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Abstract

The report presents an exhaustive review of the recent attempt to overcome
the difficulties that standard quantum mechanics meets in accounting for the
measurement (or macro-objectifcation) problem, an attempt based on the con-
sideration of nonlinear and stochastic modifications of the Schroödinger equa-
tion. The proposed new dynamics is characterized by the feature of not con-
tradicting any known fact about microsystems and of accounting, on the basis
of a unique, universal dynamical principle, for wavepacket reduction and for
the classical behavior of macroscopic systems. We recall the motivations for the
new approach and we briefly review the other proposals to circumvent the above
mentioned difficulties which appeared in the literature. In this way we make
clear the conceptual and historical context characterizing the new approach.
After having reviewed the mathematical techniques (stochastic differential cal-
culus) which are essential for the rigorous and precise formulation of the new
dynamics, we discuss in great detail its implications and we stress its relevant
conceptual achievements. The new proposal requires also to work out an appro-
priate interpretation; a procedure which leads us to a reconsideration of many
important issues about the conceptual status of theories based on a genuinely
Hilbert space description of natural processes. Attention is also paid to many
problems which are naturally raised by the dynamical reduction program. In
particular we discuss the possibility and the problems one meets in trying to
develop an analogous formalism for the relativistic case. Finally we discuss the
experimental implications of the new dynamics for various physical processes
which should allow, in principle, to test it against quantum mechanics. The
review covers the work which has been done in the last 15 years by various
scientists and the lively debate which has accompanied the elaboration of the
new proposal.
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Chapter 1

Introduction

The 20th century has seen the birth of what are unanimously considered the two
basic pillars of modern science: relativity theory and quantum mechanics. Both
these theoretical constructions have met an unprecedented predictive success
in accounting for the results of the incredibly refined experiments which have
been made possible by recent technological improvements. Both schemes imply
radical changes concerning the (classical) views about natural phenomena.

Relativity theory has required a drastic modification of our views concerning
space and time, quantum mechanics has compelled the scientific community
to attribute a prominent role to chance in physics and to accept the existence
of unavoidable limitations to the attainable knowledge about physical systems.
However, the conceptual status of the two theories is remarkably different. If one
accepts that instantaneous communication is impossible and that the velocity
of light represents an upper limit to the propagation of any physical action, one
must reconsider the problem of synchronizing clocks and is led to the conclusion
that the space-time continuum is the correct framework for the description of
natural processes. The ensuing theory, special relativity, is an example of a pre-
cisely formulated and internally consistent theory, one which, to use Shimony’s
words [1], allows to close the circle and to base on it a coherent worldview.

The situation is quite different with the other pillar of modern science, quan-
tum mechanics, as is evident if one takes into account the lively debate about
its interpretation which started soon after its formulation and which is still go-
ing on. This debate concerns one of the most peculiar aspects of the theory,
generally known as the measurement problem, even though a more appropriate
term to characterize it would be the macro-objectification problem. It stems di-
rectly from the linear nature of the theory and the way in which it connects the
mathematical entities which are claimed to represent the most accurate specifi-
cation which is in principle possible of the state of a system and the outcomes of
prospective measurement processes. From this point of view, quantum mechan-
ics is an extremely successful and powerful mathematical device yielding the
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probabilities of the results of any conceivable measurement procedure. But, in
contrast with this unprecedented efficiency in telling us everything about what
we find the theory is silent, to use Bell’s words [2], about what it is. Actually,
just due to its linear nature, the quantum description of the measurement pro-
cess and of all those measurement-like processes [2] we are obliged to admit ...
are going on more or less all the time, more or less everywhere and lead to the
definite perceptions which characterize our experience, contradicts the idea that
all natural processes and, in particular, the micro-macro interactions occurring
in the situations we have just mentioned are governed by quantum mechanics
itself. In brief, the theory contains two incompatible dynamical principles, the
linear Schrödinger evolution and the wavepacket reduction process which is as-
sociated to micro-macro interactions.

This serious limitation would not represent by itself a deadlock for the theory:
one could simply accept that it has only a limited field of validity. However,
if one takes such a position one must pretend that the theory itself allows the
identification of a phenomenological area in which the transition from micro to
macro, from reversible to irreversible, from deterministic to stochastic, in short,
from quantum to classical, takes place. But this is not the case. The borderline
between these two different regimes is by no means precisely identifiable. There
are for sure many macro-systems which require a fully quantum treatment.

A significant indication of the peculiar situation we have just outlined comes
from reconsidering the historical debate about the meaning and the interpreta-
tion of the formalism. Such a debate has seen the successive identification of
different levels which, according to the various thinkers, should mark the place
at which one has to pose the split, which is then characterized by a certain
shiftiness. For instance, in the famous Bohr-Einstein debate, Bohr, who had re-
peatedly claimed that the split should be associated to the micro or macroscopic
nature of the physical systems under consideration, was compelled, in order to
reject the pressing criticisms by Einstein, to accept that macroscopic parts of
the apparatus (such as macro-shutters and macro-pointers) require a fully quan-
tum treatment. An analogous situation occurred subsequently: London, Bauer
and Wigner were led to identify the split with the borderline separating physi-
cal from conscious processes. But, once more, our present knowledge does not
give a clear indication about what is conscious, so that a remarkable vagueness
characterizes also such a proposal.

The recent years have seen a noticeable and renewed interest about the macro-
objectification problem. We can quite confidently state that, nowadays, there is
a large consensus among scientists interested in the foundational aspects of the
theory that the so called orthodox interpretation (a rather ambiguous expres-
sion which however encompasses similar positions concerning the measurement
problem) has completely failed in yielding a consistent and coherent account
of natural phenomena. In connection with this renewed interest in the field,
new and original attempts to overcome the difficulties have appeared. What
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one wants is a quantum mechanical model of measurements as dynamical pro-
cesses governed by precise rules agreeing, on the one side, with the quantum
description of microscopic systems, and, on the other, with the classical aspects
characterizing the macroscopic world.

The present discussion is devoted to a detailed presentation of recent proposals
(the dynamical reduction theories) aimed at overcoming the difficulties of the
macro-objectification process, proposals which stick to the idea that the knowl-
edge of the state vector represents the maximal information one can have about
the state of a physical system. Accordingly, these attempts differ radically from
all those, like hidden variable theories, which invoke the incompleteness of the
Hilbert space description to solve the measurement problem. Within the dy-
namical reduction framework, the basic idea to get the desired result consists
in accepting that the linear and deterministic Schrödinger equation has to be
modified by the addition of nonlinear and stochastic terms. As we will see,
this program, which Einstein himself1 considered unviable, can be consistently
followed leading to a fully satisfactory model at the non-relativistic level.

Obviously, we do not think that the dynamical reduction theories we are going
to discuss might represent instances of the final theory of natural processes.
However, the very fact that they can be consistently developed throws a new
light on the subject, allows us to identify some basic features of any dynam-
ics inducing reductions, makes precise and allows us to better understand the
action at a distance of the standard theory and might also suggest interesting
experiments aimed to identify possible violations of the superposition principle.

This discussion is organized as follows. First of all we discuss in all details the
macro-objectification problem to make clear how it gives rise to a physically
unacceptable situation which must be faced. We also briefly review many other
proposals to overcome the difficulties of the formalism, to make clear the differ-
ences of the dynamical reduction point of view with respect to other attempts
to avoid the inconsistencies of the orthodox position. We then come to the core
of the discussion by reviewing the development of the dynamical reduction pro-

1We recall that Einstein, in his Reply to critics [3], has explicitly considered the possibility
of giving up, for micro-systems, the request that they possess objectively all properties, i.e., he
was prepared to accept the linear nature of their state space. But he has stressed that he could
not renounce to his realistic requirements at the macro-level, so that macro-objects cannot
be in superpositions of macroscopically different states. In accordance with this position
he has contemplated the idea of abandoning the superposition principle at the macro level.
His concluding remarks are of great relevance for the dynamical reduction program: the
macroscopic and the microscopic are so inter-related that t appears impracticable to give up
this program [scientific realism in the classical sense, as requiring that all systems possess
objective properties] in the microscopic alone. The dynamical reduction program proves that
the line that Einstein considered impracticable is actually consistently viable. More recently
analogous remarks - which occurred repeatedly during all the history of quantum mechanics -
have been put forward once more by Shimony. In contemplating the possibility of reduction at
an appropriate level, he has stated that [4] reasonable desiderata [for the dynamical reduction
program] pull in opposite directions.
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gram and by discussing all the most relevant mathematical features and physical
implications of such an approach. We go on to analyze the debate about the in-
terpretation of dynamical reduction models. This analysis will allow the reader
to understand and to fully appreciate the crucial innovative implications of the
approach. The the discussion is devoted to an important and to a large extent
still open problem, i.e., the one of finding a fully satisfactory relativistic model
inducing reductions. We will conclude our analysis with a short discussion of
some experimental situations which will make clear, on the one side, how it
is difficult it is to devise experimenta crucis allowing one to discriminate such
models from quantum mechanics, and, on the other, will give some indications
about the experiments which seem most appropriate to identify violations (if
they are there) of the linear nature of quantum theory.
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Chapter 2

THE MEASUREMENT
PROBLEM OF
QUANTUM MECHANICS

2. Basic principles of quantum mechanics

We review here the general mathematical structure of Quantum Mechanics,
with special attention to the postulate of wavepacket reduction, the one which
gives rise to the measurement problem. We also introduce formal tools like the
statistical operator formalism, calling attention to some subtle features which
can give rise to misunderstandings concerning some fundamental questions.

2.1 The axioms of quantum mechanics

Standard quantum mechanics can be synthetically summarized by the following
set of rules:

1. Every physical system S is associated to a Hilbert space H ; the physical
states of S are represented by normalized vectors (called “state vectors”)
∣ψ⟩ of H . Physical observables2 O of the system are represented by self-
adjoint operators in H : the possible outcomes of a measurement of O are
given by the eigenvalues on of the corresponding operator, which we as-
sume here, for simplicity, to have a discrete and nondegenerate spectrum:

O ∣on⟩ = on ∣on⟩ (2.1)

Since O is a self-adjoint operator, its eigenvalues on are real and the eigen-
vectors ∣on⟩ form a complete orthonormal set in the Hilbert space H .

2In the following, we will denote with O both the observable and the corresponding operator
in H ; when confusion arises, we will specify whether O refers to the observable or to the
operator.
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2. To determine the state ∣ψ(t0)⟩ of the system S at a given initial time t0,
a complete set of commuting observables for S s measured: the initial
state vector is then the unique common eigenstate of such observables. Its
subsequent time evolution is governed by the Schrödinger equation:

ih̵
d

dt
∣ψ(t)⟩ =H ∣ψ(t)⟩ (2.2)

which uniquely determines the state at any time once one knows it at the
initial one. The operator H is the Hamiltonian of the system S.

3. The probability of getting, in a measurement at time t, the eigenvalue on
in a measurement of the observable O is given by

P [on] = ∣ ⟨on ∣ψ(t)⟩ ∣2 (2.3)

∣ψ(t)⟩ being the state of the system at the time in which the measurement
is performed.

4. The effect of a measurement on the system S is to drastically change its
state vector from ∣ψ(t)⟩ to ∣on⟩, on being the eigenvalue obtained in the
measurement:

∣ψ(t)⟩ before measurement → ∣on⟩ after measurement

This is the famous postulate of wavepacket reduction (WPR).

These, in short, are the postulates of quantum mechanics. Of course, we have
somewhat simplified the exposition; for example we have ignored the possibility
of the operator O having a continuous spectrum besides or in place of the
discrete one; we have not discussed the case of degenerate eigenvectors, and so
on. All such features, even though important, are not crucial for understanding
the measurement problem.

2.2 Schrödinger evolution and wavepacket re-
duction

The Schrödinger equation (2.2) has two basic properties. First, it is a first order
differential equation in the time variable; this means that once the initial state
of the system ∣ψ(t0)⟩ is known, its future evolution is completely determined.
The evolution of the state vector of any physical system is thus perfectly deter-
ministic, like in classical mechanics.

The solution of Eq. (2.2) can be written as follows:

∣ψ(t)⟩ = U(t, t0) ∣ψ(t0)⟩ (2.4)
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where U(t, t0) is the evolution operator. This is a unitary operator, a necessary
requirement in order that it preserves the norm of the state vector and, accord-
ingly, to make tenable the probabilistic interpretation of the theory. Its formal
expression is

U(t, t0) = e−iH(t−t))/h̵ (2.5)

The second important feature of the Schrödinger equation is that it is linear :
if ∣ψ1(t)⟩ and ∣ψ2(t)⟩ are two possible solution of (2.2), then also α ∣ψ1(t)⟩ +
β ∣ψ2(t)⟩ is a possible solution, where α and β are two arbitrary complex num-
bers.3 This is the mathematical formulation of the celebrated4 superposition
principle.

The postulate of wave packet reduction exhibits features which are at odds
with Schrödinger’s evolution. First of all it describes a nonlinear evolution of
the state vector, since it transforms the state α ∣ψ1(t)⟩ + β ∣ψ2(t)⟩ into either
∣ψ1(t)⟩ or ∣ψ2(t)⟩ with probabilities ∣alpha∣2 and ∣β∣2 respectively. The second
important property of wavepacket reduction is its genuinely probabilistic nature:
in general we cannot know to which one of the eigenstates of O the state vec-
tor S will be reduced as a consequence of a measurement process; the theory
determines only the probability of the reduction to any particular eigenstate.
This is where probability and indeterminacy enter into play, making Quantum
Mechanics so different from classical theories.

Summing up, we have The above table shows clearly that standard Quantum

Schrödinger evolution Wavepacket reduction
Linear Nonlinear
Deterministic Stochastic

Mechanics has some peculiar features: it contains two dynamical evolution prin-
ciples, one governed by the Schrödinger equation and the other taking place
when wavepacket reduction occurs. They are radically different, and they con-
tradict each other. This fact gives rise to the measurement problem of the
theory, which represents the starting point which has led to the elaboration of
the theories which are the subject of the present report.

2.3 The statistical operator

The quantum mechanical rules sketched in Section 2.1 refer only to pure states,
i.e., to physical systems whose state vector is perfectly known. As already

3If the original vectors are normalized and the two states ∣ψ1(t)⟩ and ∣ψ2(t)⟩ are orthogonal,
their linear combination is normalized when ∣α∣2 + ∣β∣2 = 1.

4To be precise, the superposition principle includes also the assumption that all states of
the Hilbert space can actually occur and thus in particular that if ∣ψ1(t)⟩ and ∣ψ2(t)⟩ are
possible states for S, then also α ∣ψ1(t)⟩ + β ∣ψ2(t)⟩ is a a possible state.
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remarked, the state of a system can be determined exactly only by measuring
a complete set of commuting observables.

In practice it is not always possible to perform such kinds of measurements; the
real experimental situation could not even require it. It may very well happen
that we have (or need) only a partial knowledge of the state of the system, pretty
much like in classical statistical mechanics: the statistical operator formalism
has been designed to deal with these situations.

Suppose we know that the state vector describing an individual system is one
among a set {∣ψi⟩} of vectors, but we do not know which one it actually is: we
only know the probability pi that ∣ψi⟩ is the correct state vector. Equivalently,
we can suppose that we have an ensemble of N systems, a fraction N1 of which
is described by the vector ∣ψ1⟩, a fraction N2i of which is described by the
vector ∣ψ2⟩ and so on. Taking a system out of the ensemble, the probability
that ∣ψi⟩ is its associated state vector is pi = Ni/N . We call such ensembles
statistical mixtures; they are characterized by the vectors {∣ψi⟩} together with
their probability distribution pi.

The statistical operator is then defined as follows:

ρ = ∑
i

pi ∣ψi⟩ ⟨ψi∣ (2.6)

The operator ρ is a trace class5, trace one semi-positive definite operator, and
replaces completely the state vector when only a partial knowledge of the state of
the system is available. Of course, for a pure state ∣ψ⟩, i.e., for one representing
the most accurate knowledge that the theory considers as possible about a
system, the statistical operator reduces to the projection operator ∣ψ⟩ ⟨ψ∣.

A nice feature of statistical operators is that they allow us to use a compact
formalism to deal both with pure states and with genuine statistical mixtures
and, at the same time, they allow us to distinguish between them. In fact the
following property holds:

ρ2 = ρ for pure states

ρ2 ≠ ρ for statistical mixtures

The quantum axioms 24 are expressed as follows in this new language. The
evolution equation for ρ is

ih̵
d

dt
ρ(t) = [H,ρ(t)] (2.7)

which is again a linear first order differential equation to be solved taking into
account the initial condition ρ(t0). The probability that the outcome of a

5A trace class operator is a linear, bounded operator for which a trace may be defined,
such that the trace is finite and independent of the choice of basis.
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measurement of an observable O is one, on, of its eigenvalues is given by:6

P [on] = Tr[Pnρ(t)] (2.8)

Pn being the operator which projects onto the linear manifold associated to the
eigenvalue on. Finally, at the end of a measurement process giving on as its
outcome, the statistical operator changes in the following way:

ρ before measurement → PnρPn
Tr[PnρPn]

after measurement

This is of course the appropriate expression for the wavepacket reduction pos-
tulate.

A final remark. The statistical operator formalism allows us to handle also
nonselective measurements, which we are now going to define, in a quite natural
way. Suppose we perform a measurement on an ensemble of systems in the same
state (pure or mixed); in general each of them will give different outcomes and,
after the measurement, due to wavepacket reduction, they will be described by
different state vectors. If we decide to keep all the systems, independently of
the outcomes we have obtained, we perform a non-selective measurement: we
do not have a pure state, even when the state is pure before the measurement
is performed. The measurement process turns it into the following statistical
mixture:

ρ before measurement →∑
n

PnρPn after measurement

Pn being the projection operators associated to the eigenmanifolds of the ob-
servable which has been measured. Since the measurement is non selective, the
operators Pn sum up to the identity: it is easy to check that all the mathematical
properties of ρ are preserved.

2.4 Property attribution in standard quantum
mechanics

As already remarked, the characteristic trait of standard Quantum Mechanics is
that, in general, it allows only probabilistic predictions about the possible out-
comes of measurements. Such probabilities have a truly nonepistemic character,
i.e., they are not due to our ignorance about the precise state of the system, like
in classical statistical mechanics: rather, quantum theory is such that physical
systems by themselves do not possess all properties one can think of. Another
way to put it - following the Copenhagen doctrine - is to say that, in general,
we are not allowed to speak of the properties of a system concerning most of its
observables: the best we can do is to speak of what we can observe about the

6“Tr” denotes the trace of the operator.
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system.

However, it is possible to rescue, still remaining within the standard formalism,
a sort of “minimal ontology” for physical systems. This was first formulated by
Einstein, Podolsky and Rosen [5]:

If, without in any way disturbing the system, we can predict with
certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality correspond-
ing to this physical quantity.

Following axiom 3, an eigenvalue on of an observable O has probability 1 of
being found in a measurement of O if and only if the state vector ∣ψ(t)⟩ of the
system is an eigenstate of O pertaining to the considered eigenvalue. We can
then say that a system possesses a property if and only if its state vector belongs
to the eigenmanifold associated to the eigenvalue corresponding to that property.
Any measurement aimed to test this statement will give a positive result. Of
course, we can develop a similar argument when the probability of an outcome
is equal to zero and we can claim that the corresponding property is certainly
not possessed by the system.

It is not diffcult to understand that within this “minimal ontology” physical
systems do not possess all the properties one would be inclined to attach to
them (like position and momentum at any given time), because a vector cannot
be a simultaneous eigenvector of too many operators, due to the non-abelian
character of the algebra of the operators. Worse than that, individual systems
in entangled states possess in general no properties at all [6].

In particular, one can almost never attach definite macro-properties, specifically
precise locations in space, even to macroscopic systems, so that they cannot be
considered as being in a definite region of space. This fact gives rise to the
so-called macro-objectification problem, i.e., to the necessity of accounting for
the emergence of the properties corresponding to our definite perceptions for
such systems. This crucial point, another aspect of the quantum measurement
problem, will be extensively analyzed in the following section.

When dealing with statistical mixtures, property attribution is rather delicate
since there is an interplay between epistemic (classical-like) and nonepistemic
(quantum-like) probabilities. To be precise, let us consider an arbitrary mixture
of states {∣ψi⟩}, with probabilities pi; in analogy with classical statistical me-
chanics, the state of any system of the ensemble is described by a precise vector
of the set {∣ψi⟩}, but we are ignorant about which is the correct one: we only
know the probability characterizing each of them. Accordingly, the probability
distribution pi has an epistemic character. On the other hand, each such vector
has a probabilistic physical content which, as before, is genuinely nonepistemic.
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3. The quantum measurement, or macro-objectification,
problem

This section is devoted to a general and detailed discussion of the measurement,
or macro- objectification, problem of Quantum Mechanics. The nature of the
problem has already been anticipated: the linear nature of Quantum Mechan-
ics allows the occurrence of superpositions of macroscopically different states of
a macro-object, e.g., concerning their location, in spite of the fact that macro-
scopic systems are always located, or at least we perceive them as being located,
in a well defined region of space.

We will first analyze the measurement problem within the framework of the
von Neumann scheme for an ideal measurement process: this is a very simple
and elegant measurement model which goes directly to the root of the prob-
lem. Nonetheless, von Neumann’s argument has been repeatedly criticized for
the over-simplified assumptions on which it is based. Then, we will show that
even by adopting a very general and realistic measurement model, one can de-
rive the same conclusions reached by von Neumann: superpositions of different
macroscopic states cannot be avoided within the quantum framework.

3.1 The von Neumann measurement scheme

The first explicit example of the quantum description of a measurement process
was presented by John von Neumann [7] and is usually referred to as the “ideal”
measurement scheme. It gained great popularity since, due to its simplicity, it
allows us to grasp immediately the key points of the problem; nowadays almost
all textbooks on the foundations of Quantum Mechanics make reference to it.
The von Neumann argument goes as follows.

Let us consider a microscopic system S and one of its observables O. Let on
be the eigenvalues of O (we assume, for simplicity, that its spectrum is purely
discrete and nondegenerate) and ∣on⟩ the corresponding eigenvectors. Let us
call M the apparatus devised to measure the observable O of the microsystem
S. M has a ready-state ∣A0⟩, i.e., a state in which the apparatus is ready to
measure the considered property, plus a set of mutually orthogonal states ∣An⟩
corresponding to different macroscopic configurations of the instrument, like,
e.g., different positions of a pointer along a scale.

Finally, we assume that the interaction between the microsystem S and the
apparatus M is linear (since the Schrödinger equation is supposed to govern
all natural processes) and that it yields a perfect correlation between the initial
state of S and the final state of the apparatus, i.e.,

Initial state: ∣on⟩ ⊗ ∣A0⟩ → Final state: ∣on⟩ ⊗ ∣An⟩ (3.1)
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in this way we are sure that if the final state of the apparatus is ∣An⟩ (i.e., the
pointer for example is in the nth position along the scale), the final state of the
particle is ∣on⟩ and the observable O has the value on, in accordance with the
property attribution discussed in Section 2.4.

The measurement problem arises when the initial state of the particle, previous
to the measurement, is not just one of the eigenvectors ∣on⟩ like in Eq. (3.1),
but a superposition of them, for example:

∣m + l⟩ = 1√
2
[∣om⟩ + ∣ol⟩]

which can be very easily prepared in our laboratories. In this case, if the linear
evolution equation of the theory is assumed to govern all physical processes, the
final state of the microsystem+apparatus will be

∣m + l⟩ ⊗ ∣A0⟩ =
1√
2
[∣om⟩ + ∣ol⟩] ⊗ ∣A0⟩ →

1√
2
[∣om⟩ ⊗ ∣Am⟩ + ∣ol⟩ ⊗ ∣Al⟩] (3.2)

Such a state is an entangled state of the microscopic system and of the appara-
tus, which is not an eigenstate of the relevant observable M of the apparatus,
i.e., the position of the pointer. In situations like this, as already discussed, it
is not legitimate, even in principle to state that the properties associated to
the states ∣Am⟩ or ∣Al⟩ are possessed by the apparatus: as a consequence the
apparatus is not in any of the macroscopic definite configurations we perceive
it to be. This is the first part of the quantum measurement problem.

The standard way out from this difficulty is given by the wavepacket reduction
postulate (axiom 4 listed in Section 2.1), which states that “at the end of the
measurement process” the final vector in Eq. (3.2) reduces to one of its terms:

∣om⟩ ⊗ ∣Am⟩ or ∣ol⟩ ⊗ ∣Al⟩

with a probability given by the square modulus of the coefficient associated to
that term (1/2 for both cases, in our example).

We have already mentioned, and we have proved now, that the postulate of
wavepacket reduction contradicts the assumption of the general validity of the
Schrödinger equation; this of course is a very unsatisfactory feature of standard
Quantum Mechanics: it incorporates two contradictory dynamical evolutions,
something we cannot accept for a physical theory. Moreover, the real physical
difficulty is not only the one of the consistency of the Schrödinger evolution
and wavepacket reduction;7 the even more serious problem is that the theory
does not tell us in which precise cases the linear hamiltonian evolution has to
be suspended and wavepacket reduction takes place. As we will see, dynami-
cal reduction models offer a natural, precise and unambiguous solution to both

7Such a difficulty could be circumvented by assuming that the theory has only a limited
field of validity and, in particular, it does not apply to macro-systems.
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problematic aspects of the measurement problem.

Coming back to the standard theory, we mention that, in spite of the above dif-
ficulties, various authors [811] have maintained that the measurement problem
does not derive from the structure of quantum mechanics (in particular from the
linear character of the quantum evolution), or from the postulate of wavepacket
reduction, but from adopting the over-simplified model of measurement pro-
cesses put forward by von Neumann. If one takes into account more realistic
models, they argue, the measurement problem turns into a false one: the postu-
late of wavepacket reduction is not anymore necessary and, consequently, there
is no need to modify the interpretation of the theory, or even to put forward a
new theory.

In particular, the following assumptions have been criticized:

● That the measuring apparatus can be prepared in a precise state ∣M0⟩:
since the instrument is a macroscopic object with many degrees of freedom,
it is impossible to know its precise state at any given time.

● That one can safely neglect the interactions between the apparatus and the
surrounding environment. Such interactions with the environment (which
are referred to as decoherence) produce essentially a randomization of
the phases associated to the different components of the wavefunction, a
process which can be seen as an apparent collapse of the wavefunction into
one of its components.

● That the final states of the apparatus, corresponding to perceptively dif-
ferent macroscopic configurations of the apparatus itself, are orthogonal:
actually, different states usually correspond to different positions of some
part of the instrument, and since no wavefunction can have compact sup-
port8 in configuration space (because of the quantum evolution), wave-
functions corresponding to different states cannot, in general, be orthog-
onal.

● That the final state of the apparatus gets perfectly correlated to the initial
state of the microscopic system: this is an highly idealized characteristic
which is not shared by any realistic physical instrument.

In the next subsection we will consider a very general measurement scheme
[12] which takes into account all the above criticisms. We will show that su-
perpositions of states corresponding to different macroscopic configurations of
macro-objects cannot be avoided within a strict quantum mechanical context.
Correspondingly, the appearance of macroscopic situations which are incom-
patible with our definite perceptions about such objects is inescapable. This

8Compact support means the function is zero everywhere outside some finite interval.
Gaussian does not have compact support.
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“empasse” can only be circumvented either by adopting a precise and unam-
biguous interpretation which differs from the orthodox one, or by modifying the
theory itself.9

3.2 A completely general measurement scheme

In this subsection we re-derive von Neumann’s conclusions on the basis of what,
in our opinion, is the most general possible description of a measurement instru-
ment and of a measurement process. We begin first by defining the microscopic
system whose properties we want to measure.

3.2.1 The microscopic system

For simplicity we consider the simplest system upon which nontrivial measure-
ments can be per- formed, i.e., a system S whose associated Hilbert space HS

is two-dimensional - like the one describing the spin of an electron, or the po-
larization states of a photon - and we consider an observable O having two
different eigenvalues; let us call ∣u⟩ and ∣d⟩ the eigenstates associated to these
eigenvalues. For definiteness, we will consider an individual such system and
we will call “spin” its degree of freedom; we will say that the particle has “spin
Up” when it is in state ∣u⟩, and that it has “spin Down” when it is in state ∣d⟩.
Besides these two states, also their superpositions can be taken into account, in
particular the following one:

∣u + d⟩ = 1√
2
[∣u⟩ + ∣d⟩]

a vector describing a new state, “spin Up + spin Down”, of the particle. Without
any loss of generality, we will assume that, by resorting to appropriate proce-
dures, one can “prepare” the system S in any one of the three above considered
states ∣u⟩, ∣d⟩ and ∣u + d⟩.

We remark that we could have considered more general physical systems, like
compound ones, and observables having a more complicated spectrum. How-
ever, in accordance with the generally accepted position that microsystems can
be prepared in a precise quantum state and with the nowadays common exper-
imental practice to handle single particles and to measure their discrete prop-
erties, we have chosen to work with a very simple microsystem like the one we
are considering here.

Accordingly, after the preparation, the system is in a precise and known state,
and it can be treated as isolated from the rest of the universe, at least until the

9An explicit proof that releasing the request of an ideal measurement does not allow us
to circumvent the measurement problem can be found in the well known book by d’Espagnat
[13]; however, his proof is much more complex and much less general than the one we are
going to present here.
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measurement process begins.10 We stress that if one denies these assumptions
it is not even clear what he takes quantum theory to be about.

3.2.2 The measuring apparatus

A measuring apparatus is a macroscopic system which, interacting with the
microsystem whose properties one is interested in ascertaining, ends up into a
state more or less strictly correlated with the eigenstates of the observable it
is devised to measure. The different possible outcomes of the measurement are
supposed to be associated to perceptively different macroscopic configurations
of a part of the apparatus, e.g., different positions of the pointer (for analogic
instruments), different numbers on a display (for digital ones), different spots
on a photographic plate, different plots on a screen, and so on. For simplicity,
in what follows we will assume that the apparatus has a pointer movable along
a scale, whose position registers the result of the measurement.

Contrary to microsystems, the measuring apparatus, being a macroscopic ob-
ject, has many degrees of freedom, most of which - in particular the microscopic
ones - we cannot control at all; and of the macroscopic ones, like the position
of the pointer, we can have only a very limited control. Moreover, due to its
dimensions, the apparatus is always interacting with the environment, whose
degrees of freedom are also essentially out of control. Following this line of rea-
soning, one can remark that the apparatus - or at least its constituents - existed
quite a long time before the measurement is performed, so it had all the time
to interact, even if only weakly, with a large part of the universe. All these
interactions make to a large extent unknown and uncontrollable the state of the
macroscopic system which enters into play. In spite of this difficulty, in order to
keep our analysis as general as possible, we will take into account all the above
mentioned facts which make the measurement nonideal.

With reference to the above discussion, we should in general speak of different
situations of the “whole universe”, even though our “reading” refers only to the
degrees of freedom of the pointer; accordingly, we will indicate the state vectors
we will deal with in the following way:

∣Aα⟩

These vectors belong to the Hilbert space associated to the apparatus, the en-
vironment, and, in the most general case, to the whole universe. A is a label
indicating that the pointer of the apparatus is in a specific macroscopic configu-
ration, i.e., one which we perceive and we identify with a specific position along
the scale. In first approximation, we could say that A is essentially the value x
characterizing the “projection operator” ∣x⟩ ⟨x∣ (∣x⟩ being an “improper” state

10In mathematical terms, we assume that, prior to the measurement process, the wavefunc-
tion of the universe factorizes into the wavefunction of the particle times the wavefunction of
the rest of the world.
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vector of the Hilbert space of the pointer) giving the exact position of e.g., the
center of mass of the pointer along the scale. But it is evident that no system
can be prepared in such a state since it is impossible to measure a continuous
variable with perfect accuracy; and even if it were possible to do so, the hamil-
tonian evolution would immediately change that state.

We could try to improve our description by taking into account, in place of
precise positions along the scale, small intervals ∆(x) = [x − δ, x + δ], and to
claim that “the pointer is at position x” when the wavefunction is an eigenstate
of the projection operator onto the interval11 ∆x of the center of mass position.
If one makes such a choice, the label A characterizing our general state ∣Aα⟩
refers to any wavefunction having such a property, of course with the interval
∆(x) replaced by the interval ∆(A): as a consequence, for the considered state
we could claim that “the pointer is at position A”. However, also this approach
is not viable since the hamiltonian evolution transforms any wavefunction with
compact support into a wavefunction with a noncompact one; this fact gives
rise to what has been called the “tail problem”, a problem which cannot be
avoided, and which renders rather delicate the task of making precise the idea
of “an object being somewhere” within a quantum mechanical framework. More
about this in what follows.

Following the above analysis, we consider a very general physical situation: we
call VA the set of all (normalized) vectors ∣Aα⟩ for which we are allowed to say
that “the pointer of the apparatus is at position A” or, stated differently, that
“the universe is in a configuration which we perceive as one corresponding to the
statement: the pointer is at A”. We do not put any restriction to the vectors be-
longing to VA: they can represent wavefunctions with or without tails, more or
less localized in space, and so on; we do not even resort to projection operators to
characterize these states. The only physical requirement we put forward is that,
if the pointer admits two macroscopically and perceptively different “positions”
along the scale (let us call them A and B), then any two vectors corresponding
to such different configurations must be “almost orthogonal”. This requirement
can be translated into the following mathematical relation: denoting by VB the
set of all normalized vectors corresponding to the statement “the pointer is at
B” while VA as before, contains all the vectors corresponding to the statement
“the pointer is at A”, we must have12

inf
∣Aα⟩∈VA
∣Bβ⟩∈VB

∥ ∣Aα⟩ − ∣Bβ⟩ ∥ ≥
√

2 − η , η << 1 (3.3)

i.e., the minimum distance between the vectors of the two above sets cannot dif-
fer too much from

√
2, which is the distance between two orthogonal normalized

11Of course, here we are considering for simplicity a one-dimensional situation; the argument
can be easily generalized to the three-dimensional case.

12Using the symbol inf which means infimum of a subset S of a partially ordered set T is
the greatest element of T that is less than or equal to all elements of S.
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states. We recall that the orthogonality request of the standard measurement
theory is done to be sure to be dealing with strictly mutually exclusive situa-
tions. Obviously such a request can be partially released (as we are doing here)
but not given up completely if one wants to be able to “read” the outcome in a
fundamentally nonambiguous way. It is evident that (3.3) is a necessary require-
ment if one pretends that different macroscopic positions of the pointer (and of
any other system) represent practically mutually exclusive configurations of the
object 13 (see also the final remark of this subsection).

Let us now comment on the second parameter α characterizing our states: this
is an index which takes into account all other degrees of freedom that are out
of control;14 thus two vectors labeled by A but with different values for α, refer
to the “same” macroscopic configuration for the pointer (or, in general, of the
“part of the universe we perceive”), while they describe two different states for
the rest of the universe (e.g., given a certain atom of the pointer, it might be in
the ground state when the state is ∣Aα⟩, while it might be in an excited state
when it is ∣Aβ⟩).

Since we are interested in the two spin states of the microscopic particle, if
we want to use the apparatus to distinguish them we have to assume that the
pointer admits at least two macroscopically different positions (U and D) along
the scale.15 The previous argument requires then that there exist two sets VU
and VD, the first one containing all the vectors corresponding to the situation
in which the pointer can be said to point at “U”, the second all those vectors
associated to the statement “the pointer is at D”. Moreover, these two sets must
be almost orthogonal in the sense of (2.2.3):

inf
∣Uα⟩∈VU
∣Dβ⟩∈VD

∥ ∣Uα⟩ − ∣Dβ⟩ ∥ ≥
√

2 − η , η << 1 (3.4)

One interesting property of VU and VD (which is shared by any pair of sets for
which (3.4) is satisfied) is that they have no vectors in common: in fact, it is
easy to see that if VU and VD had such a common vector, then the left-hand side
of (3.4) would take the value zero, a fact which would contradict (3.4). From
the physical point of view, this property is obvious since a vector belonging

13Obviously, here we are making reference to a genuinely quantum description (with the
completeness assumption). In alternative interpretations or formulations of the theory, orthog-
onality is not necessary to guarantee macroscopic differences. Typically, in hidden variables
theories one could have nonorthogonal wavefunctions and different values for the hidden vari-
ables such that the associated physical situations are macroscopically different and mutually
exclusive.

14From the mathematical point of view, α stands for the eigenvalues of a complete set
of commuting observables for the whole universe, exception made for the “location” of the
pointer.

15The idea is that, if we perform the measurement and we find the pointer in the position
labeled by U , then we can claim the “the result of the measurement is that the spin of the
particle is Up”; similarly, if we find the pointer in D, then we can say that “the spin of the
particle is Down”.
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both to VU and to VD would be a vector for which we could claim both that
“the pointer points at U” and that “the pointer points at D”, a contradictory
situation since “U” and “D” correspond to macroscopically and perceptively
different situations.

3.2.3 The preparation of the apparatus

A measuring instrument must be prepared before one performs a measurement,
i.e., one has to arrange the apparatus in such a way that it is ready to interact
with the microscopic system and give a result; following the discussion of the
previous subsection, it is evident that the initial state vector must carry an index
α which takes into account the state of the rest of the universe. Accordingly, we
will denote the initial state vector as ∣A0α⟩, where A0 indicates that the pointer
“is” in the ready (A0) state.

However, we note that, besides the measuring instrument, we have also to pre-
pare the microsystem in a precise state, and moreover we have assumed that
after the preparation and immediately before the measurement process, the mi-
crosystem itself is isolated from the rest of the universe; the initial state vector
for the whole universe can then be written as

∣A0α⟩ = ∣spin⟩ ⊗ ∣A0ᾱ⟩

where ᾱ specifies the state of the whole universe, with the exception of the initial
state of the micro-particle and the initial “position” of the pointer; ∣spin⟩ is the
initial state vector of the particle.

Obviously, also in the process of preparing the apparatus we cannot control the
state of the universe, so that we do not know the precise initial state ∣A0ᾱ⟩: in
practice, in any specific situation any value for the index ᾱ will occur with a
given probability p(ᾱ), which in general is unknown to us - but of course it has
to satisfy appropriate requirements we will discuss in what follows. Accordingly,
the initial setup for the apparatus and the microscopic particle will be described
as follows:

Initial setup = {∣spin⟩ ⊗ ∣A0ᾱ⟩ , p(ᾱ)}
where p(ᾱ) gives the probability distribution of the remaining, uncontrollable,
degrees of freedom.

3.2.4 The measurement process

If one assumes that Quantum Mechanics governs all physical systems, then
the measurement process, being an interaction between two quantum systems,
is governed by a unitary operator U(tI , tF ). Suppose the initial state of the
microsystem is ∣u⟩ and the one of the apparatus (plus the rest of the universe) is
∣A0ᾱ⟩; then, during the measurement, the whole universe evolves in the following
way:

∣u⟩ ⊗ ∣A0ᾱ⟩ → U(tI , tF )[∣u⟩ ⊗ ∣A0ᾱ⟩] = ∣Fuᾱ⟩ (3.5)
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while, if the initial state of the microsystem is ∣d⟩, one has:

∣d⟩ ⊗ ∣A0ᾱ⟩ → U(tI , tF )[∣d⟩ ⊗ ∣A0ᾱ⟩] = ∣Fdᾱ⟩ (3.6)

Some comments are needed.

● Note that in the above Eqs. (3.5) and (3.6) the index ᾱ distinguishes var-
ious possible and uncontrollable situations of the measuring apparatus in
its “ready” state. Once the initial state is fully specified also the final one,
since the evolution is unitary, is perfectly and unambiguously determined.
Accordingly, such a state is appropriately characterized by the same index
ᾱ. Note also that, while the state ∣A0ᾱ⟩ belongs to the Hilbert space of
the whole universe exception made for the micro-particle, the state ∣Fdᾱ⟩
now includes also the particle.

● Contrary to what one does in the ideal measurement scheme of von Neu-
mann, we do not assume that the final state is factorized; thus, in general

∣Fuᾱ⟩ ≠ ∣u⟩ ⊗ ∣AU ᾱ⟩

● In particular, we do not suppose that the final state of the microsystem be
the same as the initial one: we allow the measurement process to modify
in a significant way the state of the particle; it could even destroy the
particle.

The only thing we require is that the measuring apparatus is reliable to a high
degree, i.e., that it can safely be used to measure the state of the microsystem
since in most cases it gives the correct answer. This means that if the initial
state of the microsystem (prior to the measurement) is ∣u⟩, then the final state
∣Fuᾱ⟩ must belong in most of the cases to VU , while, if the initial state of the
particle is ∣d⟩, then the final state ∣Fdᾱ⟩ must always belong to VD. Note that
by not requiring full reliability, we take into account also the possibility that
the measuring instrument gives the wrong results, though pretending that such
mistakes occur quite seldom.

It is possible to formalize the above reliability requests in the following way. Let
us consider the set K of all subsets J of the possible values that the index ᾱ
can assume and let us equip it with the following (natural) measure16:

µ(J) = ∑
ᾱ∈J

p(ᾱ)

Let us also define the two following sets:

J−U = {ᾱ such that: ∣Fuᾱ⟩ ∉ VU}
J−D = {ᾱ such that: ∣Fdᾱ⟩ ∉ VD}

16A measure on a set is a systematic way to assign a number to each suitable subset of that
set, intuitively interpreted as its size.
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J−U is the sets of all the indices ᾱ such that the states ∣Fuᾱ⟩ do not correspond
to the outcome “the pointer is at position U”, despite the fact that prior to
the measurement the state of the particle ∣u⟩. Similarly, J−D corresponds to the
states ∣Fdᾱ⟩ for which we cannot claim that “the pointer is at position D”, even
if the initial state was ∣d⟩. Let also J+U = C J−U be the complement of J−U , and
J+D = C J−D be the complement of J−D.

Given this, the requirement that the instrument is reliable can be mathemati-
cally expressed in the following way:

µ(J−U) ≤ ε , µ(J−D) ≤ ε , ε << 1 (3.7)

i.e., the probability that the final position of the pointer does not match the
initial spin-value of the particle is very small, this smallness being controlled
by an appropriate parameter ε expressing the efficiency of the measuring device
and which, as such, can change (always remaining very small) with the different
actual measurement procedures one can devise.

Of course, it is easy to derive also limits on the measure for the complements of
the above sets:

µ(J+U) ≥ 1 − ε , µ(J+D) ≥ 1 − ε

We need to take into account also the two sets: J− = J−U ∪ J−D and J+ = J− =
J+U ∩ J+D; they satisfy the following relations:

µ(J−) ≤ 2ε , µ(J+) ≥ 1 − 2ε

Again, all these limits simply state that, since the apparatus is reliable, the
probability that - at the end of the measurement process - the pointer is not in
the correct position is very small, if the initial state of the particle is either ∣u⟩
or ∣d⟩.

It is useful to remark that, having taken into account the possibility that the
measuring instrument can make mistakes, we can easily include also the possi-
bility that it fails to interact at all with the microsystem, thus giving no result:
in such a case, the pointer remains in the “ready-state”, and the corresponding
vector belongs to the set J−. In fact, let us consider the set V0 associated to the
“ready-state”, as we did for the two sets VU and VD referring to the “U” and
“D” positions of the pointer. By the same argument as before, V0 is disjoint
from the two sets VU and VD, since the “ready-state” is assumed to be macro-
scopically different from the “U” and “D” states; consequently if the vector at
the end of the measuring process belongs to V0, it cannot belong either to VU
or to VD.

We have mentioned the possibility that the apparatus misses to detect the par-
ticle because such an occurrence affects, in some cases in an appreciable way,
many experimental situations; for example the efficiency of photodetectors is
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usually quite low. This does not pose any problem to our treatment: we can
easily circumvent this difficulty by simply disregarding, just as it is common
practice in actual experiments, all cases in which a detector should register
something but it does not. The previous analysis and the sets we have identi-
fied by precise mathematical criteria must then be read as referring exclusively
to the cases in which the apparatus registers an outcome.

3.2.5 The measurement problem

We recall the two basic assumptions we discussed in the previous subsections:

1. The quantum evolution of any physical system is linear and unitary, since
it is governed by the Schrödinger equation;

2. Any two sets, like VU and VD, containing vectors corresponding to macro-
scopically different configurations of a macro-object are almost orthogonal:

inf
∣Uα⟩∈VU
∣Dβ⟩∈VD

∥ ∣Uα⟩ − ∣Dβ⟩ ∥ ≥
√

2 − η , η << 1 (3.8)

We think that everybody would agree that any real measurement situation,
if it has to be described in quantum mechanical terms, shares the above two
properties. Starting with these very simple premises we can now easily show that
quantum mechanics must face the problem of the occurrence of superpositions
of macroscopically different states of the apparatus, and in general of a macro-
system.17

In our terms, the “measurement problem” arises (as usual) when the initial
spin-state of the particle is not ∣u⟩ or ∣d⟩, as we have considered in the previous
subsections, but a superposition of them, like the state ∣u + d⟩ of Section 3.2.1,
which can be easily prepared in the laboratory. In such a case, due to the
linearity of the evolution, the final state of the particle+apparatus system will
be

∣u + d⟩ ⊗ ∣A0ᾱ⟩ → U(tI , tF )[∣u + d⟩ ⊗ ∣A0ᾱ⟩] = ∣Fu + dᾱ⟩ = 1√
2
[∣Fuᾱ⟩ + ∣Fdᾱ⟩]

It is now very simple to prove that for each ᾱ belonging to J+, ∣Fu + dᾱ⟩ cannot
belong either to VU or VD. In fact, let us suppose that it belongs to VU ; the
proof in the case in which it is assumed to belong to VD is analogous. Since the
distance between ∣Fu + dᾱ⟩ and ∣Fdᾱ⟩ is

∥ ∣Fu + dᾱ⟩ − ∣Fdᾱ⟩ ∥ = ∥1/
√

2 ∣Fuᾱ⟩ + (1/
√

2 − 1) ∣Fdᾱ⟩ ∥

≤ 1√
2
+ 1 − 1√

2
= 1 (3.9)

17As already remarked, request (2) can be violated in hidden variables theories. On the other
hand, request (1) is purposely violated in dynamical reduction theories. Since both theories
account for the objectification of macroscopic properties, they must necessarily violate one of
the two requests.
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we get a contradiction, because ∣Fu + dᾱ⟩ is supposed to belong to VU while
∣Fdᾱ⟩ belongs to VD, and relation (3.8) must hold between any two vectors of
these two sets. This completes our proof. Of course, by the same argument we
can also prove that, for all ᾱ ∈ J+, the index of the apparatus cannot be in any
other macroscopic position different from “U” and “D”.

The conclusion is: for all ᾱ ∈ J+ and for all measurements processes in which the
apparatus registers an outcome, the vector ∣Fu + dᾱ⟩ does not allow us to assign
any macroscopic definite position to the index of the apparatus, not even one
different from “U” or “D”. Stated differently, the large majority of the initial
apparatus states, when they are triggered by the superposition ∣u + d⟩, end up
in a state which does not correspond to any definite position or, in our general
language, to any definite situation of the part of the universe we perceive, i.e.,
one paralleling our definite perceptions.

We believe that the above argument represents the most general proof of the
unavoidability of the macro-objectification problem for the absolutely minimal
and physically necessary requests on which it is based: that one can prepare
microscopic systems in well defined states which are eigenstates of a quantum
observable and that when this is done and the considered observable is mea-
sured, one can get reliable information about the eigenvalue of the observable
itself, by appropriate amplification procedures leading to perceivably different
macroscopic situations of the universe.

In the next section we will analyze the various proposals which have been put
forward to overcome the macro-objectification problem; we will briefly describe
them and discuss their pros and cons.

Possible ways out of the macro-objectification prob-
lem

Various ways to overcome the measurement problem have been considered in
the literature: in this section we briefly describe and discuss them. It is useful
to arrange the various proposals in a hierarchical tree-like structure [14], taking
into account the fundamental points on which they differ: in Fig. 1 below we
present a diagram which may help in following the argument. Subsequently we
will comment on the various options.

4.1 Listing the possible ways out

A first distinction among the alternatives which have been considered in the
literature derives from taking into account the role which they assign to the
state vector ∣ψ⟩ of a system (Fig. 4.1).
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Figure 1:

This leads to the Incompleteness versus Formal Completeness option:

Incompleteness: this approach rests on the assertion that the specification
of the state ∣ψ⟩ of the system is insufficient: further parameters, besides the
wavefunction, must be considered, allowing us to assign definite properties
to physical systems.

Formal Completeness: it is assumed that the assignment of the state
vector represents the most accurate possible specification of the state of a
physical system.

When the assumption of Formal Completeness is made, two fundamentally dif-
ferent positions can be taken about the status of an ensemble - a pure case
in the standard scheme - all individuals of which are described by the same
wavefunction:

Formal Completeness with Different Individuals: the same wavefunction
describes individuals which can have different properties, even though
there is no further element in the formal theory that specifies such prop-
erties.
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Formal Completeness: with Identical Individuals all individuals associated
to the same state vector have the same properties. Pure cases correspond
to genuinely homogeneous ensembles.

The two options we have just mentioned require different strategies to circum-
vent the difficulties related to the objectification problem. The first case can be
analyzed in greater detail by considering the three following alternatives:

Limiting the Observables: The specification of what is actually observable
in the case of a macro-system has to be reconsidered: by taking into
account appropriate and unavoidable limitations of the class of observables
one can legitimately consider the macro-properties to be actual.

Enlarging the Criteria for the Attribution of Properties: The possibility of
considering a property actual is related in a more subtle way than in stan-
dard quantum mechanics to the state vector; in particular, an individual
system can possess a property even though it is not in an eigenstate of the
corresponding observable.

Enriching Reality: Many real happenings can occur together; all poten-
tialities of the state vector become actual.

When the option of Formal Completeness with Identical Individuals is chosen
the strategy to circumvent the difficulties consists in reconsidering the dynamics
of the theory. One contemplates the possibility of a Modified Dynamics: the
unitary evolution law of the theory is not always or not exactly right; the mod-
ifications which have to be taken into account make the potentialities actual.

This case too leads to further alternatives:

Two Dynamical Principles: different physical situations require different
evolution laws.

Unified Dynamics: the evolution equation of quantum mechanics has to
be modified. The new dynamical principle does not lead to a violation of
tested quantum predictions for micro-systems but it is able to induce the
dynamical objectification of macro-properties.

4.2 Incompleteness: the specification of the state
is insufficient

This option corresponds to challenging the completeness of the quantum descrip-
tion of physical systems: the state vector is not all. To complete the theory,
new “hidden variables” besides the state vector ∣ψ⟩ are introduced: these are
putative parameters related to properties of a physical system which are not
specified by the state vector. The intended aim is that of making legitimate an
epistemic interpretation of quantum probabilities.
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The best known example of a hidden variable theory is Bohmian Mechanics
[1520], where the new variables are the positions xi(t) of the particles. The
basic rules are:

1. The state of a physical system S at an initial time t0 is given by the wave-
function ψ(q1,q2, .....,qn; t0) together with the positions x1(t0),x2(t0), ....,xn(t0)
of all the particles in S.

