remaining question is if quantum mechanics can be completed to a re-
alistic theory, i.e., can we introduce so called hidden variables by which the
outcome of a measurement can be predicted with certainty? Bell’s theorem
provides one restriction to these hidden variable theories: No local hidden
variable theory can reproduce the predictions of quantum mechanics.

6.4. The original Bell argument

By considering realism and locality, Bell achieved to derive an inequality.
Several experiments proved this inequality to be wrong which means that
nature is not local and realistic.

To derive the inequality consider two space-like separated spin-1/2 particles in
the singlet state. The observable that measures the spin of the first particle
is given by σ1 ⋅a where a is a unit vector determining the direction of the spin
measurement. Similarly the observable σ2 ⋅b measures the spin of the second
particle in direction of the unit vector a. Since realism is assumed the result
of the measurement of σ1 ⋅ a can be written as a function of a and a hidden
variable λ: A(a, λ) = ±1, likewise the result of σ2 ⋅b is given by B(b, λ) = ±1.
It is not necessary to specify λ, it could be just a number or a vector but also
a more complex object like a function. Note that since locality is assumed
and the particles are space-like separated A cannot depend on b and B not
on a. The expectation value E(a,b) of the product of σ1 ⋅ a and σ2 ⋅ b is
therefore given by:

E(a,b) = ∫ dλρ(λ)A(a, λ)B(b, λ) (6.1)

where ρ(λ)dλ is the probability measure of λ obeying ∫ dλρ(λ) = 1 and
ρ(λ) ≥ 0 ∀λ. The quantum mechanical expression for this expectation value
is given by

⟨σ1a ⋅ σ2b⟩ = −a ⋅ b = − cosφ (6.2)

with φ being the angle between a and b.

Of course the two expressions (6.1) and (6.2) should be equal for all a and
b, in particular for a = b where quantum mechanics predicts an expectation
value of −1. Since A(a, λ) = ±1, B(b, λ) = ±1 and ∫ dλρ(λ) = 1 (6.1) can
achieve this value only if A(a, λ) = −B(b, λ) ∀λ ∶ ρ(λ) ≠ 0. If for some λ with
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ρ(λ) ≠ 0 the product A(a, λ)B(b is +1 there will be a positive contribution
to the integral and thus E(a,b) > −1. So (6.1) can be rewritten as:

E(a,b) = ∫ dλρ(λ)A(a, λ)A(b, λ) (6.3)

Now let c be another unit vector, then

E(a,b) −E(a,c) = −∫ dλρ(λ)[A(a, λ)A(b, λ) −A(a, λ)A(c, λ)]

= ∫ dλ ∣ρ(λ)[A(a, λ)A(c, λ)A2(a, λ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

−A(a, λ)A(b, λ)]∣

= ∫ dλρ(λ)A(a, λ)A(b, λ)[A(b, λ)A(c, λ) − 1] (6.4)

Finally apply the absolute value to this equation:

∣E(a,b) −E(a,c)∣ = ∣∫ dλρ(λ)A(a, λ)A(b, λ)[A(b, λ)A(c, λ) − 1]∣

≤ ∫ dλ ∣ρ(λ)A(a, λ)A(b, λ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=±1

[A(b, λ)A(c, λ) − 1]∣

≤ ∫ dλρ(λ)[1 −A(b, λ)A(c, λ)]

= 1 +E(b,c) (6.5)

The result is the famous Bell inequality:

1 +E(b,c) ≥ ∣E(a,b) −E(a,c)∣ (6.6)

It can be easily seen that quantum mechanical predictions contradict this
inequality. Choose for example

a = 1√
2
(−êx + êy) b = êy c = êx (6.7)

then
E(b,c) = 0 E(a,b) = −E(a,c) = 1√

2
(6.8)

and the Bell inequality states
1 ≥

√
2 (6.9)
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which is clearly wrong.

The experimental results verify quantum mechanical predictions and thus
violate the Bell inequality. Therefore there cannot be a local and realistic
theory describing nature. The only problem about the Bell inequality is that
statistical values are used. In general it is impossible to measure an expec-
tation value. It can only be achieved by averaging over many measurements.
There are, however, similar arguments circumventing this problem as it will
be shown in section 6.6.

6.5. The Kochen-Specker theorem

The Kochen-Specker theorem states that there is no realistic and non-contextual
theory describing nature:

Theorem 13 It is, in general, impossible to find a map ν which maps the
operators A,B,C, ... to their measurement result ν(A), ν(B), ν(C), ... and

1. ν(X) is an eigenvalue of X ∈ {A,B,C, ...}

2. If A,B,C, ... are mutually commuting and f(A,B,C, ...) = 0,
then f(ν(A), ν(B), ν(C), ...) = 0

The map ν states the realism since it allows, at least theoretically, to predict
the result of a measurement with certainty. The first condition is dictated
by quantum mechanics since a measurement result is always an eigenvalue of
the measured operator. The second condition is the mathematical expression
for non-contextuality, stating that the result of measuring A is independent
of the other operators and can therefore be considered separately. In the
case where f just multiplies the operators this leads to the conclusion that
ν(ABC⋯) = ν(A)ν(B)ν(C)⋯,

Proof. Consider 3 spin-1/2 particles in an arbitrary state and a map obeying
the assumptions of theorem 13. Since the eigenvalue of σ = ±1 this leads to
the following equations:

ν(σ1
xσ

2
yσ

3
y)ν(σ1

x)ν(σ2
y)ν(σ3

y) = 1 (6.10a)
ν(σ1

yσ
2
xσ

3
y)ν(σ1

y)ν(σ2
x)ν(σ3

y) = 1 (6.10b)
ν(σ1

yσ
2
yσ

3
x)ν(σ1

y)ν(σ2
y)ν(σ3

x) = 1 (6.10c)
ν(σ1

xσ
2
yσ

3
y)ν(σ1

yσ
2
xσ

3
y)ν(σ1

yσ
2
yσ

3
x)ν(σ1

xσ
2
xσ

3
x) = −1 (6.10d)
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As the sigma matrices belonging to different particles commute, the first fac-
tor in equations (6.10a)-(6.10c) can be factorized as described above. Then
each factor of these equations appears twice, i.e. squared, and thus they
are all equal to 1. The expression in equation (6.10d) is equal to −1 since
(σ1

yσ
2
yσ

3
x) ⋅ (σ1

yσ
2
xσ

3
y) ⋅ (σ1

yσ
2
yσ

3
x) = −(σ1

xσ
2
xσ

3
x), which can be calculated by the

commutator relations of sigma matrices.

When multiplying the left hand sides of equations (6.10a)-(6.10d) one gets +1
since each factor appears squared, multiplying the right hand sides however
yields −1, a contradiction.∎ The advantage of the Kochen-Specker argument
over Bell’s argument is that for its proof no specific state needed to be con-
sidered while for Bell’s argument a singlet state had to be assumed.

6.6. Another version of Bell’s theorem

The operators of the above presented Kochen-Specker theorem can be also
used for a Bell argument which, in contrast to the original one, has no statis-
tical character. To see this, consider the system to be in a state Φ being an
eigenstate of the mutually commuting operators σ1

xσ
2
yσ

3
y, σ

1
yσ

2
xσ

3
y and σ1

yσ
2
yσ

3
y

with eigenvalue +1. Since (σ1
yσ

2
yσ

3
x) ⋅ (σ1

yσ
2
xσ

3
y) ⋅ (σ1

yσ
2
yσ

3
x) = −(σ1

xσ
2
xσ

3
x), Φ is

also an eigenstate of (σ1
xσ

2
xσ

3
x) with eigenvalue −1.

Suppose now three space-like separated particles in this state Φ. It is pos-
sible to find out the result mx of a spin measurement in x-direction of one
particle by measuring the y-components of the spin of the other two particles,
since the product of these three values must be 1. Similarly one can obtain
the result of a spin measurement in y-direction by measuring the spin of the
other two particles in x- and y-direction, respectively.

The assumption of locality and realism leads to the conclusion, that the sys-
tem in state Φ must be describable by the six variables m1

x,m
1
y,m

2
x,m

2
y,m

3
x

and m2
y which determine the result of the measurements of the above men-

tioned observables. Also since Φ is an eigenstate of these observables the m
must fulfill these equations:

m1
xm

2
ym

3
y = 1 (6.11)

m1
ym

2
xm

3
y = 1 (6.12)

m1
ym

2
ym

3
x = 1 (6.13)
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m1
xm

2
xm

3
x = −1 (6.14)

Now as in section 13 the product of the left hand sides of equations (6.11)-
(6.14) yields +1 since every number appears twice, i.e. squared, while the
product of the right hand sides yields −1. This is again a contradiction
confirming the result of the original Bell argument that a quantum theory
cannot be local and realistic.

6.7. Conclusion

The theorems of Bell and Kochen-Specker are the two most important so-
called no-go theorems. They constrain the possibilities of a quantum theory.
Bell?s theorem states that a quantum theory cannot be both local and realis-
tic. This has been confirmed by experiments. The Kochen-Specker theorem
forbids theories which are realistic as well as non-contextual.

Therefore a quantum theory describing nature properly must sacrifice either
locality and non-contextuality or realism or all these three concepts. Since
these theorems do not specify which of these concepts are to be given up,
there are several theories. While the standard literature tends to abandon ei-
ther both concepts or the concept of realism, bohmian mechanics for example
sticks to realism and gives up locality and non-contextuality.

7. Decoherence - Kostas Vavouranakis and Kos-
mas Kepesidis

7.1. Abstract

Decoherence is neither an interpretation nor a modification of quantum me-
chanics. On the contrary, it exists within the quantum formalism. The
decoherence program attempts to answer the question “How can a world,
being fundamentally quantum in nature, appear to be classical?”
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7.2. Decoherence

7.2.1. Resolution into subsystems

Let us start with some obvious facts. First, that the whole universe is by
definition a closed system. And second, that a closed system is described by
Schrödinger’s equation (unitary time evolution etc).

Decoherence comes from the possibility to divide the total system into (sub)systems
and environment. This openess of quantum systems, which is an essential
requirement for decoherence to occur, is formally described by the decompo-
sition of the total Hilbert space into a tensor product of the Hilbert spaces
of the subsystems and the total state into reduced states.

Htotal = H1 ⊗H2 ⊗⋯⊗HN (7.1)

∣ψtotal⟩ = ∣ψ1⟩⊗⋯⊗ ∣ψN⟩ (7.2)

But how exactly can one define the environment?

Definition: The environment consists of all those degrees of freedom that
cannot be controlled and their dynamics is in general unknown.

7.2.2. The Reduced Density Matrix

Consider a pair of spins being initially in an entangled state. For instance, a
state of the EPR type,

∣ψ⟩ = 1√
2
(∣+⟩1 ∣−⟩2 − ∣−⟩1 ∣+⟩2) (7.3)

The density matrix of the total system is,

ρ = ∣ψ⟩ ⟨ψ∣ (7.4)

Now, consider an observable that refers only to the first of those two spins,

Ô = Ôi ⊗ Î2 (7.5)

then the expectation value of the observable reads,

⟨Ô⟩ψ = Tr(ρÔ) = Tr1(Ô1Tr2(ρ)) = Tr1(Ô1ρ1) (7.6)
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where ρ1 = Tr2(ρ) is the reduced density matrix (RDM) of the first spin. It
constitutes a local representation since the degrees of freedom of the second
spin have been traced out. Hence the RDM reads,

ρ1 = Tr2 ∣ψ⟩ ⟨ψ∣ = 2 ⟨+ ∣ψ⟩ ⟨ψ ∣+⟩2 + 2 ⟨− ∣ψ⟩ ⟨ψ ∣−⟩2 =
1

2
(∣+⟩ ⟨+∣)1 +

1

2
(∣−⟩ ⟨−∣)1

(7.7)
Where we have used the fact that the spin states are well distinguishable,
i.e., mutually orthogonal 2 ⟨+ ∣−⟩2 = 0. It is obvious from equation (7.7) that
the RDM has diagonal form. Thus an important result is that the amount
of overlap of the states of system 2 that are one-to-one correlated with the
states of system 1, quantifies the degree of interference in the basis [∣+⟩ , ∣−⟩]
of system 2. For that the diagonalization of the RDM is basis dependent.
In other words the wavefunction (7.3) corresponds to a maximally entangled
state. On the other extreme, a tensor product state of the general form

∣ψ′⟩ = 1√
2
(∣+⟩1 + eiφ ∣−⟩1) ∣Φ⟩2

where there are no correlations between the states of the system 1 and those
of the system 2, does not lead to a diagonal RDM.

A diagonal density matrix represents a classical statistical mixture. That
means that in this case the outcome of a measurement on the spin 1 would
be + with probability 1

2 and − with probability 1
2 . Those probabilities are

classical and there is a clear analogy to the case that we flip a coin. Clas-
sical probabilities are always related to ignorance (lack of information). For
example coin flipping is a completely deterministic process, however the out-
come can only be described by probabilities because a complete description
is impossible due to the complexity of the problem. That means we ignore
details. Similarly, in the case of the EPR state, the details we ignore are the
quantum correlations between the two spins.

7.2.3. General formalism

In section 2.2 we saw that the diagonalization of the RDM was implied by
the fact that the spin states are well distinguishable. Now, we will calcu-
late the RDM in the general case of a quantum system interacting with its
environment. Suppose a quantum system being initially in a pure state

∣ψ⟩ =∑
n

cn ∣sn⟩
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where [∣sn⟩] are basis vectors in a Hilbert space Hs and its environment,
which can also be a quantum system

∣E⟩ =∑
n

dn ∣en⟩

with vectors [∣en⟩] in He which in general are not orthogonal. We suppose
that initially the system and the environment are uncorrelated.

∣ψtotal⟩ = ∣psi⟩⊗ ∣E⟩ (7.8)

Now, if we turn on interactions between them, according to the von Neu-
mann scheme, after unitary time evolution the total system will end up in
an entangled state,

∣ψtotal⟩→ ∣ψ̃total⟩ = ∑
n,m

cnm ∣sn⟩ ∣em⟩ =∑
n

c̃n ∣s̃n⟩ ∣ẽn⟩ (7.9)

For the last step in the above equation we have used the Schmidt decomposi-
tion theorem, which states that an arbitrary pure state of a bipartite system
can always be written in a diagonal form. Therefore, the density matrix of
the combined system reads,

ρse =∑
mn

c̃mc̃
∗
n ∣s̃m⟩ ∣ẽm⟩ ⟨s̃n∣ ⟨ẽn∣ (7.10)

And by taking the trace over the degrees of freedom of the environment we
get the RDM for the system,

ρs = Tre(ρse) =∑
mn

c̃mc̃
∗
n ∣s̃m⟩ ⟨s̃n∣ ⟨ẽn ∣ ẽn⟩ (7.11)

Up to now, the RDM contains interference terms (coherences) for n ≠ m,
since, in general, the vectors of the environment are not mutually orthogonal.
However, many physical simulations have shown that due to the large number
of subsystems that com- pose the environment, the states of the environment
rapidly approach orthogonality ⟨ẽn ∣ ẽn⟩ (t) → δn,m. This leads to the loss of
the coherence terms and it will be shown in the next section using a generic
example.

ρs → ρ̃s =∑
n

∣c̃n∣2 ∣s̃m⟩ ⟨s̃n∣ (7.12)

We must also mention that, in the case of a measurement, the orthogonality of
the states of the environment is a physical requirement for the effectiveness of
the measurement apparatus, i.e., the ability to give well specified outcomes.
The phenomenon of the dynamical diagonalization of the RDM is called
Environment-Induced-Decoherence.
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7.2.4. An example on decoherence

To illustrate how decoherence takes place in practice let us consider a realistic
and rather general example. Consider the world composing out of 2-state
systems. We shall investigate one of them. In practice we have a 2-state
system interacting with N 2-state “environments”. The Hamiltonian for the
interaction is of the following form

Hse =(∣↑⟩ ⟨↑∣ − ∣↓⟩ ⟨↓∣)
⊗∑

k

gk(∣↑k⟩ ⟨↑k∣ − ∣↓k⟩ ⟨↓k∣) ⊗
k≠k′

(∣↑k⟩ ⟨↑k∣ + ∣↓k⟩ ⟨↓k∣)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ik′

(7.13)

with Ik being the identity operator for the kth environmental spin and gk
coupling constants.

Expanding the ∣↑⟩ and ∣↓⟩ basis the initial state is

∣ψ(0)⟩ = (a ∣↑⟩ + b ∣↓⟩)
N
⊗
k=1

(αk ∣↑k⟩ + βk ∣↓k⟩) (7.14)

And after the interaction is turned on, by solving Schrödinger’s equation we
get

∣ψ(t)⟩ = a ∣↑⟩
N
⊗
k=1

(αkeigkt ∣↑k⟩ + βke−igkt ∣↓k⟩)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡∣E↑(t)⟩

+ b ∣↓⟩
N
⊗
k=1

(αke−igkt ∣↑k⟩ + βkeigkt ∣↓k⟩)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡∣E↓(t)⟩

Therefore we have the evolution of our initial state into an entangled state

∣ψt⟩ = a ∣↑⟩ ∣E↑(t)⟩ + b ∣↓⟩ ∣E↓(t)⟩ (7.15)

The density matrix rea

ρ = ∣ψ(t)⟩ ⟨ψ(t)∣ = ∣a∣2 ∣↑⟩ ⟨↑∣⊗ ∣E↑(t)⟩ ⟨E↑(t)∣
+ ∣b∣2 ∣↓⟩ ⟨↓∣⊗ ∣E↓(t)⟩ ⟨E↓(t)∣
+ ab∗ ∣↑⟩ ⟨↓∣⊗ ∣E↑(t)⟩ ⟨E↓(t)∣
+ a∗b ∣↓⟩ ⟨↑∣⊗ ∣E↓(t)⟩ ⟨E↑(t)∣

67



Now we can estimate the reduced density matrix by tracing out the environ-
ment

ρs = ∣a∣2 ∣↑⟩ ⟨↑∣ + ∣b∣2 ∣↓⟩ ⟨↓∣ + z(t)ab∗ ∣↑⟩ ⟨↓∣ + z∗(t)a∗b ∣↓⟩ ⟨↑∣ (7.16)

where z(t) = ⟨E↓(t) ∣E↑(t)⟩ are the coefficients for the interference terms. Let
us study how these coefficients evolve in time. Using the explicit form of the
states ∣E↓(t)⟩ and ∣E↑(t)⟩ we get

z(t) =
N

∏
k=1

(∣αk∣2e2igkt + ∣βk∣2e−2igkt) (7.17)

For simplicity, we assume that all gk’s, ∣αk∣’s and ∣βk∣’s have no dependence
on the index k, namely that gk = g, ∣αk∣ = α and ∣βk∣ = β (alternatively, we
could assume they are drawn from some probability distribution and then
appeal to the central limit theorem to obtain the Gaussian as below). Then

z(t) = (∣α∣2e2igt + ∣β∣2e−2igt)N =
N

∑
l=0

(N
l
)∣α∣2l∣β∣2(N−l)e2ig(2l−N)t (7.18)

which is a binomial distribution. In the large N limit the binomial distribu-
tion can be approximated by a Gaussian.

(N
l
)∣α∣2l∣β∣2(N−l) ≈ 1√

2πN ∣α∣2∣β∣2
exp(−(l −N ∣α∣2)2

2N ∣α∣2∣β∣2
)

Given this approximation equation (7.18) can be written as

z(t) =
N

∑
l=0

1√
2πN ∣α∣2∣β∣2

exp(−(l −N ∣α∣2)2

2N ∣α∣2∣β∣2
)e2ig(2l−N)t (7.19)

The above is reminiscent of the Fourier transform of a Gaussian, which should
be a Gaussian itself. Let us bring the above equation into a more sugges-
tive form, so that the Gaussian and the Fourier transform along with the
conjugate variable become apparent. To simplify the notation, we define
A = (2N ∣α∣2∣β∣2)−1 and we make a variable substitution k = l −N ∣α∣2. Our
previous claim is now obvious

z(t) = A√
π
e−2igN(1−∣α∣2)t∑

k

e−Ak
2

e4igkt (7.20)
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By treating the above in the usual way, after completing the square of the
exponent, substituting back the explicit form of the quantity A and replacing
∑k by ∫ dk we get the final result

z(t) ≈ exp (−2igN(1 − ∣α∣2t)√
2πN ∣α∣∣β∣

exp (−4g2
√

2N ∣α∣∣β∣t2) (7.21)

We are now in a position to comment on the quantum to classical transition of
the system under study. Analyzing the formula for the coefficients functions
of the ???interference, we see that it is composed out of an oscillating factor
(which is of no particular interest for our analysis), one suppressing factor
(1/

√
N) and a Gaussian one. Therefore z(t) will asymptotically tend to

vanish,
lim
t→∞

z(t) = 0

Actually we can go one step further and take advantage of the explicit form
of the Gaussian in order to define the characteristic time in which the system
will decohere. This is given as

τD = 1

4g2
√

2N ∣α∣∣β∣
(7.22)

Remarks

● As one could have probably guessed intuitively the decoherence time is
shorter when the subsystems are strongly coupled and when the number
of degrees of freedom of the environment - a measure of which is N -
are increased.

● One could argue that the example under consideration is special, for-
bidding us to draw general conclusions. However this is not the case.
Up to a change of basis in the tensor factors, the only special prop-
erty of our Hamiltonian (although a property of great importance - see
section 3.2) is the fact that we have chosen it to be of the form

Hse =∑
k

H
(k)
1 ⊗Hk ⊗ Ik′

where all H(k)1 ’s commute with each other
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● One final remark is in order. There is a subtlety hidden in one of our
approximations. Thecoefficient function z(t) will not exactly die off
after time τD. Actually it has some quasi-periodic properties. This
traces back to equation (18), in which the periodic nature of z(t) is
apparent. Up to that point we had made no approximations. However
in order to simplify things at that point we took the large N limit and
we approximated the binomial distribution by a Gaussian. The end
result is that, if we want to be careful, we should point out that the
system will eventually recohere.

The next logical question one would ask is whether this poses any
threat to the explanation of quantum to classical transition through
decoherence. The answer is no. Actually there is a similar effect in
classical statistical physics, which we?ll mention very briefly:

There is an argument against irreversibility of classical systems that
takes its power from Poincare’s reccurence theorem. The spirit of the
theorem is that a finite system that starts evolving in time will return
to its initial state infinitely many times. So, there is the cause of our
problem. We assumed our system to be infinite, although realistic
systems in physics are always finite.

The counter-argument to the spoiling of decoherence due to recoherence
is that typical Poincare times are of the order of N !. If we stop for a
moment now to consider all the facts we end up with two important
considerations: For a physical system, for which N is typically of the
order 1023, on the one hand there is extremely rapid decoherence, as
commented above, and on the other hand extremely slow recoherence
(just to immediately decohere again). The conclusion is that for all
practical purposes the system decoheres and becomes classical.