2. The wavefunction evolves according to the Schrödinger equation:

ih̵
∂ψ(q1,q2, .....,qn; t)

∂t
=Hψ(q1,q2, .....,qn; t)

while the equations of motion for the positions xi(t) of the particles are

dxi(t)
dt

= h̵

m
Im

ψ∗i(q1,q2, .....,qn; t)∇iψ(q1,q2, .....,qn; t)
∣ψ(q1,q2, .....,qn; t)∣2 ∣

qi=xi

3. The Schrödinger equation can be solved with the given initial condition.
Once the solution has been found, it is used to solve the equations of
motion for the “hidden” variables xi(t).

Bohmian Mechanics has two basic features. First of all, the theory assigns
always a definite position in space to all particles; in particular, macroscopic
objects have definite properties, and they are where we see them to be: this is
how Bohmian mechanics solves the measurement problem of quantum mechan-
ics. The second basic feature is the following: let us consider an ensemble of
physical systems described by the same wavefunction ψ(q1,q2, .....,qn; t), each
containing n particles whose positions are x1,x2, ....,xn. Let us also suppose
that the probability distribution ρ(x1,x2, ....,xn; t0) of the positions of the par-
ticle in the ensemble, at a given initial time t0 is

ρ(x1,x2, ....,xn; t0) = ∣ψ(q1,q2, .....,qn; t0)∣2

It follows that the trajectories followed by the particles of the systems in the
ensemble are such that, at any later time t:

ρ(x1,x2, ....,xn; t) = ∣ψ(q1,q2, .....,qn; t)∣2

This means that the theory is predictively equivalent to standard Quantum Me-
chanics concerning the positions of all the particles of the universe.

However, one has to call attention to a peculiar aspect (shared by all hidden
variable theories) of Bohmian Mechanics, i.e., to its contextual nature. Various
authors [21,22] have exhibited general proofs showing that the very algebraic
structure of quantum formalism implies18 that any complete specification of the
state of a system can assign, in general, a definite truth value to most of the

18For a Hilbert space of more than two dimensions.
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propositions concerning its properties only with reference to a specified context.
This means that within such a framework, the most complete specification of the
state of an individual physical system is not sufficient, by itself, to determine
the outcome of a measurement process for most of the observable quantities
one can consider, but that such an outcome depends from the overall factual
situation. For instance within Bohmian Mechanics, a system with a precise
wavefunction and a precise position, when subjected, e.g., to a measurement of
its momentum, may give one or the other of the outcomes compatible with its
wavefunction, depending on the specific apparatus one chooses to perform the
measurement.

This situation, which at first sight might be considered as puzzling, in reality
gives simply important indications about the ontology which is appropriate for
the theory. The way out derives from taking the attitude that the only physical
entities the theory is about are the non-contextual ones. In Bohmian Mechanics
the positions of the particles play such a privileged role: they are the only non-
contextual, objective, real variables (the “local beables” [23,24] of the theory.19

What about the other observables? [20] “Properties that are merely contextual
are not properties at all; they do not exist, and their failure to do so is in the
strongest sense possible”.

A weakness, in our opinion, of the theory is that one can exhibit [25] infinitely
many inequivalent hidden variable theories - whose hidden variables are the po-
sition of the particles of the universe - different from Bohmian Mechanics. They
are all perfectly consistent, differing among themselves only for the trajectories
they assign to the particles.

Of course, this is not a mathematical fault of Bohmian Mechanics; however,
it casts some shadow over the “ontological” basic position of the theory: that
particles have always definite positions and follow precise trajectories. If many
inequivalent Bohmian-like theories assigning different trajectories to particles
are possible, which trajectories are the correct ones? Is there a criterion to
choose only one among them? Some authors [26] have tried to identify such cri-
terion with the so called “request of compoundational invariance” of the theory.
However, such a request does not seem logically necessary.20 In spite of this

19Of course at the formal level one can easily work out models making e.g., the momentum
variables non-contextual. However, the ensuing contextual nature of positions makes it quite
difficult to build up a coherent description of natural phenomena based on such a scheme.

20Goldstein has raised the objection that also within dynamical reduction models “there
is a good deal of arbitrariness, in the choice of parameters, of smoothing functions, of basic
observables, and the like”, suggesting that if this arbitrariness is not a problem for collapse
models, it should not be a problem also for Bohmian mechanics. We do not agree on this
point, since the situation is radically different in the two theories. Within dynamical reduction
models, changing the values of the parameters or of the smoothing functions one modifies the
theory in a - at least in principle - testable way (this will become clear after the analysis of
the following sections). In Bohmian mechanics, on the other hand, the different formulations
are equivalent and lead exactly to the same physical predictions.
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diffculty, Bohmian Mechanics is undoubtedly one of the (few) promising and
consistent theories solving the measurement problem of quantum mechanics; of
course, the great challenge is to formulate a relativistic invariant version of it.

4.3 Limiting the class of observables

The attempts to get objectification through a limitation of the class of observ-
ables have received great attention [2730,9,10]. We consider it appropriate to
distinguish two different positions which have been taken when trying to imple-
ment such an approach:

Strict Superselection Rules: he set of the observables which can actually
be measured for any macro-system does not coincide with the set of self-
adjoint operators of the associated Hilbert space; it admits superselection
rules. In particular, the eigenmanifolds corresponding to different macro-
scopic properties are superselected.

De Facto Superselection Rules: The impossibility of putting into evidence
macroscopic coherence is not a matter of principle but derives from prac-
tical, but practically insurmountable, limitations.

Notice that both the above programs require the consideration of the dynamics
of the theory; the possibility and the consistency of assuming limitations of
measurability cannot be analyzed at the kinematical level only. We turn now
to discuss the two cases.

4.3.1 Strict superselection rules

Suppose that, at a certain level - in the present case, the macroscopic one - the
set of observables of the system admits strict superselection rules, i.e., that the
set of operators associated to all physical quantities which are actually measur-
able is an abelian set. In such a case, as well known, the phase relations between
components of the state vector belonging to different superselected manifolds
become physically irrelevant. This amounts to saying that what actually char-
acterizes the states of physical systems (ensembles) are not the state vectors or
the statistical operators, but the equivalence classes21 [ρ] of statistical operators
with respect to the allowed observables Ω, i.e.,

[ρ] = {ρ∗ ∈ T1 ∶ Tr(ρΩ) = Tr(ρ∗Ω)∀Ω} (4.1)

where we have denoted by T1 the set of positive trace-class operators of trace
1. The basic idea for circumventing the diffculties of quantum mechanics goes
as follows. Consider, e.g., the evolution characterizing an ideal measurement
process:

1√
2
[∣u⟩ + ∣d⟩] ⊗ ∣A0⟩ →

1√
2
[∣u⟩ ⊗ ∣Au⟩ + ∣d⟩ ⊗ ∣Ad⟩] (4.2)

21The equivalence class of an element n in X is the subset of all elements in X which are
equivalent to n
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where ∣A0⟩, ∣Au⟩ and ∣Ad⟩ denote the “ready”, “points at u” and ‘points at d”
states of the macroscopic pointer. The states ∣Au⟩ and ∣Ad⟩ are macroscopically
different and therefore, according to our assumptions, belong to superselected
eigenmanifolds; one can then legitimately assert that the final situation con-
sists of the equal weights statistical mixture E = (Eu) ∪ (Ed) of the pure cases
∣u⟩ ⊗ ∣Au⟩ and ∣d⟩ ⊗ ∣Ad⟩.

The program is appealing, even though to take it seriously as a candidate for a
coherent worldview one should make it more precise. In particular, one should
exhibit the formal elements accounting for the way in which the superselection
rules emerge (the location of the split between two types of physical systems, i.e.,
those for which no limitation of observability occurs and those for which it does),
allowing the precise identification of the superselected manifolds (the “preferred
basis problem”). There is, however, a more fundamental reason which forbids
us to take it seriously: it meets insurmountable difficulties when one takes into
account the dynamics [31]. This is easily proved by taking into account that
the initial and final system+apparatus states in a measurement process, being
necessarily macroscopically distinguishable, must belong to different equivalence
classes. As a consequence, the hamiltonian itself, since it connects different su-
perselected manifolds, is not an allowed observable: this is quite peculiar.

Another related problem derives from considering the “reversibility” of the pro-
cess. To discuss this let us consider, e.g., the final state (4.2) and the equivalent
statistical mixture E = (Eu) ∪ (Ed). Suppose then one can “evolve back” or
“reverse” the measurement process. According to whether one starts from the
state (4.2) or from the statistical mixture, one goes back either to the state

1
√

2
[∣u⟩ + ∣d⟩] ⊗ ∣A0⟩ or to the equal weights mixture of the states ∣u⟩ ⊗ ∣Au⟩ and

∣d⟩ ⊗ ∣Ad⟩. Should one then perform, by means of another apparatus, a mea-
surement process to ascertain the value of the observable σx, he would, in the
first case, get the result +1 with certainty, while in the second case there is a
probability 1/2 of getting the result −1. The combined “reversal of the pro-
cess” and “measurement of σx” would then constitute a measurement process
which allows us to distinguish the final pure state from the equivalent statistical
mixture, contradicting the assumption that only superselected observables are
allowed.22

To conclude, the previous analysis should have made clear why the strict super-
selection program cannot be fulfilled.

4.3.2 The de facto superselection rules option

Recall that what makes the strict superselection program not viable is the fact
that the Hamiltonian connects eigenmanifolds corresponding to different macro-

22Note that the only way out from this problem would be to deny the reversible nature
of quantum evolution at least for processes involving macroscopic systems. But this would
amount to accept that [32] “Schrödinger’s equation is not always right”.
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scopic properties, and the related fact that the possibility of reversing the evo-
lution leading to superpositions of macroscopically different states contradicts
the assumption that the superposition is in the same equivalence class as the
corresponding statistical mixture.

This provides the basic idea of the de facto superselection option. Since, when
macroscopic objects are involved it is practically impossible to distinguish pure
states from statistical mixtures or to “undo” a measurement process, one could
be tempted to assert that for such systems a de facto limitation of observability
must be recognized. Such a position has actually been taken in many interesting
papers [2830,9,10]. In these papers attention has been called to various features
and mechanisms inducing the de facto impossibility we have just mentioned: the
extreme complexity of a macroscopic object, its unavoidable and uncontrollable
interactions with the environment, and so on.

In the previous section we have shown that such proposals cannot overcome, in
principle, the measurement problem of quantum mechanics; however a deeper
analysis may be helpful to clarify the matter. We begin with a digression. We
have used the expression “de facto”, in place of the fashionable acronym (in-
troduced by Bell [2]) FAPP (for all practical purposes), for a precise reason.
It seems to us that describing this position as FAPP suggests accusing people
following this line of taking an instrumentalist position about science. We do
not think that most of the proposals for a de facto superselection solution to
the objectification problem require such instrumentalism. Most people taking
the de facto attitude would claim that this is as legitimate as accepting the de
facto validity of the second law of thermodynamics, in spite of the reversibility
of the basic mechanical laws. Obviously it would be inappropriate to maintain
that accepting thermodynamics involves taking an instrumentalist position.

Having stated this we would like, however, to call attention to the fundamental
conceptual differences between the case of thermodynamics in relation to classi-
cal mechanics and the case of the de facto superselection assumption in relation
to the unitary evolution. To do this we start by considering the two premises:

1C The reversible classical laws are the “correct” laws of nature;

1Q The superposition principle has unlimited validity; and the legitimate clas-
sical statement:

2C Under appropriate circumstances the irreversible thermodynamical laws
are “de facto” correct.

Taking the de facto superselection position amounts to claiming that the corre-
sponding quantum statement:

2Q Under appropriate circumstances the irreversible process of wavepacket
reduction and the replacement of a pure state with a statistical mixture
are “de facto” correct is equally legitimate.
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Can we take such a position consistently? To answer this question let us consider
the classical case. It is obviously true that the irreversible thermodynamical laws
cannot describe correctly the behavior of e.g., a gas for arbitrarily large times
since it is a consequence of assumption 1C that the point representing the sys-
tem in phase space will, after Poincarè recurrence times, return as close as one
wants to its present value. One could then raise the question: does this fact
imply that the assertion that “de facto, in an ensemble of gases almost all of
them are now evolving irreversibly towards equilibrium” will be falsified by the
future behavior? Surely not.

Zurek [9,10], in his detailed analysis seems to suggest that, since the situation in
the quantum case is analogous to the classical one, statement 2Q has the same
conceptual status as 2C. To this purpose he proves that, due to the unavoidable
interactions with the environment, in the case of a macroscopic system in a su-
perposition of macroscopically distinguishable states the off-diagonal elements
of the reduced statistical operator (i.e. the one obtained by tracing out the
environment variables) become rapidly negligibly small and remain so for times
comparable to the Poincarè recurrence times for a gas. This is certainly true;
but does it prove that the situation is conceptually analogous to that of thermo-
dynamics? We think not. In fact in the quantum case the assumption 1Q that
the linear laws of quantum mechanics are correct and have universal validity
implies that the result of a prospective measurement on an ensemble in the very
far future would falsify not only our statements about future events but also the
assertion that now the ensemble is the union of the pure subensembles corre-
sponding to definite macroscopic positions. Such an assertion would turn out to
be in no sense, even approximately, correct. The argument we have presented
briefly has been expounded with great clarity and precision by d’Espagnat in
[33], to which we refer the reader for a deeper analysis.

We can further clarify the matter by repeating the previous analysis within the
context of the pilot wave theory; which, we recall, is fully equivalent to quan-
tum mechanics in its physical predictions and which assigns definite positions
to all particles of a system at all times. The approximation which corresponds
to assuming that wavepacket reduction occurs, consists in disregarding, in the
description of the evolution of an “up” (“down”) pointer position (after the
measurement is over), the contribution to the wave function coming from the
term corresponding to the “pointer down” (“pointer up”) in the state vector.
Again, such an assumption will surely be proved false by events in the very far
future. However, both the approximate and the “true” versions of the theory
assert that presently the pointer is either up or down, or equivalently that all
pointers of the ensembles are in one of the two positions, and the future happen-
ings neither falsify this statement nor deny that the approximate description is
extremely accurate for extremely long times. Therefore, within the pilot wave
framework, the analog of assertion 2Q has the same conceptual status as 2C.
As discussed above, this is not the case for the de facto superselection program.
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Other significant differences between the thermodynamical and the de facto su-
perselection situations deserve to be mentioned. For instance, in the classical
case the following three statements are correct:

3C The assignment of the phase-space distribution identifies with sufficient
precision the corresponding physical ensemble.

4C The approximation made in using thermodynamical equations to describe
the behavior of a system is under control. The split between mechanical
and thermodynamical systems is not shifty. Just to give an example, while
few molecules are not a gas, an Avogadro’s number of them is a gas.

5C The exact (mechanical) and the approximate (thermodynamical) laws
both make sense and both allow simple and sensible assumptions about
the psycho-physical correspondence allowing us “to close the circle” for
the appropriate classes of phenomena.

But the corresponding statements in the quantum case are fully inappropriate.
In fact:

3Q The same statistical operator corresponds to completely different physical
ensembles.

4Q The approximation made in breaking linearity is shifty: macroscopic sys-
tems exist which require a genuine quantum treatment (more on this in
Section 5.1).

5Q The correct (linear evolution) law leads to a situation which does not
make sense from the point of view of our (definite) perceptions, only the
approximation allows a sensible psycho-physical correspondence.

Statement 3Q further emphasizes the difficulties in relating the states of the sys-
tem to our perceptions. Even ensembles corresponding to the same statistical
operator can be very different in their compositions in pure subensembles [34].
This proves once more that the simple recognition that two ensembles can be
de facto in the same equivalence class is not sufficient to explain why our per-
ceptions unavoidably correspond to a specific composition, i.e., the one whose
subensembles have definite macroscopic properties. As recognized by Joos and
Zeh [30] who have presented one of the most interesting proposals along these
line: “perhaps (this fact) can be justified by a fundamental (underivable) as-
sumption about the local nature of the observer”.

Our conclusion is that one cannot consider the de facto superselection proposals
as yielding a consistent way of “closing the circle”. We will come back again
to this point in what follows since, from the mathematical point of view, it has
strict connections with Dynamical Reduction Models.
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4.4 The modal interpretations of quantum me-
chanics

These approaches [3542] rest on the introduction of appropriate rules which
allow us to attribute some properties to the subsystems of a composite system
even when there is no observable whose outcome can be predicted with certainty.
To illustrate the general lines of the program we make reference to the proposal
by Dieks [37].

Consider a composite system containing several (let us say N) constituents and
suppose that we are dealing with a pure case associated to an entangled state
vector. The proposal goes as follows. Any subsystem of the whole system has
at any time definite properties, identified by the following procedure. Suppose
we are interested in the subsystem SM constituted by a group of particles (let
us say the first M < N); the case of only one particle or even of a specific degree
of freedom of a particle is not excluded. We also denote by SN−M the system
of the remaining particles. One then considers the whole Hilbert space as the
direct product of the Hilbert space referring to the considered group and to the
rest:

H ≡ H (1) ⊗H (2) ⊗⋯⊗H (N) = H (1, ...,M) ⊗H (M + 1, ...,N) (4.3)

Accordingly, one takes into account the bi-orthonormal decomposition of the
state vector:

∣ψ(1, ...,N)⟩ = ∑
i

√
pi ∣χi(1, ...,M)⟩ ⊗ ∣Ωi(M + 1, ...,N)⟩ (4.4)

in the above equation, the parameters pi are positive constants summing up
to 1: they are the eigenvalues of the reduced statistical operators obtained by
taking the partial trace of ∣ψ⟩ ⟨ψ∣ either on H (1, ...,M) or on H (M +1, ...,N).
The states ∣χi⟩ and ∣Ωi⟩ satisfy:

⟨χi ∣χj⟩ = ⟨Ωi ∣Ωj⟩ = δij (4.5)

As proved by von Neumann [7], such a decomposition is uniquely determined by
∣ψ(1, ...,N)⟩ except in the case of degeneracy of the above eigenvalues. Ignoring
the complications arising from accidental degeneracy, we can now state the rule
for assigning properties to the subsystems SM and SN−M : when dealing with a
pure case associated to the state (4.4) the subsystems SM and SN−M have def-
inite properties. They are those associated to the observables having the states
∣χi⟩ and ∣Ωi⟩ as eiegnvectors. The probability of the ith property to be actually
possessed (or better: the fraction of systems in the ensemble which have such a
property) is given by pi (in other words, the model is basically a hidden variable
model [42], whose hidden variables are identified via the bi-orthonormal decom-
position (4.4)).

As usual we indicate the way in which the proposal circumvents the problems of
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the theory of measurement. According to the ideal von Neumann measurement
scheme the final state in a measurement process consists, typically, of a superpo-
sition of states each term of which involves an eigenvector referring to a different
reading of the apparatus (compare Eq. (3.2)): this final state already gives the
von Neumann bi-orthonormal decomposition for the system+apparatus so that,
according to the previous criterion one can assert that the appropriate fractions
of the apparata have their pointers in precise and different positions.

Such proposals are surely interesting but they meet various difficulties which
have been discussed e.g., in [31,4345]. We refer the reader to the above papers
for details. Apart from this, we would like to call attention on the fact that the
proposal raises other problems, in particular, it lacks what we might call “struc-
tural completeness”. The situation can be summarized in the following simple
terms. quantum mechanics, in its general formulation, allows the treatment of
statistical ensembles. We are considering now theoretical models which accept
that systems associated to the same state vector have different properties.

Suppose now we are dealing with an ensemble which is a pure case associated to
state (4.4). What meaning can be attached to the statement that the considered
subsystems have properties? Even within very weak varieties of realism, this
amounts to asserting that the ensemble is inhomogeneous, that it actually is
the union E = ⋃iEi of different subensembles. One can then raise the question:
can we prepare such an ensemble in the standard way, i.e., by taking (for all i)
a fraction pi of subensembles in the state ∣χi⟩ ∣Ωj⟩? Obviously not. In fact, if
we were to prepare the subsystems in the states ∣χi⟩ ∣Ωj⟩ it would be false to as-
sert, contrary to what this interpretation holds true, that the composite system
has with certainty the properties associated according to above procedure to an
ensemble described by ∣ψ⟩. This means that the model deals with two kinds
of statistical ensembles: the one associated to state (4.4) and the one prepared
by taking a fraction pi of subsystems in the state ∣χi⟩ ∣Ωj⟩. They both are the
union E = ⋃iEi of the same kind of subensembles (each taken with the same
probability pi), but they are structurally different since one of them has specific
hidden features to which one does not have access.

4.5 The decoherent histories approach

The main purpose of this proposal [4650] is to assign definite probabilities to
alternative histories of a physical system, which may also be the whole universe.
The idea goes as follows. One defines histories as sequences of events yielding
a sort of motion picture of the evolution of a system, and attaches appropriate
probabilities to them. Let us first define the notation we will use. We consider,
for a given k, a set of orthogonal projection operators P kαk yielding a resolution
of the identity:

∑
αk

P kαk = 1 , P kαkP
k
βk

= δαkβk (4.6)
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The index k labels the “question” or “property” we are interested in, while the
parameter αk, which runs over an appropriate range, labels a set of “alternative
values for the considered property” which are, according to (4.6), exhaustive and
mutually exclusive. It is important to have clear the meaning of the considered
projection operators. For this purpose we refer, for simplicity, to the spin space
of a spin 3/2 particle. In such a case, specifying k could mean, e.g., to specify
a spin component, so that k = 1 could be related to Sz and k = 2 to Sx. For
fixed k the index αk identifies a set of mutually orthogonal manifolds (each of
them being either one or the direct sum of various eigenmanifolds of the kth
operator) whose direct sum is the whole space. So one could have, for k = 1, α1

taking e.g., 3 values

● P 1
11

projects on the eigenmanifold spanned by the eigenstates belonging
to Sz = 3/2 and Sz = 1/2.

● P 1
31

projects on the eigenmanifold spanned by the eigenstates belonging
to Sz = −1/2

● P 1
31

projects on the eigenmanifold spanned by the eigenstates belonging
to Sz = −3/2

Analogously P 2
α2

could represent, for α2 taking only two values, the two projec-
tion operators on the positive and negative parts of the spectrum of Sx. We will
denote by P k

{αk}
the set of all the projection operators associated to the “prop-

erty k” when αk runs through its range. One then considers the corresponding
projectors in the Heisenberg picture at time t:

P kαk(t) = e
iHtP kαke

−iHt (4.7)

A history is defined by a succession of times t1 < t2 < ⋯ < tn and a sequence
of projection operators. It will be denoted by (αn, tn)⋯(α2, t2)(α1, t1). If the
initial conditions are fixed by specifying the initial state vector ∣ψ(0)⟩, one
attributes to the above history the probability:

P [αn, tn;⋯α2, t2;α1, t1] = Tr[Pnαn(tn)⋯P
1
α1

(t1) ∣ψ(0)⟩ ⟨ψ(0)∣P 1
α1

(t1) . . . Pnαn(tn)]
(4.8)

One then considers the set of all alternative histories, which we will denote with
self-explanatory notation as ({αn}, tn)⋯({α2}, t2)({α1}, t1), i.e., the set of all
quantum histories obtained by letting each αj take all values in its range. Due
to quantum interference, the probabilities of the histories of this set turn out
not to satisfy, in general, the additivity conditions which are necessary in order
that they could be interpreted as true probabilities. For instance one usually
has

P (α1, t2) ≠ ∑
α1

P (α1, t2;α1, t1) (4.9)

To circumvent this difficulty one introduces the idea of a decoherent set of
alternative histories. This can be implemented mathematically by defining the
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decoherence functional :

D[αn, tn;⋯α1, t1∣βn, tn;⋯β1, t1]
= Tr[Pnαn(tn)⋯P

1
α1

(t1) ∣ψ(0)⟩ ⟨ψ(0)∣P 1
β1

(t1) . . . Pnβn(tn)] (4.10)

If such a functional vanishes whenever at least one of the βk differs from αk, one
says that the considered set of alternative histories is consistent since the associ-
ated probabilities satisfy all necessary requirements. For a given set of histories
one may construct coarser-grained histories by summing over the finer-grained
projections.

We do not want to be more specific about this program. We refer the reader
to the references quoted above, particularly to the book [49] by Omnès for a
thorough analysis. We prefer to comment about the relations between the Deco-
herent Histories approach and some of the approaches we have already discussed.

Let us look at the Decoherent Histories approach from the point of view of the
strict superselection option. If the conditions presupposed by the strict supers-
election rules were satisfied, i.e., if there were a level at which macroscopically
different eigenmanifolds are strictly superselected and are not connected by the
Hamiltonian, all histories attributing macroscopic properties to the physical sys-
tem at the considered level would decohere: one could then truly describe the
unfolding of the evolution by a consistent snapshot-like motion picture. This
comparison with the strict superselection case immediately reveals an interest-
ing advantage of the Decoherent Histories approach. Namely, within the strict
superselection scheme the assignment of the state vector at various times tells
us which fractions of systems have various macro-properties but it does not at-
tach probabilities to time sequences of events; the snapshots at different times
cannot be organized in motion pictures as in the case of Decoherent Histories.

Since, as already remarked, the assumptions of strict superselection rules can-
not hold consistently, it becomes quite natural to look at Decoherent Histories
from the point of view of the de facto superselection rules. In particular, by
taking advantage of the many proofs that the environment induces “de facto”
superselection rules associated to macroscopic position variables, one could limit
one’s considerations, within the Decoherent Histories approach, to alternative
histories specifying e.g., the intervals in which the macroscopic pointer lies at
various times. Again this point of view represents an interesting improvement
with respect to the simple de facto superselection program since it allows the
consideration of a time-chain of events. Moreover, it gives precise criteria to
select decoherent histories from non decoherent ones.

Decoherent Histories supporters maintain that the decoherent sets of histories
can be considered completely in general, i.e., with reference both to macroscopic
and microscopic systems, that one can assign probabilities to them if the con-
sistency conditions are met, and that within the scheme decoherence replaces
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the notion of measurement. This seems to suggest that some objective meaning
is given to consistent alternative histories. Here a serious problem arises. It can
easily be seen that alternative histories involving only one time always decohere.
One can then consider, at a given time, different sets of incompatible alterna-
tive histories. If the probabilities are related to possessed properties, then one
should assign objective meaning to the different possible incompatible sets of
decoherent histories. In Refs. [51,52]23 we have proved that this cannot be done
in a consistent way. The problem is the same as the one of contextuality in
hidden variable theories: not too many properties can be assigned to quantum
systems. As a consequence it is not clear the meaning which should be given to
decoherent histories.

A last remark: decoherent histories can also be considered as strictly referring
only to the universe as a whole. When one takes such an attitude one invokes
the natural de facto decoherence of histories about the universe. As appropri-
ately remarked in [55] one can then raise the question: what is the status of two
histories belonging to incompatible sets of alternative histories? Refs. [55,56]
have also called attention to peculiar difficulties that the Decoherent Histories
approach meets concerning the future-past relation.

We do not pursue the analysis further. Concluding, it seems to us that even De-
coherent Histories do not allow us to attribute consistently an objective meaning
to statements about possessed properties.

4.6 Enriching reality

Such proposals [5762] maintain that the unitary evolution holds in all circum-
stances and dispose of the embarrassment arising from the occurrence of su-
perpositions of perceptively different states by assuming that in a sense, all
potentialities of the wavefunction become actual. The most widely known pro-
posal of this type is usually referred to as “The Many Universes Interpretation
of quantum mechanics” [60-62].

According to this proposal, each time an interaction leading to superpositions
of macroscopically distinguishable situations occurs, the universe literally splits
into (in general infinitely many) replicas of itself: each replica corresponds to
one of the terms in the superposition and occurs with the appropriate probabil-
ity. So, in a situation like the one of Eq. (4.2) one would state that, after the
measurement is over, there are actually two types of universes; in those of the
first type there is an apparatus whose pointer “points at u” and in the second an
apparatus whose pointer “points at d”. Needless to say, if one wants to describe
the situation at later times one has to go on with the unitary evolution taking
into account all interactions which take place and then, having expressed the
final state vector as a superposition of states in each of which all macro-objects

23See also [53,54] for further discussion on this issue.
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have definite macroscopic properties, associate each term of the superposition
to universes of a different type.

A serious limitation for the proposal comes from the fact that it leaves largely
undefined how and when the multifurcation of the universe takes place. This
ambiguity reflects the basic difficulty that quantum mechanics meets in locating
the “shifty split” between micro and macroscopic phenomena.

Detailed analyses of the many universes theories have been presented [6062].
Here we want to stress that, since to close the circle one needs also some as-
sumptions about the process of perception, there are at least two choices for this,
which give rise to two quite different alternatives. If one makes simple assump-
tions about the psycho-physical correspondence one has the “genuine” many
world interpretation: in the process of replicating the universe also the perceiv-
ing subject is replicated, so that in the above example there will be universes
in which we perceive that the pointer points up and universes with replicas of
ourselves having the other perception. Within each universe the perception is
strictly correlated to state vectors corresponding to different macroscopic situ-
ations.

On the other hand, one can take the attitude that it is the perception mecha-
nism which is more complex than we usually assume; this leads to what has been
referred to as “the many minds interpretation” of the theory. Such a formula-
tion has the advantage of allowing us to circumvent the ambiguities about the
branching of the universe; there is only one universe and there are many minds
(i.e., each mind exhibits some sort of a full spectrum of perceptions reflect-
ing the macroscopically different states in the superposition). Many interesting
problems arise when one takes this attitude, the most relevant ones having to
do with the intersubjective agreement and with the reliability of our beliefs. We
will not discuss, for lack of space, the details of these approaches.

We conclude this subsection by stating that, even though we consider these “en-
riching reality” proposals interesting, they seem to require a too radical change
in our views about reality and the adoption of a rather strange ontology. For,
according to them science does not deal any longer with the one world we live
in or the perceptual processes we experience, but at the same time with the
totality of all possible worlds and all possible perceptions.

4.7 Modifying the dynamics

When one assumes that the theory is complete and that pure cases describe
genuinely homogeneous ensembles, the only way to dispose of the embarrassing
superpositions is to say that in one way or another the dynamical equations of
the theory are not always or not exactly right. At this point, two completely
different positions can be and have actually been taken. We will briefly discuss
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them in the two following subsections.

4.7.1 Two dynamical principles

This line of thought plainly accepts that there are two dynamical principles
which must be used for describing different physical situations. The best known
example of this attitude consists in accepting wavepacket Reduction: the evolu-
tion of microscopic quantum systems is governed by the unitary and reversible
linear Schrödinger equation; the measurement process is governed by the non-
linear process of wavepacket reduction transforming, in general, pure states into
statistical mixtures. The reasons for this different treatment of physical systems
are traced back to the recognition that there are two classes of phenomena in
nature, the quantum and the classical, the reversible and the irreversible, the
microscopic and the macroscopic ones. Further support to this attitude is given
by saying that, in a sense, classical concepts are a prerequisite for the very for-
mulation of quantum formalism.

One could find many reasons for considering legitimate such a position; after
all, all physical theories have a limited range of applicability. In this respect
quantum mechanics would be claimed to find its limit in the description of the
micro-macro interactions taking place in the measurement process. However,
as repeatedly stressed by Bell and as already discussed in the previous section,
the real difficulty which this line meets does not stem from its dualistic attitude
about our understanding of natural phenomena, but derives from the fact that
there is nothing in the theory which allows us to locate the “split” between the
two considered classes of phenomena. When trying to follow this line, as Bell
has stated [2], are we not obliged to admit that measurement like processes are
going more or less all the time, more or less everywhere?

The remark is so appropriate that Wigner [63], having recognized the unavoid-
ability of accepting two dynamical principles, felt the necessity of following von
Neumann’s proposal: to solve the problem one has to go to the extreme end of
the chain of observation and to assume that reduction does not take place until
somebody knows that it must, i.e., up to when conscious observers are involved.
This position leads to a quite peculiar conclusion, i.e., hat the world as we know
it, is very much a product of conscious mind. In spite of this, one could say that
such a position represents a simple and effective solution (reduction actually
takes place) to the problems we are debating except that it suffers once again
from an intrinsic ambiguity. For the question: “what is conscious?” does not
admit any unambiguous answer on the basis of our present knowledge about
nature and human beings.

The impossibility of locating the split between the two types of physical systems
(quantum-classical) which should be governed by different laws as well as the
impossibility of clearly identifying the processes involving consciousness clearly
show that also the program outlined here does not allow one to “close the cir-
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cle”. We pass then to consider the other option: the dynamical equation of the
theory is not right.

4.7.2 Unified dynamics: dynamical reduction models

The program seeks a modification of the evolution law in such a way that
measurement-like processes have definite outcomes as a consequence of the uni-
fied dynamics governing all physical processes [6468]. In this search some guid-
ance is of course given by the fact that the modified dynamics should imply
wavepacket reduction as a consequence of the interaction of the microsystem
and the macro-apparatus and, more generally, forbid the persistence of linear
superpositions of macroscopically different states. With this in mind, one re-
marks that the characteristic features distinguishing quantum evolution from
wavepacket reduction are that, while Schrödinger equation is linear and deter-
ministic, wavepacket reduction is nonlinear and stochastic. It is then natural
to entertain the idea of nonlinear and stochastic modifications of the standard
Hamiltonian dynamics.

Obviously such a program must respect strict constraints, in particular, it must
not contradict any known fact about micro-phenomena. Secondly, to meet the
requests we have repeatedly mentioned in this paper, it must allow a clearcut
identification of the split between phenomena for which standard quantum me-
chanics holds (obviously this has now to be read: for which the approximation
consisting in disregarding the nonlinear terms of the “exact” theory is legitimate
and under control) and those for which the new dynamics leads to relevant dif-
ferences with respect to the standard theory, more specifically to a “classical
behavior”. The analysis of proposals of this type, of what they have accom-
plished and of the difficulties they meet will be the subject of the rest of this
discussion.
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Chapter 2

NONRELATIVISTIC
DYNAMICAL
REDUCTION MODELS

5. Preliminary considerations The aim of Dynamical Re-
duction Models is to account for the process of wavepacket reduction and the
Schrödinger evolution in terms of a unique dynamical equation leading to the
spontaneous suppression of the superpositions of different macroscopic states
of a macro-system; at the same time, the new dynamics must not change in
any appreciable way all the known properties of microscopic quantum systems.
As already stated, one tries to achieve this goal by introducing nonlinear and
stochastic modifications of the standard Hamiltonian dynamics.

In this section we want to prove that both nonlinearity and stochasticity are nec-
essary ingredients in order to account for an acceptable spontaneous reduction
mechanism. More specifically, we will show that neither a nonlinear but deter-
ministic modification nor a stochastic but linear one, can lead to a consistent
theory of dynamical reductions. A linear and stochastic modification induces
at most an apparent collapse of the wavefunction; a nonlinear but deterministic
modification, on the other hand, unavoidably violates basic relativistic con-
straints. Before discussing these issues, we will answer the following question:
should the localization mechanism act at the wavefunction level, or is it suf-
ficient, as suggested by some authors [911], that it suppresses the off-diagonal
elements of the statistical operator? The answer will be clear: a consistent dy-
namical reduction theory must induce localizations directly at the wavefunction
level (we speak in this case of individual or Heisenberg reductions [69]), and
not only at the statistical operator level (which we refer to as ensemble or von
Neumann reductions).
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5.1 Individual and ensemble reductions

We have widely discussed in the previous section the fact that the macro-
objectification problem arises when a superposition of macroscopically differ-
ent states of a macroscopic object - for example the superposition with equal
weights of two such states ∣here⟩ and ∣there⟩ - occurs, e.g., as the result of a
measurement process:

∣ψ⟩ = 1√
2
[∣here⟩ + ∣there⟩] (5.1)

In the language of the statistical operator, state (5.1) is represented by

ρ ≡ 1

2
[∣here⟩ ⟨here∣ + ∣there⟩ ⟨there∣ + ∣here⟩ ⟨there∣ + ∣there⟩ ⟨here∣] (5.2)

whose matrix representation with respect to the basis24 ∣here⟩ and ∣there⟩ is

ρ = 1

2
(1 1

1 1
) (5.3)

Let us consider now N identical macroscopic systems whose state is (5.1). Our
declared goal is to find a universal mechanism which transforms such an en-
semble into the statistical mixture in which half of the systems are in the state
∣here⟩, and the other half in the state ∣there⟩, in accordance with the wavepacket
reduction postulate:

1

2
systems in state ∣here⟩ and

1

2
systems in state ∣there⟩ (5.4)

Ensemble (5.4), in which all systems have definite macro-properties, can be
easily described within the statistical operator formalism:

ρ′ = 1

2
[∣here⟩ ⟨here∣ + ∣there⟩ ⟨there∣] (5.5)

the corresponding density matrix is

ρ′ = 1

2
(1 0

0 1
) (5.6)

Thus we see that, in order to eliminate the embarrassing superposition of dif-
ferent macroscopic states, the dynamics we are looking for must induce the
following change of the statistical operator:

1

2
(1 1

1 1
) evolutionÐ→ 1

2
(1 0

0 1
) (5.7)

i.e., it must suppress the off-diagonal terms of the density matrix, corresponding
to matrix elements connecting different macroscopic states.

24Of course, here we make a gross simplification, treating a macroscopic object like a simple
two-dimensional system; however, this does not invalidate the basic conclusions of our analysis.
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Here comes the crucial point: does a dynamical evolution like (5.7) really guar-
antee by itself the suppression of superpositions of different macroscopic states?
The answer is negative. The reason for this lies in the fact that the statistical
operator describing a statistical mixture, describes at the same time infinitely
many inequivalent statistical mixtures - this is the weak point (for the problem
we are interested in) of the statistical operator formalism. In fact, let us consider
the following statistical mixture:

Half systems in state
1√
2
[∣here⟩ + ∣there⟩]

and half systems in state
1√
2
[∣here⟩ − ∣there⟩] (5.8)

Of course, (5.8) describes a statistical ensemble which is completely different
from the one defined in (5.4); however, it is easy to check that the statistical
operator describing it is (5.5), i.e. the same one associated to mixture (5.4).

The root of the problem should be clear: working only at the statistical operator
level, we cannot be sure that a dynamical evolution like (5.7) transforms the
pure state (5.1) into the statistical mixture (5.4) - a mixture whose elements
have definite macroscopic properties - instead of transforming it into a mixture
like (5.8), whose elements are still superpositions of different macro-states. This
means that, in order to work out a fully consistent and unambiguous theory of
dynamical reductions, we have to assume that the localizations affect directly
the wavefunction, not only the statistical operator.

5.2 Linear and stochastic modifications of the
Schrödinger equation

The easiest way to implement a dynamical evolution like (5.7), which suppresses
the interference terms arising from superpositions of different macro-states of
a macroscopic system, is to add a white noise stochastic potential V (t) to the
standard Schrödinger equation for the wavefunction [70]. Here we give a simpli-
fied description of how this can be achieved, considering the case of one particle
in one dimension. We disregard the Hamiltonian evolution and discretize the
real axis R into intervals ∆i of appropriate length. We define the projection
operators

Piψ(x) = χi(x)ψ(x) (5.10)

where χi(x) is the characteristic function of the ith interval.

Let us now consider the following equation:

ih̵
d

dt
∣ψ(t)⟩ = ∑

i

PiVi(t) ∣ψ(t)⟩ (5.11)
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Vi(t) are white noise processes characterized by the expectation values:25

⟪Vi(t)⟫ = 0 , ⟪Vi(t)Vj(t′)⟫ = γδijδ(t − t′) (5.12)

The formal solution of Eq. (5.11) is

∣ψ(t)⟩ = e−(i/h̵) ∫
t
0 dτ ∑i PiVi(t) ∣ψ(0)⟩ = ∑

i

e−(i/h̵) ∫
t
0 dτ ∑i Vi(t)Pi ∣ψ(0)⟩ (5.13)

If one defines the statistical operator

ρ(t) = ⟪∣ψ(t)⟩ ⟨ψ(t)∣⟫ (5.14)

the stochastic average is easily evaluated and one discovers that ρ(t) obeys the
evolution equation:

d

dt
ρ(t) = γ∑

i

Piρ(t)Pi −
γ

2
∑
i

{P 2
i , ρ(t)} (5.15)

which, as we shall see, is basically the same equation as the one characterizing
the dynamical reduction models we will discuss in great detail in the following
sections.

Let us now consider the vectors ∣∆i⟩ whose position representation is ⟨x ∣∆i⟩ =
χi(x); then Eq. (5.15) leads to the following equation for the matrix elements
⟨∆i∣ρ(t) ∣∆j⟩ of the statistical operator:

d

dt
⟨∆i∣ρ(t) ∣∆j⟩ = γ(δij − 1) ⟨∆i∣ρ(t) ∣∆j⟩ (5.16)

We see that the diagonal elements do not change in time, while the off-diagonal
elements are exponentially damped, with a rate given by γ; this means that Eq.
(5.16) embodies precisely an evolution like (5.7). Does Eq. (5.11), then, lead
to the reduction of the state vector into one of the states ∣∆i⟩, as it seems to
follow from Eq. (5.16)? The answer is no, for the following reason.

Let us consider the average values ⟨ψ(t)∣Pi ∣ψ(t)⟩, measuring the portion of the
wavefunction ψ(x, t) = ⟨x ∣ψ(t)⟩ which is contained within the interval ∆i. If
Eq. (5.11) induces, as one could naively believe due to (5.16), the reduction
of ψ(x, t) into one interval, let us say ∆k, then the following relation would
necessarily hold:

⟨ψ(t)∣Pi ∣ψ(t)⟩ → δik for t→∞ (5.17)

On the contrary, for any realization of the stochastic potential and for any time
t, since Pi commutes with the evolution operator:

⟨ψ(t)∣Pi ∣ψ(t)⟩ = ⟨ψ(0)∣Pi ∣ψ(0)⟩ (5.18)

25We indicate with ⟪⋅⟫ the average value of the quantity contained within the “brackets”
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his means that, if ∣ψ(0)⟩ corresponds to a nonlocalized function, the individual
members of the ensemble are always associated to nonlocalized functions. The
diagonalization of ρ arises from the random phases acquired by the states in
different intervals ∆i, not from a real reduction of the state vector.

Stapp [69] has considered this problem and has suggested to accept a stochastic
mechanism of this type, relating it to fluctuations associated to the background
radiation. We do not like this proposal. At the macro-level we want that each
individual has actualities: those of being in a given region. If this does not
happen, how can one avoid the problem arising from the many to one relation
of ensembles with statistical operators, discussed in the previous subsection?
This shows that the fact that Eq. (5.11) leads to a statistical operator of type
(5.4) is a necessary but not a sufficient condition in order that ensemble (5.14)
can be considered a union of pure cases corresponding to localized states. This
is why, in the following sections, we will confine our considerations to models
yielding Heisenberg reductions for the state vector.

To conclude: we have presented a stochastic equation for the state vector, Eq.
(5.15), leading to Eq. (5.15) for the statistical operator, which induces precisely
an evolution like the one of Eq. (5.7), i.e., an evolution which would be consid-
ered as transforming ensembles of non localized states into ensembles of localized
ones. Eq. (5.11) is characterized by a hermitian coupling of the stochastic noise
to the operators Pi, and is linear; however, it gives rise only to the diagonal-
ization of the statistical operator leaving the individual wavefunctions spatially
extended. This strongly suggests that the introduction of stochasticity into the
evolution equation (i.e., the possibility that a given state evolves in different
states according to its own story) combined with the requirement that in the
long run the state vector ends up in one of the eigenmanifolds characterizing the
preferred basis (actual individual reductions) implies that the dynamics must
be nonlinear. As a matter of fact, the evolution laws of the dynamical reduction
models are stochastic and nonlinear.

As we will see in the next section, in a certain sense also the converse is true,
i.e. the consideration of nonlinear modifications of the evolution equation re-
quires, when some basic relativistic constrains are added, the introduction of
stochasticity into the equation.

5.3 Nonlinear and deterministic modifications
of the Schrödinger equation

Within standard quantum formalism the postulate of wavepacket reduction is
chosen in such a way that, even though the state of the system can be instan-
taneously changed by a distant measurement, such change cannot be used to
send faster than light signals between distant observers [7174]. This is a nice
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feature in absence of which an unacceptable violation of relativistic require-
ments would occur. In fact, even though quantum mechanics as considered
here, and in particular the process of wavepacket reduction, does not pretend to
be a relativistically invariant theoretical scheme, the fact that the instantaneous
changes induced by wavepacket reduction itself do not depend in any way what-
soever from the distance between two constituents one of which is subjected
to a mea- surement, forbids us to think that wavepacket reduction itself might
represent some non relativistic approximation of a relativistic process. If the
considered changes permit one observer to become instantaneously aware of the
fact that the other (far away) constituent has been subjected to a measurement,
an explicit clash with basic relativistic requirements would emerge, making the
process unacceptable.

Obviously the problem of possible instantaneous and detectable effects at a dis-
tance must be faced when formulating a dynamical reduction model, since, a
priori, one cannot be sure that they do not occur. In this respect it is appropri-
ate to take into account a quite general and interesting result obtained by Gisin
[75]. Let us consider a map from statistical ensembles to statistical ensembles
(we remember that we characterize a statistical ensemble by specifying the pure
states appearing in it and the associated statistical weights):

MtE(0) → E(t) (5.19)

In accordance with the analysis of Section 4.3.1, we say that two statistical
ensembles E and E′ are equivalent if the corresponding statistical operators
belong to the same equivalence class:

E ∼ E′ iff ∶ ρ(E), ρ(E′) ∈ [ρ] (5.20)

We can prove the following theorem: a necessary condition in order that the
map Mt describes an evolution which does not conflict with relativity in the
sense specified above (i.e., it does not permit faster than light signaling), is that
the equivalence relation be preserved by Mt, i.e.,

E(0) ∼ E′(0) ⇒ E(t) ∼ E′(t) (5.21)

Technically one expresses this requirement by stating that the evolution equa-
tion for the statistical operator is closed.

Let us sketch the proof: assume E1(0) ∼ E2(0) but Ei(t) ≁ E2(t), i.e., ρ1(t) ≠
ρ2(t); this means that E1(t) and E2(t) do not belong to the same equivalence
class. E1(0) and E2(0) are ensembles which are union of pure cases ∣ψi⟩ with
associated weights xi and of pure states ∣χj⟩ with weights yj , respectively. Then
one can show26 that it is possible to choose an Hilbert space K and two or-
thonormal sets ∣αi⟩ and ∣βj⟩ in it such that, in H ⊗K one has

∑
i

√
xi ∣ψi⟩ ⊗ ∣αi⟩ = ∑

j

√
yj ∣χj⟩ ⊗ ∣βj⟩ = ∣S +K⟩ (5.22)

26See, e.g., Ref. [76] and references therein.
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Moreover one can make the state ∣S +K⟩ correspond to the system S and the
auxiliary system K (associated to the Hilbert space K ) being located in two
distant regions R1 and R2, respectively. The idea is then very simple: one pre-
pares an ensemble of systems S +K, all of which are in the pure “composite
state” ∣S +K⟩. Then, in region R2 one measures either the observable A whose
eigenstates are ∣αi⟩ or the observable B whose eigenstates are ∣βj⟩. Because of
wavepacket reduction, the ensemble of systems S (in region R1) becomes equiv-
alent either to the ensemble E1(0) or to the ensemble E2(0), according to the
measurement which has been performed on the auxiliary system at the time
t = 0. These two ensembles are equivalent. However, by hypothesis, they will
no longer be equivalent at a later time t, and consequently the corresponding
statistical operators will be different: ρ1(t) ≠ ρ2(t). The evolution of the two en-
sembles then yields, at subsequent times, physically distinguishable situations
in R1. In this way the observer in R2 can let another observer in R1 know
what measurement he has decided to perform on his (distant from R1) auxiliary
system, and this allows faster than light signaling. It is important to remark
that the dynamics for the state vector given by the dynamical reduction models
which are the subject of the present discussion actually leads to a closed evo-
lution equation for the statistical operator, a necessary condition, according to
Gisin’s theorem, in order that they satisfy the no faster than light constraint.27

The most interesting aspect of Gisin’s result, from the point of view we are in-
terested in here is that, in a sense, it proves “that nonlinearity requires stochas-
ticity”. In fact, suppose we consider a deterministic map of pure states into
pure states

St ∣ψ(0)⟩ → ∣ψ(t)⟩ (5.23)

Then a mixture of states ∣ψi⟩ with weights xi evolves into a mixture of states
St ∣ψi⟩ with the same weights. In particular

∑
i

xi ∣ψi⟩ ⟨ψi∣ → ∑
i

xiSt ∣ψi⟩ ⟨ψi∣S†
t (5.24)

Let us consider now, at the initial time t = 0, two physically different ensembles
E(0) with states ∣ψi⟩ and weights xi and E′(0) with states ∣χj⟩ with weights
yj , which are equivalent, i.e., ρ(0) = ∑i xi ∣ψi⟩ ⟨ψi∣ = ∑j yj ∣χj⟩ ⟨χj ∣. Two cases
are then possible:

1. In at least one such case the evolved ensembles are inequivalent. Then an
unacceptable conflict with relativity arises, as implied by Gisin’s theorem.

2. The evolved ensembles are always equivalent. Then, by a general theorem
of Davies [78], one can conclude that the evolution given by St must be
linear and unitary.

27Kent [77] has proposed a dynamical reduction model which allows a simple treatment of
systems with identical constituents; however, this can be easily shown to imply that equivalent
ensembles can evolve into inequivalent ones, with the possibility of faster than light signaling,
so that the proposal has to be disregarded.
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It is interesting to note that the above argument [79] shows that the attempt by
Weinberg [80] of introducing nonlinear deterministic modifications of quantum
mechanics turns out to be unacceptable.

Taking the risk of being pedantic, we stress once more that from our point of
view the interest of Gisin’s theorem lies in the fact that it proves that if one
wants to consider nonlinear modifications of quantum mechanics one is forced
to introduce stochasticity and thus, in particular, the dynamics must allow
the transformation of ensembles corresponding to pure cases into statistical
mixtures.

5.4 Brief history of dynamical reduction models

We conclude the section with a brief review of the historical development of
dynamical reduction models. The history goes back to the years 1970-1973,
when Ghirardi, Fonda, Rimini and Weber were working on quantum decay
processes and in particular on the possibility of deriving, within a quantum
context, the exponential decay law [81,82]. Some features of their approach
have been extremely relevant for the subsequent elaboration of the dynamical
reduction program:

1. One deals with individual physical systems.

2. The state vector is supposed to suffer random processes occurring at ran-
dom times, leading to appropriate sudden changes of it:

∣ψ⟩ → Pu ∣ψ⟩
∥Pu ∣ψ⟩ ∥

when Pu is identified with the projection operator on the unstable state
manifold, one gets the desired result.