7.3. Pointer Basis

The pointer basis is defined as the basis in which the RDM is diagonal. As
we will see, this basis is selected by the environment.
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7.3.1. Quantum Measurement revised

Suppose we want to perform a measurement on a quantum state ∣ψ⟩. And
assume that initially there are no correlations between the state vector of the
system and that of our measurement apparatus.

∣A0⟩⊗ ∣ψ⟩ =∑
s

as ∣As⟩⊗∑
l

∣l⟩ (7.23)

Now, likewise equation (9), according to the von Neumann pre-measurement
scheme, the unitary time evolution suffices to establish correlations between
the two.

∣A0⟩⊗ ∣ψ⟩→∑
s

∣As⟩⊗ ∣s⟩ (7.24)

One can argue that the observable that is measured is

Ŝ =∑
s

es ∣s⟩ ⟨s∣

However, we can express the state of the apparatus in an alternative or-
thonormal basis. For instance,

∣Ar⟩ =∑
s

⟨As ∣Ar⟩ ∣As⟩ (7.25)

In this case, the final state would be,

∑
s

cs ∣As⟩⊗ ∣s⟩ =∑
r

∣Ar⟩⊗∑
s

cs ⟨As ∣Ar⟩ ∣As⟩ =∑
r

dr ∣Ar⟩⊗ ∣r⟩ (7.26)

with
dr ∣r⟩ =∑

s

cs ⟨As ∣Ar⟩ ∣s⟩

Now, one can say that the observable that is measured by the apparatus has
the form,

R̂ =∑
r

fr ∣r⟩ ⟨r∣

Does that imply that, after the measurement, the apparatus contains in-
formation about both observables? This is contradictory, because the two
observables do not, in general, commute! The only way for our description
to be consistent with the fact that real devices measure a specified physical
quantity is that a decomposition of the form of equation (24) to be unique.
The question that arises is, “What determines the unique pointer basis of the
apparatus which records the corresponding states of the system?”.
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7.3.2. Environment-Induced-Superselection

Consider now the case where we take into account the interaction of the
measurement apparatus with a third quantum system ∣E0⟩, which represents
the environment. Then the total state will evolve as,

∣E0⟩⊗ ∣A0⟩⊗ ∣ψ⟩ →
Hea

[∑
p

bp ∣Ep⟩⊗ ∣Ap⟩]⊗ ∣ψ⟩ →
Has
∑
p

bp ∣Ep⟩⊗ ∣Ap⟩⊗ ∣p⟩ (7.27)

where Hea and Has represent the interaction hamiltonians between the en-
vironment with the apparatus and the apparatus with the system, respec-
tively. At this point, a uniqueness theorem solves the ambiguity. The Tri-
decompositional Uniqueness Theorem states that if we can decompose the
Hilbert space to a number of subspaces that is greater than or equal to three,
as in equation 27, then its uniqueness is guaranteed. However it does not
state anything about which is the basis in which the diagonalization takes
place. And up to recent developments there is no reliable way to determine
it formally.

The only way to say something about the proper basis is through physi-
cally reasonable arguments. For example, it would make sense to state that
the pointer basis should be the one in which the system-apparatus correla-
tions ∣sn⟩ ∣an⟩ are left undisturbed under the subsequent formation of cor-
relations with the environment (the stability criterion). One can then find
a sufficient criterion for dynamically stable pointer states that preserve the
system-apparatus correlations in spite of the interaction of the apparatus
with the environment by requiring all pointer state projection operators

P̂
(A)
n = ∣an⟩ ⟨an∣

to commute with the apparatus-environment interaction Hamiltonian, i.e.,

[P̂ (A)n , Ĥae] = 0 for all n (7.28)

Other criteria similar to the commutativity requirement have been suggested
for the selection of the preferred pointer basis, because it turns out that
in most realistic cases the simple relation of equation (7.28) can only be
fulfilled approximately. Alternative criteria that have been suggested, have
been based for example on the von Neumann entropy or the purity (Trρ2

ψ(t)).
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In order to attain a physical feeling of the spirit of the aforementioned argu-
ments let us proceed to the following example:

Consider conducting some quantum experiment, for example an experiment
involving electron measurement or bubble chambers etc. These sorts of exper-
iments have several natural enemies. In particular, air molecules or random
photons (sourced for example from cosmic microwave background radiation)
could scatter o? the electrons that are relevant with the experiment.

Let us now ask ourselves: What does this result into?

Restricting to radiation it is sensible to state that by scattering with the
electrons under study, the latter are practically being constantly monitored
as long as their position is concerned. In this sense the environment itself im-
poses on the system that the preferred pointer basis is in the position space.
This property holds in general. Depend- ing on the specific system under
study and its interaction with the environment, other quantities could be
monitored. One can find lots of examples to convince him(her)self regarding
the validity of this statement. This mechanism is known as environment-
induced superselection and it describes (as already mentioned) how the en-
vironment determines the pointer basis.

8. Consistent Histories - Hao Wu

8.1. Introduction

A theory is considered to be something that can answer certain kind of ques-
tions. Questions are asked by observers. We assume that asking questions
is not really a physical process, it doesn’t mean any change in the universe.
However, not every set of questions can have a reasonable answer, for ex-
ample “which slit the photon passes through” in the double-slit experiment.
So we need a tool to check if the set of questions we ask is compatible. Be-
cause of the non-deterministic nature of the quantum mechanics, the answer
to the questions is only probabilistic. A compatible set of questions has a
well-defined probabilistic answer while for an incompatible set of questions
the probability can not be assigned reasonably to each possible outcomes.

Now we introduce a theory which provides us a criterium for the compat-
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ible set of questions and tells us how to calculate the probabilities of each
possible outcomes in that case. It?s called “Consistent Histories” and is an
interpretation of quantum mechanics, which means that it gives exactly those
predictions of physical phenomena as the standard quantum mechanics will
give. In this sense, it?s not “another” theory, and all the different inter-
pretations of quantum mechanics are equally true. The value of a certain
interpretation therefore completely lies in its underlying philosophy which
may inspire physicists to find a really new theory, and the potential of its
formulation to be extended to a really new theory. In the case of classical me-
chanics we have newtonian, lagrangian, hamiltonian and hamilton-jacobian
formulations. They are equally true in classical mechanics, but they are not
the same as we know.

This chapter is based on [13] and [11].

8.2. History Hilbert Space and Sample Space

We describe the system which we are interested in by a Hilbert space. Since
we want to know the property of a system not only at a single time but in a
sequence of time points, we need a history Hilbert space.

Definition 1 For a given sequence of time points (ti)i=1,...,f , H̆ = H1 ⊙H2 ⊙
⋯⊙Hf is called a history Hilbert space, where Hi is the Hilbert space of the
system for all i. The symbol ⊙ means the direct product in time order, and
the symbol ⊗ is used to denote the direct product in the same time.

Our question is actually a set of “yes/no”-type questions. For example if we
want to know the position, we can divide the whole space into left part and
right part and then ask “is the position in the left part?” and so on. For
doing this we introduce the history and the sample space.

Definition 2 A projector in the history Hilbert space

Y = F1 ⊙ F2 ⊙⋯⊙ Ff

is a history where Fi is a projector in Hi.

We denote the projector onto the “spin-up” state of a spin-1/2 particle with
[z+] and so on. Then [z+]⊙[x−]⊙[x+] is an example of history. The physical
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meaning of it is that the particle is “spin-up” at time t1, “spin-left” at time
t2 and “spin-right” at time t3.

Definition 3 The set of histories constructed by decomposition of history
identity

{Y α} ∶ Ĭ =∑
α

Y α

is a sample space, where the history identity Ĭ is the identity projector in the
history Hilbert space.

Now we can formulate our questions by specifying the sample space and then
asking about the probability of each history in it.

For example

Y 0 = [z−]⊙ I ⊙ I
Y 1 = [z+]⊙ [x+]⊙ [z+]
Y 2 = [z+]⊙ [x+]⊙ [z−]
Y 3 = [z+]⊙ [x−]⊙ [z+]
Y 4 = [z+]⊙ [x−]⊙ [z−] (8.1)

is a 3-times sample space of a spin-1/2 particle. This sample space is usually
to describe the system with initial state [z+]. Y 0 simply has 0 probability but
has to be included in the sample space for the completeness. If we assume
the time evolution is just the trivial time evolution, i.e., the Hamiltonian is
constantly say 0, this example actually describes the Stern-Gerlach version
of double-slit experiment, where the second Stern-Gerlach magnet has been
rotated by 90 degrees.

For Y α and Y β from the same sample space we have

“not Y α” Y α̃ = Ĭ − Y α

“Y α and Y β" Y α ∧ Y β = Y αY β = 0

“Y α or Y β" Y α ∨ Y β = Y α + Y β

Now look at Y 1 and Y 3 in example(1). They correspond to the two cases
“particle passes through the left slit” and “particle passes through the right
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slit”. From quantum mechanics we know that these cases interfere with each
other, so we may suppose that these two histories are not consistent with
each other and the set of questions specified by this sample space is not
compatible.

8.3. Born Rule

The question that we want to ask corresponds directly to the choice of sample
space. Quantum mechanics can only offer a probabilistic answer which means
classical probabilities have to be assigned to each history in the sample space.
Though the histories in a sample space are mutually exclusive and sum up
to history identity, it?s not guaranteed that classical probabilities can be
assigned to them.

Consider a 2-times history of form

Y α = [φ0]⊙ [φα1 ]

and denote the probability weight of it by W (Y α). Assume the system is
isolated. The Born rule is

W (Y α) = ∣ ⟨φα1 ∣T (t0, t1) ∣φ0⟩ ∣2

= ⋯
= Tr([φ0]T (t0, t1)[φα1 ][φα1 ]T (t0, t1)[φ0]) (8.2)

where T (t0, t1) is the unitary time evolution of the isolated system.

We see that it is important to know the time evolution T , or say the Hamil-
tonian of the system for calculating the probabilities.

We denote [φα1 ]T (t0, t1)[φ0] by the chain operator K(Y α) and Tr(A†B) by
the scalar product ⟨A,B⟩, then

W (Y α) = Tr(K†(Y α)K(Y α)) = ⟨K(Y α),K(Y α)⟩ (8.3)

For a general history of form

Y = F1 ⊙ F2 ⊙⋯⊙ Ff (8.4)

we define the chain operator as following.
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Definition 4 The chain operator of the history Y of the form (4) is

K(Y ) = FfT (tf , tf−1)Ff−1⋯T (t1, t0)F0

and
K(Y + Y ′) =K(Y ) +K(Y ′)

Then for a general history Y α, equation (3) gives the probability weight to
it. This is the general form of the Born rule.

8.4. Consistency Condition

As mentioned in the previous section, classical probabilities can not always be
assigned to the histories in a sample space by using the Born rule. Classical
probability obeys the additivity, which means

W (E ∧ F ) =W (E) +W (F )

∀ different E,F in sample space.

Now we take a sample space {Y α} and consider a projector Y of the form

Y =∑
α

παY α

where πα = 0,1.

W (Y ) = ⟨∑
α

παK(Y α),∑
β

πβK(Y β)⟩

=∑
α
∑
β

παπβ⟨K(Y α),K(Y β)⟩ (8.5)

If the additivity holds, we should have

W (Y ) =∑
α

πα⟨K(Y α),K(Y α)⟩ (8.6)

To equal (6) and (7), we have to require

⟨K(Y α),K(Y β)⟩ = 0 , ∀α ≠ β (8.7)

Equation (8) is the consistency condition for the sample space {Y α}.
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Sample spaces, for which the consistency condition is satisfied , are called
consistent sample spaces. Classical probabilities can only be used for con-
sistent sample spaces. If sample space is not consistent, one can observe
quantum superposition(interference) of histories.

We have to notice that the consistency condition can only be applied on an
isolated system since it’s required in the definition of the chain operator, in
which the unitary time evolution operator can not be defined in an open
system. So there are two ways to construct a consistent sample space. The
first strategy is to ask questions smartly: choose a smart way(you should
not ask about everything) to decompose the history identity. The second
strategy is to bring something(measurement apparatus, environment..) into
interaction(in particular entanglement) with the system so that we have to
enlarge our Hilbert space. Then we can ignore a part of the whole system.
The time evolution T is changed in this case.

8.5. Examples

A very important example is shown in (1). We assume that spin-1/2 particle
is isolated, which means that it is not interacting with anything. Then the
unitary time evolution operator is just trivially 1. A simple calculation shows

⟨K(Y 1),K(Y 3)⟩ = 1

4
(8.8)

and

1 =W (Y 1 + Y 3)
=W (Y 1) +W (Y 3) + 2⟨K(Y 1),K(Y 3)⟩

= 1

4
+ 1

4
+ 2 × 1

4

We see that the sample space (1) is not consistent under the trivial time
evolution and there is an interference between histories. This is just a Stern-
Gerlach version of the double-slit experiment as mentioned before.

Now we measure the the spin of the particle in x-direction at time t2. Then
the particle is in interaction with the apparatus, so we have to enlarge the
Hilbert space and the Hilbert space describing the apparatus has to be cut
in. We assume that the measurement is fully efficient which means that we
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can just use a two dimensional subspace of the huge Hilbert space describing
the macroscopic apparatus and if we set our apparatus at time t1 to the state
∣X+⟩, then we can specify the time evolution:

T (t2, t1) =
⎛
⎜⎜⎜
⎝

x+X+ x+X− x−X+ x−X−

x+X+ 1
x+X− 1
x−X+ 1
x−X− 1

⎞
⎟⎟⎟
⎠

T (t3, t2) =
⎛
⎜⎜⎜
⎝

x+X+ x+X− x−X+ x−X−

x+X+ 1
x+X− 1
x−X+ 1
x−X− 1

⎞
⎟⎟⎟
⎠

(8.9)

But by the decomposition we don’t want to ask questions about the appa-
ratus(actually we cannot ask arbitrary questions, in this example we can
choose the “X-basis” to decompose the identity for the apparatus but not
the “Z-basis” as shown in the next example), so the identity projector onto
the subspace of the apparatus will not be de- composed. We have our sample
space:

Y 0 = ([z−]⊗ I + [z+]⊗ [X−])⊙ (I ⊗ I)⊙ (I ⊗ I)
A = ([z+]⊗ [X+])⊙ ([x+]⊗ I)⊙ ([z+]⊗ I)
B = ([z+]⊗ [X+])⊙ ([x+]⊗ I)⊙ ([z−]⊗ I)
C = ([z+]⊗ [X+])⊙ ([x−]⊗ I)⊙ ([z+]⊗ I)
D = ([z+]⊗ [X+])⊙ ([x−]⊗ I)⊙ ([z−]⊗ I) (8.10)

We check the consistency condition between A and C:

K†(A) = ([z+]⊗ [X+]) ⋅ T (t2, t1) ⋅ ([x+]⊗ I) ⋅ 1 ⋅ ([z+]⊗ I)

= 1

4
(1 1

1 1
)⊗ (1 0

0 0
) ⋅

⎛
⎜⎜⎜
⎝

1
1

1
1

⎞
⎟⎟⎟
⎠
⋅ (1 0

0 0
)⊗ (1 0

0 1
) ⋅ (1 1

1 1
)⊗ (1 0

0 1
)

= 1

4

⎛
⎜⎜⎜
⎝

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎞
⎟⎟⎟
⎠
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K(C) = ([z+]⊗ I) ⋅ 1 ⋅ ([x−]⊗ I) ⋅ T (t2, t1) ⋅ ([z+]⊗ [X+])

= 1

4
(1 1

1 1
)⊗ (1 0

0 1
) ⋅ (0 0

0 1
)⊗ (1 0

0 1
) ⋅

⎛
⎜⎜⎜
⎝

1
1

1
1

⎞
⎟⎟⎟
⎠
⋅ (1 1

1 1
)⊗ (1 0

0 0
)

= 1

4

⎛
⎜⎜⎜
⎝

0 0 0 0
1 0 1 0
0 0 0 0
1 0 1 0

⎞
⎟⎟⎟
⎠

⇒
⟨K(A),K(C)⟩ = Tr(K†(A)K(C)) = 0

W (A) = Tr(K†(A)K(A)) = 1

4

W (C) = Tr(K†(C)K(C)) = 1

4
(8.11)

We see that A and C are consistent with respect to each other and both have
probability weight 1

4 .

It can be shown by similar calculation that the sample space (11) is consistent
under the time evolution (10) and each of the histories A, B, C and D has
probability weight 1

4 .

Now we replace the apparatus in the previous example by a second spin-1/2
particle. The initial state of the particle is again in ∣X+⟩. The time evolution
is the same as (10). At time t2, if we still don’t ask about the state of the
second particle, then it’s exactly the case as in previous. If we now ask about
the spin of the second particle in Z-direction at time t2 (consider an EPR-
type experiment where Alice wants to know the spin of the first particle in
x-direction and Bob wants to know the spin of the second one in Z-direction,
but they have not done any measurement yet), then we decompose each of
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the histories A, B, C and D in (11) into two histories:

Y 0 = ([z−]⊗ I + [z+]⊗ [X−])⊙ (I ⊗ I)⊙ (I ⊗ I)

A1 = ([z+]⊗ [X+])⊙ ([x+]⊗ [Z+])⊙ ([z+]⊗ I)
A2 = ([z+]⊗ [X+])⊙ ([x+]⊗ [Z−])⊙ ([z+]⊗ I)

B1 = ([z+]⊗ [X+])⊙ ([x+]⊗ [Z+])⊙ ([z−]⊗ I)
B2 = ([z+]⊗ [X+])⊙ ([x+]⊗ [Z−])⊙ ([z−]⊗ I)

C1 = ([z+]⊗ [X+])⊙ ([x+]⊗ [Z+])⊙ ([z+]⊗ I)
C2 = ([z+]⊗ [X+])⊙ ([x+]⊗ [Z−])⊙ ([z+]⊗ I)

D1 = ([z+]⊗ [X+])⊙ ([x+]⊗ [Z+])⊙ ([z−]⊗ I)
D2 = ([z+]⊗ [X+])⊙ ([x+]⊗ [Z−])⊙ ([z−]⊗ I) (8.12)

We can use a similar calculation using the matrix notation to show

⟨K(A1),K(C1)⟩ = 1

8

⟨K(A2),K(C2)⟩ = −1

8
(8.13)

So the sample space (14) is not consistent.

We can also show:

⟨K(A1),K(C2)⟩ = 0

⟨K(A2),K(C1)⟩ = 0

Combined with (15) and linearity of K(⋅) and Tr(⋅), we just get another
proof of (13).

Now we see that if we ignore the questions about the spin of the second
particle in Z-direction, we have a consistent sample space (11), if not, we get
an inconsistent sample space (14). A classical probability distribution can
not be assigned to (14), so our questions have no reasonable probabilistic
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answer.

There is another way to get a consistent sample space from (14): we ignore
the questions about the spin of the first particle in x-direction instead of
questions about the spin of the second particle in Z-direction. So we sum up
A1 and C1, A2 and C2, B1 and D1, B2 and D2.

Y 0 = ([z−]⊗ I + [z+]⊗ [X−])⊙ (I ⊗ I)⊙ (I ⊗ I)
Y 1 = ([z+]⊗ [X+])⊙ (I ⊗ [Z+])⊙ ([z+]⊗ I)
Y 2 = ([z+]⊗ [X+])⊙ (I ⊗ [Z+])⊙ ([z−]⊗ I)

Y 3 = ⊗[X+])⊙ (I ⊗ [Z−])⊙ ([z+]⊗ I)
Y 4 = ⊗[X+])⊙ (I ⊗ [Z−])⊙ ([z−]⊗ I) (8.14)

A similar calculation can show that the sample space (16) is consistent. The
probability weight of them are:

W (Y 0) =W (Y 2) =W (Y 3) = 0

W (Y 1) =W (Y 4) = 1

2

We see that to get a consistent sample space, we either ignore the questions
about the x-spin of first particle or the questions about the Z-spin of the
second particle. If we ask both together, then our sample space is not con-
sistent which means there is no reasonable answer to our questions. The
“realities” of the two particles are dependent of the choice of our set of ques-
tions. But remember that asking questions is not a real physical process.
So the “Consistent Histories” is an explicitly non-realistic interpretation of
quantum mechanics, where we use the term “realistic” as in the discussion
about EPR-paradox.

9. Many worlds - Maximilian Jeblick

9.1. Introduction

One of the most stunning and daring proposal in the history of modern
physics was made by Hugh Everett in 1957, when he formulated the Many
Worlds (MW) Interpretation of quantum mechanics. Despite the fact that
the phrase “many worlds” was only introduced about 10 years later by Bryce
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de Witt, Everett nevertheless can be considered as the founding father of
MW. For more historical details and funny anecdotes I strongly recommend
the BBC documentary “Parallel worlds, parallel lives?” (→ Youtube).

Despite its thrilling consequences, which will be discussed later, MW is a
simple con- sequence of standard quantum mechanics plus the assumption
that the collapse of the wave function is unphysical and in contradiction with
unitary time evolution. Indeed the “collapse” of the wave function during a
“measurement”1 is highly unsatisfactory, contradicts with the Schrödinger
Equation (SEQ) and is moreover ad hoc. Assuming that the whole universe
is guided by quantum mechanics, von Neumann pointed out that the linearity
of the Schrödinger Equation does not allow any collapse. Thus it is reasonable
to ask if it possible to modify Copenhagen Quantum Mechanics in such a way,
that there is no need for any collapse of the wave function. The astonishing
answer Everett gives is: Yes! It is possible to withdraw the collapse postulate
without adding further entities!

9.2. Sketch of the Many World Interpretation

As we figured out we will not modify the usual quantum formalism despite
the fact that we assume the SEQ to be valid for all times. In order to
formulate a measurement we will apply the von Neumann Scheme. As the
most simple example we will consider the spin measurement of a spin 1/2
particle. The initial state reads as (omitting the spatial part of the electron
wave function):

∣Ψ(ti)⟩ = (α ∣↑⟩ + β ∣↓⟩)⊗ ∣ΨA[0]⟩ (9.1)

where ∣ΨA[0]⟩ denotes the apparatus in its ready state “0”. After a while the
electron will hit the apparatus and enforce an interaction between the appa-
ratus and the electron2. Hence the final configuration will read as follows:

∣Ψ(tf)⟩ = α ∣↑⟩⊗ ∣ΨA[↑]⟩ + β ∣↓⟩⊗ ∣ΨA[↓]⟩ (9.2)

This result, which is of course well-known, does not seem to be satisfactory
at all! What does the apparatus show? We have arrived at Schr??inger?s
cat paradox. However there exists a loophole: If we consider the summands
in (2) as distinct entities, we might also say: One outcome is realized in one

1For are detailed criticism about “measurement” see also [4]
2For more details cf. any book with a detailed description of the von Neumann Scheme
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branch and the other outcome is realized in another branch. If we consider
the apparatus coupled to a human being (that is we read off the apparatus
pointer), we might construct the following sequence:

∣Ψ(tf)⟩ = α ∣↑⟩⊗ ∣ΨA[↑]⟩⊗ ∣ΨHuman[↑]⟩ + β ∣↓⟩⊗ ∣ΨA[↓]⟩⊗ ∣ΨHuman[↓]⟩ (9.3)

That is within one branch apparatus and human agree upon the measure-
ment result. Moreover any interaction which might be used as an honest
measurement apparatus enforces effective decoherence [8] . According to
MW there exist different branches and within each branch everything is
self-consistent. The branches don’t “know” from each other, i.e., decoher-
ence forbids any further interaction or “communication” between different
branches3. In this sense decoherence generates an effective collapse which is
FAPP indistinguishable from a real existing collapse4.