3. To make the treatment quite general (the apparatus does not know which
kind of unstable system it is testing) the authors have been led to identify
the random processes with localization processes of the relative coordi-
nates of the decay fragments. Such an assumption, combined with the
peculiar “resonant dynamics” of an unstable system, yield completely in
general the desired result. The “relative position basis” is the preferred
basis of this theory.

4. The authors have also applied their ideas to measurement processes [83].

5. The final equation for the evolution at the ensemble level is of the quantum
dynamical semigroup type [84,85] and has a structure extremely similar
to the final one of the GRW theory.

In 1973 Pearle was the first to suggest to account for the reduction process in
terms of stochastic differential equations. He pursued this line for various years.
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However, he did not succeed in identifying the appropriate states to which the
dynamical equation should lead and consequently a mechanism whose effective-
ness could have been negligible for microsystems but extremely relevant for the
macroscopic ones. The lack of the identification of the preferred basis, i.e. of
what “is out there”, was the main obstacle for the success of the program.

The breakthrough is dated 1984. In that year the research program suggested
by Ghirardi [64,65,86] started to be developed.28 In these papers, the first
consistent and satisfactory model (QMSL) of dynamical reductions, the one on
which all subsequent attempts are based, was presented and discussed in de-
tail. The key assumption is that each elementary constituent of any system is
subjected, at random times according to a Poisson distribution with mean fre-
quency λ = 10−16 s−1, to random and spontaneous localization processes around
appropriate positions. One assumes that the probability distribution of these
processes is such that hittings, i.e., spontaneous localizations around specific
points in space, occur with a higher probability at those places where, in the
standard quantum description, there is a higher probability of finding the par-
ticle. As will be clear in the following section, the above prescriptions can be
satisfied by introducing precise nonlinear and stochastic elements in the dynam-
ics.

It is extremely easy also to convince oneself that the model embodies the so-
called trigger mechanism, i.e., that the spontaneous reductions become more
and more frequent with increasing the number of particles of the system under
consideration. The models thus “has the property required ... of having little
impact for small systems but nevertheless suppressing macroscopic superposi-
tions” [87].

In the years 1989-90 the efforts of Ghirardi, Rimini, Weber on the one side and
of Pearle on the other, were joined together and CSL (the Continuous Sponta-
neous Localizations model) was developed [88,66]. CSL is based on a modified
Schrödinger equation containing new stochastic and nonlinear terms besides the
standard hamiltonian. These new terms induce a diffusion process for the state
vector which acts like a continuous hitting: it is precisely this diffusion process
which is responsible for the reduction of the state vector.

The next obvious step was to generalize dynamical reduction models to relativis-
tic quantum field theories. Various attempts have been made [89,67], typically
by considering models in which quantum fields are locally coupled to scalar
white noises. All the desired properties of the non relativistic theory, the most
important one being the localization in space of macroscopic objects, hold also
in the relativistic case. However, the reduction mechanism induces an infinite
increase of the energy of physical systems per unit time and unit volume: such

28Actually, even though Ref. [64] has been published in 1985, it appears among the pro-
ceedings of a Conference held at Heidelberg in 1984.
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models are then physically unacceptable.

The work on relativistic dynamical reduction models is still in progress; there are
some hints that the difficulties so far encountered can be solved by generalizing
the coupling of the fields to the stochastic noises [90-92]; such generalizations
however have still to be studied in detail.

6. Quantum mechanics with spontaneous local-
izations (QMSL)

The guiding lines which led Ghirardi, Rimini and Weber to formulate the first
consistent dynamical reduction model, called quantum mechanics with sponta-
neous localizations (QMSL) [64,65], are basically two:

1. The “preferred basis” - the basis on which reductions take place - must be
chosen in such a way to guarantee a definite position in space to macro-
scopic objects.

2. The modified dynamics must have little impact on microscopic objects,
but at the same time must reduce the superposition of different macro-
scopic states of macro-systems. There must then be an “amplification”
mechanism when moving from the micro to the macro level.

The section is devoted to the analysis of how these ideas have been successfully
implemented. We first list the axioms defining the universal (i.e. valid both at
the microscopic and at the macroscopic level) dynamics of QMSL and we show,
by resorting to a simple example, how the reduction mechanism works; the gen-
eral discussion of state vector collapse is more easily accomplished within the
framework of the continuous model (CSL) analyzed in the following sections, so
it will be postponed. In Section 6.2 we derive the dynamical evolution law of
the statistical operator, and we discuss the effect of the modified dynamics on
a free particle.

Sections 6.3 and 6.4 are the core of the section. In Section 6.3 we specialize our
analysis to the case of a simple macroscopic system, a free macroscopic parti-
cle, proving that the reducing terms of QMSL yield a classical description for
the macro-particle: this is how the macro-objectification problem of Quantum
Mechanics finds a natural solution within QMSL. In Section 6.4 we deepen our
analysis of macroscopic systems, showing how their classical properties emerge
from the quantum properties of their constituents. This means that QMSL em-
bodies a single universal dynamics which takes into account both the quantum
properties of microscopic systems and the classical properties of macroscopic
objects.

In Section 6.5 we discuss the possible numerical choices of the two parameters
appearing in the modified dynamics. They must be chosen in such a way that
all known properties of microscopic quantum systems are not altered in any
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significant way, while the classical properties of macroscopic systems must be
guaranteed. The final subsection is devoted to a mathematical review of quan-
tum dynamical semigroups, a class of evolution dynamics to which the QMSL
basic equation belongs.

6.1 The assumptions of the model

Quantum mechanics with spontaneous localizations [64,65] is based on the fol-
lowing assumptions:

1. Each particle of a system of n distinguishable particles experiences, with
a mean rate λi, a sudden spontaneous localization process.

2. In the time interval between two successive spontaneous processes the
system evolves according to the usual Schrödinger equation.

3. The sudden spontaneous process is a localization described by

∣ψ⟩ localizationÐ→
∣ψix⟩

∥ ∣ψix⟩ ∥
(6.1)

where ∣ψix⟩ = Lix ∣ψ⟩. Lix is a norm-reducing, positive, self-adjoint, linear
operator in the n-particle Hilbert space H , representing the localization
of particle i around the point x.

4. The probability density for the occurrence of a localization at point x is
assumed to be

Pi(x) = ∥ ∣ψix⟩ ∥2 ∶ (6.2)

This requires that

∫ d3x[Lix]2 = 1 (6.3)

5. The localization operators Lix have been chosen to have the form:

Lix = (α
π
)

3/4

e−(α/2)(qi−x)
2

(6.4)

qi being the position operator for particle i.

Before going on, we want to make clear a fundamental conceptual point. Here,
and in the following, when we speak of “particles” we are simply using the
standard, somehow inappropriate, quantum mechanical language. Within dy-
namical reduction models particles are not point-like objects which move in
space following appropriate trajectories according to the forces they are sub-
jected to (as it is the case of, e.g., Bohmian mechanics). In dynamical reduction
models, like in standard quantum mechanics, particles are represented just by
the wavefunction which, in general, is spread all over the space. As we will see,
the basic property of the models analyzed here is that, when a large number of
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“particles” interact with each other in appropriate ways, they end up being al-
ways extremely well localized in space, leading in this way to a situation which
is perfectly adequate for characterizing what we call a “macroscopic object”.
Thus, strictly speaking [32] the are no particles in dynamical reduction mod-
els at the fundamental level; there is simply a microscopic, quantum, wave-like
realm which gives rise to the usual classical realm at the macroscopic level.

It is easy to see how the reduction mechanism works with the help of the follow-
ing simple example. Let us consider the superposition of two Gaussian functions,
one centered around position −a and the other around position a (for simplicity
we deal with the one-dimensional case):

ψ(z) = 1

N
[e−(γ/2)(z+a)

2

+ e−(γ/2)(z−a)
2

] (6.5)

N is a normalization constant. Let us assume that 1/√γ << 1/√α and a >>
1/√α : the distance between the two Gaussians is much greater than the local-
ization amplitude, while their width is much smaller than it.

Let us now consider a hitting centered around a; the wavefunction changes as
follows:

ψ(z) → ψa(z) =
1

Na
[e−2αa2e−(γ/2)(z+a)

2

+ e−(γ+α)/2(z−a)
2

] (6.6)

We see that the Gaussian function centered around position −a has been expo-
nentially suppressed with respect to the other term, whose width is practically
left unchanged: the new wavefunction describes a particle very well localized
around position a. Moreover, it is easy to check that the probability for such
a hitting to occur, as given by (6.2), is almost equal to 1/2 i.e., the quantum
mechanical probability to find the particle in a. Of course, a similar argument
holds if the hitting takes place around position −a.

Finally, let us consider the case in which a hitting takes place in a region far
from both Gaussians, e.g., around the origin 0. In such a case it is easy to
verify that the wavefunction does not change in any appreciable way. The re-
duction to a localized state does not occur. However, the probability for such

an hitting to occur is extremely small, about e−αa
2

. Concluding, reductions are
more likely to occur where the probability to find a particle, according to the
standard interpretation of the wavefunction, is greater.

6.2 The equation for the statistical operator

Within QMSL, the reduction mechanism transforms pure states into statistical
mixtures; we can then resort to the statistical operator formalism to investigate
specific physical consequences of the theory, such as the time evolution of the
mean values of dynamical variables. However, it is important to stress once
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more that the reduction mechanism must be effective at the wavefunction level,
as it should be clear according to the analysis of Section 5.1, and as we have
already proved with the help of the very simple example of the previous section
(the general situation will be discussed in the next section).

Let us consider a single particle. Suppose it suffers a hitting process: its wave-
function ∣ψ⟩ changes it into the new wavefunction ∣ψx⟩. We do not know where
the hitting occurs, but only the probability for it to occur around position x.
Accordingly, the pure state is transformed into the following statistical mixture:

∣ψ⟩ ⟨ψ∣ → ∫ d3xP (x) ∣ψx⟩ ⟨ψx∣
∥ ∣ψx⟩ ∥2

= ∫ d3xLix ∣ψ⟩ ⟨ψ∣Lix ≡ T [∣ψ⟩ ⟨ψ∣] (6.7)

Of course, if the initial state of the particle is not pure but a statistical mixture
given by the operator ρ, the effect of a hitting process is the same as the one
described above: ρ changes into T [ρ].

We derive now the evolution equation for ρ(t). In a time interval dt, the sta-
tistical operator evolves in the following way: since the localization mechanism
is Poissonian, there is a probability λdt for a hitting to occur during that time
interval, in which case ρ changes to T [ρ], and a probability 1 − λdt for no hit-
tings to occur so that the statistical operator evolves according to the usual
Schrödinger equation:

ρ(t + dt) = (1 − λdt) [ρ(t) − i

h̵
[H,ρ(t)]dt] + λdtT [ρ(t)]

i.e.,
d

dt
ρ(t) = − i

h̵
[H,ρ(t)] − λ(ρ(t) − T [ρ(t)]) (6.8)

This is the master equation of QMSL, describing the quantum evolution of a
single particle which undergoes random localization processes; it has a quantum-
dynamical-semigroup structure, which we will discuss at the end of the section.

In the coordinate representation one has, according to assumption 5:

⟨q′∣T [ρ] ∣q′′⟩ = e−(α/4)(q
′
−q′′)2 ⟨q′∣ρ ∣q′′⟩ (6.9)

Since, owing to Eq. (6.9)

⟨q∣T [ρ] ∣q⟩ = ⟨q∣ρ ∣q⟩ (6.10)

Eq. (6.8) is obviously trace preserving. Moreover, using Eq. (6.8), it can be
easily proved that

d

dt
Tr[ρ2] < 0 (6.11)

This implies that the dynamical evolution transforms pure states into statistical
mixtures.
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Let us now consider Eq. (6.8) in the case in which H is the Hamiltonian for
a free particle; for simplicity we work in one dimension. In the coordinate
representation we get

∂

∂t
⟨q′∣ρ(t) ∣q′′⟩ = ih̵

2m
[ ∂2

∂q′2
− ∂2

∂q′′2
] ⟨q′∣ρ(t) ∣q′′⟩−λ [1 − e−(α/4)(q

′
−q′′)2] ⟨q′∣ρ(t) ∣q′′⟩

(6.12)
One can express the solution of the above equation satisfying given initial con-
ditions in terms of the solution ⟨q′∣ρSch(t) ∣q′′⟩ of the pure Schrödinger equation
(λ = 0) satisfying the same initial conditions, according to [65]:

⟨q′∣ρ(t) ∣q′′⟩ = 1

2πh̵
∫

∞

−∞
dk∫

∞

−∞
dy e−(i/h̵)kyF (k, q′ − q′′, t) ⟨q′ + k∣ρSch(t) ∣q′′ + y⟩

(6.13)
where

F (k, q, t) = e−λt+λ ∫
t
o dτ e

−(α/4)(q−kτ/m)2

(6.14)

The Hermitian symmetry of ρ(t) follows from the property F (k, q, t) = F (−k,−q, t).

To understand the dynamical evolution described by Eq. (6.12) we can evaluate
the mean values, spreads, and correlations for the position and momentum op-
erators for all times. In the considered case, it turns out [65] that these variables
are related to those of the pure Schrödinger evolution by

⟪q⟫ = ⟪q⟫Sch (6.15)

⟪p⟫ = ⟪p⟫Sch (6.16)

{q} ≡ ⟪[q − ⟪q⟫]2⟫ = {p}Sch +
αλh̵2

2
t (6.17)

{qp} = ⟪[(q − ⟪q⟫)(p − ⟪p⟫)]sym⟫ = {qp}Sch +
αλh̵2

4m
t2 (6.18)

{p} ≡ ⟪[p − ⟪p⟫]2⟫ = {q}Sch +
αλh̵2

6m2
t3 (6.19)

In Eq. (6.18) we have denoted by {⋅}sym he Hermitian part of the quantity in
square brackets. The shorthands {q},{qp},{p} have been introduced to simplify
the notation of the formal developments of the following sections. We note
that the mean values are not affected by the non-Hermitian term in Eq. (6.8).
For what concerns spreads and correlation, the corrections depend only on the
combination αλ pf the parameters α and λ.

6.3 Discussion of the non-Hamiltonian dynam-
ics for a free macroscopic particle

In this subsection we begin the analysis of the effects of the modified dynam-
ics on macroscopic systems; for simplicity, we first consider the case of a free
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macroscopic particle. Its time evolution is embodied into Eq. (6.12), where the
mass m now has the order of magnitude of the mass of a macroscopic object.

We remark that the standard quantum dynamics, in the case of a free particle,
induces for the mean values ⟪q⟫Sch and ⟪p⟫Sch exactly the classical evolu-
tion. Moreover, for any reasonable choice of the initial spreads of the position
∆q =

√
{q} and of the momentum ∆p =

√
{p}, the increase of δq when time

elapses, by virtue of the smallness of the Planck constant and of the large value
of the mass of a macroscopic object, can be completely disregarded for all inter-
esting times. However, the recognition of this fact does not exhaust the problem
of the derivation of the classical behavior of a macroscopic object from quantum
principles, since problems remain open when linear superpositions of macroscop-
ically distinguishable states can occur. In such cases, as already discussed, a
satisfactory classical description would require that the statistical ensemble de-
composes into a statistical mixture of macroscopically distinguishable states.
Let us discuss the above points within the framework of the non Hamiltonian
dynamics introduced in the previous subsections.

First of all we can observe that Ehrenfest’s theorem holds true also for the mod-
ified dynamics. In fact, for any dynamical variable X, which is a function of the
operator q only, it is easily shown that

Tr{X(q)T [ρ]} = Tr{X(q)ρ} (6.20)

This in turns implies

d

dt
⟪X(q)⟫ = Tr [X(q)dρ

dt
] = − i

h̵
T r{X(q)[H,ρ]} (6.21)

as it happens for the Schrödinger evolution. It follows that

d

dt
⟪q⟫ = 1

m
⟪p⟫ (6.22)

For the operator ρ one finds

Tr{pT [ρ]} = Tr{pρ} (6.23)

Then, if H = p2/2m + V (q), we have

d

dt
⟪p⟫ = −⟪∂V

∂q
⟫ (6.24)

In accordance with this property, Eqs. (6.15) and (6.16) show that in the case
of a free macroscopic particle29 the mean values of position and momentum are
not affected by the non-Hamiltonian terms. On the contrary, in the expression
for the spreads additional terms appear. These terms increase with time, so

29Actually, of any free particle.
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that one can identify a characteristic time interval T during which they remain
small with respect to those expressing the Schrödinger evolution. T turns out
to be of the order of the smaller of the two times T1 and T2 given by

T1 = [6m2(∆qSch)2

αλh̵2
]

1/3

, T2 =
2(∆pSch)2

αλh̵2
(6.25)

For the time interval T the spreads given by Eqs. (6.17)(6.19) coincide practi-
cally with the Schrödinger values, which in turn are negligible for any reasonable
choice of their initial values. We shall discuss below the values taken by T when
the parameters of the model are appropriately chosen.

The fact that ∆q2 and ∆p2 are very close to the Schrödinger values for an
appropriate time interval is strictly related to the small influence of the non-
Hamiltonian term on the matrix elements of the statistical operator ⟨q′∣ρ ∣q′′⟩
when ∣q′ − q′′∣ << 1/√α. On the contrary, the non-Hamiltonian dynamics has
a drastic effect on the off-diagonal elements when ∣q′ − q′′∣ >> 1/√α. This can
be easily understood by observing that the properties of the function F (k, q, t)
are remarkably different in the two cases q = 0 and q ≠ 0. In fact, when q = 0
the integral in the exponent in Eq. (6.14) for sufficiently small t behaves like
t, yielding the cancellation of the factor e−λt and making F (k, o, t) very near
to 1. Since F = 1 implies ⟨q′∣ρ(t) ∣q′′⟩ = ⟨q′∣ρSch(t) ∣q′′⟩, this shows that the
(almost) diagonal matrix elements of the statistical operator in the coordinate
representation are practically unaffected for an appropriate time interval by the
non-Hamiltonian term in the evolution equation. On the contrary, for q ≠ 0, the
integral in Eq. (6.14) cannot cancel, even for small times, the damping factor
e−λt, so that the off-diagonal elements are rapidly suppressed.

To make these statements more precise we derive two inequalities for the func-
tion F (k, q, t) for the two cases q = 0 and q > 0.

(a) q = 0 : Since
1

t
∫

t

o
dτ e−αk

2τ2
/4m2

≥ e−αk
2t2/4m2

(6.26)

it follows that

F (k,0, t) > eλt(1−e
−αk2t2/4m2

) ≥ 1 − αλk
2t3

4m2
(6.27)

the last inequality being useful for αλk2t2/4m2 < 1. We then have

1 − F (k,0, t) ≤ αλk
2t3

4m2
(6.28)

(b) q > 0 : The function F can be written as

F (k, q, t) = e−λt[1−h((
√
α/2)kt/m,(

√
α/2)q)] (6.29)
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where

h(x, y) = 1

x
∫

x−y

−y
dz e−z

2

(6.30)

The function h(x; y) is the mean value of e−z
2

on the interval (−y, x − y).
Clearly one has

h(x, y) < h(y, y) = h(2y, y) (6.31)

fo x < y, and
h(x, y) < h(2y, y) (6.32)

for x > 2y. For y < x < 2y one finds

h(x, y) < 1

x
∫

y

−y
dz e−z

2

< 1

y
∫

y

−y
dz e−z

2

= 2h(2y, y) (6.33)

so that, on the whole,

h(x, y) < 2h(2y, y) =
√
π

y
erf(y) (6.34)

In turn the function F obeys the inequality

F (k, q, t) < e−λβt (6.35)

where

β = 1 −
√
π

(√α/2)q erf[
√
α/2)q] (6.36)

Inequalities (6.27) and (6.35) prove the correctness of our previous statements
about the behavior of F (k, q, t) and, consequently, about the features of the dy-
namics concerning the diagonal and o??-diagonal elements of the density matrix
in configuration space.

We come back to the discussion of the diagonal elements of the statistical op-
erator, using the just derived inequalities (6.27) and (6.45) for the function
F (k, q, t). From Eq. (6.13) we see that

⟨q∣ρSch(t) ∣q⟩ − ⟨q∣ρ(t) ∣q⟩ = 1

2πh̵
∫

∞

−∞
dk [1 − F (k,0, t)]∫

∞

−∞
dy e−(i/h̵)ky

× ⟨q + y∣ρSch(t) ∣q + y⟩ (6.37)

To illustrate the implications of this equation, we discuss a simple example.
Suppose that ⟨q∣ρSch(t) ∣q⟩ is a mixture of Gaussian terms whose spreads are
∆i with minimum ∆0. Then the Fourier transform appearing in Eq. (6.37)

yields terms containing Gaussian factors e−∆2
ik

2
/2h̵2

, whose maximum width is
h̵/∆0, so that the integral in k is concentrated in a region ∣k∣ < h̵/∆0. Inequality
(6.28) shows then that the integrand in Eq. (6.37) contains a factor smaller
than (αλh̵2/4m∆2

0)t3. The condition t << T1, the time T1 being given by Eq.
(6.25), implies

⟨q∣ρ(t) ∣q⟩ ≃ ⟨q∣ρSch(t) ∣q⟩ (6.38)
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Obviously this result holds for those matrix elements which are appreciably
different from zero.

For the off-diagonal elements we consider the case q′ > q′′. Obviously the same
results are valid for q′ < q′′ due to the Hermitian symmetry of ρ(t). Inequality

(6.35) gives, for q′−q′′ > 2
√
π/α, a significant bound on F independent of k. This

shows that expression (6.13) for ⟨q∣ρ(t) ∣q⟩ contains an exponentially damping
factor whose lifetime is τ = 1/λβ, a consequence of the fact that (in a time
interval of the order of τ) inear superpositions of states separated by distances
larger than the ?characteristic localization distance 1/√α are transformed into
one or the other of their terms.

As we shall see, one can choose the parameters λ and α in such a way that
the time T = min(T1, T2) is very large and τ extremely small so that we can
conclude that the modified dynamics leads to an evolution agreeing with the
classical one in the case of a macroscopic object and overcomes the problems
arising from linear superpositions of states localized in far apart regions.

6.4 Macroscopic dynamics from the microscopic
one

In the previous subsection we have introduced a nonpurely-Hamiltonian dynam-
ics to describe the motion of a macroscopic particle and we have outlined how
this modification can be used to overcome some of the difficulties in the descrip-
tion of such objects. However, macroscopic objects are composite systems and
standard quantum mechanics gives definite prescriptions for their description.
It is an important feature of quantum mechanics that, under suitable condi-
tions, the internal and the center-of-mass motions of the composite systems
decouple and, moreover, that the equation of motion for the center of mass is
formally identical to the equation prescribed by the theory for the description
of a single particle. Here we want to investigate whether it is possible to ob-
tain the nonpurely-Hamiltonian dynamics for macroscopic particles described in
the previous subsections from a modification of the standard quantum dynam-
ics for their microscopic constituents. If such a modification leaves practically
unaltered the behavior of microscopic systems as accounted for by quantum me-
chanics we can say we have laid the foundations of a possible unified description
able to account for both the quantum and the classical behaviors of microscopic
and macroscopic systems, respectively.

In Section 6.1 we have assumed that the localization process T [⋅] occurs individ-
ually for each constituent of a many-particle system. We consider now a system
of N particles in one dimension. Assuming that the accuracy of the localizations
is the same for all constituents, the evolution equation for the composite system
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is
d

dt
ρ(t) = − i

h̵
[H,ρ(t)] −

N

∑
i=1

λi(ρ(t) − Ti[ρ(t)]) (6.39)

where

Ti[ρ(t)] =
√
α

π
∫

∞

−∞
dxe−(α/2)(qi−x)

2

ρe−(α/2)(qi−x)
2

(6.40)

qi being the position operator for the ith particle of the system (throughout the
subsection, we will keep working in 1 dimension).

It is worthwhile to illustrate the physical consequences of the above equation
for the important conceptual problem of the possible occurrence of linear super-
positions of states corresponding to different locations of a macroscopic object.
Such a situation occurs, for instance, in the quantum theory of measurement,
in connection with possible macroscopically different pointer positions. With
reference to such a case we consider the linear superposition ψ = ψ1 +ψ2 of two
states corresponding to two different pointer positions. We remark that in the
case under discussion there is a macroscopic number N of particles which are
located in macroscopically different positions when the state is ψ1 or ψ2 (to
be precise, in our model this means located at a distance larger than 1/√α).
If a spontaneous localization process takes place for one of such particles, this
particle is constrained to be either in the spatial region which it occupies when
the state is ψ1, or in the one corresponding to ψ2. The linear superposition is
consequently transformed into a statistical mixture of states ψ1 and ψ2. Since
the number of differently located particles is N , the reduction of states ψ1 and
ψ2 occurs with a rate which is amplified by a factor N with respect to the one,
λi, which characterizes the elementary spontaneous localizations.

The model yields therefore a natural solution to the puzzling situation origi-
nating from the occurrence of linear superpositions of differently located states.
These considerations, however, do not exhaust the problems to be discussed. In
fact, we must still check that the modification of the dynamics for the micro-
scopic constituents does not imply physically unacceptable consequences for the
dynamics of the system as a whole. Actually, according to the previous discus-
sions, we would like to have for the macroscopic object a dynamical equation of
the type considered in Section 6.3. To discuss this point, let us introduce the
center of mass and relative motion position operatorsQ and rj (j = 1,2, ...,N−1),
related to the operators qi by

qi = Q +
N−1

∑
j=1

cijrj (6.41)

Eq, (6.39), when the Hamiltonian H can be split into the sum of the center of
mass and internal motion parts HQ and Hr acting in the respective state spaces,
reads

d

dt
ρ(t) = − i

h̵
[HQ, ρ(t)] −

i

h̵
[Hr, ρ(t)] −∑

i

λi(ρ(t) − Ti[ρ(t)]) (6.42)
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where the operator Ti[ρ] can now be written as

Ti[ρ] =
√
α

π
∫

∞

−∞
dxe−(α/2)[Q+∑

N−1
j=1 cijrj−x]

2

ρe−(α/2)[Q+∑
N−1
j=1 cijrj−x]

2

(6.43)

The dynamical evolution of the center of mass of the system is described by the
statistical operator

ρQ = Tr(r)[ρ] (6.44)

obtained by taking the partial trace on the internal degrees of freedom of the
statistical operator ρ for the complete N -particle system. Taking the r trace of
the operation Ti[ρ] one gets

∫ dr1....drN−1

√
α

π
∫

∞

−∞
dxe−(α/2)[Q+∑

N−1
j=1 cijrj−x]

2

⋅ ⟨r1....rN−1∣ρ ∣r1....rN−1⟩ e−(α/2)[Q+∑
N−1
j=1 cijrj−x]

2

(6.45)

so that, by shifting the integration variable x by the amount ∑j cijrj , one finds

Tr(r)(Ti[ρ]) = TQ[Tr(r)(ρ)] (6.46)

where

TQ[⋅] =
√
α

π
∫

∞

−∞
dxe−(α/2)(Q−x)

2

[⋅]e−(α/2)(Q−x)
2

(6.47)

If one takes the r trace of Eq. (6.42) one then gets

d

dt
ρ(t) = − i

h̵
[HQ, ρQ] −∑

i

λi(ρQ − T [ρQ]) (6.48)

We have thus shown that the equation describing the reduced dynamics of the
center of mass has exactly the same form of Eq. (6.8), the parameter λ being
replaced by the sum of the λi’s for the individual constituents of the many-body
system. This is a direct consequence of the formal property (6.46).

It is worthwhile stressing that the non-Hamiltonian term in Eq. (6.48) is directly
generated by the analogous terms of Eq. (6.39) and is not due to the elimination
of the internal degrees of freedom. In fact, if within the standard formalism one
considers a composite system with an Hamiltonian H = HQ +Hr, the reduced
dynamics for the center of mass motion is necessarily Hamiltonian, and therefore
it allows for the occurrence of linear superpositions of widely separated states
of the center of mass. To avoid this, one could couple the system to some other
system whose dynamics is then eliminated [93]. This, however, gives rise to a
chain process when larger and larger external parts are included. If one wants
to reach a point where linear superpositions of far-away states cannot actually
occur, one has to break this chain in an arbitrary way. In our approach the
non-Hamiltonian dynamics for a macroscopic object is induced by a basic non-
Hamiltonian dynamics for its microscopic constituents.
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Let us now investigate briefly the effect of the modified dynamics on the relative
variables. From a physical point of view it is particularly simple and interesting
to consider the case in which the internal motion Hamiltonian gives rise to
a sharp (with respect to 1/√α) localization of the internal coordinates, as it
happens, for an appropriate choice of α, in an insulating solid. In such a case
it is evident that localizing with an accuracy 1/√α any one of the points of the
almost rigid structure of the solid induces a corresponding localization of the
center of mass. In this situation something more can be proved, i.e., that the
internal and the center of mass motion decouple almost exactly and the internal
motion is not affected by the non-Hamiltonian terms in (6.39). To be precise, we
assume that the matrix elements ⟨Q′, r′∣ρ ∣Q′′, r′′⟩ are non-negligible only when
the conditions

RRRRRRRRRRR

N−1

∑
j=1

cijr
′
j − ai

RRRRRRRRRRR
<< 1√

α
,

RRRRRRRRRRR

N−1

∑
j=1

cijr
′′
j − ai

RRRRRRRRRRR
<< 1√

α
i = 1, ....,N (6.49)

are satisfied, ai being the equilibrium position of constituent i relative to the
center of mass. Since conditions (6.49) imply

RRRRRRRRRRR

N−1

∑
j=1

cij(r′j − r′′j ) − ai
RRRRRRRRRRR
<< 1√

α
i = 1, ....,N (6.50)

⟨Q′, r′∣ρ ∣Q′′, r′′⟩ is negligibly small unless condition (6.50) is satisfied. From the
definition (6.40) one gets

⟨Q′, r′∣Ti[ρ] ∣Q′′, r′′⟩ =
√
α

π
∫

∞

−∞
dxe−(α/2)[Q

′
+∑

N−1
j=1 cijr

′

j−x]
2

⋅ ⟨Q′, r′∣ρ ∣Q′′, r′′⟩ e−(α/2)[Q
′′
+∑

N−1
j=1 cijr

′′

j −x]
2

= e−(α/4)[Q
′
−Q′′

+∑
N−1
j=1 cij(r

′

j−r
′′

j )]
2

⟨Q′, r′∣ρ ∣Q′′, r′′⟩ (6.51)

The exponential factor appearing in the last line of Eq. (6.51) is a Gaussian in
the variable Q′ − Q′′ displaced by the amount ∑j = 1cij(r′j − r′′j ). Because of
(6.50), the displacement of the Gaussian can be neglected with respect to its
width, so that in this approximation

Ti[ρ] = TQ[ρ] (6.52)

The physical meaning of Eq. (6.52) is that, as foreseen, a localization of a single
constituent of a rigid system is equivalent to a localization of the center of mass.
Eq. (6.42) shows that, if the initial statistical operator has the form of a direct
product ρQρr, it remains of the same type, and the statistical operators ρr and
ρQ obey the equations

d

dt
ρr = −

i

h̵
[Hr, ρr] (6.53)

and (6.48) respectively. We conclude that in the considered case the internal
and the center of mass motions decouple, the internal motion of the solid being
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unaffected by the localization process introduced in Eq. (6.39) and the center
of mass motion being affected by such a process with a characteristic rate equal
to the sum of the rates for all single constituents.

The considerations which can be done in the case of an almost rigid body en-
sure that the density operator retains the form ρ = ρQρr, when it is initially
of this form. Therefore, the non Hamiltonian terms of Eq. (6.48), which ap-
pear as a consequence of the localization mechanism, expresses meaningfully
the destruction of the long-distance coherence, as they entail the suppression of
the off-diagonal elements of ρQ. The situation we have just discussed can be
considered, with some idealization, typical of the case in which one is dealing
with a macroscopic body.

To conclude this subsection we observe that if one assumes for simplicity that the
localization rates λi of all microscopic (e.g., atomic) constituents of a macro-
scopic body are of the same magnitude (λi = λmicro), the center of mass is
affected by the same process with a rate λmacro = Nλmicro, where N is of the
order of Avogadro’s number. As we shall see in the next section, this will allow
us to choose the parameters λmicro and α in such a way that standard quantum
mechanics holds exactly for extremely long times for microscopic systems, while
for a macroscopic body pos- sible linear superpositions of far-away states are
rapidly suppressed, the dynamical evolution of the center-of-mass position is the
classical one and the internal structure remains unaffected.

6.5 Choice of the parameters and its consequences

A crucial feature of the point of view which has been adopted in QMSL, i.e.,
that of considering all elementary constituents of any system as subjected to
localizations, consists in the fact that one can choose the parameters of the el-
ementary processes in such a way that (i) the quantum-mechanical predictions
for microscopic systems are valid for extremely long times, (ii) the dynamics of a
macroscopic object, when it is consistently derived from that of its microscopic
constituents, turns out to coincide with the classical one for a sufficiently long
time interval, (iii) the suppression of long-distance coherence for macroscopic
objects be effective enough to imply that, after a microscopic system has trig-
gered a measuring apparatus, the dynamical evolution leads to the reduction of
the wavepacket with well-defined pointer positions.

To give orientative indications on the numerical values of the parameters ap-
pearing in our model, we start by remarking that, as it is clear from the formulas
of the previous subsections, all physically significant effects of the modified dy-
namics for a macroscopic object are governed (for a remarkably large range of
variability of these parameters) by the product αλmacro. For the choice of the
parameter αλmacro we have some important criteria which must be taken into
account. First of all we want the mean time 1/λmacro elapsing between two
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successive localizations to be such that the transition to statistical mixtures for
states spreading over distances larger than the localization distance 1/√α takes
place in a very small fraction of a second. A further requirement which has to
be taken into account is that, when one is trying to identify particle trajectories
for a macroscopic system using the selective form of our equation, the disagree-
ment with the classical predictions which, as shown in [65], unavoidably arises
for large times, be unimportant for times which are long with respect to those
during which one can keep the macroscopic system isolated. Finally, and more
important, we want the modification of the dynamics for microscopic systems
with respect to the standard one to be totally irrelevant. The simplest way to
obtain this is to assume that the mean rate λmicro = λmacro/N of the sponta-
neous localization processes for a microscopic system be extremely small.

For what concerns the parameter α it is necessary to choose the localization dis-
tance 1/√α large with respect to the atomic dimensions and to the mean spreads
around the equilibrium positions of the lattice points of a crystal. In this way,
even when one of the extremely infrequent localization processes takes place for
a constituent of an atomic system, the localization itself does not modify the
internal structure of that system and the decoupling of the center of mass and
relative motions discussed in Section 6.4 still holds. On the other hand 1/√α
represents the distance after which a linear superposition is transformed into a
statistical mixture. This parameter must then be chosen in accordance with the
requirement of avoiding the embarrassing occurrence of linear superpositions of
appreciably different locations of a macroscopic object.

These considerations lead us to discuss the following choice for the order of
magnitude of the parameters. For the localization rate of the microscopic con-
stituents of any system we choose

λmicro ≃ 10−16 s−1 (6.54)

This means that such systems are localized once every 108 − 109 years. For the
parameter 1/√α we choose

1√
α
≃ 10−5 cm (6.55)

The fact that a microscopic system is practically never localized, entails that
standard quantum mechanics remains fully valid for this type of system. More-
over, for a composite system for which the relative coordinates are confined
within a spatial range much smaller than the localization distance 1/√α, s it
happens for atoms and molecules, the process T [⋅] is almost ineffective even
when it takes place, a fact that strengthens the above conclusion.

For what concerns macroscopic objects (containing a number of constituents of
the order of Avogadro’s number), according to the considerations of Section 6.4
showing that the individual tests on the constituents add for the center-of-mass

65



dynamics, we get as characteristic localization rate:

λmacro ≃ 107 s−1 (6.56)

If we take, for the sake of definiteness, the mass of such an object to be of the
order of 1 g, and the initial spread of the position ∆q0 again of the order of
10−5 cm, we know that the quantum increase of the spread in the position is
negligible for extremely long times ∼ 1010 yr), so that the quantum evolution is
practically the same as the classical one. In such a case [compare Eq. (6.25)],
the additional term appearing in ∆q2 equals ∆q2

0 at the time T1, which is of the
order of 100 yr. This is a very long time for keeping isolated a macroscopic ob-
ject. A much longer time T2 is required in order that the additional term in ∆p2

has an appreciable e??ect for any reasonably chosen initial spread of the mo-
mentum. As far as the occurrence of linear superpositions of far away states is
concerned, as we have seen, the off-diagonal elements of the statistical operator
are exponentially suppressed with the lifetime τ = 1/λβ. For ∣q = q′∣ = 4×10−5 cm
we have τ = 10−6 s [see Eq. (6.36)]. Therefore after times of this order linear
superpositions of states separated by distances larger than 10−4 cm are trans-
formed into statistical mixtures.

Considerations of this type are important for the quantum theory of measure-
ment. In fact, at least in the case in which the interaction leading to the
triggering of the apparatus takes place in a very short time, we can apply our
treatment to the macroscopic parts of the apparatus itself, obtaining in this way
a consistent solution of the difficulties related to the quantum theory of mea-
surement for what concerns wavepacket reduction and the definite final position
of the pointer.

It has to be remarked that the basic evolution Eq. (6.8), due to the appearance
of the non-Hamiltonian terms, implies a nonconservation of energy. Let us give
an estimate of this effect in the case of the free particle on the basis of a choice
for the parameters we have just made. From Eqs. (6.19) we see that, in our
case

⟪E⟫ = ⟪E⟫Sch +
λαh̵2

4m
t (6.57)

where ⟪E⟫Sch is the conserved energy for free Schrödinger evolution.30 Energy
nonconservation is then expressed by the term

δE = λαh̵
2

4m
t (6.58)

Let us evaluate this term for the case of a microscopic system. Since λmicro =
10−16 s−1, m ≃ 10−23 g,

δE

t
≃ 10−25 eV s−1 (6.59)

30It is easy to prove that the relation d⟪H⟫/dt = λαh̵2/4m, from which (6.57) can be derived,
holds in general even when a potential term V (q) is present in the Hamiltonian.
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which means that to have an increase of 1 eV it takes a time of 1018 yr. In the
case of the center-of-mass equation for a macroscopic system, since both the
rate λ and the mass increase proportionally to the number of constituents, the
energy non conservation is of the same amount. However this argument applies
only to the increase of the energy of the center of mass. There is also an increase
of energy in the internal motion which, as can be easily understood considering
a system of free particles, is the same for all constituents. When this fact is
taken into account one can conclude that the estimated energy increase for a
system of N [≃ Avogadro’s number] atoms is

δE

t
≃ 10−14 erg s−1 (6.60)

Referring to an ideal monoatomic gas the increase in temperature with time is
then of the order of 10−15K per year.

We conclude that QMSL reproduces in a consistent way quantum mechanics
for microscopic objects and classical mechanics for macroscopic objects, and
provides the basis for a conceptually appealing description of quantum mea-
surement process,31 and of the behavior of macroscopic systems.

6.6 Quantum dynamical semigroups

Among the non-Hamiltonian evolution equations which have been considered in
the literature, there is a class which has been studied in great detail and has
proved to be useful in the description of various physical processes, which is
particularly simple. This class of equations is usually referred to as quantum
dynamical semi-group (QDS) equations [84]. Let us give a precise definition of
a QDS.

Consider the Banach space32 TS(H ) of self-adjoint trace-class operators (equipped
with the trace norm, denoted as usual by ∥ ⋅ ∥Tr) on the Hilbert space H of
the considered physical system. A QDS is a one parameter family of linear
operators:

Σt ∶ TS(H ) → TS(H ) defined for t ≥ 0

satisfying:

(1) ρ ≥ 0⇒ Σt(ρ) ∀t ≥ 0

(2) Tr[Σt(ρ)] = Tr[ρ] ∀ρ ∈ TS(H ), t ≥ 0

(3) ΣtΣs(ρ) = Σt+s(ρ) ∀ρ ∈ TS(H ), t, s ≥ 0

31Actually, this conclusion, to be taken seriously, requires also the proof, which will be
presented in what follows, that the macroscopic outcomes which emerge in a measurement
process, occur with the probabilities attached to them by the standard formalism.

32A complete normed vector space.
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(4) limt→0 ∥Σt(ρ) − ρ∥Tr = 0 ∀ρ ∈ TS(H )

We note that, when ρ is the statistical operator describing the state of a quan-
tum system, the first two conditions correspond to the requirements which are
necessary for probability conservation and the third one expresses the Marko-
vian nature of the process (which implies the independence of the evolution law
from the time origin).

In terms of the map Σt one can define the infinitesimal generator Z of the QDS
by the equation

Z[ρ] = lim
t→0

[Σt(ρ) − ρ
t

] in the norm ∥ ⋅ ∥Tr (6.61)

Obviously, the simplest case of a QDS is represented by the standard Hamilto-
nian evolution equation

Σt(ρ) = e−(i/h̵)Htρe(i/h̵)Ht (6.62)

where H is self-adjoint; in such case

Z[ρ] = − i
h̵
[H,ρ] (6.63)

As we have already stated, QDS equations have been studied in great detail [78]
and many general results have been obtained. Lindblad [84] has been able to
identify the most general form for the infinitesimal generator of a QDS when
two more conditions are added to those previously considered, i.e.

(5) Z is bounded

(6) Σt is completely positive definite

Complete positiveness has to be understood in the sense of Stinespring [94]. In
such a case, the evolution equation for the statistical operator ρ can be written
as

d

dt
ρ(t) = − i

h̵
[H,ρ(t)] + λ{T [ρ(t)] − 1

2
ρ(t)J − 1

2
Jρ(t)} (6.64)

where
T [ρ] = ∑

i∈K

AiρA
†
i , J = ∑

i∈K

A†
iAi (6.65)

Here K is a finite or countable set, H is a bounded self-adjoint operator, and
Ai are operators satisfying

∑
i∈K0

A†
iAi ≤ 1 ∀K0 ⊂K

The series in Eq. (6.65) converges in the trace norm topology. Davies [78] has
proved that Eq. (6.64) generates a QDS even when H is not bounded. The
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basic QMSL equation (6.8) is a particular type of QDS equation, where J is the
identity operator:

d

dt
ρ(t) = − i

h̵
[H,ρ(t)] + λ{T [ρ(t)] − ρ(t)} (6.66)

The map T [⋅] appearing in Eqs. (6.64) and (6.65) is a particular case of what
is usually called an operation. An operation T [⋅] is, in general, a map

T ∶ T (H ) → T (H )

of the set of trace class operators into itself which is linear, positive and bounded
with respect to the trace norm, with bound less or equal to one.

Non-Hamiltonian equations of type (6.64) have been proved useful for the de-
scription of many interesting physical processes. We recall here, in particular,
the successful use of such equations in the description of the WignerWeisskopf
atom and of beam foil spectroscopy (see, e.g., Ref. [78, Section 7] and references
therein). The quantum description of decay processes, and in particular the ex-
ponential nature of the decay law, have obtained an important clarification by
the use of such an equation as describing the evolution of an unstable quantum
system in the presence of apparatuses devised to detect the decay [81]. A very
interesting investigation [30], aimed to find a solution to the problems raised by
the quantum theory of measurement, has led Joos and Zeh to derive an equa-
tion of the above type starting from the Hamiltonian dynamics describing the
unavoidable coupling of macroscopic systems to their environment.

7. Stochastic processes in Hilbert space

QMSL is the first consistent proposal to overcome the measurement problem
of Quantum Mechanics in which wavefunction collapse is naturally induced by
the unique dynamical principle governing the evolution of all physical systems.
QMSL exhibits all the desired features one seeks in a theory of spontaneous
reductions; nonetheless, it has to face two problems, one “aesthetic” and one
physical.

The aesthetic drawback is that the modified dynamical evolution of QMSL,
though perfectly definite, is not expressed in terms of a compact mathematical
equation for the state vector leading to Eq. (6.8) for the statistical operator.
The physical problem is that the dynamics does not preserve the symmetry
character of wavefunctions describing systems of identical particles. Both prob-
lems have been solved by CSL, the Continuous Spontaneous Localization model
[88,66].

In this section we review the formalism of stochastic processes in Hilbert spaces,
which is the mathematical background of CSL. In Section 7.1 we resort to Itô’s
formalism to derive a modified Schrödinger equation for the evolution of the
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state vector. This equation is linear, but it does not conserve the norm, so it
needs to be supplemented by further formal prescriptions which we will analyze.
In Section 7.2 we derive the corresponding norm-preserving equation, which is
nonlinear.

Section 7.3 is devoted to the general discussion of state vector reduction: we
show that the modified Schrödinger equation introduced previously leads to the
spontaneous reduction of the state vector into one, among a set, of appropriate
manifolds characterized by the equation itself.

In Section 7.4 we re-derive the results of Sections 7.17.3, resorting to the Stratonovich
in place of the Itô formalism. This is an alternative, and physically more intu-
itive formalism to deal with stochastic differential equations.

In the final subsection we show that the modified Schrödinger equation of CSL
yields an evolution equation for the statistical operator of the quantum dynam-
ical semigroup type, analogous to the equation of QMSL.

7.1 Raw and physical processes: Itô linear equa-
tion

Within the Hilbert space, let us consider the Markov process ∣ψB(t)⟩ satisfying
the Itô stochastic differential equation [95]:

d ∣ψ⟩ = [Cdt +A ⋅ dB] ∣ψ⟩ (7.1)

where C in an operator, A = {Ai} is a set of operators, and B = {Bi} is a set of
real Wiener processes such that

⟪dBi⟫ = 0 , ⟪dBidBj⟫ = γδijdt (7.2)

γ being a real constant. The index i can be continuous, in which case the
sum becomes an integral and the Kronecker δ becomes a Dirac δ. Given an
initial state ∣ψ(0)⟩, Eq. (7.1) generates at time t an ensemble of state vectors
∣ψB(t)⟩, where B denotes a particular realization Bi(t) of the Wiener processes.
To simplify the notation, the dependence of ∣ψ(t)⟩ on t and Bi will be often
dropped, as in Eq. (7.1). Process (7.1) and the ensemble generated by it
will be called the raw process and ensemble. In the raw ensemble, each state
vector ∣ψB(t)⟩ has the same probability as the particular realizations Bi(t) that
originates it through Eq. (7.1).

The raw process (7.1) does not conserve the norm of vectors, in general. In fact,
using Itô calculus, one finds

d∥ ∣ψ(t)⟩ ∥2 = ⟨dψ ∣ψ⟩ + ⟨ψ ∣dψ⟩ + ⟪⟨dψ ∣dψ⟩⟫
= ⟨ψ∣ (A +A†) ∣ψ⟩ ⋅ dB + ⟨ψ∣ (C +C†) ∣ψ⟩dt + ⟨ψ∣ (A† ⋅A) ∣ψ⟩γdt

(7.3)
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where we have used the notation ∣dψ⟩ = d ∣ψ⟩. If the state vectors ∣ψB(t)⟩ were
of norm 1, the probabilities of occurrence for them, which are characteristic of
the raw ensemble, could naturally be interpreted as the physical probabilities.
Since this is not the case, we consider the ensemble of the normalized vectors

∣χB(t)⟩ = ∣ψB(t)⟩
∥ ∣ψB(t)⟩ ∥ (7.4)

having the same probabilities as the corresponding vectors ∣ψB(t)⟩ (i.e., as the
realizations Bi(t) of the Wiener processes) and the ensemble of the normalized
vectors

∣φB(t)⟩ = ∣ψB(t)⟩
∥ ∣ψB(t)⟩ ∥ (7.5)

whose probabilities are those of the vectors ∣ψB(t)⟩ times their squared norms
∥ ∣ψB(t)⟩ ∥2. We use different symbols for the vector functions ∣χB(t)⟩ and
∣φB(t)⟩, in spite of the fact that the right-hand sides of Eqs. (7.4) and (7.5)
coincide, because the associated probabilities are different, so that as random
vector functions they are different. In fact, as we shall see and as it is obvious,
they obey different stochastic differential equations. We choose as the physical
probabilities (which we shall often call “cooked” probabilities) those of vectors
(7.5) rather than those of vectors (7.4). The ensemble of vectors ∣φB(t)⟩ and the
stochastic process in the Hilbert space that generates it will be called the phys-
ical ensemble and process. The prescription leading to the physical ensemble is
the counterpart of the assumption 4 of QMSL and of the postulate of standard
quantum mechanics on the probabilities of the outcomes of measurement pro-
cesses.

Let us now investigate the relation between the raw and the physical pro-
cesses. Indicating by PRaw[Bi(t, t0)] the probability of the realizations Bi(t, t0)
of the Wiener processes (or, equivalently, of the state vector ∣ψB(t)⟩ and by
PCook[Bi(t, t0)] the probability of the state vector ∣φB(t)⟩, one has by defini-
tion

PCook[Bi(t, t0)] = PRaw[Bi(t, t0)]∥ ∣ψB(t, t0)⟩ ∥2 (7.6)

It is easily shown that, because of linearity of Eq. (7.1) together with the
Markov nature of the Wiener process Bi, the procedure leading from the raw to
the physical ensemble can be performed just at the considered final time or, in
addition, any number of times between the initial and the final times. It follows
that Eq. (7.6) can be replaced by its specialization to the infinitesimal time
interval (t0, t0 + dt), i.e.,

PCook[dBi] = PRaw[dBi][1 + d∥ ∣ψB⟩ ∥2] (7.7)

The possibility of considering the physical ensemble depends on the fulfillment of
the condition that the total probability associated with the distribution PCook is
1. This amounts to requiring that, for any ∣ψ⟩, the average relative to the distri-
bution PRaw of the weighting factor ∥ ∣ψ⟩ ∥2 is 1, i.e., d⟪∥ ∣ψ⟩ ∥2⟫ = ⟪d∥ ∣ψ⟩ ∥2⟫ = 0.
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From Eq. (7.3), one finds
C +C† = −γA† ⋅A (7.8)

When this condition is taken into account, denoting by −(i/h̵)H the anti-
Hermitian part of C, Eq. (7.1) becomes:

d ∣ψ(t)⟩ = [− i
h̵
Hdt +A ⋅ dB − γ

2
A† ⋅Adt] ∣ψ(t)⟩ (7.9)

7.2 Itô nonlinear equation

The linear Itô equation (7.9) and the cooking prescription (7.6) can be joined
into a single non linear stochastic differential equation for the physical vectors
∣φ(t)⟩. Let us see how this can be accomplished.

Because of relation (7.8), Eq. (7.3) simplifies to

d∥ ∣ψ(t)⟩ ∥2 = ⟨ψ(t)∣ (A +A†) ∣ψ(t)⟩ ⋅ dB (7.10)

Then Eq. (7.7) becomes

PCook[dBi] = [1 + 2R ⋅ dB]PRaw[dBi] (7.11)

where

R = 1

2
⟨ψ∣ (A +A†) ∣ψ⟩ (7.12)

and the probability distribution PCook is normalized. Indicating by dB′
i the

random variable whose ?distribution is PCook, one has

⟪dB′
i⟫ = 2γRidt , ⟪dB′

idB
′
j⟫ = γδijdt (7.13)

so that
dB′ = dB + 2γRdt (7.14)

and B′
i is a diffusion process having the same diffusion as Bi and drift 2Riγ.