A short remark to the name “Many Worlds”:

As seen from (2) or (3) we have indeed a many worlds interpretation, that
is there exist different distinct entities where each might be considered as a
distinct “universe”. Indeed we might label “system spin up” as universe 1,
where one reads “spin up” and writes down “spin up” and universe 2, where
one writes down “spin down”. In my opinion the phrase “many worlds” is
not only a pictorial metaphor, since we have distinct, FAPP non interacting,
physical systems and each of these systems consists of entities which strongly
imply the word “universe”5.

9.3. Quantum mechanics as a partly interpreted system

We will now present a more general procedure, which allows to analyze QM
on a more fundamental level. While this analysis is not specific to MW it

3Everett therefore used the phrase “relative state formalism” instead of many worlds.
Since the decomposition into different branches is not unique one needs to investigate this
problem on a more profound level. See also the chapter on decoherence.

4There are attempts to design experiments which could distinguish between an effective
and a dynamical (GRW) collapse.

5This resembles a collection of “classical” universes with different realizations of exper-
iments. One also might consider the universal wave function as “the universe” paying the
price that everything we have experienced so far is only realized within one branch. That
is, in this reading it is a priori impossible to penetrate into regions of the universe which
are realized in other branches.
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nevertheless helps to distinguish more systematically different formulations of
QM. We assume that a physical theory (as QM) is a partly interpreted formal
system. That is, we split our theory as follows: The underlying axiomatic
system is understood purely mathematical, denoted by F (formalism). The
formalism solely consists of mathematical axioms and theorems (see MQM!).
We define rules of correspondence6, which identify objects in F with physical
reality7. As an example, the parameter “t” in Ψ(x, t) is supposed to represent
time, i.e., the thing we read off from a clock in an experiment. A physical
theory T is therefore to be understood as consisting of two parts, namely
T = FR. FR may be thought as a machine, which should represent as many
physical experiments as possible. One the one hand we calculate stuff using
the formalism F and compare the resulting numbers with numbers we get
from the experiment using the rules of correspondence R. Several philoso-
phers claim that physics must not consist of more than that: Comparison of
experimental numbers with theoretical numbers. Yet we do NOT have any
interpretation, i.e. yet we must NOT talk about matter deflecting particles,
etc. An interpretation, denoted by M (model), is understood to provide a
“picture” or understanding of FR. M is supposed to be isomorphic to FR,
that is contains (at least) all elements of FR8. If one watches any physical
documentary on TV one barely sees any formulas explained (the formalism
F), but computer generated animations. This is the model one constructs.
Thus different interpretations of QM might either differ F, in R or in M.

If we consider the usual (=Copenhagen) postulates of QM, it is very reason-
able to criticize the collapse postulate due to inconsistencies. MW can be
constructed using two steps:

In order to abandon the collapse, we assume the new formalism FR(QM/C),
where FR(QM/C) = usual QM without collapse. This seems like a reason-
able step. As a second step it is claimed that the resulting model M HAS to
be a MW interpretation, i.e., the formalism enforces its own interpretation9.

6These are expressed in so-called meta language.
7Some parts of F might not correspond with physical reality, therefore the theory may

only be partly interpreted.
8If M consists of more elements, then this might be an indication for altering FR in

order to achieve a stronger theory T’.
9Since Born’s law is claimed to follow as a theorem we can omit this axiom, denoting

the modified theory again FR(QM/C)
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The argumentation goes as follows:

We know that usual QM is tested with high precision. However the collapse
postulate is inconsistent with quantum cosmology, since there is no external
observer. It is assumed that the idea of quantum cosmology is reasonable.
Therefore we eliminate this postulate but do not add anything else (Occam’s
razor). Applying the von Neumann Scheme we observe that EVERY possible
outcome of an experiment is realized. Hence we identify each branch of the
universal wave function with a different world.

9.4. Properties of the Many World Interpretation

Well, there is not much to say, except about Born’s law. As we have seen, we
do not alter the formalism in a radical way. Hence all results from Copen-
hagen QM can be adapted. Decoherence generates an effective collapse,
which replaces the collapse postulate. As mentioned, the decomposition into
different branches, which might not be unique, can be handled using either
some classical limiting procedure or environment-induced superselection. In
most cases this problem seems to be treatable unambiguous. However the
striking question which remains is: How is it possible that deterministic MW
can reproduce Born’s law? Or more drastically: Is it even possible to for-
mulate a consistent MW theory which is compatible with Born’s law? The
author believes that this is not possible, thus dismissing MW as an honest
alternative interpretation.

9.5. Statistics

In this section one early attempt to derive Born’s law is presented. It has
been claimed that MW is able to recover the usual statistic without assuming
further propositions. Usually one considers an ensemble, consisting of N
identical subsystems coupled to a measurement apparatus. For simplicity we
consider a spin 1/2 particle. The initial (prepared) state reads as follows:

∣ΨN(ti)⟩ =(α ∣↑1⟩ + β ∣↓1⟩)⊗ (α ∣↑2⟩ + β ∣↓2⟩)⊗ ....
⊗ (α ∣↑N⟩ + β ∣↓N⟩)⊗ ∣ΨA[0,0, ...,0]⟩ (9.4)

The state vector ∣ΨA[0,0, ...,0]⟩ is understood to act as a measurement ap-
paratus (von Neumann Scheme) with N free “slots”. The dynamics of such a
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measurement is determined by applying the suitable unitary time evolution
operator, i.e.,

∣ΨN(tf)⟩ = Û(tf − ti) ∣ΨN(ti)⟩ (9.5)

As a result we obtain:

∣ΨN(tf)⟩ = αN ∣↑1⟩⊗ ∣↑2⟩⊗ ∣↑3⟩⊗ ....⊗ ∣↑N⟩⊗ ∣ΨA[↑1, ↑2, ↑3, ...., ↑N]⟩
+ αN−1β ∣↑1⟩⊗ ∣↓2⟩⊗ ∣↑3⟩⊗ ....⊗ ∣↑N⟩⊗ ∣ΨA[↑1, ↓2, ↑3, ...., ↑N]⟩
+ αN−1β ∣↑1⟩⊗ ∣↑2⟩⊗ ∣↓3⟩⊗ ....⊗ ∣↑N⟩⊗ ∣ΨA[↑1, ↑2, ↓3, ...., ↑N]⟩
+ ... + βN ∣↓1⟩⊗ ∣↓2⟩⊗ ∣↓3⟩⊗ ....⊗ ∣↓N⟩⊗ ∣ΨA[↓1, ↓2, ↓3, ...., ↓N]⟩ (9.6)

These are in total 2N terms. According to MW each term represents a
different universe. Notice that the state ∣ΨN(tf)⟩ is L2-normalized to 1. This
can be both seen from the unitary time evolution as well from an explicit
calculation:

⟨ΨN(tf) ∣ΨN(tf)⟩ =
N

∑
k=0

(N
k
)∣α∣2(N−k)∣β∣2k = (∣α∣2 + ∣β∣2)N = 1 ∀N

We now regroup these “worlds” according to their relative frequencies for ob-
taining n-times spin up. Using this regrouping we want to show as N → ∞
that the state ∣ΨN(tf)⟩ approaches the normalized vector ∣Ψ(n = N ∣α∣2)⟩,
which represents all universes with the right quantum statistics. The re-
grouping reads as follows:

∣ΨN(tf)⟩ =
N

∑
n=0

cn ∣Ψ(n)⟩ (9.7)

where

∣Ψ(n)⟩ = 1

Ω
∑

permutationsσ

∣↑σ1⟩⊗ ∣↑σ2⟩⊗ .....⊗ ∣↑σn⟩⊗ ∣↑σn+1⟩

⊗ ∣ΨA[↑σ1 , ↑σ2 , ...., ↓σN ⟩ (9.8)

(While mathematically not quite correct, this expression is hopefully self-
explanatory.) The normalization Ω =

√
(N
n
) is such that ⟨Ψ(m) ∣Ψ(n)⟩ = δmn.

Therefore the coefficient cn is equal to
√

(N
n
)αnβ(N −n). It remains to show

that ∣ΨN(tf)⟩ approaches ∣Ψ(n = N ∣α∣2)⟩ for large N in L2-norm. This is
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equivalent in showing that ∣cn∣2 approaches 1 if n = N ∣α∣2. The underlying
idea now seems to become more obvious: For all spins to be up, there exists
only one universe with prefactor αN which goes to 0, as N →∞ (since α < 1
for nontrivial discussion). For having all except one spin up, one part of the
prefactor reads as αN−1β which also goes to zero . However the number of
universes in which this statistic shows up is (N

1
) = N , which goes to infinity

but certainly not fast enough for compensation. In general n,the number of
spins up, also grows when N grows rather than being fixed. Thus in general
n is a function of N (In our proof we don’t assume this (reasonable) property,
since it will come out naturally). Balanced right the binomial (=number of
universes) will compensate the zero sequence consisting of α’s and β’s. The
universes which “add up” in just the right way are exactly the universes,
which reproduce Born’s law! Let?s state our idea a bit different: We have
the time-evolved state, which has unity norm for all N . We decompose this
vector into “relative frequencies”-states, which are also normalized to one for
all N . For N going to infinity the time-evolved state will be identical to the
“relative frequency”-state, which shows the right statistic.

So what does ∣cn∣2 look like?

∣cn∣2 = (N
n
)∣α∣2n∣β∣2(N−n) = (N

n
)(∣α∣2)n(1 − ∣α∣2)(N−n)

This is the binomial distribution, where ∣α∣2 = p, i.e., the probability for
getting n

N -times spin up. Hence, in the limit N →∞, the terms cn ∣Ψ(n/N)⟩
which do not show the right statistic will die out. This follows directly from
the properties of the binomial distribution.

Remark: The whole proof can be made mathematical rigorous (working with
the usual ε-criterion). Also, more general situations (not just spin 1/2) can
be analyzed in a similar way.

Thus in a “typical universe” an infinite ensemble shows up to have the right
statistic. There are at least to remarks, which need to be made:

1. A naive counting of worlds would NOT recover Born’s law. If we naively
count the number of universes, we would conclude that in most uni-
verses 1/2 of all events is spin up and 1/2 is spin down. In performing
this counting however one implicitly assumes that the probability for
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an observer to be in one of the two universes after a single measurement
is equally distributed, i.e., also 1/2.

2. Unfortunately this “proof” was dismissed even by the author (Bryce
de Witt). Implicitly one assumes, by normalizing ∣Ψ(n)⟩ in L2-sense,
Born’s law. Moreover it is unclear how one can consistently transfer
this “measure of typicality” to a finite N -ensemble. Other proposals to
prove Born’s law were made, but they have some severe flaws. It is
even unclear how one can even enforce any statistics, if ALL possible
outcomes are realized. How can one speak of probability if, when one
flips a coin, he receives head in universe 1 AND tail in universe 2 at the
same time? Not only severe philosophical problems arise (such as the
problem of transtemporal identity), but also the fundamental absent of
any mechanism, which selects a measurement result, is highly in con-
tradiction with ANY statistics. We won’t follow this deep discussion
any further, for more information cf.....

9.6. Discussion of MW

We’ve seen that MW arises somehow “naturally” rom well known QM, if one
abandons the collapse postulate. We will first discuss how “naturally” the im-
plication FR(QM/C)→M =MW is. In fact there exist other interpretations
M’, which also assume FR(QM/C). As an example the bare theory denies
splitting by denying reality (in a very strong sense). From a “common sense”
these theories are even more weird than MW, so we will not discuss them.
Another attempt is to change FR(QM/C)→ F ′

R(QM/C) not by adding any
further postulates but to alter the very fundamental mathematical axiom
of truth, namely Boolean algebra. This procedure is called Quantum logic.
We do not know how one could accept this procedure as being convincing
without abandon usual common sense.

Thus it seems - assuming FR(QM/C)-MW interpretation is by far the most
convincing compared to the theories stated above. We will now list some
pro’s and con’s for this.

Pro’s:

- Assuming FR(QM/C) is not unreasonable at the first place, especially the
collapse can be derived rather than needed to be postulated .
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- Assuming FR(QM/C), MW seems to be the most convincing theory when
tested against reasonable reasoning (this is however open to discussion!). -
F is a minimal set (Occam’s razor applied on F).

Con’s:

- The sheer immense number of universes seem highly counter-intuitive.

- The sheer immense number of universes seem to create entities beyond ne-
cessity for describing one (our) universe. (Occam’s razor applied on M)

- Problem of preferred basis (see:Decoherence)

- The highly daring hypothesis of MW relies on assuming FR(QM/C). This
however cannot be regarded as a very strong argument since there exist var-
ious F ′

R(QM/C) (e.g., Bohmian Mechnics), which do not require an infinite
amount of universes.

- The most severe criticism is that MWmight not be in agreement with exper-
iment, since it seems to be mathematically inconsistent with any statistics.

Conclusion:

For claiming such a tremendous impact of our physical perception of reality,
MW is definitely not based on THE striking argument, which would strongly
demand this interpretation. Moreover, as can be seen above, MW claims to
follow from Occam’s razor thus being a inevitable consequence. This might
be true on the side of the formalism F, but is not true on the side of the
model M. As a physicists one has the duty to check when claiming any dar-
ing hypothesis, if he has strongly convincing arguments. This seems not to
be the case.

One could argue that in order to resolve this problem (replace MW by some
other theory) one has to include further axioms to F. This is indeed prob-
lematic, since F together with R is able to describe quantum mechanical
experiments (ignoring the statistical debate) . F is minimalistic, however
leads to a “non minimalistic” interpretation. If one wants to resolve MW, it
seems one needs to alter F (rather than R or M given F(QM/C)). This might
be: - nonlinear stochastic time evolution (GRW) - one graviton criterion (as
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proposed by Penrose), or any other dynamical deterministic process which
causes the collapse (to be developed) - add further parameters (hidden vari-
ables) which determine in which branch the actual universe “splits”. In view
of MW, Bohmian mechanics can be considered to provide such a mechanism.

10. Bohmian mechanics - Henry Hanson and Franz
Thoma

10.1. Realistic Quantum Theories

When we view interpretations of quantum mechanics, we find that most
physicists are happy with some interpretation that does not assume realism.
That is to assume that the results of experiments have a one-to-one corre-
spondence with the state of a physical object that exists in our universe.
Theories that do not assume realism assume in a certain sense that our uni-
verse is bigger than what we measure, i.e., he parts of the wave function that
don’t find a reality in our perception, find a reality in the perception of an
observer who is in the other part of the wave function. What these theories
don’t explain however is by what mechanism is chosen which branch of the
wave function an observer finds itself in. More specifically the mechanism is
not part of the theory. It is because of this, that some physicists consider
theories assuming reality. One of those theories is Ghirardi-Rimini-Weber
(GRW) theory and the other is Bohmian mechanics. We will discuss the
latter here.

Bohmian mechanics assumes the existence of the (arguably) simplest physical
object to represent observations, i.e., a point-like object called the particle.
It is assumed that this object has only one property, namely position, and
that there are a finite (or at least countable) number of them and that they
change position according to some differential equations (which will be de-
rived in the following sections). From the position of the particle it is possible
to infer what the outcome of experiments will be, just as it would be possible
in the non-realistic theories if we knew at all times which branch we were in.
The concept of “particle” defines a mechanism which decides which branch
of the wave function is physical, i.e., assuming the knowledge of the parti-
cle positions and the quantum mechanical state, every observer observes a
uniquely determined branch of the wave function.
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10.2. Derivation of the Guiding Equation

Bohmian Mechanics takes the concept of particles serious, in the sense that
there is a differential equation that yields particle trajectories. We can derive
this equation just from the Schrödinger equation,

i∂tψ = (− ∆

2m
+ V )ψ

The only thing we need, aside from particles, is the Quantum Equilibrium
Hypothesis, which is nothing else than Born’s statistical law ρ = ∣ψ∣2. This
may seem trivial since this relation is well known and often used, but it plays
a very different role in Bohmian mechanics, as we will see later. Until then,
we take ρ = ∣ψ∣2 as a postulate (which is experimentally well justified). We
start with the derivation of the continuity equation (note that for ψ̄ we need
the complex conjugated Schrödinger equation,

−i∂tψ̄ = (− ∆

2m
+ V ) ψ̄

∂tρ = ∂t(ψ̄ψ) = ψ̄∂tψ + ψ∂tψ̄

= −iψ̄ (− ∆

2m
+ V )ψ + iψ (− ∆

2m
+ V ) ψ̄

= i

2m
∇ ⋅ (ψ̄∇ψ − ψ∇ψ̄)

= − 1

m
∇ ⋅ Im(ψ̄∇ψ) =∶ −∇ ⋅ jψ

Thus we have determined the conserved probability current of the wave func-
tion ψ, jψ, with the continuity equation

∂t∣ψ∣2 +∇ ⋅ jψ = 0 (10.1)

This current lives on the same space as the wave function, i.e., on configua-
tion space. Now, mathematically we can decompose this current as jψ = ρvψ,
where vψ is a vector field on configuration space.

Until here, we had exactly the same results as in ordinary quantum mechan-
ics; but now we introduce particles that are described by their positions Qi(t)
in physical space and straightforwardly interpret vψ as their velocity field,

Q̇(t) = vψ = 1

m
IM

ψ̄∇ψ
ψ̄ψ

(10.2)
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where Q(t) = (Q1(t), ...,QN(t)) is a vector in configuration space.

This equation was already written down in 1927 by L. deBroglie at the Solvay
conference. However, after sharp (but wrong) objections from W. Pauli, de-
Broglie abandoned the theory, until in 1952 D. Bohm re-discovered it.

Thus we have in Bohmian mechanics two physical objects, the Schrödinger
wave function ψ(x, t) and the particle positions Q(t) that obey the two dif-
ferential equations

i∂tψ = (− ∆

2m
+ V )ψ , Q̇ = 1

m
Im

∇ψ
ψ

Unlike in classical mechanics, a Bohmian system is not fully determined by
positions and momenta at a time t0, but by positions and the wave func-
tion at t0. Hence momentum does not play the same fundamental role in
Bohmian mechanics as in classical mechanics; in fact, a Bohmian particle
has no properties other than its position, while all other properties (mass,
charge) and observables of the system belong to the wave function. In this
sense, quantities like Energy and momentum (and also their conservation
laws) lose their meaning at the level of particles.

Nota been: vψ is not unique, we can add an arbitrary curl term such that the
continuity equation is satisfied (similar to a gauge transformation). Hence,
Bohmian mechanics is an example (in fact, the simplest example) for an ex-
tension of quantum mechanics featuring deterministic particle trajectories,
but is not the unique theory that tells us what is “really” going on on micro-
scopic level.

On the Heisenberg Uncertainity Relation: The existence of an ex-
act particle position does not violate Heisenberg’s Uncertainity Relation
∆q∆p ≥ 1

2 : ∆p is the “wave number width” of ψ and ∆q its spatial ex-
tent; ∆q has nothing to do with the actual particle position Q (this is why
we strictly use the notation Q for particle positions and q for the space co-
ordinate of the wave function).

Quantum Equilibrium Hypothesis: The continuity equation relies on
the equilibrium condition ρ = ∣ψ∣2. But what happens in the case of quantum
non-equilibrium? Then we had to scrap the continuity equation and hence
our guiding equation. Of course, in a typical Bohmian universe, we typically
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experience quantum equilibrium; So we have to justify the hypothesis: We
live in a typical Bohmian universe. There are some papers on this issue[7],
but for now we can simply accept it, since there is no evidence for quantum
non-equilibrium.1

Non-locality: In his famous 1964 paper[3], J. S. Bell showed that any the-
ory that gives the same statistical results as quantum mechanics must be
either non-realistic or non-local. The experimental verification of this led to
the conclusion that nature indeed is non-local (under the assumption that
nature itself is realistic).2 One important note is that this is not in contra-
diction with special relativity: There already exist toy models of Bohm-like
theories that are fully Lorentz invariant without having to choose an explicit
frame[19].

10.3. The Measurement Process in Bohmian mechanics

In Bohmian mechanics, the measurement problem is resolved in a straight-
foward way. We describe both the system and and the apparatus Quantum-
mechanically, i.e., by wave functions ψ(x),Φ(y) and particle configurations
X(t), Y (t), respectively. For the (macroscopic) apparatus, we can assume
for all practical purposes that macroscopically distinct states Φi (pointer po-
sitions, dots on photographic plates, ...) have disjoint support, suppΦi ∩
suppΦj = ∅ ∀i ≠ j.

Now, for a simple model assume a two-state system (ψ1, ψ2 with ⟨ψ1 ∣ψ2⟩ = 0)
and a measurement apparatus with three (macroscopically distinct) states
(e.g., pointer positions) Φ0 (null position, nothing measured) and Φ1,Φ2.
The apparatus should measure in which state the system is, i.e., we expect

ψiΦ0 → ψiΦi

for the Schrödinger time evolution. Now take a superposition state ψ =
c1ψ1 + c2ψ2, ∣c1∣2 + ∣c2∣2 = 1; initially (t = 0), the whole system is in the state

1This is unlike in classical statistical physics: There we have plenty of evidence of non-
equilibrium, so we do not live in a typical thermodynamical universe! On this issue, see
[8] chapter 4 (typicality in Thermodynamics) and chapter 11 (in Bohmian mechanics).