The meaning of the process B′
i and of its differential dB′

i follows from the one
of the probability distribution PCook which defines them. The set of all real-
izations B′i(t) coincides with that of all realizations Bi(t) (in fact both sets
coincide with the set of all functions satisfying a given initial condition), but
their probabilities, according to definition (7.6) of PCook, are those of the phys-
ical ensemble instead of those of the raw ensemble. The stochastic differential
equation for the physical process can now easily be written. We first write down
the equation for the process generating the normalized vectors ∣χ⟩. From Eqs.
(7.9) and (7.10), by direct evaluation, one gets:

d ∣φ(t)⟩ = [− i
h̵
Hdt + (−1

2
γA† ⋅A − γA ⋅R + 3

2
γR ⋅R)dt + (A −R) ⋅ dB] ∣φ(t)⟩

(7.15a)

R = 1

2
⟨φ∣ (A† +A) ∣φ⟩ (7.15b)
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It is easily checked that Eq. (7.15) conserves the norm and that this feature
does not depend on Bi having drift zero. The physical process is obtained by
replacing each realization Bi(t) of the random function Bi(t) by an equivalent
realization having the appropriate different probability, i.e., an equivalent real-
ization B′

i(t) of the random function B′
i(t). This amounts to replace dBi by

dB′
i in Eq. (7.15), so we get

d ∣φ(t)⟩ = [− i
h̵
Hdt + (−1

2
γA† ⋅A − γA ⋅R + 3

2
γR ⋅R)dt + (A −R) ⋅ dB′] ∣φ(t)⟩

(7.16a)

R = 1

2
⟨φ∣ (A† +A) ∣φ⟩ (7.16b)

It is convenient to rewrite the above equation in terms of the original Wiener
processes Bi(t). One ????????gets the final equation:

d ∣φ(t)⟩ = [− i
h̵
Hdt + (−1

2
γ(A† −R) ⋅A + 1

2
γ(A −R) ⋅R)dt + (A −R) ⋅ dB] ∣φ(t)⟩

(7.17a)

R = 1

2
⟨φ∣ (A† +A) ∣φ⟩ (7.17b)

We note that the equations for the norm conserving processes (7.15) and (7.16)
or (7.17), contrary to Eqs. (7.1) or (7.9), are nonlinear.

The case in which Ai is a set of self-adjoint operators is of particular interest.
In this case Eq. (7.17) becomes33

d ∣φ(t)⟩ = [− i
h̵
Hdt − 1

2
γ(A −R)2dt + (A −R) ⋅ dB] ∣φ(t)⟩ (7.18a)

R = ⟨φ∣A ∣φ⟩ (7.18b)

The analysis of this and of the previous subsection have shown that one can
take two different attitudes to describe the diffusion process: either one solves
Eq. (7.9), taking as physical vectors the normalized ones and taking PCook
as the physical probability distribution; or one considers Eq. (7.17), without
the need to normalize vectors and without the cooking prescription. At the
nonrelativistic level, these two attitudes are equivalent. However, relativistic
considerations we will discuss in Section 14.3 will indicate that the first attitude
- based on the linear equation+the cooking prescription - is more suited to
describe the physics of the stochastic process.

33Stochastic equations having a formal structure of the type (7.17) have been considered in
previous works [96,97], but there the random terms appearing at the right-hand side had a
specific form devised to describe a specific measurement that was supposed to be performed.
The considered equations, therefore, did not have the universal character of the CSL equa-
tions. Other investigations [75,98,99] deal with dynamical reduction models similar to the
one considered in Ref. [88] and here. In Ref. [98] an equation very close to Eq. (7.17) is
introduced (without deriving it from a linear process), but it is not specialized to the use
of densities around space points to discriminate among different configurations. The idea of
using densities is considered in Ref. [99], where, however, the dynamical equation has a more
complicated structure than CSL.
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7.3 Reduction of the state vector

We shall now show that, when {Ai} is a set of commuting self-adjoint operators,
the new terms in Eq. (7.18) induce, for large times, the reduction of the state
vector on the common eigenspaces of the operators Ai [66].

Since here we are interested in discussing the physical effects of the new terms,
we disregard for the moment the Schrödinger part of the dynamical equation.
Then Eq. (7.18) becomes simply

d ∣φ(t)⟩ = [−1

2
γ(A −R)2dt + (A −R) ⋅ dB] ∣φ(t)⟩ (7.19a)

R = ⟨φ∣A ∣φ⟩ (7.19b)

Let us write
A = ∑

σ

aσPσ (7.20)

where the orthogonal projection operators Pσ sum up to the identity and it is
understood that σ ≠ τ ⇒ aσ ≠ aτ (i.e., aiσ ≠ aiτ for at least one value of i). We
consider the real non-negative variables

⟨φ∣Pσ ∣φ⟩ = zσ (7.21)

having the property

∑
σ

zσ = 1 (7.22)

In terms of such variables, one finds

R = ∑
σ

aσzσ (7.23)

(A −R) ∣φ⟩ = ∑
σ
∑
τ

zτ(aσ − aτ)Pσ ∣φ⟩ (7.24)

(A −R)2 ∣φ⟩ = ∑
σ

[∑
τ

zτ(aσ − aτ)]
2

Pσ ∣φ⟩ (7.25)

It follows that the stochastic differential equation (7.19) can be written

dpσ ∣φ(t)⟩ = [−γ
2
()2

dt∑
τ

zτ(aσ − aτ)cdotdB]Pσ ∣φ(t)⟩ (7.26)

Using this equation in the relation:

d ⟨φ∣Pσ ∣φ⟩ = [d ⟨φ∣Pσ]Pσ ∣φ⟩ + ⟨φ∣Pσ[Pσ ∣φ⟩] + ⟪[⟨φ∣dPσ][dPσ ∣φ⟩]⟫

gives for the variables zσ the set of stochastic differential equations

dzσ = 2zσ∑
τ

zτ(aσ − aτ) ⋅ dB (7.27)
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Qualitatively, Eqs. (7.27) show that the diffusion of the {zσ} vanishes when
they approach the solution of the set of equations:

zσ∑
τ

zτ(aσ − aτ) = 0 (7.28)

so that the values of {zσ} eventually accumulate towards such solutions. A
formal proof of the fact that {zσ} asymptotically reduce to one of the solutions
of Eq. (7.28) is easily obtained. From Eq. (7.27) one finds

dz2
σ = 2zσdzσ + [2zσ∑

τ

zτ(aσ − aτ)]
2

γdt (7.29)

and in turn

d⟪z2
σ⟫ = ⟪z2

σ⟫ = γ [2zσ∑
τ

zτ(aσ − aτ)]
2

dt (7.30)

It follows that
d

dt
⟪z2
σ(t)⟫ ≥ 0 (7.31)

This result, together with the boundedness property

⟪z2
σ(t)⟫ ≤ 1 (7.32)

entails that for t→∞
d

dt
⟪z2
σ(t)⟫ → 0 (7.33)

Using again Eq. (7.30), we get

zσ∑
τ

zτ(aσ − aτ) → 0 (7.34)

In Ref. [66] it is shown that the only solutions to the set of Eqs. (7.28) are of
the form

z1 = 0 z2 = 0 ...... zσ = 0 ..... ,

corresponding to ∣φ⟩ lying in one of the common eigenspaces of the operators Ai.
Since Eqs. (7.26) do not change the Hilbert space ray to which each component
Pσ ∣φ(t)⟩ belongs, we conclude that ∣φ(t)⟩ asymptotically reduces to one of its
initial components Pσ ∣φ(0)⟩ times a normalization factor.

The probabilities for the various possible issues are also easily calculated. In
fact, since d⟪zσ⟫ = ⟪dzσ⟫ = 0, one has

⟪zσ⟫ = zσ(0) (7.35)

On the other hand,
⟪zσ⟫ → Prob[zσ(∞) = 1] (7.36)

so that one finds
Prob[zσ(∞) = 1] = zσ(0) (7.37)
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i.e.,
Prob[∣φ(∞)⟩ ∝ Pσ ∣φ(0)⟩] = ⟨φ(0)∣Pσ ∣φ(0)⟩ (7.38)

As one can see, this result is a direct consequence of the martingale property
⟪dzσ⟫ = 0 [100,101,88]. Physically, the above equation plays a fundamental role
since it guarantees that the dynamical reduction models reproduce the quantum
predictions about measurement outcomes.

7.4 Linear and nonlinear equations: the Stratonovich
formalism

The analysis of the previous subsections was based on the Itô formalism for
stochastic differential equations. It is not difficult to re-write all the above
equations, resorting to the Stratonovich formalism [95], which is easier to handle.
The linear equation, corresponding to (7.9), is

d

dt
∣ψ(t)⟩ = [− i

h̵
H +A ⋅V(t) − γ

2
(A†A +A2)] ∣ψ(t)⟩ (7.39)

where Vi(t) are c-number stochastic processes with probability of occurrence
given by:

PCook[Vi(t)] = PRaw[Vi(t)]∥ ∣ψ(t)⟩ ∥2 (7.40)

PRaw[Vi(t)] is the probability distribution of Gaussian white noises satisfying:

⟪Vi(t)⟫ = 0 , ⟪vi(t1)Vj(t2)⟫ = γδijδ(t1 − t2) (7.41)

In the particular but very important case in which the operators Ai are self-
adjoint, (7.39) reduces to

d

dt
∣ψ(t)⟩ = [− i

h̵
H +A ⋅V(t) − γA2] ∣ψ(t)⟩ (7.42)

The physical meaning of Eqs. (7.39) is the same of the corresponding Itô equa-
tion: if a homogeneous ensemble (pure case) at the initial time t0 is associ-
ated with the state vector ∣ψ(t0)⟩, then the ensemble at a subsequent time t
is the union of homogeneous ensembles associated with the normalized vectors
∣ψ(t)⟩ /∥ ∣ψ(t)⟩ ∥, where ∣ψ(t)⟩ is the solution of Eq. (7.39) with the assigned
initial conditions and for a specific stochastic process V (t) = {Vi(t)} which has
occurred in the interval (0, t). The probability associated to any such homoge-
neous ensemble is given by (7.40).

It is not difficult to write down the nonlinear equation for the physical vectors
∣φ(t)⟩ = ∣ψ(t)⟩ /∥ ∣ψ(t)⟩ ∥; here we limit ourselves only to the case in which Ai
are self-adjoint:

d

dt
∣φ(t)⟩ = [− i

h̵
H + (A −R) ⋅V(t) − γ(A −R)2 + γ(Q2 −R2)] ∣φ(t)⟩ (7.43a)

R = ⟨φ∣A ∣φ⟩ , Q2 = ⟨φ∣A2 ∣φ⟩ (7.43b)

76



It is instructive to reconsider the reduction mechanism discussed in the previ-
ous subsection, using the Stratonovich equation (7.39); for simplicity we will
limit ourselves to study the case of a single self-adjoint operator A, so that
only one stochastic field V (t) appears. Suppose the initial state vector ∣ψ(0)⟩
(for simplicity we take t0 = 0) has nonvanishing projections on two distinct
eigenmanifolds of A, corresponding to the eigenvalues α and β respectively:

∣ψ(0)⟩ = Pα ∣ψ(0)⟩ + Pβ ∣ψ(0)⟩ (7.44)

When the hamiltonian is disregarded, the solution of Eq. (7.39) is:34

∣ψB(t)⟩ = eαB(t)−α2γtPα ∣ψ(0)⟩ + eβB(t)−β2γtPβ ∣ψ(0)⟩ (7.45)

Here B(t) is the Brownian process:

B(t) = ∫
t

0
dτ V (τ) (7.46)

Taking into account Eq. (7.45) and the cooking prescription, one gets the cooked
probability density for the value B(t) of the Brownian process at time t:

PCook[w(t)] = ∥Pα ∣ψ(0)⟩ ∥2 1√
2πγt

e−(1/2γt)[B(t)−2γαt]2

+ ∥Pβ ∣ψ(0)⟩ ∥2 1√
2πγt

e−(1/2γt)[B(t)−2γβt]2 (7.47)

From the above equation it is clear that, for t → ∞, the stochastic process
B(t) can assume only values belonging to an interval of width

√
γt around35

either the value 2γαt or the value 2γβt. The corresponding probabilities are
∥Pα ∣ψ(0)⟩ ∥2 and ∥Pβ ∣ψ(0)⟩ ∥2 respectively. The occurrence of a value “near”
2γαt for the random variable B(t) leads, according to (7.45), to a state vector
which for t→∞ is driven into the eigenmanifold corresponding to the eigenvalue
α of A. In fact, In fact, in such a case one gets:

∥Pβ ∣ψB(t)⟩ ∥2

∥Pα ∣ψB(t)⟩ ∥2
≃ e−2γ(α−β)2t

∥Pβ ∣ψ(0)⟩ ∥2

∥Pα ∣ψ(0)⟩ ∥2

t→∞Ð→ 0 (7.48)

Analogously, when the random variable B(t) takes a value “near” 2βγt, for
t → ∞ the state vector is driven into the eigenmanifold corresponding to the
eigenvalue β of A.

It is then clear that the model establishes a one-to-one correspondence between
the “outcome” (the final “preferred” eigenmanifold into which an individual

34In Eq. (7.45) and following the state vector is labeled by the Brownian motion symbol
B, to stress the fact that, under our assumptions, the state at time t does not depend on the
specific sample function V (t) in the interval (0; t) but only on its integral given by Eq. (7.46).

35Note that even though the spread
√
γt tends to ∞ for t → ∞, its ratio to the distance

2(α − β)γt between the two considered peaks of the distribution tends to zero.
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state vector is driven) and the specific value (among the only ones having an
appreciable probability) taken by B(t) for t → ∞, a correspondence irrespec-
tive of what ∣ψ(0)⟩ is.36 In the general case of several operators Ai, a similar
conclusion holds for the “outcomes” αi of Ai and the corresponding noises Bi(t).

7.5 The statistical operator

The statistical operator corresponding to the physical ensemble and its evolution
equation are easily obtained from the definition:

ρ = ∫ D[Bi(t)]
∣ψ⟩

∥ ∣ψ⟩ ∥
⟨ψ∣

∥ ⟨ψ∣ ∥PRaw[Bi(t)]∥ ∣ψ⟩ ∥
2 = ⟪∣ψ⟩ ⟨ψ∣⟫PRaw (7.49)

and Eq. (7.9), or from

ρ = ∫ D[Bi(t)] ∣φ⟩ ⟨φ∣PCook[Bi(t)] (7.50)

Using once more Itô calculus in evaluating dρ, one gets:37

d

dt
ρ(t) = − i

h̵
[H,ρ(t)] + γAρ(t) ⋅A† − γ

2
{A† ⋅A, ρ(t)} (7.51)

where {⋅, ⋅} denotes the anticommutator. This is the Lindblad form for the gen-
erator of a quantum dynamical semigroup, as already discussed. It is remarkable
that the general Lindblad generator can be obtained from a stochastic process in
Hilbert space. Note that the way we have followed to get Eq. (7.51) describing
an ensemble associated to the statistical operator ρ(t) makes clear that each
member of the ensemble has a definite state vector at any time, a state vector
which, eventually, ends up in one of the eigenmanifolds of the preferred basis.

8. Continuous spontaneous localizations (CSL)

All the necessary mathematical tools to work with stochastic differential equa-
tions in Hilbert space have been developed; we can now apply this formalism to
work out a model of dynamical reductions which has all the desired features of
QMSL, but, at the same time, overcomes the difficulties we have mentioned at
the beginning of the previous section.

It should be clear from the above analysis that what we have to do is to choose
the “preferred basis”, i.e. the operators Ai whose common eigenmanifolds are
the manifolds in which the state vector is driven by the diffusion process. These
operators have to be chosen is such a way that:

36Obviously, ∣ψ(0)⟩ enters in a crucial way in determining the probability of occurrence of
the Brownian processes B(t).

37Of course, the same equation is obtained starting from the Stratonovich equations (7.39)
or (7.43), which correspond to the Itô equation (7.9) and (7.17), respectively.
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1. Macroscopic objects are always localized in space.

2. Microscopic dynamics is not altered in an appreciable way with respect to
the standard quantum evolution.

3. In particular, the energy increase of the system - due to space localizations
- must not be detectable.

4. The symmetry properties of systems containing identical particles must
be preserved.

We now see how all these requirements are met by CSL. In the first subsection
we set out the preferred basis: the operators Ai will be chosen to be appropriate
functions of the creation and annihilation operators of particles in space. In Sec-
tion 8.2 we discuss the implications of such a choice in the case of macroscopic
systems, showing how their classical properties stem from the quantum prop-
erties of their microscopic constituents; this subsection parallels the analysis of
Section 6.4, which was performed only at the statistical operator level, not at
the wavefunction level like in the present section.

In Section 8.3 we determine the reduction rates induced by CSL, proving that,
with an appropriate choices of the parameters, they are compatible with those
of QMSL. In Section 8.4 we discuss how the average value of physical observ-
ables are affected by the new non-Hamiltonian terms, showing once more that
there are no appreciable differences with respect to QMSL. In Section 8.5 we
put forward a simple, pedagogical, CSL model, which is illuminating in order
to understand how the reduction process amplifies when moving from the micro
to the macro-level.

In the last two subsections we discuss two new CSL models; in the first one
the collapse mechanism is related to the mass density distribution of the ob-
ject, rather than to the density-number operator, while in the second one the
reduction mechanism is related to gravity.

8.1 The choice of the “preferred basis”

Let us consider the creation and annihilation operators a†(y, s) and a(y, s) of
a particle at point x with spin component s satisfying canonical commutation
or anticommutation relations. We define a locally averaged density operator

N(x) = ∑
s
∫ d3y g(y − x)a†(y, s)a(y, s) (8.1)

where g(x) is a spherically symmetric, positive real function peaked around
x = 0, normalized in such a way that:

∫ d3xg(x) = 1
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so that

∫ d3xN(x) = N

N being the total number operator. The operators N(x) are self-adjoint and
commute with each other. In what follows we choose

g(x) = ( α
2π

)
3/2

e−(α/2)(x)
2

(8.2)

where α s a parameter such that α−3/2 represents essentially the volume over
which the average is ?taken in the definition of N(x). The improper vectors

∣q, s⟩ = N a†(q1, s1)a†(q2, s2)......a†(qn, sn) ∣0⟩ (8.3)

are the normalized common eigenstates of the operators N(x) belonging to the
eigenvalues

n(x) =
n

∑
i=1

g(qi − x)

We identify now, with reference to the previous section, the index i which labels
the operators Ai with the space point x and the operators Ai with the density
operators N(x). Itô equation (7.9) then becomes

d ∣ψ(t)⟩ = [− i
h̵
Hdt + ∫ d3xN(x)dB(x) − γ ∫ d3xN2(x)dt] ∣ψ(t)⟩ (8.4)

where
⟪dB(x)⟫ = 0 , ⟪dB(x)dB(y)⟫ = γδ3(y − x)dt (8.5)

This is, in a different notation, the process considered in Refs. [88,66] for iden-
tical particles. The generalization to several kinds of particles is immediate.
For completeness, we write down also the corresponding Stratonovich equation
(7.39):

d

dt
∣ψ(t)⟩ = [− i

h̵
H + ∫ d3xN(x)V (x; t) − γ ∫ d3xN2(x)dt] ∣ψ(t)⟩ (8.6)

the first two moments of the white noise V (x; t) are

⟪V (x; t)⟫ = 0 , ⟪V (x; t1)V (y; t2)⟫ = γδ3(x − y)δ(t1 − t2) (8.7)

Note that Eq. (8.6) can be rewritten in the following way:

d ∣ψ(t)⟩
dt

=[− i
h̵
H + ∫ d3xN (x)V ′(x, t)

−γ ∫ d3xd3yN (x)D(x − y)N (y)] ∣ψ(t)⟩ (8.8)

where
N (x) = ∑

s

a†(x, s)a(x, s) (8.9)
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is the number-density operator, and V ′(x, t) is a new Gaussian stochastic pro-
cess defined as

V ′(x, t) = ( α
2π

)
3/2

∫ d3y e−(α/2)(x−y)
2

V (y, t) (8.10)

It is easy to check that its average value is zero, while the correlation function
is

⟪V ′(x, t1)V ′(y, t2)⟫ = γD(x − y)δ(t1 − t2) = γ ( α
2π

)
3/2

e−(α/2)(x−y)
2

δ(t1 − t2)
(8.11)

The equation for the statistical operator (7.51) reads

d

dt
ρ(t) = − i

h̵
[H,ρ(t)]+γ ∫ d3xN(x)ρ(t)N(x)− γ

2
∫ d3x{N2(x), ρ(t)} (8.12)

In the representation given by the improper vectors (8.3), Eq. (8.12) becomes

∂

∂t
⟨q′, s′∣ρ(t) ∣q′′, s′′⟩ = − i

h̵
⟨q′, s′∣ [H,ρ(t)]∣Ketq′′, s′′

+ γ
2
∑
ij

[2G(q′i − q′′j ) −G(q′i − q′j) −G(q′′i − q′′j )] ⟨q′, s′∣ρ(t) ∣q′′, s′′⟩ (8.13)

where

G(y′ − y′′) = ∫ d3xg(y′ − x)g(y′′ − x) = ( α
4π

)
3/2

e−(α/4)(y
′
−y′′)2 (8.14)

For a single particle, Eq. (8.13) reduces to:

∂

∂t
⟨q′∣ρ(t) ∣q′′⟩ = − i

h̵
⟨q′∣ [H,ρ(t)] ∣q′′⟩−γ ( α

4π
)

3/2

[1 − e−(α/4)(q
′
−q′′)2] ⟨q′∣ρ(t) ∣q′′⟩

(8.15)
We note that, taking

λ = γ ( α
4π

)
3/2

(8.16)

Eq. (8.15) coincides with the QMSL equation (6.12).

8.2 Dynamical reductions for macroscopic rigid
bodies

We now discuss the physical implications of the modified dynamical equation
(8.4) for a macroscopic system, under the assumption that the order of magni-
tude of the length parameter 1/√α is such that it can reasonably be admitted
that the wavefunction of the internal variables of a macroscopic body is sharply
localized with respect to 1/√α: the conclusions we will reach will be analogous
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to those derived in Section 6.4, when macroscopic objects where analyzed within
QMSL.

Let Q be the center-of-mass coordinate of the system of identical particles which
constitutes the considered macroscopic body,

Q = 1

N

N

∑
i=1

qi

and write

qi =Q + q̃i

The coordinates Q̃i with respect to the center of mass sum up to zero, so that
they are functions of 3N −3 independent internal variables,38 which we indicate
by r. The internal variables r, together with the center of mass coordinates Q,
are functions of the coordinates qi. So, we consider the wavefunction

ψ(q, s) = Ψ(Q)χ(r, s) , χ(r, s) = [S
A
]∆(r, s) (8.17)

where “S” and “A” mean symmetrization or antisymmetrization with respect
to interchanges of the arguments (qi, si). The wave functions Ψ and χ are
understood to be separately normalized. The function ∆(r, s) is assumed to be
sharply (with respect to 1/√α) peaked around the value r0 of r.

The action of the operator N(x) on the wavefunction (8.17) is easily worked
out. One finds

N(x)Ψ(Q)χ(r, s) = Ψ(Q) [S
A
]∑
i

( α
2π

)
3/2

e−(α/2)[Q+q̃i(r)−x]
2

∆(r, s) (8.18)

According to our assumptions, the factor in front of the function ∆ varies much
more slowly than ∆ itself, so that we can take r = r0 in the factor. In other
words, we treat the factor as if ∆(r, s) were of the form δ3n−3(r−r0)ξ(s). Then

N(x)Ψ(Q)χ(r, s) = F (Q − x)Ψ(Q)χ(r, s) (8.19)

where

F (Q − x) = ∑
i

( α
2π

)
3/2

e−(α/2)[Q+q̃i(r0)−x]
2

(8.20)

38The internal variables, as defined here, describe also rotations of the N -particle system.
We assume that the wavefunction is such that the orientation of the system (and consequently
of its internal structure) is sharply defined. In the general case, one could consider 3 orientation
variables, to be treated along the same lines as the center of mass coordinate, and 3N?6 truly
internal variables, to be assumed sharply localized in the wave function. However, in this case
the problem would be considerably more complicated without gaining very much as regards
to physical insight.
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According to Eq. (8.19) the operator N(x) acts only on the factor Ψ of ψ. As
a consequence, under the assumption that

H =HQ +Hr

if Ψ and χ satisfy the equations

d ∣Ψ⟩ = [− i
h̵
HQdt + ∫ d3 F (Q − x)dB(x) − γ

2
∫ d3xF 2(Q − x)dt] ∣Ψ⟩ (8.21)

d ∣χ⟩ = [− i
h̵
Hrdt] ∣χ⟩ (8.22)

respectively, wavefunction (8.17) satisfies Eq. (8.4). We can conclude that,
under our assumptions, the center of mass and the internal motions decouple as
in the absence of the stochastic terms in Eq. (8.4). Furthermore, the stochastic
terms do not affect the internal structure, while the center-of- mass wavefunction
obeys a stochastic differential equation, again of type (7.9), whose consequences
will be discussed below.

Note that Eqs. (8.21) and (8.22) are exactly the counterpart of Eqs. (6.48) and
(6.53) of QMSL, respectively. This proves that the separation of the center of
mass and internal motion takes place also at the wavefunction level, not only at
the statistical operator level, as seen in Section 6.

8.3 Reduction rates

The operators F (Q − x) appearing in Eq. (8.21), which correspond to the
operators Ai of Eq. (7.9), are real functions of the center of mass position
operator Q. They are a set of commuting self-adjoint operators, so that, as
we know from the results of Section 7, the non-Schrödinger terms in Eq. (8.21)
induce the reduction of the state vector on the eigenvectors of the position Q. Of
course, such a process requires an infinitely long time, while, in finite times, only
the reduction on approximate eigenstates of Q takes place.39 We discuss here
the time rate of the localization process by studying the time dependence of the
off-diagonal elements of the statistical matrix ⟨Q′∣ρ ∣Q′′⟩. Again, we disregard
the effect of the Schrödinger term, this approximation being justified by the fact
that, for the values of ∣Q′−Q′′∣ in which we are interested, the reduction process
will turn out to be very fast.

Eq. (7.51) becomes in the present case:

∂

∂t
⟨Q′∣ρ ∣Q′′⟩ = −Γ(Q′,Q′′) ⟨Q′∣ρ ∣Q′′⟩ (8.23)

39Of course, for very large times the Hamiltonian H cannot be any more ignored: a sort of
balance between the Hamiltonian spreading of the wavefunction and the reduction mechanism
is established, which keeps constant the spread of the wavefunction.
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where

Γ(Q′,Q′′) = γ ∫ d3x [1

2
F 2(Q′ − x) + 1

2
F 2(Q′′ − x) − F (Q′ − x)F (Q′′ − x)]

(8.24)
Eq. (8.23) gives

⟨Q′∣ρ(t) ∣Q′′⟩ = e−Γt ⟨Q′∣ρ(0) ∣Q′′⟩ (8.25)

It is easily found that Γ is an even function of Q′−Q′′. Since it is assumed that
very many constituents of the considered body are contained in a volume α−3/2,
we can use the macroscopic density approximation, consisting in replacing the
sum by an integral in Eq. (8.20). Then one writes

F (Q − x) = ∫ d3ỹD(ỹ) ( α
2π

)
3/2

e−(α/2)[Q+ỹ−x]2 (8.26)

where D(ỹ) is the number of particles per unit volume in the neighborhood of
the point y =Q + ỹ.

A further approximation, which we call the sharp scanning approximation, can
be used, since we are not interested here in the details of the function Γ for
Q′ − Q′′ → 0. The sharp scanning approximation consists in replacing the
normalized Gaussian function appearing in Eq. (8.26) by the corresponding
delta function. Then one has

F (Q − x) =D(x −Q) (8.27)

so that one gets

Γ(Q′,Q′′) = γ ∫ d3x [D2(x) −D(x)D(x +Q′ −Q′′)] (8.28)

where suitable changes of the integration variable have also been made. The
physical meaning of Γ is easily understood by making reference to a homoge-
neous macroscopic body of density D0. Then

Γ = γD0nout (8.29)

nout being the number of particles of the body when the center-of-mass position
is Q′, which do not lie in the volume occupied by the body when the center-
of-mass position is Q′′. The ratio between the macroscopic rate (8.29) and the
microscopic rate (8.16) is noutD0(4π/α)3/2.

Results (8.25) and (8.29) have to be compared with the result:

⟨Q′∣ρ(t) ∣Q′′⟩ = e−λmacrot ⟨Q′∣ρ(0) ∣Q′′⟩ (8.30)

λmacro = Nλ (8.31)

valid for ∣Q′−Q′′∣ >> 1/√α, obtained in Section 6.5 for the case of distinguishable
particles. We note that in the present case an additional factor D0(4π/α)3/2
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appears in the macro-to-micro ratio, but such a factor is multiplied by the
number of uncovered particles nout rather than by the total number N . Clearly,
this is a consequence of the indistinguishability of particles and of the choice
of the density as the dynamical variable governing the process. In Section 6.5,
the length parameter 1/√α was chosen to be of the order of 10−5 cm and the
microscopic rate λ was suggested to be of the order of 10−16 s−1 with the aim
of obtaining λmacro ≈ 107 s−1 for a typical macroscopic number N ≈ 1023. We
repeat here the same choice,

1√
α
≈ 10−5 cm (8.32)

and look for a value of γ such that the macroscopic rate Γ is again of the order
of 107 s−1 for nout ≈ 1013. Since D0 ≈ 1024 cm−3, we get

γ ≈ 10−30 cm3 s−1 (8.33)

corresponding (according to relation (8.16) between λ, γ and α) to λ ≈ 10−17 s−1.
This value is such that nothing changes in the dynamics of a microscopic particle
even in the case in which it has an extended wavefunction.40

8.4 Position and momentum spreads

According to Eq. (8.28) or to the original expression (8.24), the diagonal ele-
ments ⟨Q∣ρ ∣Q⟩ of the statistical operator in the position representation are not
affected by the reduction process, as a consequence of the process being a lo-
calization. Of course, this does not mean that the time evolution of ⟨Q∣ρ ∣Q⟩ is
the same as the one given by the pure Schrödinger dynamics: some changes are
expected in the time dependence of both position and momentum spreads, as a
consequence of the presence of the localization process. An explicit evaluation
of these effects is necessary in order to check that no unacceptable behavior
arises.

The equation for the statistical operator, in operator form, is written

d

dt
ρ(t) = − i

h̵
[H,ρ(t)]+γ ∫ d3x, [F (Q − x)ρ(t)F (Q − x) − 1

2
{F 2(Q − x), ρ(t)}]

(8.34)
where we have retained also the Schrödinger term. We consider the case of a
free macroscopic body, so that, in our notation, H = P 2/(2M), M being the
total mass. For a dynamical variable S, we define the mean value

⟪S⟫ = Tr[Sρ] (8.35)

40Note that, in the case of a macroscopic object, QMSL requires a displacement of ≃ 1024

particles for the reduction rate to be equal to 107 s−1. CSL, on the other hand - in the case
of normal density - requires a displacement only of about 1013 particles in order to have
the same localization rate. This improvement of CSL with respect to QMSL is due to the
indistinguishability of identical particles, whose effects are explicitly taken into account in
CSL.
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The time derivative of ⟪S⟫, according to Eq. (8.34), is given by

d

dt
⟪S⟫ = − i

h̵
T r([S,H]ρ)

+ γ ∫ d3x,Tr [(F (Q − x)SF (Q − x) − 1

2
{S,F 2(Q − x)})ρ(t)] (8.36)

From Eq. (8.36), through tedious but elementary calculations, one gets ex-
pressions for the average values of position, momentum and their combinations
which are analogous to the QMSL equations (6.15)(6.19). In particular we have

{Qi} = {Qi}Sch + γδi
h̵2

6M2
t3 (8.37)

{Pi} = {Pi}Sch + γδi
h̵2

2
t (8.38)

where

δi = ∫ d3y [∂F (y)
∂yi

]
2

(8.39)

To evaluate the quantities δi the sharp scanning approximation is no longer
sufficient, because here the derivative of the function F is required. We then use
the macroscopic density approximation (8.26). For definiteness and simplicity,
we make reference to a homogeneous macroscopic parallelepiped of density D0

having edges of lengths Li parallel to the coordinate axes. Then, as shown in
[66], one has with high accuracy

δi =
√
α

π
D2

0Si (8.40)

where Si = L1L2L3/Li is the transverse section of the macroscopic parallelepiped.

Eq. (8.40) for the momentum diffusion coefficient,

1

2
γδih̵

2 ≈ 10−32 (g cms−1)2 s−1 Si cm
−2 (8.41)

For an ordinary macroscopic body, this value appears too small to give de-
tectable effects. For a very small macroscopic particle, due to the 1/M2 factor
in the extra term of Eq. (8.37), a non-negligible stochasticity could appear. For
Lj ≈ 10−4 cm (this is the smallest order of magnitude for which the approxima-
tions leading to Eq. (8.40) remain valid), a time of the order of 102 s is required
to make the extra term of the order of 10−10 cm2. We do not know whether
this kind of effect could be used to provide a significant experimental bound on
the product γ

√
α contained in the momentum diffusion coefficient. We note,

however, that value (8.40) could overestimate δi, because of the assumption of
a rectangular profile for the object under consideration.
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8.5 Reduction mechanism: a simple model

After this long and detailed analysis of the reduction mechanism within CSL,
we propose here a second simpler way of looking at the localization process [68];
for simplicity’s sake we restrict ourselves to a simplified version of CSL obtained
by disregarding the hamiltonian term and discretizing the space.

We divide the space into cells of volume (α/2π)−3/2 and we denote by N
(k)
i the

number operator counting the particles of type k in the ith cell. As follows from
the discussion of the preceding subsections in the considered case, the dynam-
ical evolution drives the state vector into a manifold such that the number of
particles present in any cell is definite. The simplified equation for the statistical
operator (8.12) reads

d

dt
ρ(t) = γ ( α

4π
)

3/2

∑
k

[∑
i

N
(k)
i ρ(t)N (k)

i − 1

2
∑
i

{N (k)2
i , ρ(t)}] (8.42)

In accordance with relation (8.16), we will often use the QMSL rate parameter λ

in place of the ???expression γ(α/4π)3/2. If we denote by ∣n(k)
1 , n

(k)
2 , ...., n

(k)
i , ....⟩

the state with the indicated occupation numbers for the various types of particles
and for the various cells, the solution of Eq. (8.42) reads, in the considered basis:

⟨n(k)
1 , n

(k)
2 , ....∣ρ(t) ∣m(k)

1 ,m
(k)
2 , ....⟩

= e−(λ/2)∑k,i(n
(k)
i −m

(k)
i )

2t ⟨n(k)
1 , n

(k)
2 , ....∣ρ(0) ∣m(k)

1 ,m
(k)
2 , ....⟩ (8.43)

Eq. (8.43) is an indirect proof41 that linear superpositions of states containing
different number of particles in the various cells are dynamically reduced to
one of the superposed states with an exponential time rate depending on the
expression

λ

2
∑
k

∑
i

(n(k)
i −m(k)

i )2

he amplification process in going from the micro to the macroscopic case and the
preferred role assigned to position make it clear how such models overcome the
difficulties of quantum measurement theory. In fact in measurement processes
one usually assumes that different eigenstates of the measured micro-observable
trigger (through the system-apparatus interaction) different displacements of a
macroscopic pointer from its “ready” position. The unique dynamical principle
of QMSL or CSL leads then, in extremely short times, to the dynamical sup-
pression, with the appropriate probability, of all but one of the terms in the
superposition, i.e., to the emergence of an outcome.

41The direct proof, as repeatedly stated, comes from the study of the localization mechanism
at the wavefunction level.
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8.6 Relating reductions to the mass density

In this subsection we consider a CSL type dynamics in which, in place of the
operators N(x) previously considered, we introduce the mass density operators
[68]:

M(x) = ∑
k

mkNk(x) (8.44)

where mk and Nk are the mass and the average mass density operator for a
particle of type k, respectively. The Stratonovich stochastic evolution equation
for the state vector is:

d

dt
∣ψ(t)⟩ = [− i

h̵
+ ∫ d3xM(x)V (x, t) − γ

m2
0
∫ d3xM2(x)] ∣ψ(t)⟩ (8.45)

where m0 is a reference mass and γ is the parameter appearing in standard
CSL of Section 8.1. We identify the mass m0 with the nucleon mass; in this
way the reduction rates for macroscopic objects are practically equal to those
of the standard CSL model. With this choice the decoherence is governed by
the mass of the nucleons in ordinary matter, the contribution due to electrons
being negligible.

As usual the corresponding equation for the statistical operator is easily ob-
tained:

d

dt
ρ(t) = − i

h̵
[H,ρ(t)] + γ

m2
0
∫ d3xM(x)ρ(t)M(x) − γ

2m2
0
∫ d3x{M2(x, ρ(t)}

(8.46)
One of main motivations to replace the number density operators N (k)(x) in the
CSL dynamics with the mass density operators M(x) derives from the desire
to relate reductions to gravity as suggested by various authors [102106,99] (a
model with analogous characteristics will be presented in the next section).
Another important feature of the above choice has been pointed out by Pearle
and Squires [107]: while the reduction rates for macro-objects are practically
the same as those of the standard CSL model, the probabilities of excitation
or dissociation of microscopic bound systems turn out to be depressed by large
factors [107,108], thus leading to a smaller disagreement with the predictions
of quantum mechanics for such systems. In particular, a simple computation
within the quark model for nucleons (disregarding all relativistic effects which
however could turn out to be very important at this level) gives a dissociation
rate for the proton well below the experimental bounds, while the standard
CSL model would lead to the violation of such bounds for the proton life-time.
The advantages of taking the above position have also been discussed by Rimini
[109].
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8.7 A reduction model involving gravity

In 1989, Diòsi [99] proposed a modification of QMSL, different from CSL, with
the explicit aim of eliminating the new constants of nature α and γ and of
relating the process to gravity. Such model has been called quantum mechanics
with universal density localization (QMUDL) by the author.

Diòsi considers an extended macroscopic object, such as e.g., a homogeneous
sphere, and introduces a mass density operator f(x) at point x. For the case
of a homogeneous sphere of mass M and radius R:

f(x) = M
V
θ(R − ∣q − x∣) (8.47)

where V is the volume of the sphere and q is the center of mass position operator.
The stochastic dynamical equation is assumed to be:

d ∣ψ(t)⟩ = [− i
h̵
Hdt − G

2h̵
∬ d3x1d

3x2
1

x12
[f(x1) − fψ(x1)]

×[f(x2) − fψ(x2)]dt + ∫ d3x [f(x) − fψ(x)]dξ(x)] ∣ψ(t)⟩ (8.48)

where fψ(x) = ⟨ψ∣ f(x) ∣ψ⟩; ξ(x) is a real Wiener process satisfying:

⟪dξ(x)⟫ = 0 , ⟪dξ(x1)dξ(x2)⟫ = G
h̵

1

x12
dt (8.49)

In the above equation x12 = ∣x1 − x2∣ and G is Newton’s gravitational constant.

Eq. (8.48) can be put in form (7.18), as shown in [110], the corresponding
operators Ai being functions of the center of mass position operator q: the non-
Hamiltonian terms then induce the reduction onto states in which the position
of the center of mass is more and more definite.

It is easy to prove by Itô stochastic calculus that Eq. (8.48) implies, for the
statistical operator, the dynamical equation

d

dt
ρ(t) = − i

h̵
[H,ρ(t)] − G

2h̵
∬ d3x1d

3x2
1

x12
[f(x1), [f(x2), ρ(t)]] (8.50)

From Eq. (8.50), disregarding the Hamiltonian term, in the considered case of
a homogeneous ????sphere, one gets

⟨q′∣ρ(t) ∣q′′⟩ = eΓ(∆)t ⟨q′∣ρ(0) ∣q′′⟩ (8.51)

where

Γ(∆) = − i
h̵
[U(0) −U(∆)] , ∆ = ∣q′ − q′′∣ (8.52)

In Eq. (8.52) U(∆) is the gravitational interaction energy of two homogeneous
spheres of the considered mass and radius, with the centers at distance ∆. For
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instance, for R = 1 cm, M = 1 g and ∆ = 10−5 cm, Γ(∆) ≃ 109 s−1, so that a
linear superposition of two such states evolves into one of them in about 10−9 s.
This is comparable to the reduction rate implied by QMSL in such a case.

This model has many appealing features, e.g., the reduction mechanism is re-
lated to the gravitational potential without resorting to any physical constant,
besides Newton’s constant G. However, QMUDL, when taken literally, meets
some serious difficulties: in fact, it has been proven [110] that the localization
mechanism of QMUDL induces, in the case of macroscopic systems (with a num-
ber of constituents of the order of Avogadro’s number), a total energy increase
of about 103 ergs s−1, which clearly is unacceptable.

Ghirardi et al. [110] have shown that it is possible to remove such a difficulty
by making the following choice for the operators f(x) (which replaces (8.47)):

f(x) =mN(x) (8.53)

where N(x) is given by Eq. (8.1) and m is the mass of the particles created by
a†(y, s). Obviously if the system contains different types of particles, in (8.53)
a sum over all types is understood. They chose for the parameter α again the
value given by CSL.

It is not difficult to show that the model possesses all the appealing features
of CSL, in particular it induces a fast suppression of the linear superpositions
of states containing a macroscopic number of particles which are differently lo-
cated, it does not alter in any appreciable way the dynamics of microsystems,
and, in the case of a body with the internal coordinate sharply localized with
respect to 1/√α, it allows the decoupling of the internal and center of mass mo-
tions, the internal motion being governed with high accuracy by the standard
quantum dynamics. The price which has been paid is, with respect to Diòsi’s
proposal which aimed to get rid of any new constant, the introduction of a new
physical constant, namely the localization width 1/√α. In our opinion, how-
ever, this is not a serious drawback. Actually, as we have stressed many times,
in order to have a precise theory one needs to identify the borderline between
quantum and classical, to get rid of the shifty character of the standard theory
and of any proposed interpretation of it. The new parameter plays such a role
in the just discussed model.

9. Dynamical reduction models with general Gaus-
sian noises

The dynamical reduction models analyzed in the previous sections have proven
to yield (at the nonrelativistic level) a perfectly consistent solution to the macro-
objectification problem of quantum mechanics. They are based on a stochastic
modification of Schrödinger equation: besides the standard Hamiltonian, new
terms are added, which contain Gaussian white noises.
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It is an interesting question to analyze whether the most important features
of CSL (and consequently of QMSL), in particular the localization mechanism,
depend in any essential way on the white noise character of the stochastic pro-
cesses considered [111114]. This is the subject of the present section.

There is a second, more important, reason to consider dynamical reduction
models governed by more general noises. As we shall see in the fourth part of
the report, relativistic CSL meets serious difficulties, since the reduction process
yields an infinite increase of the energy (per unit time and unit volume). This
divergent increase is due to the local coupling between quantum fields and the
white noise stochastic field: it is still an open problem to understand whether
a nonwhite stochastic field can remove these divergences, and lead to a fully
consistent relativistic model of dynamical reductions.

The content of the present section is the following. In Section 9.1 we derive
a modified Schrödinger equation, in which the new stochastic terms contain a
general Gaussian noise. In Section 9.2 we analyze two important cases in which
the modified Schrödinger equation can be studied in detail. In Section 9.3 we
analyze the reduction properties of such an equation, while in Section 9.4 we
study the time evolution of the average value of physical quantities. In this way
we prove that the considered model shares all the essential features of standard
CSL.

The section ends with an explicit application of the above results to a specific
model of dynamical reductions in space, like we did in Section 8 for white noise
models.

9.1 The modified Schrödinger equation

In this subsection we begin the analysis of dynamical reduction models in which
the reduction mechanism is controlled by general Gaussian noises. The first
task is to derive a modified Schrödinger equation generalizing Eq. (7.42), and
preserving the average value of the square norm of vectors, so that the cooking
prescription can be applied to it.

Let us then consider the following equation:

d ∣ψ(t)⟩
dt

= [− i
h̵
H0 +∑

i

Aiwi(t)] ∣ψ(t)⟩ (9.1)

where, as before, H0 is the Hamiltonian of the system, {Ai} is a set of commuting
self-adjoint operators, and wi(t) are c-number Gaussian stochastic processes
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whose first two moments are: 42

⟪wi(t)⟫ = 0 , ⟪wi(t1)wj(t2)⟫ = γDij(t1, t2) (9.2)

We already know that the evolution described by Eq. (9.1) is not unitary and
it does not preserve the norm of the state vector; we then follow the same pre-
scription outlined in Section 7. We consider as physical vectors the normalized
ones:

∣φ(t)⟩ = ∣ψ(t)⟩
∥ ∣ψ(t)⟩ ∥ (9.3)

and we assume that any particular realization of the stochastic processes wi(t)
has a probability of occurrence PCook[w(t)]

PCook[w(t)] = PRaw[w(t)]∥ ∣ψ(t)⟩ ∥2 (9.4)

where PRaw[w(t)] is now the Gaussian probability distribution defined by (9.2).
The above assumptions guarantee that the reduction probabilities reproduce the
standard quantum mechanical probabilities.

Of course, we have to check that Eq. (9.4) correctly defines a probability dis-
tribution, i.e., that it sums to 1. Following the discussion of Section 7, we know
that this is equivalent to requiring that the time derivative of ⟪⟨ψ(t) ∣ψ(t)⟩⟫ is
zero. Let us evaluate it:

d

dt
⟪⟨ψ(t) ∣ψ(t)⟩⟫ = ⟪[d ⟨ψ(t)∣

dt
] ∣ψ(t)⟩⟫ + ⟪⟨ψ(t)∣ [d ∣ψ(t)⟩

dt
]⟫

= ⟪⟨ψ(t)∣ [ i
h̵
H0 +∑

i

Aiwi(t)] ∣ψ(t)⟩⟫

+ ⟪⟨ψ(t)∣ [− i
h̵
H0 +∑

i

Aiwi(t)] ∣ψ(t)⟩⟫

The two terms involving the Hamiltonian H0 cancel out (in fact they describe
the unitary part of the evolution); the noises wi(t) being c-numbers, can be
taken out of the scalar product, so that

d

dt
⟪⟨ψ(t) ∣ψ(t)⟩⟫ = 2∑

i

⟪⟨ψ(t)∣Ai ∣ψ(t)⟩wi(t)⟫ (9.5)

The right-hand side of (9.5) can be rewritten with the help of the FurutsuNovikov
formula [115,114]:

⟪F [w(t)]wi(t)⟫ = γ ∫
+∞

0
Dij(t, s)⟪

δF [w(t)]
δwj(s)

⟫ds (9.6)

42There is no loss of generality in considering Gaussian processes with zero mean. In fact, if
⟪wi(t)⟫ =mi(t) ≠ 0, we can always define new processes zi(t) = wi(t)−mi(t), which have zero
mean, and rewrite the modified Schrödinger equation (9.1) in terms of the processes zi(t).
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(for simplicity, throughout this subsection we take t0 = 0 as the initial time).
F [w(t)] is any functional of the stochastic fields wi(t); in the present case,
F [w(t)] = ⟨ψ(t)∣Ai ∣ψ(t)⟩.

The formal solution of Eq. (9.1) is

∣ψ(t)⟩ = Te−(i/h̵)H0t+∑iAi ∫
t
o wi(s)ds ∣ψ(0)⟩ (9.7)

Note that, since ∣ψ(t)⟩ depends on the stochastic processes wi(s) only within
the time-interval [0, t], the functional derivative of ∣ψ(t)⟩ with respect to wj(s)
is zero if s ∉ [0, t]. We then have

d

dt
⟪⟨ψ(t) ∣ψ(t)⟩⟫ =2γ∑

i,j
∫

t

0
Dij(t, s)⟪[δ ⟨ψ(t)∣

δwj(s)
]Ai ∣ψ(t)⟩⟫ds

+ 2γ∑
i,j
∫

t

0
Dij(t, s)⟪⟨ψ(t)∣Ai [

δ ∣ψ(t)⟩
δwj(s)

]⟫ds ≠ 0 (9.8)

Since the time derivative of the average value of the square norm of the state
vector is not zero, we have to add an extra term to Eq. (9.1), as expected and as
it happens also in the case of white noise. Relation (9.8) tells us which kind of
term must be added. The conclusion follows: with reference to our procedure,
the request that PCook[w(t)] correctly defines a probability distribution, i.e.,
that the average value of the square norm of the state vector ∣ψ(t)⟩ is conserved,
leads to the stochastic Schr odinger equation:

d ∣ψ(t)⟩
dt

=
⎡⎢⎢⎢⎣
− i
h̵
H0 +∑

i

Aiwi(t) − 2γ∑
i,j

Ai ∫ dsDij(t, s)
δ

δwj(s)
⎤⎥⎥⎥⎦
∣ψ(t)⟩ (9.9)

This is the main result of this subsection. Note that an equation like (9.9) has
been derived also in [113,116] by following a different line of thought.

Some comments are appropriate:

● Eq. (9.9) no longer describes a Markovian evolution for the state-vector
unless the correlation functionsDij(t, s) are Dirac-δ’s in the time variable -
i.e., the stochastic processes wi(t) are white in time. As a consequence, the
corresponding equation for the statistical operator is not of the quantum-
dynamical-semigroup type,43 contrary to what happen for the case of CSL
(see Eq. (7.51)).

● In general, the explicit form of the functional derivatives of ∣ψ(t)⟩ with re-
spect to the noise wi(t) cannot be evaluated exactly, except for few special
cases, two of which will be considered in the next subsection. Therefore,
in the general case it is difficult to analyze the time evolution of the state
vector and the statistical properties of the ensemble of states generated by
the stochastic processes. In particular, one cannot write a closed equation
for the evolution of the statistical operator.

43See Section 6.6.
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9.2 Two special cases

In order to understand the kind of difficulties one encounters when working
with nonwhite stochastic processes, and in particular the reasons for which the
functional derivative of the state vector ∣ψ(t)⟩ in general cannot be computed
exactly, let us reconsider Eq. (9.7), writing explicitly its perturbative expansion:

Te−(i/h̵)H0t+∑iAi ∫
t
o wi(s)ds

=
∞

∑
n=0

[− i
h̵
]
n 1

n!
∫

t

0
dt1⋯∫

t

0
dtn T{H(t1)....H(tn)} (9.10)

where we have defined the operator:

H(t) =H0 + ih̵∑
i

AIwi(t) (9.11)

The functional derivative of ∣ψ(t)⟩ with respect to wj(s) can be obtained deriv-
ing term by term the series44 (9.10). The derivative of the term n = 0 is zero;
the derivative of the term n = 1 is

δ

δwj(s)
[− i
h̵
∫

t

0
dt1H(t1)] = −

i

h̵
∈t0 dt1 [ih̵δ(s − t1)Aj] = Aj (9.12)

The next (n = 2) term is

[− i
h̵
]
2 1

2
∫

t

0
dt1 ∫

t

0
dt2 T{H(t1)H(t2)} (9.13)

The functional derivative of the time-ordered product T{H(t1)H(t2)} = θ(t1 −
t2)H(t1)H(t2) + θ(t2 − t1)H(t2)H(t1) is

δ

δwj(s)
T{H(t1)H(t2)} =ih̵θ(t1 − t2)[δ(t1 − s)AjH(t2) − δ(t2 − s)H(t1)Aj]

+ ih̵θ(t2 − t1)[δ(t2 − s)AjH(t1) − δ(t1 − s)H(t2)Aj]
(9.14)

We note that the first and third terms at the right-hand side of (9.14) differ
only for the exchange of the dummy variables t1 ↔ t2; the same is true for the
second and the fourth term. The derivative of the n = 2 term (i.e. of Eq. (9.13))
is then

Aj [−
i

h̵
∫

s

0
dt1H(t1)] + [− i

h̵
∫

t

s
dt1H(t1)]Aj (9.15)

Eq. (9.15) does not have a simple form, contrary to (9.12), and derivatives of
higher terms are more and more complicated, due to the fact that the operators
Aj in general do not commute with the Hamiltonian H0. In fact, would they
commute, Eq. (9.15) would simplify to

Aj [−
i

h̵
∫

t

0
dt1H(t1)] (9.16)

44We assume that the initial state ∣ψ(0)⟩ does not depend on the stochastic processes wi(t).
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i.e., the derivative of the second term would give Aj times the first term. More-
over, if [Aj ,H0] = 0, the functional derivative of the term n + 1 gives Aj times
the nth term so that

δ

δwj(s)
∣ψ(t)⟩ = Aj ∣ψ(t)⟩ (9.17)

as we are going to prove. In fact, the hypothesis that the operators Aj commute
with the Hamiltonian H0 is equivalent to the (more elegant) requirement that
the operators H(t) defined in (9.11) commute at different times. In this case,
the time-ordered product in the exponential series (9.10) can be omitted, and
the functional derivative of the nth term is

δ

δwj(s)
[− i
h̵
]
n 1

n!
∫

t

0
dt1⋯∫

t

0
dtn {H(t1)....H(tn)}

= [− i
h̵
]
n 1

n!
∫

t

0
dt1⋯∫

t

0
dtn {H(t1)....

δH(ti)
δwj(s)

....H(tn)}

= [− i
h̵
]
n 1

(n − 1)! ∫
t

0
dt1⋯∫

t

0
dtn {δH(t1)

δwj(s)
....H(tn)}

= [− i
h̵
]
n−1 1

(n − 1)! ∫
t

0
dt1⋯∫

t

0
dtn−1 {H(t1)....H(tn−1)} (9.18)

This completes the proof. Note also that, when s = t, an extra factor 1/2
appears in (9.17), because in this case the Dirac delta function arising from the
functional derivative of H(t) is centered in one of the two extreme points of the
interval of integration.

Recently, Hughston [117], Adler and Horwitz [118,119] have proposed a white-
noise model of dynamical reductions in which the operators Ai are taken to
be functions of the Hamiltonian H0; this implies that the stochastic terms of
Eq. (7.42) drive the state vector into the energy eigenmanifolds of the physical
system. Making such a choice in the nonwhite equation (9.9), the operators
H(t) at different times commute among themselves, the functional derivatives
of the state vector ∣ψ(t)⟩ can be computed, and Eq. (9.9) becomes

d ∣ψ(t)⟩
dt

=
⎡⎢⎢⎢⎣
− i
h̵
H0 +∑

i

Aiwi(t) − 2γ∑
i,j

AiAj ∫
t

0
Dij(t, s)ds

⎤⎥⎥⎥⎦
∣ψ(t)⟩ (9.19)

with Ai = Ai(H0). Eq. (9.19) is exact and, correspondingly, one can easily
derive a closed equation for the time evolution of the statistical operator. All the
statistical properties concerning the physical system can be evaluated exactly.

We conclude the subsection showing that the functional derivatives of ∣ψ(t)⟩
can be explicitly evaluated also in the case of general white noise stochastic
processes, without having to require that H0 commutes with Ai. Moreover, we
will prove that in this case Eq. (9.9) reduces to (7.42), as expected.

Under the assumption of white-noise stochastic processes (Dij(t1, t2) = δijδ(t1−
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t2), the Furutsu Novikov relation

⟪F [w(t)]wi(t)⟫ = γ⟪δF [w(t)]
δwi(t)

⟫ (9.20)

leads to the following expression for the time derivative of the average value of
the square norm of the state vector ∣ψ(t)⟩ satisfying Eq. (9.1):

d

dt
⟪⟨ψ(t) ∣ψ(t)⟩⟫ =2γ∑

i,j

⟪[δ ⟨ψ(t)∣
δwi(t)

]Ai ∣ψ(t)⟩⟫

+ 2γ∑
i,j

⟪⟨ψ(t)∣Ai [
δ ∣ψ(t)⟩
δwi(t)

]⟫ (9.21)

We now have to evaluate the functional derivatives of the state vector, taking
into account that the noises wi (appearing in the derivatives) are taken at time
t.

The derivative of the term n = 1 is equal to (1/2)Aj (see Eq. (9.12)), the factor
(1/2) deriving from the Dirac delta function δ(t−t1) which is integrated between
0 and t. For the derivative of the n = 2 term, let us look at expression (9.15). If
we take s = t, the second term goes to zero, while the first one gives:45

1

2
Aj [−

i

h̵
∫

t

0
dt1H(t1)] (9.22)

In general, the functional derivative of any term of the exponential series (9.10)
gives (1/2)Aj times the previous term, so that, in general

δ

δwi(t)
∣ψ(t)⟩ = 1

2
Aj ∣ψ(t)⟩ (9.23)

This means that the square-norm-preserving Schrödinger equation is

d ∣ψ(t)⟩
dt

= [− i
h̵
H0 +∑

i

Aiwi(t) − γ∑
i

AiAj] ∣ψ(t)⟩ (9.24)

which coincides with the original CSL equation (7.42). An alternative and
quicker way to derive the white-noise limit is to replace Dij(t.s) by δijδ(t − s)
in Eq. (9.9) and to show that (9.23) is a consistent solution.

9.3 The reduction mechanism

Here, we will analyze under which conditions the new terms in the modified
Schrödinger equation (9.9) induce, for large times, the reduction of the state
vector to one of the common eigenstates of the commuting operators Ai.

45The factor (1/2) appears for the same reason as before.
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For this purpose, let us disregard the Hamiltonian H0; under this assumption
the operators H(t) commute at different times and (as discussed in the previ-
ous subsection) the functional derivatives of the state vector ∣ψ(t)⟩ gives the
operators Ai times ∣ψ(t)⟩. Eq. (9.9) becomes then:46

d ∣ψ(t)⟩
dt

= [∑
i

Aiwi(t) − 2γ∑
i

AiAj ∫
t

t0
Dij(t, s)ds] ∣ψ(t)⟩ (9.25)

The equation for the statistical operator can now be easily derived; using the
definition (7.49), we get

dρ(t)
dt

= −γ∑
i,j

[Ai, [Aj , ρ(t)]]∫
t

t0
Dij(t, s)ds (9.26)

which is a consistent generalization of the CSL equation (7.51) when the Hamil-
tonian H0 is omitted: in fact, if the stochastic processes wi(t) are independent
and white (Dij(t1, t2) = δijδ(t1 − t2)), then (9.26) reduces exactly to (7.51).

In order to test the reduction properties, we will show first of all how the re-
duction mechanism works for the statistical operator. As in Section 7, let us
suppose that the common eigenmanifolds of the operators Ai, which we assume
to have a purely discrete spectrum, are one-dimensional; let ∣α⟩ be the vector
spanning the α-eigenmanifold. The equation for the matrix elements ⟨α∣ρ(t) ∣β⟩
is

d ⟨α∣ρ(t) ∣β⟩
dt

= −γ∑
i,j

(aiα − aiβ)(ajα − ajβ)∫
t

t0
Dij(t, s)ds ⟨α∣ρ(t) ∣β⟩ (9.27)

Making use of the symmetry property of the correlation functions:

Dij(t1, t2) =Dji(t2, t1) (9.28)

we can write the solution of Eq. (9.27) in the following form:

⟨α∣ρ(t) ∣β⟩ = e−(γ/2)∑i,j(aiα−aiβ)(ajα−ajβ) ∫
t
t0
dt1 ∫

t
t0
dt2Dij(t1,t2) ⟨α∣ρ(0) ∣β⟩ (9.29)

From Eq. (9.29), we see that if ∣α⟩ = ∣β⟩, the exponent is zero: as in CSL, the
diagonal elements of the density matrix do not change in time. If, on other hand
∣α⟩ ≠ ∣β⟩, the evolution of the matrix element depends on the time behavior of
the correlation functions Dij(t, s).

If we want the off-diagonal elements to be damped at large times, two conditions
must be satisfied. The first one is that the exponent in (9.29) must be negative:
this is always true, since the correlation function of a Gaussian process is positive
definite.47

46Here and in what follows, we consider a generic initial time t0.
47We assume that the correlation function is nondegenerate.
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The second condition is that the double integral of the correlation function must
diverge for large times:

∫
t

t0
dt1 ∫

t

t0
dt2Dij(t1, t2) → +∞ for t→ +∞ (9.30)

so that the off-diagonal elements of the density matrix go to zero. This condi-
tion is not a priori satisfied by a generic Gaussian stochastic field. At any rate,
physically reasonable stochastic fields always satisfy it: here we present just a
couple of meaningful examples.

Suppose the stochastic fields wi(t) are equal and independent, with a (normal-
ized) Gaussian correlation function:

Dij(t1, t2) = δij
1√
2πτ

e−(t1−t2)
2
/2τ2

(9.31)

Let us also take t0 → −∞. Eq, (9.27) then becomes

d ⟨α∣ρ(t) ∣β⟩
dt

= −γ
2
∑
i

(aiα − aiβ)2 ⟨α∣ρ(t) ∣β⟩ (9.32)

which is independent from the correlation time τ , and moreover it corresponds
exactly to the CSL evolution. Note that if we take the limit τ → 0, the Gaussian
process becomes a white noise process with a Dirac-δ correlation function and
we recover, again, the CSL theory.

As a second example, suppose the correlation function is

Dij(t1, t2) = δij
1

2τ
e−∣t1−t2∣/τ (9.33)

Let us also take t0 → −∞. Eq, (9.27) then becomes

d ⟨α∣ρ(t) ∣β⟩
dt

= −γ
2
[1 − e−(t−t0)/τ ]∑

i

(aiα − aiβ)2 ⟨α∣ρ(t) ∣β⟩ (9.34)

As before, the off-diagonal elements are exponentially damped and, in the limit
t → +∞ we recover the behavior of CSL. Note that the effect of a nonwhite
correlation function is that of decreasing the reduction rate of the localization
mechanism.

We now analyze how the reduction mechanism works at the wavefunction level.
As in Section 7.4, we consider a simplified dynamics in which only one operator
A appears in Eq. (9.25). This operator is coupled to a single stochastic process
w(t), whose correlation function is D(t1, t2). Finally, we assume that at the
initial time t0 the state vector is

∣ψ(t0)⟩ = Pα ∣ψ(t0)⟩ + Pβ ∣ψ(t0)⟩ (9.35)
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where Pα and P − β are projection operators onto the eigenmanifolds of A
corresponding to two different eigenvaluesα and β, respectively. The solution of
Eq. (9.25) is

∣ψ(t)⟩ = eαx(t)−α
2γf(t)Pα ∣ψ(t0)⟩ + eβx(t)−β

2γf(t)Pβ ∣ψ(t0)⟩ (9.36)

where

x(t) = ∫
t

t0
w(s)ds , f(t) = ∫

t

t0
ds1 ∫

t

t0
ds2D(s1, s2) (9.37)

Note that γf(t) = ⟪x2(t)⟫, i.e., such a quantity is the variance of the stochastic
process x(t).

Since the “raw” probability distribution of the process x(t) is

PRaw[x(t)] =
1√

2πγf(t)
e−(1/2γf(t))x

2
(t) (9.38)

taking into account the cooking prescription (9.4) we obtain

PCook[x(t)] =∥Pα ∣ψ(t0)⟩ ∥2 1√
2πγf(t)

e−(1/2αγf(t))[x(t)−2πγf(t)]2

+ ∥Pβ ∣ψ(t0)⟩ ∥2 1√
2πγf(t)

e−(1/2γf(t))[x(t)−2πβγf(t)]2 (9.39)

Eq. (9.39) implies that, if f(t) → +∞ when t→ +∞, the stochastic process x(t)
will take either a value close to 2αγf(t) - within an interval of width

√
γf(t) - or

a value close to 2βγf(t), within the same interval.48 Of course, the requirement
that f(t) → +∞ as time increases is exactly the same as requirement (9.30) which
guarantees the damping of the off-diagonal elements of the density matrix.

Suppose now that the actual realization of the stochastic process x(t) occurs
around 2αγf(t); the corresponding probability is ∥Pα ∣ψ(0)⟩ ∥2. We then have

∥Pβ{Ketψ(t)∥2

∥Pα{Ketψ(t)∥2
≃ e−2γ(α−β)2f(t) ∥Pβ{Ketψ(0)∥2

∥Pα{Ketψ(0)∥2
→ 0 as t→∞ (9.40)

which means that the state vector ∣ψ(t)⟩ is driven into the eigenmanifold of
the operator A corresponding to the eigenvalue α. By the same reasoning,
it is immediate to see that, with a probability equal to ∥Pβ{Ketψ(0)∥2, the
state vector is driven into the eigenmanifold associated to the eigenvalue β. We
have thus proved that the state vector ∣ψ(t)⟩ undergoes a random spontaneous
reduction to one of the two eigenmanifolds of the operator A, with a probability
which coincides with the one assigned by standard Quantum Mechanics to the
outcomes of an experiment aimed to measure the observable A.

48As noted in Section 7.4, even though the interval
√
γf(t) tends to infinity as time in-

creases, the ratio 2αγf(t)(α − β)γf(t) goes to zero.
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9.4 The average value of observables

When one disregards the Hamiltonian term H0, it is not difficult to see how the
stochastic terms affect the average value of physical quantities. Its time deriva-
tive can be calculated following almost the same steps which, in the previous
subsection, have led to Equation (9.26) for the statistical operator; the final
equation is

d⟨O⟩
dt

= −γ∑
i,j

⟪⟨ψ(t)∣ [Ai, [Aj ,O]] ∣ψ(t)⟩⟫∫
t

t0
Dij(t, s)ds (9.41)

to be compared with the corresponding CSL-white noise equation:

d⟨O⟩
dt

= −γ
2
∑
i

⟪⟨ψ(t)∣ [Ai, [Ai,O]] ∣ψ(t)⟩⟫ (9.42)

The analysis of the previous subsection should have made clear how (9.41) differs
from (9.42), so we will not repeat it here.

9.5 Connection with CSL

We now apply the formalism introduced in the previous subsections to derive
an equation with the property of localizing macroscopic systems in space, as it
happens for CSL. In other words, we specify the choice of the “preferred basis”
{Ai} in such a way to have a physically meaningful theory for our purposes.

The most natural choice for the operators Ai is the number density operator for
a system of identical particles:

Ai →N (x) = ∑
s

a†(x, s)a(x, s) (9.43)

Correspondingly, the noises wi(t) are replaced by a stochastic field w(x, t),
whose correlation function is D(x, t1;y, t2) itself must be invariant under the
considered group of transformations, i.e.,

D(x, t1;y, t2) =D(∣x − y∣, t1 − t2) (9.44)

the easiest way to construct a function like (9.44) is to take the product of two
functions space and time variables, respectively:

D(x, t1;y, t2) = g(∣x − y∣)h(t1 − t2) (9.45)

As regards g(∣x − y∣), a reasonable choice is a Gaussian function, like in CSL:

g(∣x − y∣) = γ ( α
4π

)
3/2

e−(α/4)(x−y)
2

(9.46)

with 1/√α ≃ 10−5 cm.
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It is natural to choose a Gaussian function also for h(t1 − t2)

h(t1 − t2) = ( β
4π

)
1/2

e−(β/4)(t1−t2)
2

(9.47)

In making the above choice, we have introduced a new parameter (β); this can
be considered as a drawback of the model. However, we note that it always is
possible to define β in terms of α, γ and fundamental constants of nature, so
that, essentially, no new arbitrary parameter is introduced into the model. As
an example, we can choose β = c2α ≃ 1030 s−2, where c is the speed of light. This
choice is particularly appropriate from the point of view of a possible relativistic
generalization of the theory, which we will discuss in the fourth part of this
report. Moreover, such a choice corresponds to an extremely small correlation
time, so that for ordinary systems (moving slower than the speed of light) the
behavior of the model is similar to the one arising from the white-noise CSL.

The modified equation (9.9) for the state vector evolution becomes now

d ∣ψ(t)⟩
dt

=[− i
h̵
H0 + ∫ d3xN (x)w(x, t)

−2γ ∫ d3xd3yN (x)g(∣x − y∣) ∫
t

t0
dsh(t − s) δ

δw(y, s)] ∣ψ(t)⟩ (9.48)

If we ignore the free Hamiltonian H0, i.e., if we confine our considerations to
the reduction mechanism, 49 Eq. (9.48) becomes

d ∣ψ(t)⟩
dt

= [∫ d3xN (x)w(x, t) − γ(t)∫ d3xd3yN (x)g(∣x − y∣)N (y)] ∣ψ(t)⟩
(9.49)

with

γ(t) = 2γ ∫
t

t0
dsh(t − s) (9.50)

The corresponding equation for the statistical operator is

d

dt
ρ(t) = −γ(t)

2
∫ d3xd3y [N (x), [N (y), ρ(t)]]g(∣x − y∣) (9.51)

Eq. (9.48) can be rewritten in a form closer to Eq. (8.6), a fact which will be
useful for the subsequent discussion. Let us define a new Gaussian stochastic
process ¯w(x, t), which is connected to w(x, t) by the relation

w(x, t) = ( α
2π

)
3/2

∫ d3xe−(α/2)(x−y)
2 ¯w(x, t) (9.52)

49For the physically interesting cases, e.g.,for the dynamical evolution of macrosystems,
such an assumption is justified by the fact that the effect of the reduction is much faster than
the typical times in which the Hamiltonian can induce appreciable dynamical changes of the
state vector.
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The process ¯w(x, t) has zero mean and correlation function

⟪ ¯w(x, t1) ¯w(y, t2)⟫ = γδ(3)(x − y)h(t1 − t2) (9.53)

Using the following relation:

δ

δ ¯w(x, s)
∣ψ(t)⟩ = ∫ d3y

δw(y, s)
δ ¯w(x, s)

δ

δw(y, s) ∣ψ(t)⟩

= ( α
2π

)
3/2

∫ d3y e−(α/2)(x−y)
2 δ

δw(y, s) ∣ψ(t)⟩ (9.54)

it can be easily seen that (9.48) is equivalent to the equation

d ∣ψ(t)⟩
dt

=[− i
h̵
H0 + ∫ d3xN (x)w(x, t)

−2γ ∫ d3xN(x)∫
t

t0
dsh(t − s) δ

δ ¯w(x, s)
] ∣ψ(t)⟩ (9.55)

with N(x) defined by (8.1).

9.5.1 Dynamics for macroscopic rigid bodies

As for CSL, it is not difficult to discuss the physical implications of Eq. (9.48) -
or Eq. (9.55) - for the case of an almost rigid macroscopic body, i.e. a body such
that the wavefunctions of its constituents can be considered very well localized
with respect to the localization length 1/√α. Under the same assumptions of
Section 8.2, we obtain that if ∣Ψ⟩ and ∣χ⟩ satisfy the equations

d ∣Ψ(t)⟩
dt

=[− i
h̵
HQ + ∫ d3xN (x) ¯w(x, t)

−2γ ∫ d3xN(x)∫
t

t0
dsh(t − s) δ

δ ¯w(x, s)
] ∣Ψ(t)⟩ (9.56)

d ∣χ(t)⟩
dt

= [− i
h̵
Hr] ∣χ(t)⟩ (9.57)

then ∣ψ(t)⟩ = ∣Ψ⟩ ∣χ⟩ satisfies Eq. (9.55) or, equivalently, Eq. (9.48).

Eqs. (9.56) and (9.57) imply that the center of mass and internal motion de-
couple, and that the stochastic terms affect only the center of mass and not the
internal structure, as it happens for CSL.

Following the same arguments of Section 8.3, it can also be proven that the local-
ization rate of the center-of-mass wavefunction grows linearly with the number
of particles of the rigid body. In fact, by disregarding the Hamiltonian H0,
one derives an evolution equation for the matrix elements ⟨Q′∣ρQ(t) ∣Q′′⟩ of the
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statistical operator of the center of mass, which is similar to (8.23), with γ(t)
replacing γ:

∂ ⟨Q′∣ρQ(t) ∣Q′′⟩
∂t

= Γ̃(Q′,Q′′, t) ⟨Q′∣ρQ(t) ∣Q′′⟩ (9.58)

with

Γ̃(Q′,Q′′, t) = γ(t)∫ d3x [1

2
F 2(Q′ − x) + 1

2
F 2(Q′′ − x) − F (Q′ − x)F (Q′′ − x)]

(9.59)
This proves that also in the present model the reduction rate of the center of
mass of the system grows linearly with the number of its constituents. Moreover,
taking a large value for β, as it has been suggested previously, γ(t) → γ in very
short times, so that the reducing dynamics is practically the same as the one of
CSL.
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Chapter 3

THE INTERPRETATION
OF GRW AND CSL
MODELS

10. The mass density function

In the second part of this report we have made plausible that the Dynamical
Reduction Models allow to overcome the macro-objectification problem. How-
ever, in accordance with the appropriate and strict requests by Bell (see below)
about the fact that a theory must first of all make perfectly clear what it is ac-
tually about, it is necessary to supplement the formal apparatus with a precise
interpretation which specifies how the mathematical entities entering into play
are related to the physical aspects of natural processes we experience. Accord-
ingly, in this section we tackle the subtle problem of working out a consistent
and unambiguous interpretation of the theoretical models under study, in the
nonrelativistic case. We will show how, by taking advantage of their specific
features, one can give a description of the world in terms of the mean values
M (r, t), at different places and at different times, of appropriately defined mass
density operators. The presentation is organized as follows.

We start with a historical account of Bell’s contribution to the elaboration
of a sensible interpretation of QMSL (Section 10.1). Next, we introduce the
mass-density function M (r, t) and we show that, within standard quantum me-
chanics, i.e., in the absence of a mechanism restricting the possible states of the
Hilbert space of “our universe”, one unavoidably meets situations which cannot
be consistently described in terms of M (r, t) (Section 10.2).

Fortunately, since the universal dynamics of the reduction models does not
permit the persistence for [32] more than a split second of the just mentioned
unacceptable states, it allows to identify the function M (r, t) as the basic el-
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ement for the description of the world (Section 10.3). In terms of it one can
define an appropriate “topology” (Section 10.4) which is the natural candidate
for establishing a satisfactory psycho-physical correspondence. We conclude the
section with a general discussion of how a theory should describe the physical
world, and how this is accomplished by dynamical reduction models (Section
10.5).

10.1 The position of Bell about dynamical re-
duction models

Bell has always been in the forefront of the struggle for clarifying the conceptual
status of quantum theory. He has repeatedly stressed the points he considered
as essential to have “an exact theory” i.e., in his words [87], one which neither
needs nor is embarrassed by an observer. We may appropriately recall some of
his more passionate statements [120]:

A good word is ’beable’ from the verb ’to be’, ’to exist’. In your
theory you should identify some things as being really there, as dis-
tinct from the many mathematical concepts you can easily devise -
like the projection of the side of a triangle to infinity and so on. We
must decide that some things are really there and that you are going
to take them seriously. These are the beables, and if you are going
eventually to have ’observers’, for example, they must be made out
of beables. ... Another good word is ’kinematics’. Many accounts of
quantum mechanics start by telling you how to calculate probabil-
ities; and I consider them to be dynamics. The kinematics should
list the possibilities that you are envisaging, then afterwards you can
attach probabilities to the different possibilities. I won’t accept as a
list of possibilities the ’possible results of experiments’, because that
is to try again to begin with these vague concepts. I would want the
kinematics of your theory tell me what it is you are talking about
before you tell me what about it.

And it is just in the spirit of the above sentences that he has analyzed the GRW
theory, a theory that [120]:

looks like a rather neat resolution of the problem of quantum me-
chanics. It is very close to what one does in practice, but instead
of having this funny jump at an arbitrarily defined act of ’measure-
ment’, it has it as something which happens all the time and more
often in systems which are big - big in a way which is controlled by
the parameters of the theory ... .

Since his first writing on this theory [32], Bell has proposed an interesting in-
terpretation for it in terms of beables:
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There is nothing in this theory but the wavefunction. It is in the
wavefunction that we must find an image of the physical world, and
in particular of the arrangement of things in ordinary 3-dimensional
space. But the wavefunction as a whole lives in a much bigger space,
of 3N -dimensions. It makes no sense to ask for the amplitude or
phase or whatever of the wave- function at a point in ordinary space.
It has neither amplitude nor phase nor anything else until a multi-
tude of points in ordinary 3-space are specified. However, the GRW
jumps (which are part of the wavefunction, not something else) are
well localized in ordinary space. Indeed each is centered on a partic-
ular spacetime point (x, t). So we can propose these events as the
basis of the ’local beables’ of the theory. These are the mathemat-
ical counterparts in the theory to real events at definite places and
times in the real world (as distinct from the many purely mathemat-
ical constructions that occur in the working out of physical theories,
as distinct from things which may be real but not localized, and
as distinct from the ’observables’ of other formulations of quantum
mechanics, for which we have no use here). A piece of matter then is
a galaxy of such events. As a schematic psychophysical parallelism
we can suppose that our personal experience is more or less directly
of events in particular pieces of matter, our brains, which events are
in turn correlated with events in our bodies as a whole, and they in
turn with events in the outer world.

The suggestion about the possibility of establishing an appropriate psycho-
physical parallelism has been subsequently proved [121] to be perfectly appro-
priate (see also the discussion of Section 12): a perception process requires the
displacement of a certain number of particles within our brain. The definite per-
ception corresponds therefore unambiguously to a mini-galaxy of localizations in
the axons or the cerebral cortex, such mini-galaxies referring to different ’brain
regions’ according to the precise situation which triggers the perception.50 This
is the precise sense in which the GRW theory allows to ’close the circle’, i.e., it
yields a picture of natural processes which agrees with quantum predictions at
the micro-level but also with our definite perceptions and conceptualizations at
the macroscopic one. We do not see what more, on an ontological basis, can be
required from a theory of natural processes.

Starting from these remarks we can now pass to discuss what we have denoted
as the mass density interpretation and raise the question: why cannot one take
the mass density function seriously as the “local beable” of the theory and,
in particular, replace the ’galaxy’ of definite localizations occurring in defiinite
space regions with the existence of precise regions in which the mass density is

50Actually, even triggering processes involving superpositions of states of microsystems
which are such to induce precise perceptions (due to the extreme sensitivity, e.g., of the
visual process) lead to definite perceptions and not to a confused state of mind, just because
they imply different modalities of the localization processes in the brain (see Ref. [121]).
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“accessible” (the exact meaning of this expression will be discussed later) and
the ’mini-galaxies’ of localizations in our bodies and our brains with the loca-
tions of the macroscopic number of ions which are involved in the transmission
of a nervous signal and in triggering the conscious perception?

Before coming to deepen this point we have to mention that subsequently Bell
himself has slightly changed his mind. In Ref. [2], he wrote

The GRW type theories have nothing in their kinematics but the
wavefunction. It gives the density (in a multidimensional configu-
ration space!) of stuff. To account for the narrowness of that stuff
in macroscopic dimensions, the linear Schrödinger equation has to
be modified, in the GRW picture by a mathematically prescribed
spontaneous collapse mechanism.

One of us (G.C.G.) has exchanged with him various letters devoted to deepening
this point. In a letter of October 3, 1989, Bell wrote

As regards Ψ and the density of stuff, I think it is important that
this density is in the 3N -dimensional configuration space. So I have
not thought of relating it to ordinary matter or charge density in
3-space. Even for one particle I think one would have problems with
the latter. So I am inclined to the view you mention ’as it is sufficient
for an objective interpretation’ ... And it has to be stressed that the
’stuff’ is in 3N -space - or whatever corresponds in field theory.

This concludes our analysis of the stimulating suggestions of Bell about the in-
terpretation of dynamical reduction theories.

As already anticipated, in the next subsection we will analyze a different and
more precise proposal, based on the consideration of an appropriately averaged
mass density distribution in ordinary space, which has been put forward in Ref.
[68]. Such a proposal, among other interesting features, will make perfectly clear
the links, at the macroscopic level, between the formal elements which charac-
terize the states of macroscopic systems according to the theory, the properties
which can be considered as objectively possessed by them and the practical
way of testing such properties. In fact one could remark that Bell has been
not wholly explicit about the problem of establishing precise relations between
the specific formal features characterizing macro-systems (the narrowness of the
stuff ) and the experiments aimed to ascertain the associated properties, and has
simply suggested (as it is sufficient for an objective interpretation) that it could
be easily settled within the GRW theory.

10.2 Mass density function

In order to prepare the grounds for the analysis we are going to perform it
is useful to recall that the universal dynamics of dynamical reduction models
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strives to make some precise properties as objectively possessed by individual
physical systems. The very fact that no analogous mechanism is at work within
the standard theory forbids to adopt, within such a theory, the natural inter-
pretation we are going to propose as the basic ontology for CSL. As we have
discussed in great details, the Dynamical Reduction Theories make almost defi-
nite the positions of massive particles. Accordingly, the natural quantity which
will end up having an objective (i.e., independent of any measurement process)
value is the locally averaged (over the characteristic volume of the theory, i.e.,
10−15 cm3) mass distribution of the universe.

In this subsection we characterize in a mathematically precise way the c-number
function representing the just mentioned average mass density in ordinary 3-
dimensional space, the quantity to which we will attach an absolutely promi-
nent role for the interpretation of the theory. We will also make clear that,
as already mentioned, within standard quantum mechanics such a quantity ex-
hibits problematic features (which parallel the ones connected with the macro-
objectification problem) implying that an ontology based on the mass density
function cannot be consistently adopted within such a theory. The clarification
of this important point will pave the road for the proof that, on the contrary,
such an ontology leads, within the dynamical reduction formalism, to a clear,
precise and fully consistent worldview which fits perfectly our experience with
the reality around us.

To begin with, let us then consider a physical system S which will constitute
“our universe” and let us denote by H (S) the associated Hilbert space. Let
∣ψ(t)⟩ be the normalized state vector describing our individual system at time
t; in terms of it we define an average mass density c-number function M (r, t)
in ordinary space as

M (r, t) = ⟨ψ(t)∣M(r) ∣ψ(t)⟩ (10.1)

where M(r) is the mass density operator defined in Section 8.6. Eq. (10.1)
establishes, for a given t, a mapping of H (S) into the space of positive and
bounded functions of r.

Obviously this map is many to one; in particular, to better focus on this point
as well as for making clear the difficulties of the standard theory with such a
function, it turns out to be useful to compare two state vectors ∣ψ⊕⟩ and ∣ψ⊗⟩
defined as follows. Let us consider a very large number N of particles and two
space regions A and B with spherical shape and radius R. The state ∣ψ⊕⟩ is
the linear superposition, with equal amplitudes, of two states ∣ψAN ⟩ and ∣ψBN ⟩
in which the N particles are well localized with respect to the characteristic
length (10−5 cm) of the model and uniformly distributed in regions A and B,
respectively, in such a way that the density turns out to be of the order of

1 g/cm3. On the other hand, ∣ψ⊗⟩ is the tensor product of two states ∣ψAN/2⟩ and

∣ψBN/2⟩ corresponding to N/2 particles being distributed in region A and N/2 in
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region B, respectively:

∣ψ⊕⟩ = 1√
2
[∣ψAN ⟩ + ∣ψBN ⟩] , ∣ψ⊗⟩ = ∣ψAN/2⟩ ⊗ ∣ψBN/2⟩ (10.2)

It is trivial to see that the two considered states give rise to the same function
M(r) and it is clear that if one attempts to attach some meaning to it one has
to be very careful in keeping in mind from which state M(r) originates.

In particular, it is quite obvious that in the case of ∣ψ⊕⟩, M(r) cannot be con-
sidered as describing an “actual” mass density distribution. To see this, let us
suppose that one can use standard quantum mechanics to describe the grav-
itational interaction between massive bodies and let us consider the following
gedanken experiment: a test mass is sent through the middle point of the line
joining the centers of regions A and B with its momentum orthogonal to it (see
Figs. 2a and 2b).

Figure 2: Accessible and nonaccessible mass density distribution M(r). In case
(a), corresponding to the factorized state ∣ψ⊗⟩, the mass density in regions A
and B is accessible and the test particle, interacting with ∣ψ⊗⟩, behaves in such
a way as to give rise to the appropriate density along its natural trajectory. In
case (b), corresponding to the superposition ∣ψ⊕⟩, the densities in A and B are
nonaccessible and the same holds for the density distribution generated by the
interaction of the test particle with ∣ψ⊕⟩.

In the case of the state ∣ψ⊗⟩ for the system of the N particles standard quan-
tum mechanics predicts that the test particle will not be deflected. On the other
hand, if the same test is performed when the state is ∣ψAN ⟩ (∣ψBN ⟩), quantum me-
chanics predicts an upward (downward) deviation of the test particle. Due to
the linear nature of the theory this implies that if one would be able to prepare
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the state ∣ψ⊕⟩ the final state would be

∣ψ⟩ = 1√
2
[∣ψAN ⟩ ⊗ ∣ψUP ⟩ + ∣ψBN ⟩ ⊗ ∣ψDOWN ⟩] (10.3)

with obvious meaning of the symbols. If one includes the test particle into the
“universe” and considers the mass density operator in regions corresponding to
the wavepackets ∣ψUP ⟩ and ∣ψDOWN ⟩, one discovers once more that nowhere
in the universe one can “detect” or “perceive” a density corresponding to the
density of the test particle. In a sense, if one would insist in giving a meaning to
the density function he would be led to conclude that the particle has been split
by the interaction into two pieces of half its density. This analysis shows that
great attention should be paid in assuming that the function M(r) describes
the actual state of affairs.

Before going on we consider also another quantity which will be useful in what
follows. It is the mass density variance at r at time t defined by the following
map from H (S) into R3:

V (r, t) = ⟨ψ(t)∣ [M(r) − ⟨ψ(t)∣M(r) ∣ψ(t)⟩]2 ∣ψ(t)⟩ (10.4)

∣ψ(t)⟩ being a normalized state vector.

With these premises we have all the elements which are necessary to discuss the
problems one meets when dealing with M(r) and the way to overcome them.
We will do this in the next subsection. Before doing that, we consider it appro-
priate to simply mention the obvious fact that the states giving rise to puzzling,
nonobjective, density functions are those corresponding to superpositions of dif-
ferently located macroscopic bodies, i.e., the infamous states which are at the
centre of the long debated problems about the meaning of quantum mechanics
at the macro-level.

For future purposes it is useful to introduce a mathematical criterion which
permits to clarify the different status of the mass densities in the two above
considered cases (corresponding to the states ∣ψ⊕⟩ and ∣ψ⊗⟩, respectively). This
is more easily expressed by resorting to a discretization of space in analogy with
what has been done in Section 8.5. Obviously, in place of the space functions
M(r, t) and V (r, t) we will consider the mean value Mi(t) and the variance
Vi(t) of the mass operator in the ith cell. For any cell i we define the ratio:

R2
i =

Vi
M 2

i

(10.5)

We then state that the mass Mi is “accessible” if Ri turns out to be much
smaller than one, that is:

Ri << 1 (10.6)

This criterion is clearly reminiscent of the probabilistic interpretation of the
state vector in standard quantum mechanics. Actually, within such a theory,
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Eq. (10.6) corresponds to the fact that the spread of the mass operator Mi

is much smaller than its mean value. Even though in this paper we take a
completely different attitude with respect to the mean value Mi, it turns out
to be useful to adopt the above criterion also within the new context. In fact,
as we will discuss in what follows, when one has a space region such that for all
cells contained in it (10.6) holds, it behaves as if it would have the “classical”
mass corresponding to Mi. This remark should clarify the reason for having
characterized as “accessible” the mass (or equivalently the mass density) when
the above conditions are satisfied.

With reference to the previous example we stress that in the case of ∣ψ⊗⟩ all
cells within regions A and B are such that criterion (10.6) is very well satisfied.
In the case of ∣ψ⊕⟩ one has for the same cells:

Mi ≃
n

2
M0 , Vi ≃

n2

4
M2

0 (10.7)

where n is the number of particles per cell. It follows that

Ri ≃ 1 (10.8)

10.3 The mass density function within dynami-
cal reduction models

In the previous subsection we have presented a meaningful example of the dif-
ficulties one meets when one keeps the standard quantum dynamics and tries
to base a description of the world and an acceptable psycho-physical correspon-
dence on the mass density function M (r). The unacceptable features find their
origin in the fact that, when the macrostate is ∣ψ⊕⟩, while the density function
takes the value of about 1/2 g/cm3 within regions A and B, if one performs a
measurement of the density in the considered regions, or if a measurement like
process (such as the passage of the test particle in between A and B) occurs,
things proceed in such a way that is incompatible with the above density value.
Actually one could state that no outcome emerges in the measurement. To un-
derstand fully the meaning of this statement one could identify, e.g., the final
position of the test particle with a pointer reading; the pointer would then not
point to the middle position (corresponding to equal densities in A and B) but
would be split into “two pointers of half density” pointing upward and down-
ward, respectively (compare with Fig. 10.1b).

If one takes an analogous attitude with reference to dynamical reduction theories
one does not meet the same difficulties because they imply that linear superpo-
sitions of states corresponding to far-apart macroscopic systems are dynamically
suppressed in extremely short times and measurements have outcomes. There-
fore, we can guess that, within the context of the dynamical reduction program,
the description of the world in terms of the mass density function M (r) is
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a good description precisely because it becomes dynamically accessible at the
macroscopic level; moreover it is such as to allow one to base on it a sensible
psycho-physical correspondence.

Obviously, if one naively looks at the dynamical reduction models by sticking to
some sort of “classical” ontology, one can be tempted to claim that some fuzzy
situations can occur also in this context, when the mass density, as it may very
well happen for a microsystem, is not “accessible”, i.e. when (in the simplified
discretized version) criterion (10.6) is not satisfied. However, as we are going
to show, this does not give rise to any difficulty whatsoever for the program we
are furthering.

In order to show this we will examine, along the above lines, the status of the
mass density function M (r) for the various possible states which are not forbid-
den by the reducing dynamics. We will discuss the cases of microsystems and
macro-systems, and, with reference to the latter, we will identify two physically
relevant classes of states which can occur. As we have done previously we will
deal with a discretized space.

10.3.1 Microscopic systems

For the sake of simplicity, let us consider a single nucleon. As it is well known,
the reducing dynamics does not forbid the persistence, for extremely long times,
of linear superpositions of far-away states of the particle, typically states like:

∣ψ⟩ = 1√
2
[∣0,0, ...,1i, ...,0j , ...⟩ + ∣0,0, ...,0i, ...,1j , ...⟩] (10.9)

where i and j are two distinct and far apart cells. Such microscopic states which
are not eigenvectors of the operators Mi will be called “microscopically nondef-
inite”, the term “nondefinite” making reference to the characteristic preferred
basis of the model. As is evident from (10.9) the mean values of Mi and Mj are
(1/2)m0 and criterion (10.6) is not satisfied at the space regions of both cells.
As it is (inconsistently) assumed within standard quantum mechanics and as
it is (rigorously) implied by CSL, a measurement of the mass in one of these
two cells would give the definite outcome 0 or m0 with equal probability (corre-
sponding to the fact that wavepackets of microsystems diffuse, but however the
reaction of a detector devised to reveal them remains spotty) and not (1/2)m0,
the value taken by the density function within the considered cells. Accordingly,
in the considered case the mass in the cell is is not accessible. This discrepancy,
this nonclassical character of Mi and Mj , cannot however be considered a dif-
fculty for the theory with the proposed interpretation, in particular, it does not
forbid to take seriously, i.e., to attach an objective status to the mass density
function; it simply amounts to the recognition that we cannot legitimately ap-
ply our classical pictures to the microworld. On the contrary we must allow
[122] microsystems to enjoy the cloudiness of waves. The crucial point is that
within the theory we are discussing, in spite of the mass density having the
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value (1/2)m0 in both regions, any attempt to detect its value in one of them
by an amplification process, implies, as a rigorous consequence of the dynamical
equation governing all physical processes, that the outcome will be either 0 or
m0, in perfect agreement with our experience.

10.3.2 Macroscopic systems

The theory allows the persistence of two general classes of states for macroscopic
systems, i.e., those describing almost rigid bodies with sharply defined (with re-
spect to the characteristic length of the model) center-of-mass position, and
those corresponding to a macroscopic number of microsystems in microscopi-
cally nondefinite states. Due to the fact that the center-of-mass of the wave-
function has, in general, noncompact support, the first class obviously includes
also states which, being brought in by the reducing dynamics, have “tails”. The
so called “tail problem” will be discussed in the following section.

States of the first class have been extensively analyzed in Sections 68 we have
seen that super- positions of different macroscopic states are reduced - in a very
short time - to one of their terms; correspondingly, the classical properties of
macroscopic systems are restored. Thus, for example, a state like ∣ψ⊕⟩ is spon-
taneously transformed, by the reducing dynamics, either into the state ∣ψAN ⟩ or

∣ψBN ⟩, i.e., into states which have an accessible mass-density distribution.

Concerning states of the second class, it is of extreme relevance to make clear
that they have a conceptual status which is very different51 from the one of
the superpositions of macroscopically distinguishable states like ∣ψ⊕⟩; moreover,
they represent rather peculiar situations which mainly have an “academic” char-
acter, since states of this kind certainly do not appear often in practice. How-
ever, it is worthwhile to discuss them in some detail.

Let us consider a system of N nucleons and a discretization of space in small
cubes of linear dimensions 10−8 cm. We consider again two macroscopic regions
A and B, and we label by the indices kA and kB pairs of cubes within A and B
respectively. For kA ≠ kB the two cubes are disjoint and the union of all cubes
kA (kB) covers the region A (B). The index k runs from 1 to N , a very large
number; typically if A and B have volumes of the order of 1 cm3, N will be of
the order of 1027.

Let us denote by ∣ψkA⟩ and ∣ψkB ⟩ the states of a particle whose coordinate rep-
resentation are well localized within kA and kB , respectively. As an example we
could choose

⟨r ∣ψkA⟩ = χ(kA) (10.10)

51This important difference has already been appropriately stressed by Leggett [123], who,
even though in a different context, has introduced the mathematically precise concept of
disconnectivity to distinguish states of this type from states like ∣ψ⊕⟩
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χ(kA) being the characteristic function of the cube kA. We now consider the
following microscopically nondefinite state for the kth particle:

∣ψk⟩ = 1√
2
[∣ψkA⟩ + ∣ψkB ⟩] (10.11)

and the factorized state of the N particles

∣ψ⟩ = ∣ψ1⟩ ⊗⋯⊗ ∣ψk⟩ ⊗⋯⊗ ∣ψN ⟩ (10.12)

In spite of the fact that the state ∣ψ⟩ is a direct product of microscopically
nondefinite states it is nevertheless “almost” an eigenstate of the operators Mi

(remember that the linear dimensions of the cell to which the index i refers are
of the order of 10−5 cm so that one such cell contains about 109 cubes of the
kind of kA (kB). In fact, denoting by n ≃ 109 the number of kA (kB) small cubes
contained in the ith cell, one can easily see that ∣ψ⟩ gives rise to “accessible”
mass Mi in regions A and B respectively:52

⟨Mi(A,B) ≃
1

2
nm0 , ⟩⟨M2

i(A,B) ≃
1

4
(n2 +m2)m2

0 (10.13)

hence

V 2
i(A,B) ≃

1

4
nm2

0 , Ri(A,B) ≃
1√
n
<< 1 (10.14)

To clarify the physical implications of the state ∣ψ⟩, from the point of view which
interests us here, we can imagine performing once more the gedanken experi-
ment with a test particle we have already considered in the previous subsection,
assuming, for simplicity, that the interactions between the test particle and the
considered N particles do not change the state53 of the latter. By substituting
Eq. (10.11) into Eq. (10.12), we see that ∣ψ⟩ is a superposition of 2N states in
which each particle is well localized. In such a superposition all states have an
equal amplitude 1/

√
2N and almost all states correspond to about N/2 particles

being in regions A and B respectively. Therefore, in the language of dynamical
reduction models, the probability of occurrence of a realization of the stochas-
tic potential leading to the “actualization” of an almost completely undeflected
trajectory for the test particle is extremely close to one.54 This shows that the
mass density function M (r) corresponding to the state behaves in a “classical

52In making the computations we have identified the operators Mi with the sum of the
projectors (multiplied by the nucleon mass m0) of the various particles in the ith cell.

53At any rate, possible changes in such a state would be symmetrical with respect to the
middle plane, so that the subsequent considerations would still hold true.

54It could be useful to remark that if one would analyze the same experiment in terms of
the linear quantum dynamics, the test particle would end up in the linear superposition of
an extremely large number of states. However, since such states correspond to trajectories
which are very near and almost undeflected, the evaluation of the mass density associated to
the final state vector would show that in the “middle” region there would practically be the
total mass of the test particle. Therefore, this represents a case in which even without any
reduction process the mass density referring to the test particle would correspond to a precise
outcome of the measurement.
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way”, so that no trouble arises in this case.

It has to be noted that, obviously, the mass Mi corresponding to state (10.12)
coincides with the one corresponding to the state ∣ψ⊗⟩ of the previous subsec-
tion, in spite of the fact that both states are dynamically allowed and are quite
different as physical states. However, as we have shown, the masses Mi in the
two cases behave practically in the same way and are fully unproblematic, con-
trary to what happens in the case of ∣ψ⊕⟩.

Concluding, we have made plausible that in the context of the dynamical re-
duction program one can consistently describe the world, at a given time, in
terms of the mass density function M (r) and that, due to the fact that such a
function becomes accessible at the macrolevel, such a description matches our
experience with the reality around us. Obviously, since with the elapsing of time
the state of the world changes, a complete description requires the consideration
of the motion picture of the density, i.e.,of M (r, t) defined in Eq. (10.1). We
will discuss in greater detail this crucial point in the next section.

10.4 Defining an appropriate topology for the
CSL model

Let us consider a system S of finite mass which will constitute our “universe”
and its associated Hilbert space H (S).We denote by U(S) the unit sphere in
H (S) and we consider the nonlinear map55 M associating to the element ∣φ⟩
of U(S) the element m = {Mi(∣φ⟩)} of l2, Mi(∣φ⟩) being the quantity ⟨φ∣Mi ∣φ⟩.

On U(S) we define a topology by introducing a mapping ∆ ∶ U(S)⊗U(S) →R+

according to:

∆(∣φ⟩ , ∣ψ⟩) = d(m,n) =
√
∑
i

(mi − ni)2 (10.15)

where m = {Mi(∣φ⟩)},n = {Mi(∣ψ⟩)}. Such a mapping is not a distance since,
as it emerges clearly from the analysis of the previous subsection, it may happen
that ∆(∣φ⟩ , ∣ψ⟩) = 0 even though ∣φ⟩ ≠ ∣ψ⟩. However ∆ meets all other properties
of a distance:

∆(∣φ⟩ , ∣ψ⟩) = ∆(∣ψ⟩ , ∣φ⟩) ≥ 0 (10.16)

and
∆(∣φ⟩ , ∣ψ⟩) ≤ ∆(∣φ⟩ , ∣χ⟩) +∆(∣χ⟩ , ∣ψ⟩) (10.17)

as one easily proves by taking into account the fact that d is a distance in l2.

From now on we will limit our considerations to the proper subset A(S) of

55To be rigorous, one should consider the map M from the unit sphere of H (S) into the
space L2 of the square integrable functions of r. However, we can deal, without any loss of
generality, with the discretized version of the model.
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U(S) of those states which are allowed by the CSL dynamics. In the previous
subsection we have already identified, even though in a rough way, the set A(S).
One could obviously be very precise about such a set by adopting e.g., the
following criterion: let ∣φ⟩ ∈ U(S), and let us consider the ensemble A(S)(∣φ⟩)
of states which have a non-negligible (this obviously requires the definition of
a threshold) probability of being brought in by the reducing dynamics after a
time interval of the order of 10−2 s, which is the characteristic perception time
of a human being,56 for the given initial condition ∣φ⟩. The union of all subsets
A(S)(∣φ⟩) for ∣φ⟩ running over U(S) is then A(S). For our purposes, however,
it is not necessary to go through the cumbersome management of a very precise
definition of the set A(S); the consideration of the cases we have discussed in
the previous subsection is sufficient to lead to the interesting conclusions.

For any element ∣φ⟩ of A(S) we consider the set of states of A(S) for which
∆(∣φ⟩ , ∣ψ⟩) ≤ ε. Here the quantity ε has the dimensions of a mass and is chosen
of the order of 1018m0, with m0 the nucleon mass. From the properties of the
map ∆ it follows that

1. {∆(∣φ⟩ , ∣ψ⟩) ≤ ε and ∆(∣φ⟩ , ∣χ⟩) ≤ ε implies ∆(∣χ⟩ , ∣ψ⟩) ≤ 2ε

2. {∆(∣φ⟩ , ∣ψ⟩) >> ε and ∆(∣φ⟩ , ∣χ⟩) ≤ ε implies ∆(∣χ⟩ , ∣ψ⟩) >> ε

We have introduced the parameter ε in such a way that it turns out to be
sensible to consider similar to each other states whose “distance” ∆ is smaller
than (or of the order of) ε. More specifically, when

∆(∣φ⟩ , ∣ψ⟩) ≤ ε (10.18)

we will say that ∣φ⟩ and ∣ψ⟩ are “physically equivalent”. More about this choice
in what follows.

To understand the meaning of this choice it is useful to compare it with the
natural topology of H (S). We begin by pointing out the inappropriateness of
the Hilbert space topology to describe the concept of similarity or difference of
two macroscopic states. In fact suppose our system S is an almost rigid body
and let us consider the following three states: ∣φA⟩, ∣φB⟩ and ∣φ̃A⟩. The state

∣φA⟩ corresponds to a definite internal state of S and to its center of mass being

well localized around A, the state ∣φB⟩ is simply the translated of ∣φA⟩ so that

it is well localized in a distant region B, the state ∣φ̃A⟩ differs from ∣φA⟩ simply
by the fact that one or a microscopic number of its “constituents” are in states
which are orthogonal to the corresponding ones in ∣φA⟩.