2Bell’s inequalities are a criterion on locality of correlations. Experiments have shown
that nature indeed exhibits non-local correlations. Under the assumption that nature itself
is realistic we can conclude the nature is non-local. See for example the afterword of [13],
just to mention a “standard quantum mechanics textbook”.
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ψ(x)Φ0(y), which is a product state, i.e., system and apparatus are not
entangled. During the measurement process (t→ T ), both become entangled.
This is described by Schrödinger time evolution,

ψ(x)Φ0(y)
t→T→ c1ψ1Φ1(y) + c2ψ2Φ2(y)

Now we look at the particle configurations X(t), Y (t) at t = T . Since Φ1 and
Φ2 have disjoint support, the cross terms vanish and we have

ρ(x) = ∣c1ψ1(x)Φ1(y)∣2 + ∣c2ψ2(x)Φ2(y)∣2

at t = T . Thus, if the pointer is in position 2, the configuration Y (T ) is in
suppΦ2, but then (X(t), Y (T )) is in suppψ2Φ2, i.e., X(T ) must be guided
by the effective wave function ψ2 alone,

vψ(X(T )) = vψ2(X(T ))

The ψ1 branch of the initial wave function on the other hand is “empty” (does
not contribute to guiding the particle, not effective). Hence we we have for
all practical purposes3 exactly the same dynamics as if the system was in
the state ψ2 in the first place, i.e., we effectively describe the system by the
“collapsed” wave function ψ2. Thus in Bohmian mechanics the collapse of the
wave function is not a physical process, but merely an act of convenience,
neglecting branches of the wave function that are very unlike to become ef-
fective again for any timescale of interest. — We do not need a postulate of
collapse. Alone the assumption that particles exist and have a position im-
mediately yields a formalism that recreates the formalism of collapse without
having to postulate it. —

3We can assume that ψ1 is empty with the following restrictions:

(a) The overlap of the macroscopic wavefunctions is not necessarily exactly zero,but
“only” negigibly small; hence we have a very small overlap term 2Re(c̄1c2ψ̄1ψ2Φ̄1Φ2)
in the probability density ρ that allows for a pointer position Y (T ) ∈ supp Φ2

although X(T ) is still guided by ψ1 (i.e., vψ(X(T )) ≠ vψ1(X(T )))
(b) By Poincarè recurrence, the neglected branch of the wave function can become

effective again.

We can ignore this for all practical purposes since (a) the overlap is ridiculously small for
∼ 1026 random phases (decoherence!) and (b) the Poincarè recurrence time is ridiculously
big compared to all relevant time scales.
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10.3.1. So, what do we actually measure?

The basic idea in the above model was that what we see is the actual macro-
scopic configuration Y (T ) of the apparatus. Hence what the apparatus mea-
sures is the actual particle position X(t) of the system; not necessarily the
exact position, but “does the particle go up or down”, “is there a photon in
the detector or not” etc.

From the position we then can infer values for observables (coarse-graining
functions), depending on the experimental settings4. For example, the “spin
observable” can be obtained by measuring the position (i.e. where the par-
ticle hits the photographic plate) of a particle that has travelled through a
Stern-Gerlach magnet (experimental setting). The observable itself has no
intrinsic value, we need not only the system itself, but the entire experimen-
tal setup to determine its value.

Note that it is always the theory that determines what we can measure.
When we pass to a purely statistical description, then we can of course talk
about measuring an observable like ⟨ψ∣A ∣ψ⟩. Compare to Newtonian me-
chanics, where we can only measure positions q and momenta p, as opposed
to its statistical theory (thermodynamics), where we measure observables like
temperature T or pressure P .

10.3.2. Can I prepare Q?

To prepare a system, we have to be able to set all initial conditions at a
certain time. This is fairly easy in Newtonian mechanics: we can prepare all
initial conditions in- dependently, and hence prepare the time evolution of
any system by setting p and q accordingly. In Bohmian Mechanics this looks
different:

We can naturally prepare the position of a particle by measurement. For
example in a single slit experiment, any particle that passes through the slit
has to be in a certain interval at a certain time. We can as well prepare the
effective wave function of a system via controlled interaction: For example
we can wait for a hydrogen atom to emit a photon, and infer from the photon
energy the effective wave function of the electron. This looks very promising,

4The experimental settings are encoded in the Hamiltonian via constraints or external
fields.
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but unfortunately in Bohmian mechanics ψ and Q are not independent, so we
cannot prepare arbitrary systems (ψ,Q): Whenever we prepare the position
of a particle to a certain accuracy, we have to live with a wave function that
destroys this accuracy after a short amount of time, and when we indirectly
prepare a system in a certain effective wave function, we have to do this in a
way that allows us to control interactions, which in turn limits the accuracy
of position measurements.

So to give a short answer: We can prepare particle positions and effective
wave functions in Bohmian mechanics, but not both independently at the
same time.

10.4. Non-Newtonian behavior

Since Bohmian mechanics is a theory about particles, it may be tempting
to try to imagine the dynamics of these particles in a classical Newtonian
sense. In fact Bohmian trajectories are typically very different from their
Newtonian counterpart. This is be- cause Newtonian particles are guided by
the concept of forces, which means that particles move along straight lines in
the absence thereof (Newtons 2nd law). Bohmian particles on the other hand
are guided by the “guiding wave principle”, which means that their dynamics
are governed by the wave function. Only through the wave function do the
particles feel the presence of a potential and more importantly they do not
in general move along straight lines when there is no potential. I would like
to discuss some of the non-Newtonian behavior of Bohmian particles with
the help of some examples.

10.4.1. Hydrogen Atom

One of the simplest examples where we can see non-Newtonian behavior is
the hydrogen atom. First we will take a look at the ground state of the
hydrogen atom. The wave function goes like κe−r/c, where κ and c are real
constants. Thus the wave function for the ground state is real. But the
gradient of a real function is again real. Therefore the velocity field for this
wave function is 0. This means that if the initial wave function is in the
ground state and the initial position is x0 then X(t) ≡ x0, i.e., the particle
doesn’t move. The Newtonian picture for this situation would be solving the
Newton equations for a central 1

r potential with the initial velocity v0 = 0
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(lowest energy state) and initial position x0. This would lead to the particle
falling into the nucleus. But because we know that hydrogen atoms in the
ground state are stable, we can conclude that Newtonian mechanics gives us
the wrong dynamics and that Bohmian mechanics gives us an unambiguous5
alternative.

Secondly we will examine the first exited state. It is a straightforward,
but lengthy calculation that shows that the Bohmian trajectories are cir-
cles around the nucleus6. The corresponding Newton analogon would be to
have a 1

r potential with an angular momentum corresponding to the “angu-
lar momentum” of orthodox quantum mechanics. But a charged particle in
Newtonian mechanics would radiate if it traveled in a circle making the tra-
jectory unstable. This once again shows that it is possible to have particles
without Newtonian behavior that still give an accurate description of nature.

As a final note I would like to add that for superposition states the trajec-
tories are much wilder and therefore even less Newtonian (if one wants to
talk about more or less Newtonian), but they give the right statistics for
measurements and are continuous (and satisfy all the other properties the
velocity field satisfies).

10.4.2. Stern-Gerlach Experiment

There are two issues I will tackle with this example. The first is to show
that Bohmian trajectories are not in general straight lines when there is no
potential and secondly I would like to show how Bohmian mechanics gets
away with giving the particle only one property: It’s position.

The wave function for one silver atom after it has passed through a Stern
Gerlach magnet is derived by solving the Pauli equation for the potential
given by a stern Gerlach magnet and then letting the wave function evolve
freely. Just as in any other interpretation of quantum mechanics, the wave
function is a spinor. What makes Bohmian mechanics different is that the
“spin of a particle” is not an intrinsic property of the particle. Therefore the

5But not necessarily unique, since we can add a curl term to the velocity field without
changing the statistics.

6Of course, all eigenfunctions of a real Hamiltonian can be chosen real, yielding vψ = 0.
However, the first excited state is degenerate and hence superpositions with non-zero
velocity field are possible, yielding circles around the nucleus.
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velocity field has the same dimension as it would in the spinless case. One
could say that “spin” is a property of the wave function.

It is a simple calculation7 to show that the velocity field of one silver atom
(the wave function prepared as a Gaussian) after having passed through a
Stern-Gerlach magnet is

vΨ
Z (z, t) =

tz

t2 + µ2
+ ϕ

m

µ2

t2 + µ2
tanh( 2µϕtz

t2 + µ2
)

where µ is the mass of the silver atom divided by the squared width (in
Fourier space) of the initial Gaussian and ϕ is a constant that depends on all
the magnetic properties of the system (it’s of no interest to this discussion).
One thing that is obvious is that this field is not constant. But this means
that the trajectories are also not constant despite the lack of potential. One
might be inclined to criticize the theory for such a result. But the important
point is that Bohmian mechanics is not Newtonian and therefore does not
have to obey the principles of Newtonian physics. The driving “force” one
might seek due to imagining particles as newtonian particles comes from the
wave function which behaves like a wave. This is what the guiding wave
principle is: Waves guiding particles.

I previously mentioned that spin is not an intrinsic particle property. Since
the only property a particle has is position, we need to be able to predict
if a particle has spin up or down, using only that property and the initial
conditions (initial position and wave function), if we want to show that it is
sufficient to attribute the spin orientation solely to the wave function.

In order to see which initial positions lead to “particles with spin up/down”,
we need to take a closer look at the velocity field. The first property of the
velocity field we need is that it is antisymmetric in z. The second property
is that it is monotonically increasing/decreasing for positive/negative z. The
velocity field along the trajectory is the first derivative of that curve. From
this we can conclude that the integral curves of vΨ

z , Z(t) above/below the
x-axis are monotonically increasing/decreasing functions of time. In other
words a particle with an initial position above/below the x-axis will be de-
tected above/below the x-axis. Therefore a particle with an initial position
above/below the x-axis will be considered a “spin up/down” particle.

7See Appendix.
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So here we can explicitly see that an “observable” was reduced to the mea-
surement of the position of the particle and that if given initial conditions, we
can “predict” the outcome of an experiment using Bohmian mechanics. The
subtlety that is highlighted by the quotation marks on the word “predict” is
that we can’t measure the initial position of the particle. It is this subtlety
that explains why, despite having particles, we seem to always have a random
element in our experiments, that cannot be dealt with by using clocks made
in Switzerland.

10.5. References/Reading Material

● The book[4] is really a collection of papers on quantum mechanics by
John Bell, mostly dealing with the Hidden Variables question. You
find the famous Bell’s Inequalities (“On the EPR paradoxon”) paper
in there as well. Although most of it is kind of old-fashioned (quan-
tum mechanics of the 1960-1980’s) and (mostly concerning Bohmian
mechanics) not quite up-to-date, still worth reading.

● [20] is a basic introduction to Bohmian mechanics, but only available
in German.

● [8] is THE book on Bohmian mechanics. If you want to know the
whole story, and everything beyond. Contains as well a big chapter on
probability theory and statistical physics that is worth reading even if
you?re not that into Bohmian mechanics.

● The Homepage of Prof. Dürr’s group [7]. See Preprints for a com-
prehensive list of papers on various issues in Bohmian mechanics and
quantum mechanics.

We further want to mention the afterword of the standard quantum mechan-
ics textbook by D. J. Griffihs[13]. It contains a very well presented overview
on the EPR-Problem, the Hidden Variables question and even the discussion
on non-locality vs. causality, especially the latter being worth reading.
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10.6. Appendix

10.6.1. Derivation of the Stern-Gerlach velocity field

In order to simplify the calculation it is useful to perform a Galilei transfor-
mation on the system, such that we are in the rest-frame of the wave packet
with respect to its x-velocity. We start with a wave function at rest (aside
from spreading), turn on a Stern-Gerlach magnet for a short amount of time
and calculate the wave function and trajectories after the magnet is turned
off again. So we have to solve two Schrödinger equations:

● First we solve the Pauli equation to get the time evolution of a Gaussian
in the magnetic field. This in particular yields a wave function with
spin dependent phases.

● Then we take this solution again as an initial wave function and solve
the free Schrödinger equation to get the spreading of the wave function
after the magnet has been passed. From this solution we then calculate
the velocity field of a particle after it has passed through a Stern-
Gerlach magnet.