It is obvious that, on any reasonable assumption about similarity or difference
of the states of the universe, ∣φ̃A⟩ must be considered very similar (identical)

to ∣φA⟩ while ∣φB⟩ must be considered very different from ∣φA⟩. On the other

56See the discussion of Section 12.
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hand, according to the Hilbert space topology

∥ ∣φA⟩ − ∣φ̃A⟩ ∥ = ∥ ∣φA⟩ − ∣φB⟩ ∥ =
√

2 (10.19)

This shows with striking evidence that the Hilbert space topology is totally in-
adequate for the description of the macroscopic world. As a consequence such
topology is also quite inadequate to base on it any reasonable psycho-physical
correspondence.

We now discuss the “distorted” (with respect to the Hilbert space one) topology
associated to the “distance” ∆. First of all we stress that the two states ∣φA⟩
and ∣φ̃A⟩ which are maximally distant in the Hilbert space topology, turn out
to be equivalent, i.e., to satisfy condition (10.18) in the new topology. This
represents an example showing how such a topology takes more appropriately
into account the fact that, under any sensible assumption, the “universes” as-
sociated to the considered states are very similar.

Obviously, one problem arises. Criterion (10.18) leads us to consider as equiv-
alent states which are quite different from a physical point of view, even at the
macroscopic level. To clarify this statement we take into account two states ∣φ⟩
and ∣ψ⟩ corresponding to an almost rigid body located, at t = 0, in the same
position but with macroscopically different momenta, let us say P = 0 and P ,
respectively. Even though the two states are physically quite different, their
distance at t = 0 is equal to zero. However, if one waits up to the time in
which the state ∣ψ⟩ has moved away from ∣φ⟩, the “distance” ∆(∣φ(t)⟩ , ∣ψ(t)⟩)
becomes large and the two states are no longer equivalent. We will discuss the
now outlined problem in great details in the next section.

Before concluding this part it is important to analyze the case of two states ∣ψ⟩
and ∣ψT ⟩ such that ∣ψ⟩ corresponds to an almost rigid body with a center-of-
mass wavefunction which is almost perfectly localized while ∣ψT ⟩ corresponds to
the same body with a “tail” in a distant region. As we have already discussed,
the CSL dynamics allows the existence of this latter type of states; however it
tends to depress more and more the tail in such a way as to make the mass in
the distant region extremely close to zero (much less than one nucleon mass) in
very short times. As a consequence, according to the topology that we propose
the two states ∣ψ⟩ and ∣ψT ⟩ turn out to be identical. This is quite natural. In
fact, in the same way in which taking away a single particle from a macroscopic
system would be accepted as being totally irrelevant from a macroscopic point
of view, when one chooses, as we do, to describe reality in terms of mass den-
sity, one must consider as equivalent situations in which their difference derives
entirely from the location of a small fraction of the mass of a nucleon in the
whole universe. We remark that ∣ψ⟩ and ∣ψT ⟩ are extremely close to each other
also in the standard Hilbert space topology.
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10.5 Deepening the proposed interpretation

We consider it appropriate to devote this subsection to discuss in great generality
the problem of giving an acceptable description of the world within a given
theory. Usually one tries to do so by resorting to the notion of observable.
As repeatedly remarked, such an approach meets, within standard quantum
mechanics, serious difficulties since the formal structure of the theory allows
only probabilistic statements about measurement outcomes conditional under
the measurement being performed. In brief, the theory deals with what we find
not with what is. This is why Bell has suggested [124] replacing the notion of
observable with the one of “beable”, from the verb to be, to exist. Obviously,
the identification of the beables, of what is real, requires the identification of
appropriate formal ingredients of the theory we are dealing with.

10.5.1 The case of the PilotWave theory

To clarify our point, it turns out to be useful to analyze the de Broglie-Bohm
Pilot-Wave theory. It describes the world in terms of the wavefunction and of
the actual positions of the particles of our “universe”, each of which follows a
definite trajectory. Therefore, in such a theory it is quite natural to consider
as the beables the positions (which are the local elements accounting for reality
at a given instant) and the wavefunction (which is nonlocal and determines
uniquely the evolution of the positions). It is important to remember that,
within the theory under discussion, all other “observables” (in particular, e.g.,
the spin variables) turn out, in general, to be contextual. This simply means
that the truth value of a statement about the outcome of the measurement
of one such observable (which in turn is simply a statement about the future
positions of some particles) may in general depend (even nonlocally) on the
overall context. This obviously implies that the attribution of a value to the
considered observable cannot be thought as corresponding, in general, to an
“objective property” of the system.

Before coming to discuss the problem of the beables within CSL we would like
to call attention to the fact that [87] within the Pilot-Wave theory, one can
construct, from the microscopic variables r, macroscopic variables R including
pointer positions, images on photographic plates, etc. Obviously this requires
some fuzziness, but such a limitation is not relevant for a consistent account of
reality. Thus, in this theory we are led to suppose that it is from the r, rather
than from the wavefunction, that the observables we use to describe reality are
constructed. The positions are also the natural candidates to be used in defining
a psycho-physical parallelism, if we want to go so far. An appropriate way to
express the now discussed features of the theory derives from denoting, as Bell
proposed, as “exposed variables” the positions of particles and as a “hidden
variable” the wave function ψ.
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10.5.2 The case of CSL

Let us now perform a corresponding analysis for the dynamical reduction mod-
els. Since, as should be clear from the discussion given in the previous subsec-
tion, the most relevant feature of the modified dynamics is that of suppressing
linear superpositions corresponding to different mass distributions, one is actu-
ally led to identify as the local beables of the theory the mass density function
M (r, t) at a given time. Obviously, also within CSL just as for the Pilot-Wave
the wavefunction plays a fundamental role for the evolution so that it too ac-
quires the status of a nonlocal beable.

It has to be remarked that in the interpretation we are proposing, even though
the wavefunction is considered as one of the beables of the theory, the “exposed
variables” are the values of the mass density function at different points. It is
then natural to relate to them, as we have done in the previous section, the
concept of similarity or difference between universes.

In doing so one is led to consider equivalent, at a fixed time t, two “universes”
which are almost identical in the exposed beables (i.e. they satisfy the condi-
tion (10.18)). Obviously the fact that the above condition holds at t does by no
means imply that the two universes will remain equivalent as time elapses. It
has to be stressed that the just mentioned feature is not specific of the model
and the interpretation we are proposing, but is quite general and occurs when-
ever one tries to make precise the idea of “similarity” of physical situations. In
fact within all theories we know, and independently of the variables we choose
to use to define nearness, situations can occur for which nearby states at a given
time can evolve in extremely short times into distant states.

To focus on this important fact we can consider even classical mechanics with
the assumption that both positions and momenta are the beables of the theory.
57 As it is obvious, even if such an attitude is taken there are at least two rea-
sons for which nearby points in phase space can rapidly evolve into distant ones.
First of all one must take into account that many systems exhibit dynamical
instability so that the distance between “trajectories” grows exponentially with
time. Secondly, even for a “dynamically standard” ituation one can consider
cases in which just the present conditions can give rise to completely different
evolutions depending on some extremely small difference in the whole universe.
Suppose in fact you consider two universes A, Ã differing only in the direction
of propagation of a single particle (such universes have to be considered as very
close in any sensible objective interpretation). If the trajectory of the consid-
ered particle in Ã is such that in a very small time it triggers e.g., the discharge
of a Geiger counter, which in turn gives rise to some relevant macroscopic ef-
fect, while in A it does not, the evolved universes soon become quite different.

57Obviously, within classical mechanics any function of these variables can be considered as
a beable, but since all information about the system can be derived from the positions and
the momenta, consideration of such variables is sufficient.
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An analogous argument obviously holds for standard quantum mechanics, the
Pilot-Wave theory and, as previously remarked, for CSL too.

It is appropriate to stress that, in a sense, the above considerations favor taking
a position about reality which can be described in the following terms. One con-
siders the sensible “beables” or its theory at a fixed time and one distinguishes
similar or different universes on the basis of such a snapshot. Obviously, one
must then also pay attention to the way in which the beables evolve, i.e. to
compare snapshots at different times.58

10.5.3 The role of mass density

The previous analysis has shown that the proposed interpretation (mass density
= exposed beable) can be consistently taken within CSL. Obviously it gives an
absolutely prominent role to the mass in accordance with the fact that mass is
the handle by which the reduction mechanism induces macro-objectification.

Other features of natural phenomena, such as the effects related to the charge
are, in a sense, less fundamental since to become objective they need mass as
a support. To clarify this point we remark that one could consider, e.g., a con-
denser with two plates of about 1 cm2, at a distance of 1 cm. The plates are
supposed to be perfectly rigid and in perfectly defined positions.59 Let us also
consider the following gedanken situation: the condenser can be prepared in the
superposition of two states, ∣C0⟩ and ∣Cc⟩, the first corresponding to its plates
being neutral, the second to its plates having being charged by displacing 1012

electrons from one plate to the other. We remark that for the two states the
decoupling rate (recall that electrons, which are very light, are quite ineffective
in suppressing superpositions) is about 10−8 s−1, i.e., hat the superposition can
persist for more than 10 years. The electric field within the plates is zero or
about 108 V /m in the two states, respectively. Suppose now we consider a small
sphere of radius 10−5 cm and density 10−2 g/cm3 carrying a charge correspond-
ing to 104 electrons. We send such a test particle through the plates of the
condenser. What happens? The final state is the entangled state

∣ψ(t)⟩ = 1√
2
[∣C0⟩ ∣undeflected⟩ + ∣Cc⟩ ∣deflected⟩] (10.20)

the location of the particle in the state ∣undeflected⟩ and ∣deflected⟩ differing
by macroscopic amounts. According to the CSL model of Section 8.6, one can
easily evaluate the rate of suppression of the superposition. As already remarked

58From this point of view, one could state that also the classical world would be most
appropriately described in terms of positions at fixed time.

59This assumption must be made because we are just discussing the role of the charge with
respect to the one of the mass within the model. If one would allow deformations and/or
displacements of the plates, once more the ensuing reduction would be due to the mass and
not directly to the charge density difference in states ∣C0⟩ and ∣Cc⟩.

121



the contribution of the electrons on the plates is totally negligible so that the de-
coherence is governed mainly by the mass of the particle. Then, with the above
choices for the radius and the density of the test particle, the superposition will
persist for more than 1min. In spite of the fact that macroscopically relevant
forces enter into play no reduction takes place for such a time interval. On the
contrary, if we put the same charge on a particle of normal density and of radius
10−3 cm, we see that the macroscopic force acting on it when the condenser is in
the state ∣Cc⟩ leads to a displacement of the order of its radius in about 10−5 s
and that within the same time the reducing effect of the dynamics suppresses
one of the two terms of the superposition.

This example is quite enlightening since it shows that superpositions of charge
distributions generating different forces which are relevant at the macroscopic
level, are not suppressed unless they induce displacements of masses. It goes
without saying that any attempt to relate reduction to charge is doomed to fail
since it will not suppress superpositions of macroscopically different but electri-
cally neutral mass distributions.

We hope to have made clear, with this perhaps tedious analysis, the real signif-
icance of treating the mass function as the “exposed beables” allowing one to
describe reality.

11. The “tail problem” in dynamical reduction
models

Dynamical reduction models have been repeatedly criticized because the reduc-
ing dynamics does not lead, in the case of macroscopic systems, to perfectly
localized wavefunctions, i.e., to wavefunctions having a compact support corre-
sponding to a small (with respect to the characteristic length 1/√α) volume of
space. On the contrary, wavefunctions describing macroscopic systems always
have (very small, as we shall see) “tails” spreading out to infinity.

Due to this feature, many authors [125128,45] have suggested that dynamical
reduction models do not guarantee the emergence of a objective (and classical)
world at the macroscopic level, a world in which macroscopic systems occupy a
precise position in space.

In the present section we will show why the “tail problem” is not a problem
within QMSL and CSL. After a brief introduction (Section 11.1), in Section
11.2 we list the criticisms which have been put forward by the above quoted au-
thors. In Section 11.3 we give a quantitative estimate of the order of magnitude
of the tails, in the case of a macroscopic system, showing that they represent
an extremely small portion of the wavefunction.

In Sections 11.4 and 11.5 we reply to the criticisms, by means of the mass in-
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terpretation introduced in the previous section: the tails of the wavefunction do
not forbid the (classical) description of macroscopic systems. However, this does
not mean that the tails do not have any physical relevance, as we will prove in
Section 11.6. We conclude the section with a classical analog of the tail problem
(Section 11.7).

11.1 Historical remarks

Bell vividly described Schrödinger’s trials to give a consistent interpretation of
the wave- function [2]:

In the beginning Schrödinger tried to interpret his wavefunction as
giving somehow the density of stuff of which the world is made. He
tried to think of an electron as represented by a wavepacket ... a
wavefunction appreciably different from zero only over a small region
in space. The extension of that region he thought of as the actual
size of the electron ... his electron was a bit fuzzy. At first he thought
that small wavepackets, evolving according to the Schrödinger equa-
tion, would remain small. But that was wrong. Wavepackets diffuse,
and with the passage of time become indefinitely extended, according
to the Schrödinger equation. But however far the wavefunction has
extended, the reaction of a detector to an electron remains spotty.
So Schrödinger’s realistic interpretation of his wavefunction did not
survive.

Then came the Born interpretation. The wavefunction gives not the
density of stuff, but gives rather (on squaring its modulus) the den-
sity of probability. Probability of what, exactly? Not of the electron
being there, but of the electron being found there, if its position is
“measured”.

Why this aversion to “being” and insistence on “finding”? The
founding fathers were unable to form a clear picture of things on
the remote atomic scale. They became very aware of the interven-
ing apparatus, and of the need for a “classical” base from which to
intervene on the quantum system. And so the shifty split.

Some remarks having a direct connection with the central problem of the present
section emerge quite naturally. Schrödinger too, just as von Neumann, was
certainly aware of the fact that the electron wavefunction cannot have compact
support, according to his equation. In spite of that he was quite keen to interpret
a well localized wavefunction as describing a “bit fuzzy” electron, or better
the “stuff” of which the electron is made (its mass and charge density). The
compelling reasons for abandoning such a position did not come, as we all know,
from the fact that even extremely well localized wavefunctions have tails, but, as
appropriately stressed by Bell, from the fact that well concentrated wavepackets
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become appreciably different from zero over macroscopic regions in extremely
short times. Thus, Schrödinger’s realistic position had to be abandoned, to be
replaced by the probabilistic Born interpretation.

There is no doubt that Schrödinger too was perfectly aware of the fact that
the integral over the whole space of the squared modulus of the wavefunction
does not change with time, as a very consequence of Schrödinger’s equation.
Consequently he certainly had perfectly clear that by adopting the “density of
stuff” interpretation he had to accept also that, in spite of the fact that his
electron was there (in the small region in space in which its wavefunction was
concentrated), a negligible part of its mass (or charge) would not be confined
to that region. The extremely relevant difference of the model theories we are
analyzing here with the case of Schrödinger, however, derives from the fact that
superpositions of functions of macro-systems, appreciably different from zero
over macroscopic distances, are dynamically forbidden within QMSL, contrary
to Schrödinger’s case.

11.2 Criticisms about the “tail problem”

As the reader has certainly grasped, the localization of the wavefunction does
not lead to an infinitely precise localization of the pointer. Actually, after a
localization the wavefunction (like all conceivable wavefunctions, both within
standard Quantum Mechanics and CSL) unavoidably exhibits tails extending
over the whole space. In fact, since ∣ψ⟩ has a noncompact support in the position
representation, multiplying it times a Gaussian leaves it different from zero
everywhere 60 (recall the example at the end of Section 6.1). This fact is at the
basis of the uneasiness of various people who naively transfer the ontology of
standard quantum mechanics to the new theory. The first criticism of this kind
has been formulated by Shimony [125] who has put forward many desiderata
for a modified quantum dynamics, one of them being that:

If a stochastic dynamical theory is used to account for the outcome of
a measurement, it should not permit excessive indefiniteness of the
outcome, where “excessive” is defined by consideration of sensory
discrimination. This desideratum tolerates outcomes in which the
apparatus variable does not have a sharp value, but it does not
tolerate “tails” which are so broad that different parts of the range
of the variable can be discriminated by the senses, even if very low
probability amplitude is assigned to the tail.

It goes without saying that the perspective chosen by Shimony with respect to
the dynamical reduction models is entirely based on the standard probabilistic
interpretation of quantum mechanics (even if very low probability amplitude is

60We stress that it would have been totally useless to make the localization function of
compact support, since the kinetic energy part of the hamiltonian would immediately make
the wavefunction different from zero everywhere.
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assigned to the tail) about the possible ’outcomes’ of a measurement process.

A quite similar criticism has been raised by Albert and Loewer [45]:

Our worry is that GRW collapses almost never produce definite
outcomes even when outcomes are recorded in distinct positions of
macroscopically many particles. The reason is that a GRW jump
does not literally produce a collapse into an eigenstate of position.
A GRW collapse yields one of the states with tails in which almost
all the amplitude is concentrated in the region around one of the
two components but there is nonzero, though very small, amplitude
associated with other regions. ... This means that the post collapse
state is not an eigenstate of position and so does not actually assign
a definite position to the pointer.

Once more we stress the adherence of the authors to the standard formalism:
the only variables which have values are those of which the state vector is an
eigenstate. One should also note that the request that the state vector be an
eigenstate of position is very peculiar: the localization mechanism should map
a state of the Hilbert space onto a non-normalizable state and, at any rate, such
a state would immediately spread everywhere, losing what is considered its fun-
damental feature of assigning a definite position to the pointer. Subsequently,
the same authors [45] have suggested that the GRW proposal could be saved
provided one would be keen to release the eigenvector-eigenvalue link. More
about this in what follows.

The tail problem leads in a straightforward way to the enumeration anomaly
which is the subject of the papers of Lewis [126] and Clifton and Monton
[127,128] (who use the term ’conjunction introduction’ instead of ’enumera-
tion’). The idea is quite simple. Lewis considers a macroscopic marble and a
very large box, he denotes the normalized eigenstates of the marble being inside
and outside the box as ∣in⟩ and ∣out⟩, respectively, and he remarks that starting
from a state:

1√
2
(∣in⟩ + ∣out⟩) (11.1)

the GRW dynamics will transform it, almost immediately, into a state like

a ∣in⟩ + b ∣out⟩ (11.2)

or into a state like
b ∣in⟩ + a ∣out⟩ (11.3)

where 1 > ∣a∣2 >> ∣b∣2 > 0 (∣a∣2 + ∣b∣2 = 1). Lewis recalls that the GRW theory
requires us to interpret each one of these states as one in which the marble is
inside (in case (11.2)) or outside (in case (11.3)) the box.61 Then he considers

61We point out that, with reference to the above states, it would have been much more
appropriate to assert that they represent a marble which is located in the precise region
where its wavefunction is sharply peaked. Obviously that region is inside the box for state
(11.2) and outside for state (11.3).
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a system of n non interacting marbles, each in a state like (11.2):

∣Ψ⟩all = (a ∣in⟩1 + b ∣out⟩1) ⊗ (a ∣in⟩2 + b ∣out⟩2) ⊗⋯⊗ (a ∣in⟩n + b ∣out⟩n) (11.4)

The counting anomaly is then easily derived: for a state like (11.4) the GRW
theory allows us to claim that: ’particle 1 is in the box’, ’particle 2 is in the
box’, ...., ’particle n is in the box’ but for the same state the probability that all
marbles be found in the box is ∣a∣2n, which for n sufficiently large, can be made
arbitrarily small.

Clifton and Monton [127] agree, in principle, with Lewis, and they also prove
that the suggestion of releasing the eigenvalue-eigenvector link put forward by
Albert and Loewer [45] does not allow one to overcome the difficulty. In fact,
what Albert and Loewer propose is to weaken the eigenvalue-eigenvector link
for position according to a rule they call PosR:

’Particle x is in region R’ if and only if the proportion of the to-
tal squared amplitude of x’s wavefunction which is associated with
points in region R is greater or equal to 1 − p,

with an appropriately chosen (and small) p. Clifton and Monton suggest, first
of all, to generalize PosR for a multi-particle system resorting to what they call
the fuzzy link criterion:

’Particle x lies in region Rx and y lies in Ry and z lies in Rz
...’ if and only if the proportion of the total squared amplitude
of ψ(t, r1, ...., rN) that is associated with points in Rx ×Ry ×Rz ....
is greater than or equal to 1 − p.

It should be clear that, while according to the fuzzy link criterion for a state like
(11.4) the propositions Ai ≡ ’particle i is in the box’ are true for any i, the con-
junction A1 ∧A2 ∧⋯∧An is false. In other words, the proposal entails a failure
of conjunction introduction. Having remarked this, the above authors feel the
necessity of pointing out that the tail problem, even though present, can never
become manifest within the GRW theory. This is proved by operationalizing
the procedure of counting marbles, i.e., by considering apparata aimed to detect
whether particle 1 is in the box, particle 2 is in the box and so on, and another
apparatus aimed to detect how many particles there are in the box and com-
paring their outcomes. Then, by some assumptions (which seem to us useless
and inappropriate) one shows that a situation resembling the one of the von
Neumann chain emerges: in spite of the different possible final outcomes there
is always consistency between the individual and global detections.

To be more precise we recall the reasoning of reference [127]. It goes as follows:

An ideal measurement of whether marble 1 is in the box would cor-
relate orthogonal states of a macroscopic measuring apparatus to
the ∣in⟩ and ∣out⟩ states of the marble.
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Obviously one has to resort to n such apparatuses. The evolution leads to the
state:

(a ∣in⟩1 ∣′in′⟩M1 + ba ∣out⟩1 ∣′out′⟩M1 ⊗⋯⊗ (a ∣in⟩n ∣′in′⟩Mn + ba ∣out⟩n ∣′out′⟩Mn

(11.5)
where the states ∣′in′⟩Mk and ∣′out′⟩Mk are eigenstates of the observable: ’the
kth apparatus has recorded that the marble is inside (outside) the box’. At this
stage the authors need a further apparatus M (again working ideally) to see
how many marbles are in the box. A new step in the chain is necessary and one
ends up with an entangled state of the kind:

∣ψ⟩count =
n

∑
k=0

an−kbk ∣φ(n − k, in;k, out)⟩ ∣′O = n − k′⟩ (11.6)

where the last factor refers to the eigenstate of M corresponding to the eigen-
value ’n− k particles are inside the box’, and the states ∣φ(n − k, in;k, out)⟩ are
(in general) linear superpositions of states in which there n − k factors of the
type ∣in⟩j ∣′in′⟩Mj and k factors ∣out⟩s ∣′out′⟩Ms. And here comes the conclusion:

The state ∣ψ⟩count is highly unstable given the GRW dynamics, ...
since its various terms differ as to the location of the pointer on M ’s
dial that registers the value of O.

Moreover, even if the state collapses to a term ∣φ(n − k, in;k, out)⟩ ∣′O = n − k′⟩,
since the terms of the first factor differ as to the location of at least one marble
and since the marbles and the apparata Mr are macroscopic, then one would
end up, e.g., with the state:

(∣out⟩1 ∣′out′⟩M1 ∣in⟩2 ∣′in′⟩M2⋯∣in⟩n ∣′in′⟩Mn) ∣
′O = n − 1′⟩ (11.7)

in which the records of the various individual apparata Ms agree with the one
of O. Thus, the counting anomaly cannot become manifest.

In what follows we will put forward precise motivations showing that this oper-
ationalization process is useless. But we want to call immediately the attention
of the reader to an important fact. Suppose we consider, for simplicity, only
two terms of one of the states ∣φ(n − k, in;k, out)⟩, e.g.,:

∣in⟩1 ∣′in′⟩M1 ∣out⟩2 ∣′out′⟩M2 ....... + ∣out⟩1 ∣′out′⟩M1 ∣in⟩2 ∣′in′⟩M2 (11.8)

and recall that these authors denote as ∣in⟩1 the part of the GRW Gaussian-like
wave-function lying inside the box and as ∣out⟩1 the tail outside the box. Suppose
particle 1 suffers a localization within the box. In configuration space one sees
immediately that multiplying the wavefunction corresponding to (11.8) times
a Gaussian centered within the box near the point at which the wavefunction
is peaked and normalizing the resulting state vector makes the second of the
two above terms of much smaller norm than the first, but in no way suppresses
it. Obviously the same argument applies for any localization of the pointers
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of the individual apparata Mi and M . So the state will never take precisely
to form (11.7). The authors have implicitly assumed that at some level the
standard quantum mechanical reduction (and not the spontaneous localization
characterizing the GRW theory) takes place.62

11.3 A quantitative analysis

Let us consider a macroscopic object which is in an “almost” eigenstate of the
mass operators Mi (we consider once more the discretized version of CSL) but
which however have tails. Let ∣ψ⟩ be the normalized state

∣ψ⟩ = α ∣ψAN ⟩ + β ∣ψBN ⟩ (11.9)

where ∣ψAN ⟩ and ∣ψBN ⟩ are the states appearing in (10.3) and ∣β∣2 is extremely
close to zero. In region A we have

Mi(A) ≃ ∣α∣2nm0 , Vi(A) ≃ ∣α∣2∣β∣2n2m2
0 and Ri(A) ≃ ∣β∣−2 << 1 (11.10)

so that the masses Mi(A) are accessible and practically equal to those corre-

sponding to the state ∣ψAN ⟩. In region B we have

Mi(B) ≃ ∣β∣2nm0 , Vi(B) ≃ ∣β∣2∣β∣2n2m2
0 and Ri(A) ≃ ∣β∣−2 >> 1 (11.11)

hence the masses Mi(B) are not accessible.

Our aim is to make a quantitative estimate of Ri(A) nd of the total mass in
region B. To this purpose (as it is evident from Eqs. (11.10) and (11.11))
one has to explicitly evaluate the order of magnitude of the parameter ∣β∣2
implied by the reducing dynamics. In order to do this, to cover also the case
of nonhomogeneous bodies, we consider again two far apart regions A and B,
each containing K cells and a system of nucleons which at time t = 0 is in a
(normalized) state of the type (the overall phase factor being irrelevant)

∣ψ⟩ = α(0) ∣n1(A), ....., nK(A), ....,0, ....,0⟩ + β(0) ∣0, ....,0, ...., n1(B), ..., nK(B)⟩
(11.12)

where α(0) and β(0) are comparable positive numbers and ni(A,B) represents
the occupation number in the ith cell in regions A and B respectively.63 We

62In [128], Clifton and Monton have tried to de-emphasize their previous assertions by
stating: In our exposition we were simply dividing the collapse process into different stages
for ease of exposition. Certainly we were aware that the marbles themselves will be almost
continually subject to GRW collapses. Our answer is quite simple: first, why not confine the
analysis to the marbles? What is the purpose of introducing the apparata? Secondly, we
invite the reader to introduce in the game the appropriate description of the whole process by
assuming that, in turn, the registration of the outcome is given by the location of a pointer
whose wavefunction unavoidably has tails. He will easily realize that there is no advantage in
operationalizing the process of counting marbles: he will find himself back to square one.

63We disregard the cells which are not contained in regions A and B since they are irrelevant
for the following discussion.
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then study the ensemble of systems brought in by the reducing dynamics after a
time interval of the order of, e.g., 10−2 s (the reason for this choice will become
clear in what follows).

According to the CSL model of Section 8.6, after such a time interval the nor-
malized state corresponding to a definite realization of the stochastic potential
would be of the type

∣ψB(t)⟩ = αB(t) ∣n1(A), ....., nK(A), ....,0, ....,0⟩+βB(t) ∣0, ....,0, ...., n1(B), ..., nK(B)⟩
(11.13)

where αB(t) and βB(t) as positive numbers. The ensemble of systems corre-
sponding to all possible realizations of the stochastic potential would be de-
scribed by the statistical operator

ρ(t) = ∫ dB1.....dB2KPCook[B(t)] ∣ψB(t)⟩ ⟨ψB(t)∣ (11.14)

satisfying64

⟨n1(A), ....., nK(A), ....,0, ....,0∣ρ(t) ∣0, ....,0, ...., n1(B), ..., nK(B)⟩

= e−λt∑
K
i n

2
i ⟨n1(A), ....., nK(A), ....,0, ....,0∣ρ(0) ∣0, ....,0, ...., n1(B), ..., nK(B)⟩

(11.15)

with λt ≃ 10−18. From (11.15) we see that the matrix elements of ρ(t) between
the considered states are exponentially damped by a factor which is proportional
to ∑Ki n2

i .

In the following we consider only situations in which∑Ki n2
i turns out to be much

greater than 1018, so that in the considered time interval of 10−2 s the linear
superposition (11.12) is actually suppressed, i.e., either αB(t) or βB(t) of Eq.
(11.13) becomes very small. The states at time t are then typical states with
“tails”, i.e. states whose existence is considered as a drawback of the theory by
the authors of Refs. [125128,45]. Eq. (11.15) implies (taking into account Eqs.
(11.13) and (11.14)) that

∫ dB1.....dB2KPCook[B(t)]αB(t)βB(t) = αB(0)βB(0)e−λt∑
K
i n

2
i (11.16)

From (11.16), since αB(t) and βB(t) re positive, one can easily deduce that the
probability of occurrence of realizations of the stochastic potential which would

lead to a value for the product αB(t)βB(t) much greater than e−λt∑
K
i n

2
i must

be extremely small. Therefore, one can state that in practically all cases

αB(t)βB(t) ≃ e−λt∑
K
i n

2
i (11.17)

64Even though we are using the CSL model relating decoherence to the mass, the formulas
of this subsection coincide with the analogous ones of standard CSL. This is due to the fact
that we deal only with nucleons and that we have chosen the coupling to the noise to be
governed by the ratio γ/m2

0, taking the standard CSL value.
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If we assume that αB(t) ≃ 1, so that we consider an individual case for which
the reduction leads to the state corresponding to the nucleons being in region A,

∣βB(t)∣2 must be of the order of e−λt∑
K
i n

2
i . On the basis of this fact we can then

estimate the value of ∣β∣2, e.g., for a homogeneous marble of normal density (so
that ni = n ≃ 109 is the number of particles per cell) and of size 1dm3 (so that
K ≃ 1018 is the number of cells in regions A and B) getting a figure of the order

of e−1018

. Correspondingly, we have

Ri(A) ≃ e−1018

(11.18)

while for the total mass in region B we get the value

MB ≃ e−1018

1027m0 (11.19)

Eq. (11.18) shows that the mass in region A is “accessible” to an extremely
high degree of accuracy and Eq. (11.19) shows that the total mass in region B
is incredibly much smaller than the mass of a nucleon. If we consider a situation
in which K or n are greater than those of the example we have discussed now,
we find values for Ri(A) and MB which are even smaller65 than those of Eqs.
(11.18) and (11.19). This fact by itself (see also the analysis of the following
subsection) shows that the states with “tails” allowed by CSL cannot give rise
to difficulties for the proposed interpretation of the theory. For example, if we
would perform the usual gedanken experiment with the test particle it would
be deflected just as if in region A there would be the “classical” mass Knm0.

11.4 Mass density interpretation and marbles

Before replying to the criticisms previously mentioned [125128,45], and in the
light of the analysis of the previous section, we call the reader’s attention to
the following properties of the mass density interpretation within dynamical
reduction models which are relevant for the discussion about the “tail problem”:

1. In the case of a marble the mass density is accessible just where the marble
is located. Any test devised to ’reveal’ the mass density distribution will
agree with the statements which make reference to the accessible mass den-
sity. One can easily evaluate the contribution of the tails66 to any possible
gravitational test and conclude that there would be no physically testable
difference whatsoever between the case of a marble whose wavefunction
is a Gaussian of width 10−11 cm, and one for which its wavefunction has
compact support.

2. This should make clear why we claim that there is no need to operational-
ize the process of counting marbles. We already know that the regime

65Note that this holds also for objects like a galaxy or a neutron star.
66In the previous subsection it has been proved that the integral of the mass density extended

to all space exception made for the region in which the Gaussian is centered amounts to an
incredibly small fraction of the mass of a nucleon.
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condition induced by the GRW dynamics corresponds precisely to the
statement that the particles are where they are, i.e., in those regions in
which there is an accessible mass density, and that any test will confirm
such statements.

3. It is important to stress a point which seems to have been underestimated
in [127,128], i.e., the crucial role played by the fact that the GRW theory
leads to precise regions in which the mass is accessible. For this reason
it does not seem a good choice to have schematized the ’tail problem’ by
resorting to the states ∣in⟩ and ∣out⟩ (even though they are those which
matter for the counting anomaly). If the dynamics would allow a marble
in the box to be in the superposition of two states corresponding to two
Gaussians, or even (at a certain instant) to two wavefunctions of compa-
rable norm with disjoint and far apart (let us say 1m) compact supports,
the associated mass density function would not be accessible anywhere
in ordinary space, and any talk about the location of the marble would
be devoid of any meaning. We can speak of the position of a marble just
because there is a region coinciding (practically) with its location in which
there is an accessible mass density. If there is no such region, to be al-
lowed to say something about where the marble is one should resort to
’a measurement’ and to some recipe leading to an accessible mass den-
sity of the pointer of the measuring device. But fortunately, within the
GRW theory, when one reaches the macroscopic level, there is no need
to invoke observables or measurement processes. This argument shows
also how inappropriate it is to make reference, as is repeatedly done in
Refs. [127,128], to microscopic systems replacing the marbles: for such
systems there is no mechanism forbidding the spread of the wavefunction
and consequently no talk about their location has any meaning.67

As already mentioned, Clifton and Monton have pointed out that the mass
density interpretation requires a divorce of mass talk from position talk. We
believe that what they want to stress is that since the integral over the whole
space of the operator M(r) gives the total mass operator of all particles in
the universe, and since the GRW theory does not contemplate creation and/or
annihilation processes, the mass associated to the region in which it is accessible
(i.e., in which, according to our views, the marble is located) cannot coincide
with the total mass of the marble. This is true, but, as we have already remarked
this divorce amounts to an extremely small fraction of the mass of a nucleon
and fits perfectly the ontology of a theory which allows microsystems [122]:

to enjoy the cloudiness of waves, while allowing tables and chairs,

67Obviously, also the mass density of an elementary particle can be accessible, if its wave-
function is extremely well peaked in a region of, let us say, less than 10−6 cm. But as we all
know, the hamiltonian evolution will make it unacessible almost immediately due (not to the
tails) but to the extremely rapid increase of its spread without any localization balancing the
hamiltonian spread. In our opinion this is the appropriate way to read the statement of Bell:
even for one particle I think one would have problems with the mass density and makes clear
while, at any rate, one cannot apply it to the macroscopic case.
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and ourselves, and black marks on photographs, to be rather def-
initely in one place rather than another, and to be described in
classical terms.

We do not want to be misunderstood. We are not playing once more with
the possibility of locating the split between micro and macro, reversible and
irreversible, quantum and classical, where we consider it appropriate for our
purposes. To clarify this point we can consider a state of (the particles of) the
marble in which, for some physical interaction, a portion of 10−15 cm3 of the
marble has been separated from the marble itself. We stress that, within the
GRW theory with the proposed interpretation this situation is ’objectively’ dif-
ferent from that of an unsplit marble and can be perfectly described in classical
terms. In particular, the superposition of a state of an ’unbroken marble’ and
the one of the marble which ’has lost one piece’ will not last for the percep-
tion times, and, if reduction takes place to the second state, the mass density
will turn out to be accessible just where the marble and where its fragment are
located. But if, instead of a fragment, the marble has been deprived of some
elementary particles, then, while the mass is still accessible where the marble is,
it is no more so for the region over which the wavefunctions of the lost particles
extends, and this precisely for the reason that their wavefunction spread almost
instantaneously. We think that one has to keep clearly in mind this situation to
understand why the remarks of Clifton and Monton about the location of the
marble and the mass density are not cogent (more about this later).

11.5 Proof of the internal consistency of the mass
density interpretation: reply to criticisms

From the previous analysis it should be clear why we consider not cogent the
criticisms raised by Shimony, Albert and Loewer and Lewis, and why we con-
sider superfluous and inappropriate the suggestion by Clifton and Monton to
operazionalize the counting process (see also [129131]). Let us be more specific.

1. The tail problem is not a problem, it simply requires us to abandon the
idea that the presence of the tail implies that there is a certain probability
that a measurement gives the outcome: ’the marble has been found in the
region of the tail’. In the GRW theory there are no measurements. If we
are interested in testing the ’properties’ of a microsystem then we have
to invent a device correlating its different microstates to different regions
in which the mass density of the pointer becomes accessible. From the
knowledge of such an accessible mass density we can infer ’the outcome of
the measurement’. If the object we are interested in is already macroscopic
then there is nothing to measure about its position: the object is where
the associated mass density is accessible. Measuring where the object is
becomes then, in a sense, tautological and has only a practical interest if,
e.g., we have no access to the object. In such a case the so called ’mea-
surement procedure’ consists simply in establishing a correlation between
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the region where the mass density of the measured object is accessible and
the region in which the mass density of the pointer is accessible, period.

2. According to the remarks under (1), in state (11.4) considered by Lewis
the mass density is accessible only inside the box, since one can easily
check that the only points in space where the mass is accessible lie inside
it, while outside the box there are no points where this occurs. This, in
turn, implies that in such a state any test aimed to ascertain where the
marble is will almost always give as a result ’the marble is inside the box’.
We stress that we have added the specification ’almost’, not because the
regions in which the mass density is accessible are (due to the tails) to
some extent imprecise in a state like (11.4), but to take into consideration
that any physical test requires a certain time and that, when the number
of marbles increases beyond any limit, the peculiar rapid variations of
the centers of the Gaussians which define the accessibility regions could
lead us to detect a particle outside the box, just because it can make
a sudden enormous jump during the test process. But this is a story
which has nothing to do with the enumeration principle and with the
problem of the tails: it originates entirely from the dynamical structure
of the theory. At any rate, as we have already argued, even when the
number of marbles which one takes into account becomes enormous, at
any given time one will always be dealing with precisely n Gaussians
peaked around n precise positions. In brief: there is no probability of
finding marbles in different places than those where their mass density
is accessible and so there is no counting anomaly. The statement that
the probability of finding all the particles within the box is ∣a∣2n derives
entirely from adopting the standard probabilistic interpretation and the
standard position about measurements.

3. For the above reasons, there is also no need to operationalize the counting
process: such a procedure, if developed rigorously, will simply lead to more
and more macro-systems in states which are characterized by an accessi-
ble mass density in the regions in which the theory allows us to say they
actually are, plus more and more tails spread out over the whole universe.
These tails require a divorce of position talk from mass talk, but contrary
to what the remarks of Ref. [128] seem to suggest, this divorce is abso-
lutely negligible and experimentally undetectable. In fact even though one
could naively argue that when the marbles become more and more numer-
ous the mass density in the tails becomes more and more relevant (and
might amount to the mass of even 1000 marbles) one cannot forget that
increasing the number of marbles increases correspondingly their gravita-
tional effects (masking more and more the gravitational contribution of
the tails) and that the mass density of the tails is never accessible. Stated
in rather brute terms: the tails cannot in any way conspire to produce an
accessible mass density which can be identified with ’a marble’. Thus, as-
serting that in a state like (11.4) one could legitimately claim that n−1000
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marbles are in the box is completely nonsensical.68 The analogy with a
classical situation we will present in the last subsection will allow us to
deepen this point.

4. Clifton and Monton claim that the same arguments which “serve to mo-
tivate the mass density criterion, also serve to motivate speaking of a
particle (or particles) as being located in a region whenever its wavefunc-
tion assigns high probability to its being detected in that region; that is
they also motivate the fuzzy link. Unfortunately, [Bassi and Ghirardi]
never say why the fuzzy link is ’inappropriate’ and not a ’valid’ way to
understand reduction theories”.

It is easy to find in this very sentence the reasons for the inappropriateness
of the Clifton and Monton analysis: the authors use the terms probability
and being detected which shows that they are still bound to the orthodox
interpretation. But the whole sentence reveals that they have not grasped
the real meaning of the idea of accessibility: if a superposition of two states
of a marble with comparable weights and both with compact support en-
tirely within the box but separated by an appreciable distance would be
possible, then the mass would not be accessible. It is just because of a
lack of understanding of this point that these authors feel comfortable in
replacing a marble with a particle, as the above sentence shows. But this
is totally inappropriate and this is why the fuzzy link is inappropriate. In
brief: the main reasons to reject the fuzzy-link are that it puts exactly
on the same ground micro and macro-systems and it does not take at all
into account the most relevant feature of the GRW theory, i.e., that what
the dynamical evolution makes accessible is precisely and solely the mass
density at the appropriate macro level.

68With reference to this point we would like to point out that the same problem of the
relations between position and mass occurs even in Classical Mechanics and, in general, in
??eld theories. In fact the equivalence between mass and energy implies that the mass of a
classical object is not given only by the masses of its constituents, but also by the energy of
the fields which keep the constituents together. And such fields, of course, are spread out in
space. Thus, if one wants to be very pedantic, he could say that not all of the mass-energy of
the object is where we see the object to be, since a very small portion of it is spread in outer
space. From this point of view the situation is quite similar to the one of the GRW theory: if
one considers an incredibly large number n of macroscopic classical objects inside a box and
calculates the total mass inside it, he could very well find as a result m(n−1000). Do we have
to conclude that not only the GRW theory but also Classical Mechanics and Field Theory
violate the enumeration principle? We think that this is not the case; we believe that it is
Lewis’ and Clifton and Monton’s points of view which are too strict and inadequate to the
interpretation of such theories. A field (quantum or classical), in general is never well localized
in space and thus concepts like being located’ are not well suited to describe its properties.
This is why when we want to speak of a field as located in a certain region of space, we have
to accept a certain amount of fuzziness. Thus, for a field, being confined to a certain region
means that almost all the field is confined in such region, and if particles and matter have to
be described in terms of fields (and this is the trend in modern physics), we have to accept
some fuzziness, otherwise nothing would be located anywhere in space.
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11.6 The stochastic nature of the evolution

So far we have discussed the description of the world allowed by the CSL theory
in terms of the values taken by the mass density function M (r) which have
been recognized to constitute the exposed beables of the theory. According to
Eq. (10.1) it is the wavefunction associated to the system which determines
M (r). It is useful to analyze the evolution of the beables. Let us consider, for
convenience, the linear formulation of CSL: as we have discussed in Sections 7
and 8, the dynamical evolution equation for the wave function is fundamentally
stochastic, being governed by the stochastic processes w(r, t). The “cooked”
probability of occurrence of such processes, based on the analog of Eq. (7.40),
depends on the wavefunction which describes the system and this fact is of
crucial importance for getting the “right” (i.e., the quantum) probabilities of
measurement outcomes. Therefore, in the CSL theory, the wavefunction has
both a descriptive (since it determines M (r)) and a probabilistic (since it en-
ters in the prescription for the cooking of the probability of occurrence of the
stochastic processes) role.

Also the “tails” of the wavefunction have a precise role. In fact, suppose our
“universe” is described at t = 0 by a normalized state

∣ψ(0)⟩ = α(0) ∣a⟩ + β(0) ∣b⟩ (11.20)

with ∣β(0)∣2 being extremely small. The “reality” of the universe at t = 0
is “determined” by the state ∣a⟩, as we have explicitly shown in the previous
subsection. However, one cannot ignore the (extremely small) probability ∣β(0)∣2
that a realization of the stochastic potential occurs which, after a sufficiently
long time, leads to a normalized state

∣ψ(t)⟩ = α(t) ∣ã⟩ + β(t) ∣̃b⟩ (11.21)

with ∣α(t)∣2 being extremely small and with ∣ã⟩ and ∣̃b⟩ two of the most probable
states at time t for the initial conditions ∣a⟩ and ∣b⟩, respectively. Then, the
“reality” at time t is that associated to the state ∣̃b⟩ which has its origin in the
negligible component ∣b⟩ at time t = 0. Thus, some “memory” of a situation
which at time zero did not correspond to the “reality” of the world remains
at time t. Obviously, if such an extremely improbable case would occur one
would be tempted (wrongly) to retrodict that “reality” at t = 0 was the one
associated to ∣b⟩ and not the one associated to ∣a⟩. However, we stress that
such peculiar events, which we could denote as the “reversal of the status of
the universe”, have absolutely negligible probabilities. As made plausible by
the estimate for the values of β(t) given in the previous section, the “risk to
be wrong” in retrodicting from the present to the past “status of the world”
is comparable with the probability of being wrong when, having observed now
a table standing on the floor, and knowing that it has been kept isolated, we
claim that it was standing there even one hour ago, in spite of the fact that
thermodynamically a very peculiar situation corresponding to its “levitation”
at that time could in principle have occurred.
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11.7 A classical analogue of the tail problem

The criticisms which have been put forward concerning the tail problem and
which we have discussed in the previous subsections, claim that the GRW the-
ory, just due to the tail problem, is fundamentally unsatisfactory from an on-
tological point of view. To answer such criticisms we consider it appropriate
to consider a quite simple classical situation which shares many of the aspects
of the dynamical reduction models. Suppose we have a collection of macro-
scopic objects of a precise shape and with precise mass density: to be specific
let us consider an assembly of identical tables. Let us suppose that they are
at rest and that the dynamics allows processes in which each of the tables has

an extremely small probability (let us say of the order of e−[1034
]) of emitting

just one nucleon or one electron in a certain time. The specification just one
is intended to be strict: a table can emit one such particle but if the emission
takes place, no more particles can be emitted. To go on, we postulate (this is
the analog of adopting the accessibility criterion within the GRW theory) that
a table which has lost just one nucleon or one electron can still be called a
table.69 We now consider a universe made by an unphysically large number n

(of the order of some 1024e[1034
] of tables. After a while, a certain number of

nucleons and protons (proportional to n) will be emitted. Thus the physical
situation will be: we have n − k tables in their original status (with k << n), k
tables which have lost a particle, and k particles propagating in space. We think
that everybody would agree with the statement that there are still n tables in
our universe. And we also believe that nobody would suggest that the emitted
particles could, in principle, be used to ’build up a new table’.70 At any rate, if
one would take seriously such a possibility one would be lead to conclude that
he started with n tables and he ended up with n + 1 tables without changing
the total mass. How is this possible? Is there something terribly wrong in the
classical model we are envisaging? Do we have to declare that the ontology of
the model leads to inconsistencies? Or does not this simply mean that the links

69Obviously, the reader should have grasped why we allow the tables to loose just one
elementary constituent and we forbid the emission processes to continue indefinitely. If one
would have taken such an attitude one would be compelled to define precisely up to which
point one is keen to consider the system to be still ’a table’, i.e., to specify that a loss of, e.g.,
105 particles is acceptable but that after that limit it is no longer legitimate to call the system
’a table’. Since within GRW the accessibility derives from the fact that the center-of-mass of
a macro-system gets localized with an extremely precise accuracy (of about 10−11 cm) and for
ordinary objects like marbles or tables this defines quite precisely the ’mass of the tail’ (which
turns out to be an extremely small fraction of a nucleon mass) the above assumption is quite
appropriate to develop the analogy we are interested in.

70Taking the risk of being pedantic we stress once more that both in the considered example
as well as within the GRW theory with the mass density interpretation, our ’disregarding’, in
some sense, the emitted particles (the tails) for what concerns the consideration of the tables
which are in our universe does not mean we wish to deny to them a real status and to ignore
the physically relevant effects they can trigger. One can think, e.g., of having in the universe
also many Geiger counters; there is no doubt that one of the emitted particles could trigger
a counter inducing relevant dynamical changes. The same is true within the GRW theory:
the tails can trigger further appreciable effects, as we have already stressed with particular
emphasis.
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between objects, their masses and their locations is not so strict as Shimony,
Albert, Loewer, Clifton and Monton believe and that, in particular, in the un-
realistic and purely speculative case in which the number of tables which enter
into play is made unphysically large one cannot avoid facing quite peculiar but
logically perfectly consistent situations?

12. The psycho-physical parallelism within CS

The most characteristic and appealing feature of CSL and of its interpretation
consists in the fact that it allows one to give a satisfactory account of reality,
to take a realistic view about the world, to talk about it as if it is really there
even when it is not observed. However, one cannot avoid raising the problem of
including also conscious observers in the picture, for [87] what is interesting if
not experienced? Thus one is led to consider the problem of the psycho-physical
parallelism within dynamical reduction models: this is the subject of the present
section.

The section begins with a challenge for dynamical reduction models, put forward
by Albert and Vaidman [132,133]: do they always guarantee deffnite outcomes
to measurement processes (Section 12.1)? In order to answer this question, in
Section 12.2 we analyze what we expect a “measurement process” and a “mea-
surement outcome” to be. This leads us (Section 12.3) to consider how the
process of perception unfolds in time and how the reduction mechanism works
within the nervous system, thus proving that an observer always has definite
perceptions about measurement outcomes.

We conclude the section (Sections 12.4 and 12.5) with some further comments
about the relation between measurement outcomes and human perceptions.

12.1 Introduction

Some years ago, two quite interesting papers, one by Albert and Vaidman [132]
and the other by Albert [133] (see also [62]), challenging QMSL, have appeared.
In them some critical remarks have been put forward which, in the authors’
intention, should prove that dynamical reduction models suffers from some seri-
ous limitations, in particular that they do not satisfy fundamental requirements
that conventional wisdom imposes on a workable theory of collapse. The papers
offer the opportunity of a clarification about the model and its aims and deserve
various comments.

In Ref. [132] the authors start by listing the features that any theory pretending
to describe the collapse should exhibit. Let us summarize them:

1. It ought to guarantee that measurements always have outcomes after they
are over, i.e., after a recording of the outcomes exists in the measuring
device.
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2. It ought to imply that, for any given eigenvalue of the measured observ-
able, the probability that the state vector ends up in the associated eigen-
manifold coincides with the probability that standard quantum mechanics
attributes to such an outcome.

3. It should not contradict any experimentally established quantum mechan-
ical predictions about physical systems, in particular the fact that isolated
microscopic systems have never yet been observed to undergo collapses.

As regards QMSL, Albert and Vaidman agree that, due to the extremely low
probability of occurrence of a localization and the fact that the localization
distance is large on the atomic scale, the theory satisfies requirement 3). They
also seem to agree on the fact that, when consideration is given to a system
containing many particles which is in a superposition of two states ∣ψ1⟩ and ∣ψ2⟩,
such that in ∣ψ1⟩ a large number N of particles have spatial positions which differ
more than 1/√α from those they have in ∣ψ2⟩, then such a state is transformed
dynamically into either ∣ψ1⟩ or ∣ψ2⟩ in a time of the order of 1016N−1 s, which,
for N of the order of Avogadro’s number, means in less than a microsecond. o,
when consideration is given to cases in which the measurement outcomes are
indicated by some sort of a macroscopic pointer taking macroscopically different
spatial positions, QMSL does satisfy also (1) and (2) besides (3).

Then, why do Albert and Vaidman assert that the theory runs into difficulties
with the first two requirements? The reason for this is that they consider it
incorrect to assume that all measuring instruments work in the above indicated
way. They illustrate this point with an example, which we briefly report here.

A spin-1/2 system is prepared in an eigenstate of σx and then it is passed in a
Stern-Gerlach arrangement with nonuniform magnetic field in the z direction.
The two spin states ∣z+⟩ and ∣z−⟩ are then correlated to upward and downward
“trajectories”, respectively. These trajectories hit a fluorescent screen at two
different points A and B which are separated by a macroscopic distance. The
screen is such that the particle impinging on it causes some of the electrons of the
atoms around the point of impact to jump into excited orbitals. De-excitations
of these electrons give then rise to a luminous dot, which can be directly seen
by an experimenter. The situation, before any observer enters into play, can
then be described by the following state vector

∣ψ(1,2)⟩ = 1√
2
[∣z+, x = A⟩MP ∣1ex, ....., nex; (n + 1)gr, .....,2ngr⟩

+ ∣z−, x = B⟩MP ∣1gr, ....., ngr; (n + 1)ex, .....,2nex⟩] (12.1)

where MP refers to the measured particle and the electrons from 1 to n are
near point A, the remaining ones are near B. The indices ex and gr refer to
excited and ground states for the indicated electrons, which subsequently decay,
emitting photons from the indicated points, respectively.

With reference to this example, the authors argue then as follows: since in the

138



whole process few particles are involved and, in any case, the displacements of
the particles which are involved are totally negligible with respect to 1/√α, the
reduction mechanism of QMSL cannot be effective in suppressing one of the two
states in Eq. (12.1). The consideration of the subsequent emission of photons
does not change the situation since, on one hand, the spontaneous localizations
of QMSL do not affect photons and, on the other hand, the photon wavefunc-
tions originating from A and B immediately overlap almost completely. So,
in spite of the fact that, corresponding to the impinging of the particle on the
screen having occurred at A or at B, there is a luminous record in different places
which can be perceived by a naked human eye, QMSL does not imply that the
suppression of one of the two states has occurred. Therefore QMSL does not
satisfy the basic requirement (1). To put it in different words: while everybody
would agree that the measurement has been completed after the emission of the
photons from the fluorescent screen and before any observer actually looks at
the light spot, QMSL is not able to attribute a definite outcome to the mea-
surement.

The argument of the authors reduced to its essence consists in stressing that
not all conceivable processes which everybody would agree to call measurement
processes involve macroscopic displacements of a macroscopic number of parti-
cles, and that, under such conditions, dynamical reduction models cannot yield
an actual dynamical reduction of the wavepacket. With reference to this perti-
nent remark and to the above example, we consider it important to distinguish,
for conceptual clarity, two mechanisms which could make QMSL ineffective in
inducing the reduction:

1. That the number of particles involved in the process (e.g., in the set-up
considered, the electrons which have to be excited in order that the emitted
photons be perceivable by the unaided eye of a human experimenter) be
very small.

2. That, even if many particles are involved, the changes in their states which
occur as a consequence of their interactions with the measured microsys-
tem (in the example considered the transitions from the ground to an
excited state) involve position changes which are much smaller than the
localization distance 1/√α of the spontaneous process. The above two
alternatives will be discussed in the next subsection.

12.2 Measurements and outcomes

Let us begin by stating that we agree perfectly with the conclusions drawn in
[132] about the specific situation discussed in it. Due to the extremely low rate
of the spontaneous localizations and he large value (on the atomic scale) of the
localization distance of QMSL, any superposition of states in which only few
particles are in appreciably different spatial positions or in which many parti-
cles are only slightly displaced is not dynamically suppressed by the theory.
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We then agree that in the considered example the linear superposition will per-
sist for long times.

Is this a feature which shows the failure of the model in accounting for mea-
surement processes? We think that one should be careful in drawing such a
conclusion.

As a starting point it is useful to recall the lucid position of Bell about such
kind of problems. In [124] he stated:

The usual approach, centered on the notion of “observable”, divides
the world somehow into parts: “system” and “apparatus”. The “ap-
paratus” interacts from time to time with the “system”, “measuring”
“observables”... There is nothing in the mathematics to tell what
is “system” and what is “apparatus”, nothing to tell, which natural
processes have the special status of “measurements”.

Furthermore, in [122], he stressed:

Surely the big and the small should merge smoothly with one an-
other. And surely in fundamental physical theory this merging
should be described not just by vague words but by precise mathe-
matics.

These quotations appropriately point out that, in what the author would have
considered a serious theory, the very mathematics of the theory and not “vague
words” should define what is a measurement. In this respect it seems to us
that in [132] what has to be considered a measurement, what plays the role
of an apparatus, is still defined by terms that are to some extent vague. For
instance, in footnote 1, the authors, trying to make precise what is a recording
by an instrument, require that it consists in a change of the measuring device
which is macroscopic, irreversible, and visible to the unaided eye of a human
experimenter.

It is just to try to be very precise about the meaning of such terms that we have
chosen to make at the end of the previous subsection a clear distinction between
the two crucial points which are at the basis of the arguments of Albert and
Vaidman.

Let us consider point 1. If the number of particles which are involved in the
process under consideration is really very small (as it is legitimate to assume
due to the sensitivity of the human eye to light quanta - the threshold for visual
perception being of about 6 photons), then the changes of the measuring device
are surely not macroscopic, even though they can be irreversible and visible to
the human unaided eye. Is it correct to pretend that also in such a case the
process has to be considered as a genuine measurement which should have an
outcome before anything else happens?
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We can raise some doubts about the correctness of taking this attitude by con-
sidering the following gedanken experiment. Suppose we have an atom which
can be prepared in an excited state ∣Ex⟩ of spin 1/2 and with the following
characteristics: the excited state decays with a quite long lifetime, of the order
of several seconds or longer, in a state ∣SLC⟩ which is the ancestor of a short
lived sequential decay chain with various steps, all lifetimes in the sequence be-
ing extremely short (of the order of nanoseconds). We prepare the state ∣Ex⟩ in
a spin state that is an eigenstate of σx, and we perform a Stern-Gerlach experi-
ment devised to measure the z component of the spin. The long lifetime of the
initial state then allows us to correlate the two σz components to two different
positions of the atom, which we will denote by A and B, respectively, just as
in the example considered by Albert and Vaidman. After a time of the order
of the lifetime for the first transition, the atom decays; and, going through the
cascade process, it emits several photons, let us say a number larger than the
perception threshold. There is no doubt that the situation is very similar to
the one considered in [132]: the sequential decay is an irreversible process in
the same sense in which the excitation and decay of few fluorescent electrons is.
Moreover, the emission from two macroscopically distant regions of a number
of photons which is sufficient to be perceived by the naked eye of a human ex-
perimenter allows a direct detection of whether the atom has been found with
spin up or with spin down. Could anybody pretend that a spin measurement
has been performed on the atom before any observer would look at it? We
think that this would be a wrong request and that actually nobody would feel
embarrassed in considering the system to be in the linear superposition of the
two final states. So, there is no reason to require that an acceptable theory of
collapse should guarantee that this specific “measurement” has an outcome at
this stage.

Let us now consider possibility 2. We think that it is perfectly plausible to
imagine interaction mechanisms between a microscopic and a macroscopic sys-
tem such that, on one hand, many constituents of the macroscopic one can
change their quantum state in a way which depends on the state of the trig-
gering system, and, on the other hand, that such changes do not involve dis-
placements of the particles considered of amounts larger than 10−5 cm. The
simplest example which one can think of is just the one in which many particles
change their energy by amounts summing up to a macroscopic energy change
without appreciably changing their position (on the relevant scale). However,
the important question is: can this change be really macroscopic and have no
other effect? In particular, would it not induce, at least indirectly, macroscopic
changes in the positions of a macroscopic number of particles? It is not easy to
exclude this, since one cannot ignore, e.g., the interactions of the system with
its environment.71 In such a case, at least for reasons of thermal equilibrium,

71It has to be stressed that here our resorting to the environment is conceptually radically
different from the procedure followed in approaches like the one considered by Joos and Zeh
[30] to solve the measurement problems (see Section 4.3). There the environment plays the
role of a system whose correlations with the measured system and measuring apparatus can-
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changes of this sort must be recognized to occur. Obviously one could object
that the body could very well be kept almost perfectly isolated. But how would
then one check that it has changed its state? The final answer would be: by
direct detection with an appropriate apparatus or by direct observation (if this
is possible, since, e.g., the body radiates) by a conscious observer.

We can now raise our basic question: what would make it unacceptable to
consider that such a body remains in a superposition of the two macroscopi-
cally different states under consideration before it is detected and the result is
recorded?

The above statement can obviously be meaningful only if one makes precise the
meaning of the expressions “detected” and “recorded”. We completely agree
on this, but we stress once more that it is just the theory itself which must
give a precise meaning and make absolutely definite the significance of these
expressions. QMSL does this: the body is detected and the result is recorded
at the moment into which it evolves into, or, via its interactions with other
systems, it induces the occurrence of a linear superposition of states containing
a macroscopic number of particles which are differently located in space by an
amount of the order of 10−5 cm or larger. At that moment it has to choose one
of its possible ways! And it is the dynamics of the theory that guarantees that
this will happen.

One may like or dislike this picture, but one has to recognize that it is consistent
and represents a step towards a possible clarification of some of the puzzles of
the quantum world. Obviously the above position is tenable only provided one
can guarantee a fundamental fact: since our perceptions are definite, at least
in connection with any act of perception, a situation must occur such that the
reduction mechanism, whose taking place is precisely defined by the theory, be-
comes effective. The next subsection is devoted to making plausible that this is
the case by a discussion of visual perception.

12.3 Reduction within the nervous system

As stressed in the previous subsection, the very possibility of considering QMSL
as yielding a unified description of all physical phenomena rests on the fact that
one can show that the physical processes occurring in sentient beings, leading
to definite perceptions, involve a displacement of a sufficient number of parti-
cles over appropriate distances to allow the reduction to take place within the
perception time.

not be detected, so that, to make physical predictions, one must take the partial trace on
the environment variables. As already discussed, the reduction does not then occur at the
individual level. Here the changes of the environment we are interested in are those in which
a macroscopic number of particles are displaced. When they occur the universal dynamical
mechanism of QMSL actually induces reductions at the individual level.
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We will describe now, in its essential aspects, the visual perception process, to
make plausible that the above situation actually occurs. The reason to choose
to discuss explicitly the case of the visual perception should be obvious. First,
vision is directly involved in the example discussed in the previous subsection.
Secondly, the visual channel is presently the most studied of all sensory chan-
nels and therefore the best understood. Finally, other sensory modalities show
similar characteristics, both in the distal refined transduction mechanisms and
in the excitation pattern reaching the central nervous system.

We will divide our description into the three main cascades of events that take
place following the absorption of one photon in a photoreceptor cell of the retina:

1. multiplicative chain in the photoreceptor cell,

2. transmission of the electrical signals along the fibers of the optic nerve,

3. excitation of neurons in the cortical visual area.

All these events are necessary for seeing. We will make rough estimates of the
number of particles moving in these processes.

An observation is relevant: In general, sensory cells have no threshold in re-
sponding to external stimuli. In the case of photoreceptors, the absorption of a
photon by a pigment molecule (retinene) determines a isomeric transition (cis-
trans). But the same transition can be also determined for example by thermal
excitation. The detection of external stimuli is therefore based on statistical de-
cision about the signal to noise ratio [134]. For this reason, the psycho-physical
threshold is set at the average level of six absorbed photons.

We now analyze the multiplicative chain in the photoreceptor cell. The excited
state R of the retinene, inside the rhodopsin (a protein molecule with molecular
weight MW = 39,000) has a lifetime sufficiently long on the disks of the rod to
activate about 100 transducin molecules T , present in the interdisk space (about
of the same MW ). This is used to release the inhibition of the enzyme PDE
(phosphodiesterase, MW = 180,000), able to hydrolyze very rapidly about 1000
cyclic nucleotide c-GMP (guanosinmonophosphate). All together we obtain a
multiplication in molecule number of about 100,000 for each absorbed photon.
The c-GMP molecules (cooperatively 3 of them) normally keep open the chan-
nels of the plasma membrane, enclosing the vertebrate rod outer segment. Their
hydrolysis determines the closure of the channels and the consequent hyperpo-
larization of the cell and starts the electrical signal that will be transmitted to
a chain of neurons of the retina [135]. The electric current change through the
membrane is of the order of a pA: one can estimate that the ions (mostly Na)
affected in their movement are about 108.

But we are interested in following the chain of events further on. The hyperpo-
larization of the inner segment of the rod is followed by the release of a chemical
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transmitter, kept in vesicles near the membrane in such a way to diffuse rapidly
(about 1ms) in the synaptic gap towards other neurons present in the retina:
the horizontal cells, the amacrine and bipolar cells. We will not try to estimate
how much these interactions will increase the number of particles involved and
their movement, keeping in mind that those interactions develop not only in
the forward direction but also laterally and in the backward direction. To be
very conservative, we can indicate a factor 10 in the number of molecules. The
signals transmitted, both electrical or chemical, in these stages are graded, mod-
ulated in linear and nonlinear fashion. The last step is acted on the final output
cells of the retina, the ganglion cells. These cells, whose long axons (about one
million) form the optic nerve, send the electric impulses (spikes) towards the
CNS (central nervous system). The propagation is regenerative and saltatory,
going along a series of Ranvier nodes, where the membrane of the nerve fiber is
free of the insulating sheets of the Schwann cells.

The above figures about the displaced particles are not sufficient to guarantee by
themselves that the reduction has already occurred. However, we stress that all
estimates we have made are very conservative and correspond to having chosen
for the numbers of particles their minimal values. The high complexity of the
system and its connectivity would justify the introduction of various amplifying
factors which would remarkably raise the above values. These considerations
should have made plausible that the number of particles and their displacements
have reached the level which is sufficient to make effective the reduction mech-
anism. This makes correct the conviction of everybody working and analyzing
what is going on in the nervous system that, at this stage, the quantum aspects
of the phenomenology have already come down to the level for which the clas-
sical description is adequate.

To be more specific and remove any possible doubt about the definiteness of
conscious perception, we show now, examining in more details the signal prop-
agation, that even if one limits his considerations to this last step of the visual
perception process, the estimates of the number and of the displacements of the
particles which are involved would lead to the same conclusion. For this pur-
pose, we simply analyze what happens to a neuron involved in the transmission
of such a signal. The neuron has a main cell body with a nucleus and a long
tube, the axon, extending from the cell body and having at its end a variety
of hair-like structures connecting it to other nerve cells. As already remarked,
in the case of the optic nerve, the axon is wrapped in a series of small sheaths
of myelin, an insulating substance, separated at intervals of the order of one
millimeter by nodes referred to as Ranvier’s nodes (see Fig. 3 below).
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Figure 3: The scheme of impulse transmission. R = Ranvier node, m = myelin;
a = axoplasm.

To make the following discussion clearer, it is useful to mention that axon’s
diameter is of the order of 10−4 cm, the myelin sheath thickness is greater
than 10−5 cm, and the membrane thickness at Ranvier’s node is of the order
of 10−6 cm. The transmission mechanism goes as follows: when an impulse is
generated, at Ranvier’s nodes, ions channels open in the membrane of the axon,
through which Na+ and K+ ions flow. Thus, in the course of the depolarization
of the membrane, circular currents, connecting two nearby Ranvier’s nodes and
closing through the external conducting medium, arise (see Fig. 3).

Important facts to be taken into account are the following: during one impulse
≃ 6 × 106 sodium ions pass a Ranvier’s node; the time necessary to restore
the resting potential in the considered region of the axon is of the order of
10−3 s; nally the internal ion current flows near the axon membrane. With these
premises, we can try to evaluate the efficiency of the reduction mechanism. To
do this, in place of QMSL, we will make use of CSL: in such a theory, as we
have seen, the decoupling rate for superpositions of states involving differently
located particles is approximately given by

e−λt∑(ni−n
′

i)
2

(12.2)

where λ = 10−16 s−1, and ni, n
′
i are the numbers of particles present in the cell (of

volume 10−15 cm3) labeled by the index i, in the two states ∣ψ⟩ and ∣ψ′⟩ whose
superposition we are considering, respectively. Obviously ∣ψ⟩ is associated with
the occurrence of the impulse transmission, while ∣ψ′⟩ corresponds to no trans-
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mission.

In our case, we consider all cells surrounding the internal membrane of the axon
between two Ranvier’s nodes, There are 105 such cells. Taking into account
that the atomic number of Na+ is 11, so that one ion contains more than 30
particles and that we have disregarded the K+ ions, we have to fit about 109

particles in the 105 cells. We then have that, when the signal is transmitted, for
about 105 cells ∣ni − n′i∣ turns out to be ∼ 104. These values, when substituted
in Eq. (12.2), taking into account that the impulse lasts at least for 10−3 s, give
an exponent 10−6.

To complete the description, we have to consider two further steps, each involv-
ing a multiplicative factor. The optic fibers arrive at lateral geniculate bodies
(LGB), where they branch out making contacts with many cells. The neurons in
these bodies send their axons again to the visual striate cortex, an essential step
for seeing. In both these stations a conservative estimate of the multiplicative
effect [136] can be a minimum of 102, therefore we can obtain at least a factor
of 104.

In our calculation we have completely disregarded further displacements of par-
ticles induced by the macroscopic current around the axon. In one of his books
[137], Penrose has considered an analogous problem, to reach the Planck mass
level, which in his approach would mark the setting up of the reduction. To get
the desired result, he needs to assume that such further displacements imply
a further amplification of a factor 108, a figure that he considers reasonable.
We obviously need a much smaller factor, e.g., one of the order of 104 would
be largely sufficient. So, we have made perfectly plausible that the number of
displaced particles and the displacements which are involved imply the dynam-
ical reduction mechanism of QMSL (or better of CSL) becomes fully effective
in suppressing the superposition of the two states (nervous signal)-(no signal)
before any act of conscious perception occurs. The fundamental requirement
which has to be imposed on the model to account for our definite perceptions
is therefore certainly satisfied.

12.4 Does reduction require observers?

It has to be firmly stressed that the fact that we have felt the necessity of per-
forming an analysis of the visual perception mechanism is not intended as the
acceptance, on our part, of the point of view that consciousness has a specific
role in the reduction process. QMSL states that reduction will take place when-
ever the above indicated precise conditions for the reduction mechanism to be
effective occur. So, if in place of a human being we put a spark chamber or
a macroscopic pointer which is displaced, or a device producing ink spots on
a computer output, reduction will take place. In the context of the previous
subsection, the human nervous system is simply something which has the same
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function as one of these devices, if no such device interacts with the system
before the human observer does.

With respect to Albert and Vaidman’s example, our attitude should then be
quite clear: the state is not reduced up to the moment in which the dynamical
evolution leads to the occurrence of a superposition of states differing in the
positions of a macroscopic number of particles. Whether this happens because
one puts in front of the fluorescent screen a spark chamber or the nervous sys-
tem of a human observer is totally irrelevant.

With reference to the argument we have just developed, we think it is appro-
priate to point out that some sentences of Ref. [133] could turn out to be
misleading. For instance, at the beginning of Section IV, the author, after hav-
ing recalled the situation of [132], makes the following general statement: “f we
want to stick with QMSL, then we would have to insist ... that no measurement
is absolutely over, no measurement absolutely requires an outcome, until there is
a sentient observer who is actually aware of that outcome”. As we have proven,
this is not true in general but only in very peculiar cases. Actually, according to
QMSL, not only practically all measuring experiments of our laboratories but
also all those measurement-like processes which, as Bell [2] has stressed, “we
are obliged to admit ... are going on more or less all the time, more or less
everywhere”, have definite “outcomes” even in absence of any sentient being.

12.5 Some general comments about an alleged
general impossibility proof of dynamical re-
duction models

We come now to examine further criticisms to QMSL, which have been put
forward in Sections IV and V of [133] (see also [62]). The whole argument can
be briefly summarized as follows: the author contemplates the possibility of
the existence of unusual sentient beings whose peculiar features consist in the
fact that their conscious beliefs are assumed to be 100% correlated with the
position of a single particle. To be more precise, the author considers a science-
fiction character, John, who, due to a peculiar surgical implant in his brain, can
perform a measurement of a spin component, e.g., of an electron, by making
it cross a tunnel in his brain and interact with a microscopic particle P in the
implanted device. John is such that his “ready-to-perceive state” state ∣P0⟩
corresponds to the particle P being in a certain position, while the perceptions
“spin up” and “spin down” are uniquely correlated to P being up (∣P+⟩) off
down (∣P−⟩) with respect to the initial position.

It is stipulated:

1. that no other change in John’s body occurs as a consequence of the process
(i.e., no other of John’s atoms or electrons beside P is involved in this
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process);

2. that, nevertheless, John is consciously aware as vividly and as completely
as he is ... or has ever been aware of anything in his life of what the value
of the spin component is.

Given these premises, provided one takes the attitude to believe what John says,
the argument is quite straightforward: if one wants to account for the definite
perceptions of John by a dynamical reduction mechanism, one must consider a
process which suppresses the linear superpositions of position states of a single
particle, and this would surely imply an easily detectable violation of the pre-
dictions of quantum mechanics for microsystems. So, no physically acceptable
reduction mechanism whatsoever could do the desired job of making definite
John’s perceptions.

The first obvious remark is that the very consideration of such a being would
upset any neuro-physiologist. In fact, all we know about consciousness points
undoubtedly towards the necessity of very complex systems like the human
brain to support it. The features of such systems which are commonly consid-
ered essential for consciousness are, on the one hand, the fact that they contain
a gigantic number of transmitting units (like neurons) and, on the other hand,
that these units are wired up in an extremely complicated network. For these
reasons, one could disregard objections which require as an essential ingredi-
ent the consideration of sentient beings whose different beliefs are correlated
to states that are only microscopically different. However, we can raise the
question: even if one would accept that “in principle” the possibility of the
existence of “microscopic” entient beings (whatever precise meaning one could
attribute to the word sentient) cannot be excluded, should one consider as co-
gent the criticism put forward in the two last sections of Ref. [133]? Answering
the above question requires a detailed analysis. First of all, it turns out to be
appropriate to recall the precise and relevant terms of the debate about the
foundations of quantum mechanics and the reasons which make programs like
the dynamical reduction one interesting. The situation can be summarized as
follows. The conceptual structure of the quantum scheme does not allow, as
it stands, the elaboration of an articulate, systematic and coherent picture of
natural phenomena, i.e., what Shimony [1] calls a “philosophical world view”. It
is the desire to build such a coherent picture which has led to the consideration
of various “alternative theories”. which give for all practical purposes (FAPP)
the same predictions as quantum mechanics plus the wavepacket reduction pos-
tulate. Each of them implies a certain world view, and each of them is based
on different specific assumptions.

Let us start by considering two of the more appealing “alternative theories”
that have been proposed:

1. The dynamical reduction models;
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2. The de Broglie-Bohm pilot wave theory, or, more generally, the hidden-
variable theories.

t is useful to remark that both these theories aim at giving an account of physical
processes without having to make reference to observers. The other alternative
which deserves to be discussed, and which Albert seems to prefer, is the many-
minds theory. We will consider it below.

Due to the fact that present-day technology does not allow us to verify whether,
at the macroscopic level and under appropriate circumstances, wavepacket re-
duction occurs, there is no experimental objective criterion to choose, e.g., be-
tween the two above alternatives (1) and (2). Such a choice must then be based
on the identi??cation of the assumptions which are essential for them as well
as on the consideration of possible di??culties they meet or unpleasant features
they exhibit. As concerns the assumptions, we remark that, as appropriately
stressed by Bell [2], the characteristic element distinguishing program (1) from
(2) consists in the fact that (1) assumes that the wavefunction gives a complete
description of natural phenomena, while (2) accepts from the very beginning
that additional variables are necessary. Concerning what one could consider
the limitations of the corresponding programs, we mention that (1) requires the
acceptance of the fact that Schrödinger’s equation is not exactly true and the
introduction of “ad hoc” parameters; (2) requires us to accept contextuality
(i.e., that a complete specification of a state assigns definite truth values to a
proposition only relative to a specific context).

Albert [133], instead of following the above outlined procedure to choose among
the “alternative schemes”, seems to adopt as a crucial criterion for accepting
or rejecting one of them the fact that it can accommodate beings like John.
Various comments are appropriate: first, we do not view it as legitimate to
adopt such a criterion to judge a theory, particularly in view of the fact that,
as already remarked, the very idea that such beings exist seems to conflict with
all we know to be needed to support consciousness. Secondly, we want to stress
that the author’s request amounts to plainly postulating that program (1) has
to be rejected. In fact, the very hypothesis that John exists and is reliable leads
to the denial of the fundamental assumption lying at the basis of the dynamical
reduction program, i.e., that the wavefunction gives a complete description of
natural phenomena, since the same overall state vector

1√
2
[∣z+⟩ ∣P+⟩ + ∣z−⟩ ∣P−⟩] (12.3)

would be associated in some cases with a situation in which John believes that
“the spin is up” and in others to one in which John believes that “the spin is
down”.72 Finally, it is worth noticing that even scheme (2) cannot accommo-

72We do not want to be misunderstood: we are not assuming that it is possible to give a
purely physical explanation of mental events, but we are simply imposing the obvious condition
that different beliefs must be related to state vectors which somehow differ.

149



date, without encountering serious conceptual difficulties concerning the “sta-
tus” that can be attributed to their perceptions, beings such as John. The reason
for this lies just in the fact that the particle P in John’s device is a microscopic
system. As a consequence, the linear superpositions of states corresponding to
different positions of P are not, even FAPP, equivalent to a statistical mixture
of states corresponding to P having a definite position. Then, the evolution
leading the particle from its “ready state” to the final state is, not only in prin-
ciple but practically, reversible (so that one can “undo” what has been done).
Moreover, observables which do not commute with the position of P must be
admitted to be actually measurable, contrary to what would happen if P would
be a macroscopic system.

To illustrate the obvious fact that the process leading to John’s definite percep-
tions about the spin value can be reversed, let us assume, for simplicity, that
the displacement of P induced by its interaction with the spin of the electron
occurs as a consequence of a σzpz coupling (pz being the z component of the
linear momentum of P ) lasting for the time interval δt taken by the electron
to go through John’s implanted device. Then it follows that, if P is in the up
(down) position, feeding into the device another electron with spin down (up),
will cause P to return to its ready state position. We can then consider the
following experiment. We have two electrons in the singlet state, which travel
towards John’s device with a certain common velocity and which reach the de-
vice at times differing by an amount ∆t larger than δt. Then when the first
electron crosses John’s device, we have the state vector evolution:

1√
2
[∣z2−⟩ ∣z1+⟩ − ∣z2+⟩ ∣z1−⟩] ∣P0⟩ →

1√
2
[∣z2−⟩ ∣z1+⟩ ∣P+⟩ − ∣z2+⟩ ∣z1−⟩ ∣P−⟩] (12.4)

where ∣P0⟩ , ∣P+⟩ , ∣P−⟩ represent the ready, up, and down states of P , respectively,
and where we have disregarded the spatial variables of the electrons. When the
state on the right-hand side of Eq. (12.4) obtains, due to the fact that within
the de Broglie-Bohm theory all particles at all times have definite positions, P
is either up or down and, as a consequence, John can “legitimately” be said to
have a definite belief about the z component of the spin of the first electron.
However, it has to be remarked that in the de Broglie-Bohm theory the spin
being a contextual variable is not an observable quantity. As a consequence, in
the case considered, the “outcome” of John’s measurement cannot be related to
any objective property of the spin of the electron before the measurement (note
that this would hold also in the case in which P would be a macroscopic mea-
suring device). Subsequently the second electron crosses John’s device, bringing
P back to its ready position P0. As a consequence, due to the assumption that
no other change but the displacement of P has occurred in the first process, the
state after the passage of the second electron turns out to be again exactly the
initial state, i.e., the one on the left-hand side of Eq. (12.4). It is important to
stress that in such a state the spin variables are not correlated to the position
of any particle and that the process just described (i.e., the interaction of the
second electron with P ) does not involve in any way the first electron on which
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the “measurement” of the spin had been previously performed.

Let us now suppose that another observer performs a measurement of the same
spin component of the first electron. It is obvious that also this second measure-
ment turns out to be contextual, and therefore its outcome is not related to the
outcome of the “measurement” performed by John. This puts into evidence that
the previous belief by John about the outcome of the spin “measurement” he has
performed cannot even be related to an objective property of the electron after
the “measurement”; in particular it cannot be used to foresee the outcomes of
subsequent measurements, i.e., in general it has no predictive value. Of course,
the situation would have been completely different if the particle P in John’s
device were a macroscopic “pointer”. In that case, when the state on the right
hand side of Eq. (12.4) obtains, also in the de Broglie-Bohm theory one can
assert that things go as if wavepacket reduction had occurred, the reason for
this being that it is practically impossible to completely reverse the measuring
process. In such a case, therefore, the belief of the observer about the spin of
the electron corresponds to an “effective determinateness” of the spin of the
electron after the measurement, and all observers performing subsequent mea-
surements of the same component of the spin find the same result which has
been found by the first (macroscopic) observer.73 In our opinion, this analysis
puts into evidence that, even though in the de Broglie-Bohm scheme John can
be considered to have definite perceptions as he claims, no validity, in the spirit
of the theory, can be attributed to them.

We come now to the consideration of the many-minds approach. As already dis-
cussed in Section 4, what a many-minds theory takes physics to be ultimately
about is what sentient observers think. As a consequence, the adoption of a
many-minds position implies a dualistic attitude: there are a physical universe,
described by the state vector obeying an exact Schrödinger’s equation, and a
mental universe made up of the impressions of sentient observers (an expression
which, in this context is synonymous with observers with minds). In such a
theory even the beliefs of human observers are unavoidably not always “true”
(i.e., reflecting objective properties of the physical universe) but have a sort of
“effective validity” (in the sense that the future evolution of the mental states
of such beings will proceed, in general, as if their beliefs were true). Obviously,
within such a theory, the possibility to attribute effective validity to a belief
requires a reliable memory recording the belief itself.

It seems to us that the fundamental criterion to judge whether the many-minds
theory can accommodate other kinds of sentient beings has to be related to its
being able to guarantee to their beliefs the “effective validity” which is required
to characterize the beliefs of human beings. Since, as al-ready remarked, the
“effective validity” criterion requires some sort of memory, one is compelled to

73We want to stress that this holds independently of the fact that at the instants of the
subsequent measurements the brain of the first observer be still active and healthy or not.
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choose between the following alternatives: either he attributes to John a macro-
scopic memory, but in this case the whole criticism to the dynamical reduction
program breaks down; or, alternatively, he assumes that not only the formation
of beliefs but also the memory storing process involves only microscopic changes,
e.g., the displacement of P , and nothing else. In such a case, for obvious rea-
sons (see the preceding discussion and/or take into account that wavepackets
unavoidably spread), John’s memory has not the level of reliability which is nec-
essary to allow the attribution of an effective validity to his (ephemeral) beliefs.

Concluding, the above analysis has made plausible that even on the basis of
quantum mechanical considerations one is led to recognize that consciousness
and memory must be macroscopically supported in order to exhibit those fea-
tures of reliability and/or effective validity that are necessary to make them
meaningful and which are characteristic of human consciousness and memory;
thus, both QMSL and CSL allow us to “close the circle”.
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Chapter 4

RELATIVISTIC
DYNAMICAL
REDUCTION MODELS

13. White noise models: general framework and
examples

Bell [32], in explicating QMSL, immediately identified two aspects of it which
required further investigations:

1. The model does not respect the symmetry requirements for systems of
identical particles.

2. The introduction of the localizations assigns a special role to position and
requires a smearing on space, which makes it quite problematic to find a
relativistic generalization of it.

The first difficulty has been overcome by CSL, in which the sudden localizations
of QMSL have been replaced by a continuous stochastic evolution of the state
vector. Steps toward a solution of the second problem have been made with the
introduction of relativistic CSL models [67,138140,89], which are the subject of
this fourth part of the report.

In the present section we consider the general problem of describing relativistic
dynamical reductions in terms of white-noise stochastic differential equations.
In Section 13.1 we analyze the issue of stochastic Galilean invariance within non
relativistic QMSL and CSL, which guarantees that all the physical predictions
of the above models are invariant under the Galilei group of transformations.
We will see that stochastic invariance puts very severe limitations on the type
of stochastic processes which can be used to describe spontaneous collapses.
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In Section 13.2 we set up a relativistic (and stochastically invariant under
Lorentz transformation) model for decoherence (i.e. for ensemble or von Neu-
mann reductions) which is useful as a first step towards the formulation of rel-
ativistic dynamical reduction models: these will be considered in Section 13.3.

In Sections 13.4 and 13.5 we analyze the invariance and reduction properties of
such models, respectively. In the final subsection, we discuss a specific relativis-
tic model of spontaneous collapse which has all the desired properties of QMSL
and CSL, except that it induces an infinite increase of energy per unit time and
unit volume on physical system. This model, then, is not fully consistent; actu-
ally, this is a feature of all models in which quantum fields are locally coupled
to white noises.

13.1 Stochastic Galilean invariance of QMSL and
CSL

To bring out some concepts which will be useful in the following subsection, it
is appropriate to consider the transformation and the invariance properties of
non relativistic CSL.

Let us start by limiting our considerations to the evolution equation for the
statistical operator and let us consider two observers O and O′ related by a
transformation of the Galilei group. We take the so-called passive point of view
according to which the two observers look at the same physical situation. For
simplicity, let us suppose that the transformation connecting O and O′ is a
translation in space of an amount a and a translation in time of an amount τ ,
so that

r′ = r − a , t′ = t − τ (13.1)

Let the observer O describe the physical situation at his subjective time t by
the statistical operator ρ(t). Oberver O′, at the same objective time, i.e., at his
subjective time t′ = t − τ , will describe the physical situation by the statistical
operator

ρ′(t′) = U(a)ρ(t)U †(a) (13.2)

where U(a) = eiP⋅a is the usual unitary operator inducing the space translation.
The dynamical equation for the statistical operator for observer O′ is then

dρ′(t′)
dt′

= U(a)dρ(t)
dt

U †(a) (13.3)
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Substituting Eq. (7.51), describing the evolution of the statistical operator for
the observer O, into the right-hand side of Eq. (13.3), one gets74

dρ′(t′)
dt′

= − iU(a)[H(t), ρ(t)]U †(a) + γ∑
i

U(a)Aiρ(t)AiU †(a)

− γ
2
U(a)∑

i

{A2
i , ρ(t)}U †(a) (13.4)

If H is invariant under space and time translations

H ′(t′) ≡ U(a)H(t)U †(a) =H(t′) (13.5)

and if, moreover

∑
i

U(a)AiU †(a)XU(a)AiU †(a) = ∑
i

AiXAi (13.6)

for any bounded operator X, then Eq. (13.4) implies

dρ′(t′)
dt′

= −i[H,ρ′(t′)] + γ∑
i

Aiρ
′(t′)Ai −

γ

2
∑
i

{A2
i , ρ

′(t′)} (13.7)

i.e., the theory is invariant for space and time translations. If the same holds
for all transformations of the restricted Galilei group, we have invariance for the
transformations of this group. QMSL and CSL actually possess this invariance
property.

Nonetheless, it is important to stress that there is a difference between equations
of the type we are considering and the usual case in which one has a purely
Hamiltonian evolution, with respect to the connection between invariance and
representations of the symmetry group. This key difference arises from the fact
that while in the standard case one can always relate the statistical operators
used by O and O′ to describe the physical situation at the same subjective
time t , in the present case this cannot be done in general, when one considers
negative values of t in Eq. (13.1). In fact, let us suppose that O, at his own time
t = 0, is dealing with a physical system described by a pure state ρ(0) = ∣ψ⟩ ⟨ψ∣.
Since the dynamical evolution transforms pure states into statistical mixtures,
there is no way for O to prepare a physical situation at his own time τ < 0
(corresponding to t′ = 0 for O′) such that it evolves into the pure state ρ(0) at
t = 0. Correspondingly, there is no way for O′ to prepare at his own time t′ = 0
a statistical operator such that its evolved state at his time −τ > 0 is ∣ψ⟩ ⟨ψ∣.75

However, if the active point of view is taken and O′, at his time t′ = 0, prepares

74Throughout this section, we set h̵ = 1.
75Concerning this point, we call the attention of the reader to Albert’s investigations [141]

on the impact of dynamical reduction models on statistical mechanics and thermodynamics.
He points out that, precisely due to their fundamentally irreversible nature, such models
allow, in his opinion, a much more satisfactory derivation of the thermodynamical tendency
to equilibrium.
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the same state ρ(0), and the above stated invariance requirements are satisfied,
then O and O′ will observe the same dynamical evolution at the ensemble level
for the same (subjective) initial situation.

Coming now to the group theoretic point of view, since for the above reasons
the map Σt[ρ(0)], for a pure state ρ(0) is not defined for negative t, one has to
consider the proper Galilei semigroup G+, with only forward time translations
[142]. Any transformation g ∈ G+ can be expressed as a transformation of the
subgroup G0 of G+ which does not contain time translations, times a forward
time translation

g ∈ G+ ∶ g = gτg0 (13.8)

The map on the Banach space of the trace class operators

g ∶ ρ→ ρg , ρg = Στ [U(g0)ρU †(g0)] (13.9)

where U(g0) is the usual unitary representation of G0 and Στ is such that, for
τ > 0,Στ [ρ(t)] = ρ(t + τ) is the solution of Eq. (7.51), is then easily checked to
yield a representation of G+.

Up to now we have discussed the invariance properties of dynamical reduction
models from the point of view of the statistical operator. However, since we are
mainly interested in the evolution equation for the state vector, it is appropriate
to discuss the problem of the invariance also at this level. For simplicity, we
will limit ourselves to the discussion of space translations.

Let us start by considering the simpler linear Stratonovich equation (yielding
only ensemble reduction, i.e., decoherence)

i
d

dt
∣ψV (t)⟩ = V (r, t) ∣ψV (t)⟩ (13.10)

If we denote by O′ an observer whose reference frame is translated by an amount
a with respect to the frame of O, he will experience the potential

V ′(r′, t) = V (r′ + a, t) (13.11)

so that, for a particular realization of V , there is no invariance.

However, since we are dealing with a fundamentally stochastic theory, the in-
variance requirement has to be formulated in the appropriate way. We will say
that the theory is stochastically invariant under space translations if, for all
observers O′, translated by any a with respect to O, the stochastic ensemble
of potentials is the same and characterized by the same probabilities. This is
equivalent to requiring that, if V (r, t) is a possible sample function for O, then
V (r−a, t), for any a, is also a possible sample function for him, having the same
probability of occurrence of V (r, t), i.e.,

PRaw[V (r, t)] = PRaw[V (r − a, t)] (13.12)
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Note that this is automatically guaranteed by form (8.7) for the mean value and
covariance function of the Gaussian noise.

In the case of the model based on Eq. (8.8) describing Heisenberg reduction
processes, a separate discussion is needed, since the stochastic invariance re-
quirement has to be referred to the cooked probabilities which depend on the
initial state vector. Let us therefore consider two observers O and O′ and
suppose they prepare the same (subjective) state ∣ψ(0)⟩ at time t = 0. The
probability density of occurrence of the same (subjective) potential V (r, t) is,
for the two observers,

PO
′

Cook[V (r, t)] = PO
′

Raw[V (r, t)]∥ ∣ψO
′

V (t)⟩ ∥2 (13.13a)

POCook[V (r, t)] = PORaw[V (r, t)]∥ ∣ψOV (t)⟩ ∥2 (13.13b)

Since ∣ψO′

V (t)⟩ and ∣ψOV (t)⟩ are the solutions of Eq. (8.8) with the same (subjec-

tive) potential and satisfy the same initial conditions, they coincide. Moreover,

due to Eq. (13.12), PO
′

Raw[V (r, t)] = PORaw[V (r, t)], implying

PO
′

Cook[V (r, t)] = POCook[V (r, t)] (13.14)

This guarantees the invariance from the active point of view, i.e., the observers
cannot, by making physical experiments in their own frames, discover that they
are displaced. They agree on the statistical distributions of future outcomes.

13.2 Quantum field theory with a Hermitian stochas-
tic coupling: the case of decoherence

In trying to set up the framework for a relativistic generalization of reduction
models, we adopt the quantum field theoretic point of view. We remark that
the analogue of the idea of considering, within a nonrelativistic framework, a
stochastic potential V (r, t) consists in assuming that the Lagrangian density
for fields contains a stochastic interaction term. In this subsection we consider
a model analogous to the nonrelativistic ones discussed in Section 3.2, yielding
only ensemble, not individual reductions.

Let us consider, in the context of quantum field theory, the Lagrangian density

L(x) = L0(x) +LI(x)V (x) (13.15)

where L0 and LI are Lorentz scalar functions of the fields (for the moment we do
not need to specify the fields we deal with). We assume that LI does not depend
on the derivatives of the fields, and that V (x) is a c-number stochastic process
which is a scalar with respect to transformations of the restricted Poincarè
group, i.e., that under the change of variables x′ = Λx+b, it transforms according
to

V ′(x′) = V [Λ−1(x′ − b)] (13.16)
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We will also assume that V (x) is a Gaussian noise with zero mean and, to get
a relativistic stochastically invariant theory, that its covariance is an invariant
function

⟪V (x)V (x′)⟫ = A(x − x′) (13.17)

with A(Λ−1x) = A(x).

As discussed in the previous subsection, stochastic invariance requires different
observers to agree on the unfolding of physical processes. This, in turn, is
guaranteed by the condition that the family of all sample functions V (x) and
the probability density of occurrence of the same (subjective) sample function
be the same for all observers. This is achieved by requiring that, for a single
observer,

PRaw[V (x)] = PRaw[V (Λ(x + b))] (13.18)

We stress that property (13.18) holds automatically if the covariance is a rela-
tivistically invariant function. In fact, from

PRaw[V (x)] = 1

N
e−(1/2) ∫ dxdx

′ V (x)Ã(x−x′)V (x′) (13.19)

[where we have denoted by Ã(x−x′) the function satisfying ∫ dx′′A(x−x′′)Ã(x′′−
x′) = δ(x − x′)], one gets immediately, using the scalar nature of A and conse-
quently of Ã, that

PRaw[V (Λ(x + b))] = PRaw[V (x)] (13.20)

The most natural generalization of the case discussed in the previous section is
obtained by assuming that V (x) is a white noise in all variables, i.e.,

⟪V (x)V (x′)⟫ = A(x − x′) = λδ(x − x′) (13.21)

We study, first of all, the physical consequences of the stochastic coupling
LI(x)V (x). In Schrödinger’s picture we have, for a given V (x), the evolution
equation:

i
d

dt
∣ψV (t)⟩ = [H0 − ∫ d3xLI(x,0)V (x, t)] ∣ψV (t)⟩ (13.22)

where H0 is the Hamiltonian corresponding to L0. Eq. (13.22) implies

∣ψV (t)⟩ = Te−iH0t+i ∫
t
0 dτ ∫ d

3xLI(x,0)V (x,t) ∣ψ(0)⟩ (13.23)

This equation shows how, for a given initial state ∣ψ(0)⟩, one gets an ensemble
of states ∣ψV (t)⟩ at time t, according to the particular realization of the stochas-
tic process. The statistical ensemble can then be described by the statistical
operator obtained by averaging over the sample functions. In the case under
consideration one gets a closed evolution equation for the statistical operator.
In fact, we observe that, due to the fact that LI(x) does not depend on the
derivatives of the fields

[LI(x,0), LI(x′,0) = 0 ∀x,x′ (13.24)
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We then have

ρ(t + ε) =⟪[1 − iH0ε + i∫
t+ε

t
dτ ∫ d3xLI(x,0)V (x, τ)

−1

2
∫

t+ε

t
dτ dτ ′ ∫ d3xd3x′LI(x,0)LI(x′,0)V (x, τ)V (x′, τ ′)]

× ∣ψV (t)⟩ ⟨ψV (t)∣ [1 + iH0ε − i∫
t+ε

t
dτ ∫ d3xLI(x,0)V (x, τ)

−1

2
∫

t+ε

t
dτ dτ ′ ∫ d3xd3x′LI(x,0)LI(x′,0)V (x, τ)V (x′, τ ′)]⟫

(13.25)

We recall now the properties associated with a zero mean Gaussian probability
distribution

⟪V (x1, t1)........V (xn, tn)⟫ = 0 for n odd (13.26a)

⟪V (x1, t1)........V (xn, tn)⟫ = ∑
all pairs

⟪V (xi, ti)V (xj , tj)⟫

⋅⟪V (xk, tk)V (xl, tl)⟫ for n even (13.26b)

From (13.25) we then have

d

dt
ρ(t) = −i[H0, ρ(t)] + λ∫ d3xLI(x,0)ρ(t)LI(x,0) −

λ

2
∫ d3x{L2

I(x,0), ρ(t)}
(13.27)

Note that the obtained equation is of the Lindblad type.

The non-Hamiltonian terms in Eq. (13.27) imply a suppression of the off-
diagonal elements of the statistical operator in the basis of the common eigen-
states of the commuting operators LI(x,0). Putting

LI(x,0) ∣....ν....⟩ = ν(x) ∣....ν....⟩ (13.28)

one gets, when the Hamiltonian term in (13.27) is disregarded,

⟨....ν....∣ρ(t) ∣....ν′....⟩ = e−(λ/2)t ∫ d
3x [ν(x)−ν′(x)]2 ⟨....ν....∣ρ(0) ∣....ν′....⟩ (13.29)

As in the nonrelativistic case, however, for a single realization of the stochastic
potential V (x, t), the state vector is not driven into one of the eigenmanifolds
characterized by a given ν(x), since ∣ ⟨....ν.... ∣ψV (t)⟩ ∣2 does not change with
time. These considerations point out that, in order to have Heisenberg reduc-
tions, one has to resort to a skew-Hermitian coupling with the noise.

Eq. (13.27) for the statistical operator is not manifestly covariant, even though,
from the procedure which has been followed to derive it, we know that the the-
ory is stochastically invariant. To obtain a manifestly covariant description of
the statistical operator evolution, we note that the model presented above is
obviously equivalent to the following scheme:
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1. Assume that the fields are solutions of the Heisenberg equations obtained
in the standard way from the Lagrangian density L0(x) (note that we do
not require L0(x) to describe free fields).

2. Assume that the evolution of the state vector is governed by the Tomonaga-
Schwinger equation

i
δ ∣ψV (σ)⟩
δσ(x) = −LI(x)V (x) ∣ψV (σ)⟩ (13.30)

LI(x) being a function of the fields considered in (1) which does not involve
their derivatives. As a consequence of the assumptions about LI(x), for
any two points x,x′ ∈ σ, σ being a spacelike surface, [LI(x), LI(x′)] = 0,
and consequently Eq. (13.30) is integrable.

Let us consider the formal solution of Eq. (13.30):

∣ψV (σ)⟩ = Tei ∫
σ
σ0

∣ψ(σ0)⟩d
4xLI(x)V (x)

(13.31)

Defining
ρ(σ(= ⟪∣ψV (σ)⟩ ⟨ψV (σ)∣⟫ (13.32)

using (13.32), and following the procedure outlined in Eqs. (13.25)(13.27), we
get the Tomonaga-Schwinger equation for the statistical operator

δρ(σ)
δσ(x) = λLI(x)ρ(σ)LI(x) −

λ

2
{L2

I(x), ρ(σ)} (13.33)

which is manifestly covariant.

13.3 White noise relativistic dynamical reduc-
tion models

In this subsection we present a stochastically invariant theory yielding Heisen-
berg reductions. To this purpose we keep assumption (1) of the previous section
and we replace (2) by the requirement that ∣ψV (σ)⟩, nstead of being governed
by Eq. (13.30), obeys the following equation of the TomonagaSchwinger type:

δ ∣ψV (σ)⟩
δσ(x) = [LI(x)V (x) − λL2

I(x)] ∣ψV (σ)⟩ (13.34)

The main difference between the two Eqs. (13.30) and (13.34) derives from
the skew-Hermitian character of the coupling to the stochastic c-number field.
On the right-hand side of (13.34) a term guaranteeing the conservation of the
average value of the square norm of the state appears. It is important to remark
that Eq. (13.34), for a given sample potential, does not conserve the norm of
the state vector.
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Let ∣ψV (σ)⟩ be the solution of Eq. (13.34) for a given realization of the stochastic
potential

∣ψV (σ)⟩ = Te∫
σ
σ0
d4x [LI(x)V (x)−λL2

I(x)] ∣ψV (σ0)⟩ (13.35)

and let us define the stochastic average

ρ(σ) = ⟪∣ψV (σ)⟩ ⟨ψV (σ)∣⟫ (13.36)

Following the same procedure of the previous subsection one sees that ρ(σ) still
satisfies Eq. (13.33) derived in the Hermitian case.

As in the nonrelativistic case we have then two conceptually different dynamical
evolutions for the state vector, i.e., (13.30) and (13.34), which give rise to the
same dynamics for the statistical operator and therefore to the same physical
predictions at the ensemble level. The very definition (13.36) of the statistical
operator, when confronted with the fact that the equation for the state vector
does not preserve the norm, implies the adoption of the point of view that a
cooking procedure, analogous to the one discussed in Section 7.1, is necessary.
This means that one has to consider normalized vectors ∣ψV (σ)⟩ /∥ ∣ψV (σ)⟩ ∥
and has to attribute to the considered realization V (x) of the stochastic po-
tential, having support in the spacetime region lying between the two spacelike
hypersurfaces σ0 and σ, not the probability density P [V (x)] given by (13.19),
but a cooked probability density PCook[V (x)] given by

PCook[V (x)] = PRaw[V (x)]∥ ∣ψV (σ)⟩ ∥2 (13.37)

In the above equation ∣ψV (σ)⟩ is the solution of Eq. (13.34) satisfying

∣ψV (σ0)⟩ = ∣ψ0⟩ (13.38)

Before discussing the cooking procedure, the role of the counterterm, and the
relativistic invariance of the theory, an important remark is necessary. As has
been discussed in [67], at the level of the statistical operator the map Σt does
not exist when t < 0. For this reason, even at the state vector level, we will only
consider Eq. (13.34) as yielding the evolution from the state vector associated
to a given spacelike surface σ0 to spacelike surfaces lying entirely in the future
of σ0.

For what concerns the properties of the cooking procedure one can immediately
see that Eq. (13.33) preserves the trace of ρ, which amounts to the statement
that Eq. (13.34) preserves the average of the square norm of the state vector.
In particular, this implies

∫ D[V ]PCook[V (x)] = ∫ D[V ]P [V (x)]∥ ∣ψV (σ)⟩ ∥2 = 1 (13.39)

which shows that the requirement that the cooked probability density sums to
1, is satisfied.
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13.4 Transformation properties and invariance
of the theory

We discuss now the transformation properties of the theory for a given real-
ization of the stochastic potential, in going from a given reference frame O to
another one O′ related to it by a transformation of the restricted Poincarè group

(Λ, b) ∶ x→ x′ = Λx + b (13.40)

We remind the reader that in the Tomonaga-Schwinger formalism of conven-
tional quantum field theory each reference frame O is able to assign a state
vector to each spacelike hypersurface. Our first concern is to demonstrate that
the consistency of the composition law for Lorentz transformations remains in-
tact when one resorts to the Tomonaga-Schwinger formalism.