This is the basic idea, however the actual calculation is quite lengthy. For
those who are interested, you will find the detailed calculation below.

Setup of the Stern-Gerlach thought experiment

For the initial wave function we will choose a spherically symmetric Gaussian,
with a spinor in an eigenstate of σx. The wave function is chosen in this
way because we are considering the case of a system that is symmetric with
respect to the x-axis and because Gaussians are easy to Fourier transform.
The spinor is chosen in such a way that neither eigenstate of σz is preferred
in a Stern-Gerlach experiment. The wave function we will use is

Ψ(x, y, z) = (ψ+(z)
ψ−(z)

)φ(x, y)

with

φ(x, y) = ∫ dkx
1√
2πa

eikxx−
k2x
2a ∫ dky

1√
2πa

eikyy−
k2y
2a

and
ψ±(z) = ∫ dkz

1

2
√
πa
eikzz−

k2z
2a
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and
√
a is the spread of the wave packet in k-space. ψ+(z) and ψ−(z) are the

“up” and “down” components respectively.

In a Stern-Gerlach experiment the purpose of the magnet is to introduce a
“spin” dependent phase, which causes the two wave packets to split. The
magnetic field that would be required in order to change the wave function
by nothing but a phase would only have a z-component. However such a
magnetic field would have a divergence not equal to zero and would thus be
forbidden by electrodynamics. In order to avoid this problem, the time the
particle spends in the magnetic field is chosen to be short and the x and y
components of the magnetic field are chosen such that they don’t noticeably
disturb φ(x, y). If these precautions are taken, the magnetic field effectively
does nothing but introduce a phase.

The amount of time spent in the magnetic field will be called τ . τ is to be
chosen such that it is much smaller than any time scale we encounter. The
magnetic field will be chosen to be

B(x) =
⎛
⎜
⎝

d(x, y)
h(x, y)
bz

⎞
⎟
⎠

such that d and h have negligible influence on φ(x, y). b is a constant that
contributes to the phase as we will see. With this in mind we can assume
that φ(x, y) does nothing particularly interesting and we can focus on the
part of the wave function that changes

ψ±(z) = ∫ dk
1

2
√
πa
eikz−

k2

2a

For notational simplicity the indices of k have been dropped.

Wave function after the Stern-Gerlach magnet

Since τ is small compared to all timescales, spreading can be neglected, which
means we can neglect the Laplace term in the Pauli equation. Since we are

assuming that φ(x, y) stays constant we can replace Ψ(x, t) by (ψ+(z)
ψ−(z)

) in

the Pauli equation, leaving us with

i∂t (
ψ+(z)
ψ−(z)

) = −µMbzσz (
ψ+(z)
ψ−(z)

) = −µMbz (
ψ+(z)
−ψ−(z)

)
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In order to solve these equations we will rewrite them as

i∂tψ±(z) = ∓µmbzψ±(z) (10.3)

The next step is to use separation of variables

i

ψ±(z)
dψ±(z) = ∓µmbzdt

Multiplying this equation by −i and integrating it over the duration of the
magnetic field gives us

∫
ψ±(z,τ)

ψ±(z,0)

i

ψ±(z)
dψ±(z) = ∫

τ

0
±iµMbzdt

If we integrate both sides and remember that ψ±(z,0) = ψ±(z), we get

ln(ψ±(z, τ)
ψ±(z)

) = ±iµMbz(τ − 0)

Solving this equation for ψ±(z, τ) gives us

ψ±(z, τ) = ψ±(z)e±iµM bzτ (10.4)

If we write ψ±(z) in integral form, call the phase gained by the magnet
ϕ ∶= µMbτ and pull the exponential into the integral, the final result is

ψ±(z, τ) = ∫ dk
1

2
√
πa
ei(kz±ϕz)−

k2

2a (10.5)

Now that we have the wave function for the time the magnet is turned on,
we can determine the wave function for the time afterward. In order to do
this we will need to solve the Pauli equation for freely propagating waves,
with the initial condition given by equation 10.5. The free Pauli equation in
our case is

i∂tψ±(z, t) =
∆

2m
ψ±(z, t) (10.6)

The formal solution of this equation is

ψ±(z, t) = ∫ dk
1

2
√
πa
ei(kz±ϕz)−

k2

2a e−iω±(t−τ)
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So what now remains is to determine ω±, which can be achieved by calculating

− ∆

2m
ψ±(z) = −

∆

2m ∫
dk

1

2
√
πa
ei(kz±ϕz)−

k2

2a

Because we’re integrating over a Gaussian we can pull the derivatives into
the integral leaving us with

−∫ dk
1

2
√
πa

∆

2m
ei(kz±ϕz)−

k2

2a = ∫ dk
1

2
√
πa

(k ± ϕ)2

2m
ei(kz±ϕz)−

k2

2a

Inserting this result into equation 10.6 and computing the time derivative on
the left hand side of the equation, leaves us with

∫ dk
ω±

2
√
πa
ei(kz±ϕz)−

k2

2a = ∫ dk
1

2
√
πa

(k ± ϕ)2

2m
ei(kz±ϕz)−

k2

2a

From this we can conclude that ω± = (k±ϕ)
2

2m . More generally we can conclude
that for wave functions of the form

ψ(z) = ∫ dk eig(k)zl(k)

the time evolution in the free case is given by

ψ(z) = ∫ dk eig(k)ze−iω(k)(t−t0)l(k) (10.7)

where ω = g(k)
2m and t0 is the time for which the initial wave function holds.

Since τ is much smaller than all timescales we will encounter, we will neglect
it in the time evolution, leaving us with

ψ±(z, t) = ∫ dk
1

2
√
πa
ei(kz±ϕz−ω±t)−

k2

2a (10.8)

as the wave function for the time after the first magnet.

In order to see that equation 10.8 describes a wave function that is splitting,
we need to calculate the integral. We will first sort the exponential in the
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integrand in order to reduce the integration to a simple Gauss integral.

i(kz ± ϕz − ω±t) − k2

2a = i(kz ± ϕz −
(k ± ϕ)2

2m
t) − k2

2a

= i(kz ± ϕz − (k2 ± 2kϕ + ϕ2

2m
t) − k2

2a

= −k
2

2
(i t
m
+ 1

a
) + ik (z ∓ ϕt

m
) + i(−ϕ

2t

2m
± ϕz)

= f
2
(z ∓ ϕt

m
)

2

(i t
m
− 1

a
) − iϕ(ϕt

m
∓ z)

− (i t
2m

+ 1

2a
)
⎛
⎝
k − i

(z ∓ ϕt
m
)

(i tm + 1
a
)
⎞
⎠

2

(10.9)

In the last step we introduced a time dependent function

f = ( t
2

m2
+ 1

a2
)
−1

which will help shorten notation. Because f s not dependent on the wave
packet (i.e., ±), z or k, we can view it as a constant for the calculation
(even when we calculate the velocity field). The first two terms of 10.9 are
independent of k, which means all that is left to integrate is

Z(t) ∶= ∫ dk
1

2
√
πa
e

−(i
t

2m+
1
2a)

⎛
⎜
⎜
⎜
⎝

k−i

(z∓
ϕt
m )

(i
t
m+

1
a)

⎞
⎟
⎟
⎟
⎠

2

If we do the substitution

k → k + i
(z∓

ϕt
m )

(i
t
m+

1
a)

we find that

Z(t) = ∫ dk
1

2
√
πa
e
−(

1
2a+

it
2m)k

2

From this consideration we can see that Z(t) is a constant with respect to
our calculation in the same sense as f . If we sort 10.9 by real and imaginary
parts and then write out the full wave function we get

ψ±(z, t) =
Z(t)
2
√
πa
e
i(
tf
2m(z∓

ϕt
m )

2

−
ϕ2t
2m ±ϕz)

e
−
f
2a(z∓

ϕt
m )

2
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In this form we can see that the wave function is a Gaussian which is mod-
ulated by

Z(t)
2
√
πa
e
i(
tf
2m(z∓

ϕt
m )

2

−
ϕ2t
2m ±ϕz)

and has it?s maximum at z = ±ϕtm . From this we can conclude that the wave
has indeed split and one packet is moving in the positive z-direction and the
other in the negative z-direction linearly in time.

Velocity field after the Stern-Gerlach magnet

Now that we have the wave function, we can determine the velocity field,
which is given by equation (10.2). The x, y-dependence of the wave function
is given by Φ(x, y), which is roughly constant in time. This means that the
x- and y-components of the velocity field are also roughly constant and won’t
give us any new insight. With that in mind we can focus on the z-component
of the velocity field given by

vΨ
z (z, t) =m−1 Im(ψ∗+∂zψ+ + ψ∗−∂zψ−)

ψ∗+ψ+ + ψ∗−ψ−
(z, t) (10.10)

where a star denotes complex conjugation. In order to calculate this we will
need a systematic approach in order to avoid writing down terms that will
cancel in the end. The first step is to calculate the derivative of the wave
function.

∂zψ± = ψ±∂z (i(
tf

2m
(z ∓ ϕt

m
)

2

− ϕ
2t

2m
± ϕz) − f

2a
(z ∓ ϕt

m
)

2

)

Before we go further it is important to note that the real part of the derivative
of the exponential will not contribute to the velocity field, because ψ∗±ψpm
is real. That leaves us with the contributing part of the derivative of the
exponential of the wave function

i∂z (
tf

2m
(z ∓ ϕt

m
)

2

− ϕ
2t

2m
± ϕz) = i(tf

m
(z ∓ ϕt

m
) ± ϕ)

= i(tf
m
z ± (ϕ − f ϕt

2

m2
))

In the last step we sorted the derivative by parts that are dependent on the
wave packet and parts that are not. For the part that is not dependent on
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the wave packet we can ??calculate

Im(ψ∗+∂zψ+ + ψ∗−∂zψ−)
ψ∗+ψ+ + ψ∗−ψ−

= tf
m
z

because ψ∗+ψ++ψ∗−ψ− is real. For the other parts we can identify the structure

Im [i (ϕ − f ϕt
2

m2 ) (ψ∗+ψ+ − ψ∗−ψ−)]
ψ∗+ψ+ + ψ∗−ψ−

= (ϕ − f ϕt
2

m2
) ψ

∗
+ψ+ − ψ∗−ψ−
ψ∗+ψ+ + ψ∗−ψ−

The next step is to analyze

ψ∗+ψ+ − ψ∗−ψ−
ψ∗+ψ+ + ψ∗−ψ−

The first thing we can say is that all factors that ψ+ and ψ− have in com-
mon will cancel because they appear in the denominator and enumerator.
Furthermore the imaginary part of the exponential of the wave function will
vanish as well because we?re always multiplying components of the wave
function by their complex conjugate (i.e., exp (iX)×exp (−iX) = 1)). Taking
these facts into consideration, (10.11) reduces to

e
2fϕzt
ma − e−

2fϕzt
ma

e
2fϕzt
ma + e−

2fϕzt
ma

= tanh(2fϕzt

ma
)

If we collect our results the velocity field now reads

vΨ
z (z, t) =

tf

m2
z +m−1 (ϕ − f ϕt

2

m2
) tanh(2fϕzt

ma
)

Since we will want to analyze the behavior of the velocity field with respect
to time we will write out f and denote m

a ∶= µ, leading us to the final result

vΨ
z (z, t) =

tz

t2 + µ2
+ ϕ

m

µ2

t2 + µ2
tanh( 2µϕtz

t2 + µ2
)
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