Suppose that transformation (13.40) involves a boost and consider a given space-
like surface σ for O. The surface which is subjectively the same for O′ involves
points which lie in the past of the surface σ for O. Our previous discussion
has pointed out that we will only use the Tomonaga-Schwinger equation to go
from a given spacelike surface σ to surfaces lying entirely in the future of σ.
Therefore, contrary to the standard case, we are not allowed to raise here the
following question: which state vector ∣ψ′(σ)⟩ would O′ associate to his sub-
jective surface σ to describe the same physical situation described by O who
assigns the state vector ∣ψ(σ)⟩ to his subjective surface σ?

We can, however, legitimately consider subjective surfaces σ∼
′

for O′, such that
they lie in the future of the surface σ for O. Suppose the observer O associates
the state vector ∣ψO(σ)⟩ to his subjective surface σ to describe the physical situ-
ation. Let us denote by σ∼ the surface of O which is objectively the same as the
above-mentioned surface σ∼

′

for O′. The O associates to σ∼ the state ∣ψO(σ∼)⟩
obtained by solving Eq. (13.34) with the initial condition that it reduces to
∣ψO(σ)⟩ on σ. We have

∣ψO(σ∼)⟩ = SV (σ∼, σ) ∣ψO(σ)⟩
∥SV (σ∼, σ) ∣ψO(σ)⟩ ∥ (13.41)

with

SV (σ∼, σ) = Te∫
σ∼

σ0
d4x [LI(x)V (x)−λL2

I(x)] (13.42)

Then the observer O′ will associate to his surface σ∼
′

the state vector

∣ψO′(σ∼
′

)⟩ = U(Λ, b) ∣ψO(σ∼)⟩ = U(Λ, b)SV (σ∼, σ) ∣ψO(σ)⟩
∥SV (σ∼, σ) ∣ψO(σ)⟩ ∥ (13.43)

In Eq. (13.43), U(Λ, b) is the unitary operator whose infinitesimal generators
Pµ and Jµν are obtained in the standard way from the Lagrangian density
L0(x). Let now σ,σ∼, σ∼∼ be three spacelike surfaces for O each lying entirely
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in the future of the previous ones. Let us consider two other observers O′ and
O′′ related by two successive Lorentz transformations (the generalization to
Poincarè transformations is straightforward): O′ = Λ1O, O′′ = Λ2O

′, and let us

denote by σ′, σ∼
′

, σ∼∼
′

and σ′′, σ∼
′′

, σ∼∼
′′

the above surfaces as seen by O′ and
O′′, respectively.

Map (13.42), for a given realization of the stochastic potential, has the following
property. Suppose O assigns the state ∣ψO(σ)⟩ to the surface σ. The O′ assigns

state (13.43) to the surface σ∼
′

. For O′ this state evolves according to the

Tomonaga-Schwinger equation (13.34) with V ′(x′) = V (Λ−1
1 x′) from σ∼

′

to σ∼∼
′

:

∣ψO′(σ∼∼
′

)⟩ =
S′V ′(σ∼∼

′

, σ∼
′) ∣ψO′(σ∼′)⟩

∥S′V ′(σ∼∼′ , σ∼′) ∣ψO′(σ∼′)⟩ ∥ (13.44)

The observer O′′ will describe the final situation by assigning the state vector

∣ψO′′(σ∼∼
′′

)⟩ = U(Λ2) ∣ψO′(σ∼∼
′

)⟩ (13.45)

to the surface σ∼∼
′′

. On the other hand, one can consider the evolution from σ
to σ∼∼ as seen from O,

∣ψO′(σ∼∼)⟩ = SV (σ∼∼, σ) ∣ψO(σ)⟩
∥SV (σ∼∼, σ) ∣ψO(σ)⟩ ∥ (13.46)

and then look at it from O′′ = Λ2Λ1O, getting the state

∣ψ∗O′′(σ∼∼
′

)⟩ = U(Λ2Λ1) ∣ψO(σ∼∼)⟩ (13.47)

For consistency, ∣ψ∗O′′(σ∼∼
′)⟩ must coincide with ∣ψO′′(σ∼∼′)⟩. This can be easily

proved to hold.

lthough we have??just seen that the theory implies an assignment of a state vec-
tor to a hypersurface by any observer that fulfills the Lorentz (also Poincarè)
group requirements, this does not mean that the description is Lorentz invari-
ant. In fact, because a particular realization of the stochastic potential V looks
different from two different reference frames, the map SV (σ∼, σ) obviously de-
pends upon the reference frame O. This shows that, at the individual level, the
theory does not posses the property of standard (i.e., non-stochastic) Lorentz
invariance. However, for stochastic Lorentz invariance, one must consider the
ensemble of possible sample potentials. When one takes into account the Lorentz
invariance of requirement (13.17) for the correlation function ⟪V (x)V (x′)⟫, and
the invariance of the cooking procedure that must be performed to get the
physics of the problem, one can easily prove, along the same lines as in the non
relativistic case, that there is stochastic invariance in the state vector language,
i.e., the stochastic ensemble of evolution operators SV (σ∼, σ) is the same in each
reference frame.
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In the language of the statistical operator, invariance is evident from the mani-
festly covariant Tomonaga-Schwinger form (13.33) of the evolution equation.

13.5 Reduction properties

Once we have guaranteed the invariance of the formalism by using its Tomona-
gaSchwinger formulation, in order to discuss specific features of the process, we
can consider t=const hyperplanes in the Schrödinger picture. In so doing, the
equation corresponding to (13.34) is

d ∣ψV (t)⟩
dt

= [−iH0 + ∫ d3x (LI(x,0)V (x, t) − λL2
I(x,0))] ∣ψV (t)⟩ (13.48)

This is a Stratonovich equation for the state vector. By standard procedures
one can consider the corresponding Itô stochastic dynamical equation

d ∣ψV (t)⟩ = [(−iH0 −
λ

2
∫ d3xL2

I(x,0))dt + ∫ d3xLI(x,0)dV (x)] ∣ψV (t)⟩
(13.49)

where dV (x) is a real Wiener process satisfying

⟪dV (x)⟫ = 0 , ⟪dV (x)dV (y)⟫ = λδ(x − y)dt (13.50)

Note that both Eqs. (13.48) and (13.49) do not conserve the norm of the state
vector but they conserve the average of its squared norm.

As discussed in Section 7 one can take two equivalent attitudes to describe the
physics of the process. One can solve Eq. (13.48) or (13.49) for a given initial
condition, and then one can consider the normalized vectors ∣ψV (t)⟩ /∥ ∣ψV (t)⟩ ∥
at time t and assume hat the probability of their occurrence is obtained by
cooking the probability density of occurrence of V (x), i.e., by multiplying it by
∥ ∣ψV (t)⟩ ∥2. Alternatively, one can consider the nonlinear stochastic dynamical
equation

d ∣ψV (t)⟩ = [(−iH0 −
λ

2
∫ d3x [L2

I(x,0) − ⟨LI(x,0)⟩]2)dt

+∫ d3x (LI(x,0) − ⟨LI(x,0)⟩)dV (x)] ∣ψV (t)⟩ (13.51)

where ⟨LI(x,0)⟩ = ⟨ψV (t)∣LI(x,0) ∣ψV (t)⟩, without cooking, i.e., using just the
probability weighting of V (x).

As we know from the discussion of the previous section, when one disregards
the Hamiltonian term in (13.51), the evolution leads the state vector to enter
one of the common eigenmanifolds of the commuting operators LI(x,0). The
theory induces therefore Heisenberg reductions, as required.
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13.6 The models so far proposed

In this subsection we will consider some specific choices for the Lagrangian den-
sities L0 and LI which, when used in connection with the formalism presented
in the previous subsection, yield stochastically invariant relativistic reduction
models. The goal is to build up a framework leading to localization in position
of the basic constituents of all matter.

The simplest and most immediate idea would be to introduce a fermion field for
particles of mass M and to choose for the Lagrangian density the expressions

L0(x) = ψ̄(x)(iγµ∂µ −M)ψ(x) , LI(x) = ψ̄(x)ψ(x) (13.52)

However, in the nonrelativistic limit, the dynamics induced by the above choice
would lead to infinitely sharp position localizations for the fermions, and this,
as is well known [143], is unacceptable.

We have then to enrich the formalism. This can be done by following the
proposal put forward in Ref. [89]. One considers a fermion field coupled to a
real scalar meson field and chooses

L0(x) = 1
2
[∂µφ(x)∂µφ(x) −m2φ2(x)] + ψ̄(iγµ∂µ −M)ψ(x) + ηψ̄(x)ψ(x)φ(x)

(13.53a)

LI(x) = φ(x) (13.53b)

The introduction of the meson field coupled to the fermion field allows one to
overcome the difficulty of the infinitely sharp localization for fermions met by
the previous model. In the Schrödinger representation the evolution equation
for the state vector corresponding to choice (13.53) is

d ∣ψV (t)⟩
dt

= [−iH0 + ∫ d3z (φ(z,0)V (x, t) − λφ2
I(z,0))] ∣ψV (t)⟩ (13.54)

Let us consider now the nonrelativistic infinite mass limit for fermions and let
us confine our discussion to the sector containing one fermion (note that in the
limit the fermion number is a conserved quantity). The state of a fermion at
position q is the “dressed” state

∣1q⟩ = a†(q)A(q) ∣0⟩ (13.55)

where a†(q) is the creation operator for a fermion at q and A(q) ∣0⟩ = ∣mq⟩ is a
coherent state which can be characterized as either the common eigenstate of the
annihilation operators of physical mesons with eigenvalue zero or as the common
eigenstate of the annihilation operators b(k) of bare mesons with momentum k,
with eigenvalues (η/

√
2)e−ik⋅q/(2πk0)3/2.

To be rigorous, in the three-dimensional case, one should introduce an ultraviolet
cut-off on the momentum of mesons in the interaction term to avoid ultraviolet
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singularities. In the limit in which the cut-off is removed the meson states ∣mq⟩,
∣mq′⟩ tend to become orthogonal for q ≠ q′. In this way, due to the coupling
of the fermion field to the meson field, the “position” of one fermion turns out
to be strictly correlated to states of the meson field which are approximately
orthogonal.

We note that the mean value of φ(z,0) in the state ∣mq⟩ turns out to be

⟨mq∣φ(z,0) ∣mq⟩ = f(z − q) = ηe−∣z−q∣

4π∣z − q∣ (13.56)

In what follows, in order to discuss the localization properties of the model for
physical fermions, we make a gross simplification (which coincides with the non
relativistic approximation), i.e., we treat the states ∣mq⟩ as eigenstates of φ(z,0)
pertaining to the eigenvalue f(z − q). Let us then consider the physical state
for one fermion

∣ψ(t)⟩ = ∫ d3q ψ(q, t) ∣1q⟩ (13.57)

By substituting (13.57) into Eq. (13.54) and disregarding the standard Hamil-
tonian H0, we get the equation for ψ(q, t):

∂ψV (q, t)
∂t

= ∫ d3xf(z − q)V (z, t)ψV (q, t) − λη2

8πm
ψV (q, t) (13.58)

i.e.,
∂ψV (q, t)

∂t
= V ∼(q, t)ψV (q, t) − λη2

8πm
ψV (q, t) (13.59)

with V ∼(q, t) a Gaussian noise with zero mean and covariance

⟪V ∼(q, t)V ∼(q′, t′)⟫ = λη

8πm
e−m∣q=q′∣δ(t − t′) (13.60)

Eq. (13.59) is essentially the same as Eq. (8.8) of CSL for the case of a single
particle. If one considers the sector with N fermions, in the above approxima-
tions, one gets an equation of the CSL type [see Eqs. (7.9) and (8.1)] with the
operator

D(x) = m
2

4π
∫ d3z

e−m∣x−z∣

∣x − z∣ a
†(z)a(z) (13.61)

taking the place of N(x), and (λη2)/m4 taking the place of γ.

Thus it appears reasonable that model (13.53) possesses the desired localizing
features. However, it also presents a serious difficulty. The evolution equation
(13.27) for the statistical operator, specialized to the Lagrangian (13.53), is

d

dt
ρ(t) = −i[H0, ρ(t)] + λ∫ d3z φ(z,0)ρ(t)φ(z,0) − λ

2
∫ d3z {φ2(z,0), ρ(t)}

(13.62)
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Let us consider the Hamiltonian H for the free meson field; by using (13.62)
one can evaluate the increase per unit time of the mean value of H, getting

d⟨H⟩
dt

= λ
2
∫ d3z ⟨[φ(z,0), [φ(z,0),H]]⟩ (13.63)

i.e.,
d⟨H⟩
dt

= λ
2
∫ d3z δ(0) (13.64)

Therefore, the increase per unit time and per unit volume of the mean value of
the energy of the meson field turns out to be infinite. So, in addition to the de-
sired reduction behavior, the model displays an undesired additional behavior:
because the white noise source is locally coupled to the meson field, it copiously
produces mesons out of the vacuum.76 We note that the now outlined difficulty
does not show up in the nonrelativistic approximation of the model discussed
above [Eqs. (13.58)(13.61)] due to the gross simplification of treating the states
∣mq⟩ as eigenstates of φ(z,0).

Since the divergences originate from the local coupling between the quantum
fields and the white noise, the natural way to cure the infinite vacuum fluc-
tuations is to replace the white noise with a more general Gaussian stochastic
process; this possibility has been explored by Pearle [90,91]. He considers an
evolution equation for the state vector which is the straightforward generaliza-
tion of the white noise equation (13.35). He then proves that - in the lowest
order in perturbation theory - only the time-like components of the spectrum
of the noise are responsible for the vacuum excitations; accordingly, he chooses
as the spectrum of the noise that of a tachyon of mass µ = h̵/αc ∼ 1 eV , where
α is the QMSL localization parameter. Anyway, at higher orders in perturba-
tion theory there are still vacuum excitations; to avoid such excitations, Pearle
proposes to remove the time-ordering product from Feynman diagrams.

Recently, Nicrosini and Rimini [92] have proposed a different solution to the
problem arising from the appearance of divergences. They couple the noise not
to the quantum fields, but to “macroscopic operators” which are defined as the
integral of the usual quantum fields over appropriately chosen (Lorenz invariant)
spacetime surfaces. In other words, the coupling between the quantum fields
and the white noise is not local anymore.

Both the attempts by Pearle and by Nicrosini and Rimini are promising; anyway,
they still have to be studied in detail. In particular, it is not clear yet whether
the evolution can be expressed in terms of a integrable Tomonaga-Schwinger
equations: this is a necessary requirement in order to put on solid grounds any
relativistic theory of dynamical reductions.

76A similar conclusion has been reached also by Adler and Brun in recent investigations on
relativistic state vector collapse models [144].
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14. Local/nonlocal features of relativistic CSL

As is well known, the quantum theory of measurement, in addition to the dif-
ficulties discussed in Section 2 which constitute the main motivation for the
consideration of dynamical reduction models, presents some further difficulties
arising specifically from the assumed instantaneous nature of the collapse of the
wavefunction. In particular, at the individual level of description, nonlocal fea-
tures as well as odd aspects (from the relativistic point of view) emerge. Such
problems have already been extensively discussed in the literature [13,145147],
in the case of standard quantum mechanics: we will review them in Section
14.1. It is interesting to look at them from the perspective of the relativistic
dynamical reduction models, analyzed in the previous section this will be the
subject of Section 14.2.

In the final section we discuss the problem of parameter dependence in dynam-
ical reduction models. We will show that in the non linear model there is a
set of realizations of the stochastic process for which parameter independence is
violated for parallel spin components in a EPR-Bohm-like setup. Such a set has
an appreciable probability of occurrence (≃ 1/2). On the other hand, we will
prove that the linear model exhibits only extremely small parameter dependence
effects

14.1 Quantum theory with reduction postulate

14.1.1 Objective properties of individual systems

Suppose one accepts it as meaningful, within standard quantum theory, to con-
sider an individual level of description with the possibility of attributing ob-
jective properties to a quantum system. As discussed in Section 2.4, a natural
attitude corresponding to the one first introduced in the celebrated EPR paper
[5] is to assume the following. If an individual physical system S is associated to
a definite state vector ∣ψ⟩ which is an eigenstate of an observable A pertaining
to the eigenvalue a, then one can state that “S has the property A = a” or that
“there exists an element of physical reality” referring to the considered observ-
able. We remark that if we denote by Pa the projection operator on the closed
linear manifold of the eigenstates of A belonging to the eigenvalue a, then

⟨ψ∣Pa ∣ψ⟩ = 1 (14.1)

We want to stress, however, that even within nonrelativistic standard quantum
mechanics, one is compelled to take the attitude of attributing objective prop-
erties to a system even when condition (14.1) is valid only to an extremely high
degree of accuracy. To clarify this statement, we can think, for example, of
the spin measurement of a spin-1/2 particle by a SternGerlach apparatus. In
such a case, the two spin values are strictly correlated to two states ψ1 and ψ2

describing the spatial degrees of freedom. Even though these wavefunctions are
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appreciably different from zero in two extremely narrow and distant regions,
their supports cannot have a void intersection. As a consequence even an ar-
bitrarily precise measurement of the position cannot reduce the state vector
exactly to an eigenstate of the spin component. The final state unavoidably
exhibits an (extremely slight) entanglement of position with spin variables and
as such cannot be an eigenstate of a spin component operator.

Incidentally we remark that the above considerations are even more appropri-
ate in the case of dynamical reduction models. In fact, on the one hand, such
models, with the requirement that they induce Heisenberg reductions, are intro-
duced just with the purpose of implying, at the individual level, the emergence
of objective properties for macroscopic objects (in particular the property of
being in one place rather than in another). Correspondingly, they induce in-
directly the appearance of objective properties also for microscopic systems, at
least when they interact with macroscopic measuring-like devices. On the other
hand, as is well known and as has been repeatedly stressed in Refs. [67,148,89],
within dynamical reduction models, the unavoidable persistence of the tails,
the tiny but nonzero terms corresponding to the parts of a linear superposition
which have been suppressed by the spontaneous localization process, prevents
us from asserting with absolute certainty that the “macroscopic pointers” are
in a definite space region, if one adopts the standard probability interpretation.

The conclusion is the same we have drawn in Section 11 concerning the tails
problem, i.e., that within the dynamical reduction program is perfectly consis-
tent to accept that it makes sense to attribute appropriate objective properties
to individual systems even when the mean value of the projection operator on
the eigenmanifold associated to the eigenvalue corresponding to the attributed
property is not exactly equal to 1, but is extremely close to it.

14.1.2 Non locality

Nonlocal features77 of quantum mechanics arise from the fact that, due to the
instantaneous nature of the collapse of the wavefunction, possible actions per-
formed in a certain space region can, under specific circumstances, induce im-
mediate changes in distant regions. In this connection two important questions
arise: first, do these changes correspond to some modifications of the physical
situation in the distant region? Secondly, are these modifications detectable, so
that one can take advantage of them to send faster than light signals?

To make precise and unambiguous these questions, it is necessary to specify the
level of description of physical processes one is considering. In particular, it is
important to make a clear distinction between the ensemble and the individual
levels of description.

77or an exhaustive discussion, the reader is referred to the excellent book by Redhead [149].
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To understand the above situation, one can make reference either to the well-
known EPR-Bohm type setup for an “entangled” state of a composite system
S = S1 + S2, the components being far apart and noninteracting, or to the po-
sition measurement of a particle whose state is the linear superposition of two
distant packets. In the first case, as is well known, at the level of the individual
members of the ensemble, the far away system (let us say S2) is [150] “steered or
piloted into one or the other type of state” according to the measurement which
is performed on S1 and the specific result which is obtained. In the second case,
let us write ψ(x, t) = ψ1(x, t) + ψ2(x, t), where the states ψ1(x, t) and ψ2(x, t)
have equal norms and are appreciably different from zero only in two far apart
regions α1 and α2, respectively. Then, a measurement aimed to test whether
the particle is in α1 and yielding, for example, the answer “no” (“yes”), instan-
taneously collapses ψ(x, t) to ψ2(x, t) (ψ1(x, t)). Correspondingly the quantity

∫α2
dx ∣ψ(x, t)∣2 (i.e., “the mean value”78 of the projection operator on region

α2), changes from 1/2 to either 1 or 0 according to the outcome of the position
measurement at α1. This puts into evidence how, if interpreted as a theory
describing individual systems, quantum mechanics exhibits nonlocal features.

The situation is quite different when looked at from the ensemble point of view.
In fact, as is well known [7174], no measurement procedure in a given region
can change the statistical distribution of prospective measurement results in a
distant region. Of course, this does not mean that, from the ensemble point of
view, Quantum Mechanics displays a local character. The theory is still highly
nonlocal (for example, Bell’s inequalities hold), but this nonlocality cannot be
used in any way to send faster that light signals to distant observers.

These remarks, although made in the context of ordinary quantum theory with
the reduction postulate, are not essentially modified (i.e., the word “instanta-
neously” must be changed to “in a split second” [32]) in the case of the CSL
theory with its reduction dynamics.

14.1.3 Relativistic oddities with observations

In the above analysis we have discussed a measurement process in a given ref-
erence frame O. The consideration of the instantaneous change of the state
vector induced by a measurement raises interesting questions when looked at by
different observers. Since the distance between the two space regions α1 and α2

mentioned above can be arbitrarily large, even the passage to a reference frame
which is moving with respect to O with an arbitrarily small velocity can change
the time order of simultaneous (for O) events occurring in the two regions.

To illustrate briefly the main points of the problem, we consider the observer O
looking at a system of one particle in the state ψ(x, t) = ψ1(x, t)+ψ2(x, t) which

78We are using the common phrase “mean value” to represent diagonal matrix elements like
(14.1), even though the statistical connotation of this phrase has no meaning in our discussion.
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is a superposition of two well-localized wavepackets propagating in opposite di-
rections with respect to the origin x = 0. Disregarding the extension and the
spreading of the wavepackets, we can represent the situation by the spacetime
diagram of Fig.4,

Figure 4: World lines of two well-localized wavepackets 1 and 2, belonging to a
single particle which is detected at event C.

in which the two world lines 1 and 2 are associated with ψ1 and ψ2, respectively.
Suppose that, at the spacetime point C = (x1, t1) there is a device designed to
test whether the particle is there, and let us suppose that, in the specific indi-
vidual case we are considering, the result of the test is “yes”. This is a covariant
statement on which all observers must agree. If one adopts the wavepacket
reduction postulate of standard quantum theory and one assumes that the col-
lapse occurs for each reference frame along the hyperplane t′ = constant, where
t′ is the subjective time of the event C for such a frame, one meets a puzzling
situation. Let us in fact consider an objective point B on world line 2, which
is spacelike separated from C and which is labeled by (x2, t2) (see Fig. 4). For
O, t2 < t1, and, by the above assumption, no reduction has occurred at time t2
and the state vector is ψ(x, t2). If one considers the projection operator P2 on
the space region around x2, one has ⟨ψ∣P2 ∣ψ⟩ ≃ 1/2. Accordingly, we could say
that the situation is such that, at time t2, O cannot attribute to the particle
the “property” of being or not being in the region around x2.

However, there exists an observer O′ such that t′2 > t′1, where t′2 and t′1 are the
time labels attributed by O′ to the events B and C, respectively. For O′ the
particle has triggered the detector in C at t′1. Therefore at t′2 the state of the
system is ψ1. Then, for O′, the mean value of the projection operator P2 at t′2

171



is zero.79 Observer O′ can then state that the particle has the property of “not
being around B”. Thus, O and O′ do not agree on a statement referring to a
local property at an objective spacetime point.

It is useful to note that this ambiguity occurs only for the points of the world
line 2 which are spacelike with respect to C; for a point B in the past of C all
observers agree in stating that the particle has no definite location while for a
point B in the future of C all observers agree in saying that the particle “is not
around B”.

he above discussion follows essentially the one given in Ref. [145]. The consid-
eration of these kinds of difficulties have led various authors to take different
attitudes. Bloch [145] and Aharonov and Albert [147] derive from this the
conclusion that one cannot attach an objective meaning to wavefunctions for
individual systems. Hellwig and Kraus [146] have tried to solve the ambigu-
ity about the wavefunction at a given objective spacetime point by requiring
that the collapse of the state vector due to the measurement at C takes place
along the past light cone originating from C. Thus, at points outside the past
light cone the state vector is reduced, while at points inside the past light cone
the state vector is unreduced. This is a covariant statement and leads the au-
thors to the identification of a unique state vector to be associated to any given
spacetime point. However, such a prescription implies that there are spacelike
surfaces (those crossing the past cone of C) to which it is not possible to asso-
ciate a definite state vector. This, as nicely illustrated by Aharonov and Albert
[147], forbids the consideration of nonlocal observables on these hypersurfaces;
for example it does not allow one to speak consistently of the total charge of
the system. Moreover, the assumption that the reduction occurs on the hy-
persurface delimiting the past light cone raises conceptual difficulties with the
cause-effect relation.

14.2 Relativistic reduction models

We discuss here the local and nonlocal features of reduction models in the rela-
tivistic case. In order to investigate whether the dynamics presented in Section
13.4 has nonlocal effects, we make reference to the procedure outlined in Ref.
[151], i.e., we consider whether a modification of the Lagrangian density in a
spacetime region C can have effects in a region B which is spacelike separated
from it (this will be discussed in Sections 14.2.1 and 14.2.2). In particular, since
we want to study the possibility of nonlocal effects due to the reducing charac-
ter of the dynamics, we will take into account modifications of the Lagrangian
density LI coupled to the noise.

79Obviously, to be rigorous, both the statement that the state is ψ1 or ψ2, as well the
consideration of the projection operators P1 and P2 re not correct, because one should consider
a relativistic description of the system and of the observables. However, since O′ is moving
with a very small velocity v << c with respect to O, the above approximations are appropriate.
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The problems which we want to discuss require the consideration of “local ob-
servables”. By this expression we mean the integral of a function of the fields
and their derivatives in the interaction picture:

AI(σ) = ∫
σ
dx′ fα(x′)F [φI(x′), ∂µφI(x′)] (14.2)

where fα(x′) is a function of class C∞ with compact support α on the space-
like surface σ. The physically interesting quantities, for our analysis, are the
mean values of such local observables. As usual it is necessary to make precise
the level at which the nonlocality problem is discussed. We will consider it, as
before, both at the ensemble and at the individual level.

At this last level, we will discuss also questions analogous to those considered in
Section 14.1.3 which originate from looking at the wavepacket reduction postu-
late, taking the point of view of relativity theory. In the present context, they
emerge naturally from the relativistic dynamics described by the Tomonaga-
Schwinger equation. In particular, it turns out that, for all Tomonaga-Schwinger
surfaces coinciding on α, the mean value of the local observable depends upon
the specific Tomonaga-Schwinger surface on which it is evaluated (see Section
14.2.3). This is not the case with the Tomonaga-Schwinger description of an
ordinary relativistic quantum field theory, and such a difference gives rise to
interesting questions about the possibility of attributing objective properties to
the systems which we will discuss in Section 14.2.4.

14.2.1 Ensemble level

As already emphasized, at the ensemble level, the statistical operator and there-
fore the physics of the two models considered in Sections 13.2 and 13.3 coincide.
Thus, to investigate properties referring to the statistical ensemble, one can
make reference to the stochastic dynamics with Hermitian coupling, which can
be easily handled by familiar methods.

With reference to the model of Section 13.3, we consider the mean value of a
local observable AI(σ):

⟨AI(σ)⟩ = Tr[AI(σ)ρI(σ)] (14.3)

Let us denote by UV (σ,σ0) the evolution operator

UV (σ,σ0) = Tei ∫
σ
σ0
dxLI(x)V (x)

(14.4)

and by AHV (σ) = U †
V (σ,σ0)AI(σ)UV (σ,σ0) the observable in the Heisenberg

picture which corresponds to AI(σ) when the realization V of the stochastic
potential occurs. Let AH(σ) be the stochastic average over V of AHV (σ)

AH(σ) = ∫ D[V ]PRaw[V ]AHV (σ) (14.5)
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We then have
⟨AI(σ)⟩ = Tr[AH(σ)ρI(σ0)] (14.6)

The support of AI(σ) defines a partition of spacetime into three regions: the
future, the past, and the set of points which are spacelike separated from all
points belonging to this support (see Fig. 5).

Figure 5: The support of the local observable AI(σ), and the set (3) of points
bearing a spacelike relation to this support.

We choose now a spacetime region C entirely contained in region 3 and we
consider a modification of the Lagrangian density LI(x) coupled to the noise.
We replace LI(x) with a new density L∼I(x) = LI(x) + ∆LI(x), with ∆LI(x)
different from zero only for x ∈ C. If A∼

HV (σ) denotes the local observable in
the Heisenberg picture, when we replace LI(x) with L∼I(x), we have

A∼
HV (σ) = [Tei ∫

σ
σ0
dx∆LI(φHV (x))V (x)]

†
AHV (σ) [Tei ∫

σ
σ0
dx∆LI(φHV (x))V (x)]

(14.7)
The fields φHV (x) which appear in ∆LI(x) are the fields in Heisenberg picture
for the original Lagrangian density L0(x) + LI(x)V (x). The appearance of
∆LI(x) actually restricts the integration in the exponential to the spacelike
region C, which is spacelike separated with respect to the support of AHV (σ).
It follows that the exponential commutes with AHV (σ), and therefore

A∼
HV (σ) = AHV (σ) (14.8)

for any given realization of the stochastic potential. One then has

A∼
H(σ) = AH(σ) (14.9)

i.e., due to Eq. (14.6), at the level of the statistical ensemble any modification
of LI(x) in a spacetime region C cannot cause physical changes in regions which
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are spacelike separated from it. We stress that this conclusion is true for the
case of non hermitian coupling as well as for the case of hermitian coupling,
even though the argument was carried out in terms of the hermitian coupling
alone, as it depends solely upon the consideration of the statistical operators
which are identical for both cases.

14.2.2 Individual level

From result (14.8) it is also evident that, in the case of hermitian coupling
[i.e., for (13.30)] a variation of the Lagrangian density LI(x) in a region C
has no effect on the mean value of any local observable with support which is
spacelike separated from C, even at the level of an individual system (i.e., for
any realization of the stochastic potential). This property is related to the fact
that, in this case, no Heisenberg reduction takes place.

The situation is quite different in the case of a non Hermitian coupling. In fact,
let us consider Eq. (13.34) and the operator SV (σ,σ0) given by (13.42). The
mean value of a local observable AI(σ) is then

⟨AI(σ)⟩ =
⟨ψV (σ)∣AI(σ) ∣ψV (σ)⟩

∥ ∣ψV (σ)⟩ ∥2

=
⟨ψV (σ0)∣S†

V (σ,σ0)AI(σ)SV (σ,σ0) ∣ψV (σ0)⟩
∥SV (σ,σ0) ∣ψV (σ0)⟩ ∥2

(14.10)

We now replace in (13.34) LI(x) by LI(x) + ∆LI(x), ∆LI(x) being different
from zero only for x ∈ C, and we denote by S∆

V (σ,σ0) the corresponding evo-
lution operator. The mean value ⟨A∆

I (σ)⟩ f the same local observable, for the
same initial condition, is now

⟨A∆
I (σ)⟩ =

⟨ψV (σ0)∣S∆†
V (σ,σ0)AI(σ)S∆

V (σ,σ0) ∣ψV (σ0)⟩
∥S∆
V (σ,σ0) ∣ψV (σ0)⟩ ∥2

(14.11)

Note that in general
⟨A∆

I (σ)⟩ ≠ ⟨AI(σ)⟩ (14.12)

in spite of the fact that [∆LI(x),AI(σ)] = 0, ∀x.

14.2.3 Mean values of local observables and oddities in
relativistic reduction models

Let us consider a physical system satisfying the initial condition ∣ψ(σ0)⟩ = ∣ψ0⟩
on the spacelike surface σ0, the local observable A, and two arbitrary space like
surfaces σ1 and σ2 coinciding on the support α on A (see Fig. 6).
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Figure 6: The spacelike surfaces σ1 and σ2 coinciding on the support α of local
observable A.

When dynamics (13.30) ruled by a hermitian interaction is considered, for any
given realization of the stochastic potential, as is well known, the mean value of
A in the state ∣ψ(σ1)⟩ coincides with the one in the state ∣ψ(σ2)⟩. It follows, at
the individual level and for the case of hermitian coupling and, as a consequence,
at the ensemble level for both cases of hermitian and skew-hermitian coupling,
that the mean value of a local observable does not depend on the particular
spacelike surface which one chooses among all those coinciding on its support
(and therefore on the specific state vector ∣ψ(σ1)⟩ or ∣ψ(σ2)⟩ which describes
the physical situation concerning the two considered surfaces). Incidentally, this
represents a different proof that also in the case of dynamical reduction models,
at the ensemble level, one can consistently define, as in standard quantum field
theory, local observables.

Again, the situation at the individual level is quite different in the skew-hermitian
case. In fact, for a given realization of the stochastic potential, one has

⟨ψV (σ2)∣A ∣ψV (σ2)⟩
∥ ∣ψV (σ2)⟩ ∥2

=
⟨ψV (σ1)∣S†

V (σ2, σ1)ASV (σ2, σ1) ∣ψV (σ1)⟩
∥SV (σ2, σ1) ∣ψV (σ1)⟩ ∥2

(14.13)

which, in general, is different from ⟨ψV (σ1)∣A ∣ψV (σ1)⟩ /∥ ∣ψV (σ1)⟩ ∥2 even though
the spacetime region spanned in tilting σ1 into σ2 is spacelike separated from
the support α of A, and, consequently

[A,SV (σ2, σ1)] = 0 (14.14)

This dependence, at the individual level, of the mean value of a local observable
upon the spacelike surface (among those coinciding on the support) over which
it is evaluated is not per se a diffiiculty of the theory. It becomes, however,
a difficulty if one wishes to claim that such a mean value corresponds to an
objective property of an individual system.
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Before facing this problem (see next subsection), a deeper analysis of the im-
plications of relativistic reduction models for microscopic [case (a) below] and
macroscopic [case (b)] systems is necessary.

Case (a): Let us start by reconsidering the case (Section 14.1.3) of a microscopic
system coupled to a macroscopic one which acts as a “measuring appara-
tus” in the sense of dynamical reduction models. Let A1 and A2 be two
local observables of the microsystem whose supports α1 and α2 are space-
like separated, and suppose the macroscopic system is devised to measure
A1. For our purposes we can ignore the Hamiltonian evolution for the
operators and we consider the Tomonaga-Schwinger evolution equation of
the state vector, for a specific realization of the stochastic potential

δ ∣ψV (σ)⟩
δσ(x) = [iL1−S(x) +LI(x)V (x) − λL2

I(x)] ∣ψV (σ)⟩ (14.15)

Here L1−S(x) (describing the local systemapparatus interaction) and LI(x)
may be taken as different from zero only in a spacetime region C which is
spacelike with respect to α2 (see Fig. 7).

Figure 7: A macroscopic apparatus measures local observable A1 in space-time
region C, A1’s support α1 is spacelike separated with respect to α2, the support
of another local observable A2.

Let us assume that the local observables A1 and A2 have a purely point
spectrum with eigenvalues 0 and 1, and let us consider the initial state

∣ψ(σ0)⟩ =
1√
2
[∣ψ1⟩ + ∣ψ2⟩] ∣χ1⟩ (14.16)

with

Ai ∣ψj⟩ = δij ∣ψj⟩ , i, j = 1,2 (14.17)
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∣χ1⟩ being the untriggered apparatus state. Let us furthermore assume
that the particular realization of the stochastic potential V (x) is one of
those “yielding the result 1 for the measurement of A1”. The situation is
then the following:

1. The state associated to σ0 and σ1 is ∣ψ(σ0)⟩.
2. The state associated to σ2 is (N being a normalization factor)

∣ψV (σ2)⟩ =
1

N
e∫

σ2
σ1

dx [iL1−S(x)+LI(x)V (x)−λL2
I(x)] ∣ψ(σ0)⟩ (14.18)

which, under the assumptions which have been made, is approxi-
mately an eigenstate of A2 pertaining to the eigenvalue zero.

3. The state associated to σ∼2 is also ∣ψV (σ2)⟩.

Indeed, the relativistic CSL dynamics considered in Section 13.6 is such
that, when a spacelike hypersurface crosses the region C toward the fu-
ture, no matter what is the behavior in regions far apart from C, the state
vector associated to this hypersurface collapses to the eigenstate of A1

corresponding to the eigenvalue which has been found.

Looking at the problem from the point of view of the evolution from σ1

to σ2, one could be tempted to say that, since the mean value of A2 has
become practically zero as a consequence of the “measurement” in the
spacetime region C, an element of physical reality associated with A2 has
emerged. This is a nonlocal effect of the type of those occurring in an
EPR setup.

However, one must realize that the same change of the mean value of A2

occurs when one considers the Tomonaga-Schwinger evolution from σ1 to
σ∼2 , in accordance with point 3. This gives rise to an ambiguity in the
mean value of A2, i.e., in a quantity that, when the support α2 shrinks
to zero, refers to a unique objective spacetime point. This is not surpris-
ing; it corresponds simply to the emergence, within the relativistic reduc-
ing dynamics, of the aspects discussed in Section 14.1.3 for the standard
quantum theory with the reduction postulate. In fact, one can remark
that σ∼1 can be approximately identified with a t′ = constant hyperplane
for a boosted observer for which the interaction with the macro-object has
already taken place.80

Case (b): Let us discuss now the same problem for macroscopic systems. We con-
sider a situation analogous to the previous one but in which there are two
macroscopic systems performing measurements of the observables A1 and
A2. The initial condition is given by assigning to the surface σ0 the state:

∣ψ(σ0)⟩ =
1√
2
[∣ψ1⟩ + ∣ψ2⟩] ∣χ1⟩ ∣χ2⟩ (14.19)

80The bending of the surface at the left of α2 shown in Fig. 7 is allowed since, under the
assumptions we have made, LI(x) = 0 in that region.
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where ∣χ1⟩ and ∣χ2⟩ refer to the untriggered apparatuses. The evolution
equation, with the usual approximation, is now

δ ∣ψV (σ)⟩
δσ(x) = [iL1−S(x) + iL2−S(x) +LI1(x)V (x) +LI2(x)V (x)

−λL2
I1(x) − λL2

I2(x)] ∣ψV (σ)⟩ (14.20)

where the meaning of the symbols is obvious. To clearly define the situ-
ation from the physical point of view, we assume that the time which is
necessary in order that the microsystem triggers the apparatus is sensibly
shorter than the typical reduction time for the apparatus. This means
that in the above equation we can consider L1−S(x) and L2−S(x) to be
different from zero only in the regions C1 and B1, respectively, and LI1(x)
and LI2(x) in the regions C2 and B2, respectively, as shown in Fig.8.

Figure 8: Measurements take place in C1 and B1, followed by reduction dynam-
ics in C2 and B2, of local observables A1 and A2, respectively.

Let us also assume that the specific realization of the stochastic potential
is one leading to the value 1 for A1. We are interested in discussing the
states of the macro-system used to measure A2 and the mean values of
its observables on various hypersurfaces. In particular, let A∼

2 be the ob-
servable of the apparatus corresponding to the yes-no experiment asking
whether the result 0 has been found in a measurement of A2. We consider
t = constant hypersurfaces σ(t) and also the bent hypersurfaces σ∼(t) con-
taining the spatial support of A∼

2 at time t (see Fig. 8). The situation can
now be summarized as follows:

1. For t < t0 the state associated to any surface σ(t) or σ∼(t) has always
the form of a factorized state; one of the factors refers to the appa-
ratus 2 and it is ∣χ2⟩. Note that what changes in going from σ(t) to
σ∼(t) is the state of the system + apparatus 1.
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2. For t = t1 the state associated to σ(t1) is i

∣ψV (σ(t1))⟩ =
1√
2
[∣ψ1⟩ ∣χ1

1⟩ ∣χ0
2⟩ + ∣ψ2⟩ ∣χ0

1⟩ ∣χ1
2⟩] (14.21)

where, obviously, the superscripts identify the states of the macro-
scopic apparatuses which have been triggered by the interaction with
the microsystem, these states being labeled by the eigenvalues which
have been found.

From (14.21) one sees that the state ∣ψV (σ(t1))⟩ is not a factorized
state and as a consequence it cannot be an eigenstate of the relevant
observable of apparatus 2. In particular, the mean value of A∼

2 n
state (14.21) is 1/2.

However, it is important to remark that the state to be associated
to the surface σ∼(t1) of Fig. 5 is, for the particular realization of the
stochastic potential,

∣ψV (σ∼(t1))⟩ ≃ ∣ψ1⟩ ∣χ1
1⟩ ∣χ0

2⟩ (14.22)

This state is factorized and it is an eigenstate of A
∣

2sim.

3. The state to be associated with any surface σ(t) and σ∼(t) when
t > t2, is once more a factorized state with the factor ∣χ0

2⟩ for the
apparatus 2.

The conclusion is that, even though the dependence of the mean value of a local
observable upon the spacelike surface on which it is evaluated is present also in
the case of macro-objects, this dependence occurs only for a time interval of the
order of the one which is necessary for the reduction to take place.81

14.2.4 Objective properties of micro/macroscopic systems

We started this Section 14.2 by relating the possibility of attributing objective
properties to individual systems to requirement (14.1) being satisfied to an ex-
tremely high degree of accuracy. In the relativistic case, however, as shown with
great detail in the previous subsection, the mean value of a projection opera-
tor associated to a local observable is affected by an ambiguity depending on
the spacelike surface used to evaluate it, and, under specific circumstances, by
changing the surface its value can vary from, for example, 1/2 to almost exactly
1. This shows that the above definition of objective properties for individual
systems is inadequate, and must be made more precise.

81Here the argument has been presented with reference to the evolution from one space-
like surface lying below the regions C1 and/or C2 to one which has “crossed” these regions.
Obviously analogous considerations hold with reference to the regions B1 and B2 and to the
apparatus which is present there.
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n accordance with the discussion of Section 10 we think that the appropriate
attitude is the following: when considering a local observable A with its associ-
ated support we say that an individual system has the accessible property a (a
being an eigenvalue of A), only when the mean value of Pa is extremely close to
one, when evaluated on all spacelike hypersurfaces containing the support of A.

Thus, according to this prescription, one cannot attribute an objective property
to an individual system when there is an appreciable dependence of the mean
value of the local observable upon the surface used to evaluate it.

Let us analyze the implications of this attitude in the cases of microscopic and
macroscopic systems. For a microsystem, with reference to case (a) of the pre-
vious subsection, we observe that no objective property corresponding to a local
observable can emerge as a consequence of a “measurement process” performed
in a region which is spacelike separated from the support of the considered ob-
servable. This does not mean that microsystems cannot acquire objective local
properties as a consequence of a measurement performed in another spacetime
region; in fact, with reference to the discussion in (a) and to an EPR-Bohm-like
setup one can remark that if one considers the spin component of particle 2,
when the particle is in the future of the region in which the spin of particle 1 has
been measured, then one can attribute to particle 2 the objective local property
of having its spin “up” or “down” and that such a property has emerged just
due to the measurement which has been performed.

We wish to emphasize again that in the case of macrosystems the discussion
under (b) has shown that the impossibility of associating local properties to
them lasts only for a time interval of the order of the one which is necessary for
the “spontaneous dynamical reduction” to take place. In fact, before macroap-
paratus 2 interacts with the microsystem the state of the apparatus is obviously
well defined and corresponds to the untriggered state, independently of the
considered surface. After the reduction ensuing from the interaction of the mi-
crosystem with it, apparatus 2 is again in a well-defined state, corresponding to
the result which it has registered. Moreover, this result is “correctly” correlated
to the result registered by apparatus 1.82

82Perhaps it is worth noticing that it would be possible to give another covariant prescription
for the attribution of objective local properties to physical systems. More precisely one could,
for any local observable A, consider the mean value of the projection operator Pa on one of
A’s eigenmanifolds evaluated for the state vector associated to the surface which delimits the
future light cone of the support of A. Then, if this mean value is extremely close to 1, one
asserts that the system has the objective property A. This is quite different from the previously
considered criterion (i.e., that the mean value be extremely close to one on all hypersurfaces
containing the support of A) and would, in case (a) of the previous subsection, lead to the
assignment of the objective property corresponding to the value zero for the observable A2 to
the microsystem, contrary to what would occur by the adoption of the previous criterion. This
attitude would correspond to the following particular interpretation, at the relativistic level, of
the EPR criterion for elements of physical reality: “if there exists at least one observer who can
predict, almost (in the above specified sense) with certainty and without disturbing a system
in any way, the value of a physical quantity, then there exists an element of physical reality
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In conclusion, relativistic dynamical reduction models, together with the pre-
scription for the attribution of objective properties to physical systems proposed
in this section, allows one to overcome the difficulties discussed in Section 14.1.3.
The theory assigns a state vector to any spacelike hyper- surface, and the de-
pendence, at the individual level, of the mean value of a local observable upon
the specific spacelike surface used to evaluate it, does not constitute a difficulty.
It simply requires a precise and appropriate criterion for relating the objec-
tive properties of a physical system to the mean values of local observables: in
particular, this criterion permits practically always the attribution of objective
local properties to macro-objects, at the individual level. In a sense, the above
analysis has proven once more that dynamical reduction models meet the re-
quirement put forward by Bell [122] for an exact and serious formulation of
quantum mechanics, i.e., that it should “allow electrons to enjoy the cloudiness
of waves, while allowing tables and chairs, and ourselves, and black marks on
photographs, to be rather definitely in one place rather than another, and to be
described in classical terms”.

14.3 Parameter dependence in dynamical reduc-
tion models

As is well known, the locality assumption needed to prove Bell’s theorem [152]
is equivalent to the conjunction of two other assumptions, viz., in Shimony’s
terminology, parameter independence and outcome independence [153155,74];
in view of the experimental violation of the Bell inequality, one has to give up
either or both of these assumptions. We now analyze these issues within the
framework of dynamical reduction models.

To start with, let us fix our notation. We will denote by λ all parameters (which
may include the quantum mechanical state vector or even reduce to it alone)
that completely specify the state of an individual physical system. For simplicity
we will refer to a standard EPR-Bohm setup and we will denote by

pLRλ (x, y;n,m) (14.23)

the joint probability of getting the outcome x (x = ±1) in a measurement of
the spin component along n at the left(L) and y (y = ±1) in a measurement of
the spin component along m at the left(R) wing of the apparatus. We assume
that the experimenter at L can make a free-will choice of the direction n; and
similarly for the experimenter at R and the direction m. Both experimenters
can also choose not to perform the measurement. Finally, we assume that the

corresponding to that quantity”. We do not want to enter here into a detailed discussion
of the conceptual implications involved in adopting the above prescription. We believe that
they lead to some conceptual difficulties in connection with the cause-effect relation. This is
not surprising since the considered prescription is analogous, in the present context, to the
Hellwig-Kraus [146] postulate about wavepacket reduction. For these reasons we drop the
criterion considered in this footnote.
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micro-macro interactions taking place at L and R that trigger the reduction are
governed by appropriate coupling constants gL and gR; in particular, the situa-
tions in which one of the coupling constants is made equal to zero corresponds
to no measurement being performed.

Bell’s locality assumption can be expressed as

pLRλ (x, y;n,m) = PLλ (x;n,⋆)PRλ (y;⋆,m) (14.24)

where the symbols ⋆ appearing on the right-hand side denotes that the cor-
responding measurement is not performed. Condition (14.24) has been shown
[155,74] to be equivalent to the conjunction of two logically independent condi-
tions:

pLλ(x;n,m) = PLλ (x;n,⋆) (14.25a)

pRλ (y;n,m) = PRλ (y;⋆,m) (14.25b)

and
pLRλ (x, y;n,m) = pLλ(x;n,m)pRλ (y;n,m) (14.26)

where we have denoted, e.g., by the symbol pLλ(x;n,m) the probability of get-
ting, for the given settings n,m, the outcome x at L.

Conditions (14.25) express parameter independence, i.e., the requirement that
the probability of getting an outcome at L (R) is independent of the setting
chosen at R (L), while Eq. (14.26) (outcome independence) expresses the re-
quirement that the probability of an outcome at one wing does not depend on
the outcome obtained at the other wing.

14.3.1 The case of the nonlinear CSL Model

To simplify the discussion, we assume that the initial state ∣ψ(0)⟩ is the singlet
state and we confine our attention to the case in which both spin measurements
are in the same direction, i.e., n = m. We assume that the measurement at R,
if it takes place (i.e., if gR ≠ 0), occurs at an earlier time than the one at L.

Consider now the realizations w̃L(x, t) of wL(x, t) that give rise to the outcome
+1 for the left apparatus when it is triggered by ∣ψ(0)⟩. The probability of
occurrence of such processes is 1/2. We will denote by pL

∣ψ(0)⟩(−1; gR = 0∣w̃L)
and pL

∣ψ(0)⟩(−1; gR ≠ 0∣w̃L) the conditional probability, given wL, of the outcome

−1 at left when the initial state is ∣ψ(0)⟩ and the R is switched off or on,
respectively. We then have

pL∣ψ(0)⟩(−1; gR = 0∣w̃L) = 0 (14.27)

We now evaluate the probability pL
∣ψ(0)⟩(−1; gR ≠ 0∣w̃L). Since gR ≠ 0 and the

measurement at R occurs before the one at L, we have to take into account
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the possible realizations of the stochastic process at R. Let us consider the
realizations w̃R(x, t) of wR(x, t) that, when triggered by the singlet state, yield
the outcome +1 at R. When one of these processes w̃R occurs, the outcome at
L turns out to be −1 irrespective of the particular realization of the stochastic
process wL and therefore also for all processes w̃L considered above. To under-
stand this, recall that within the nonlinear model, the same stochastic process
at L can give rise to different outcomes, depending on the state vector which
triggers the apparatus at L. As a consequence one has

pL∣ψ(0)⟩(−1; gR ≠ 0∣w̃L&w̃R) = 1 (14.28)

Since the probability of occurrence of a process w̃R is equal to 1/2 and is in-
dependent of the particular realization w̃L, and since wR is not one of the w̃R,
then outcome −1 on the left cannot occur (barring improbable exceptions), one
has

pL∣ψ(0)⟩(−1; gR ≠ 0∣w̃L) = 1/2 (14.29)

We stress that the difference of the probabilities is appreciable,

0 = pL∣ψ(0)⟩(−1; gR = 0∣w̃L) ≠ pL∣ψ(0)⟩(−1; gR ≠ 0∣w̃L) = 1/2 (14.30)

and that the probability of occurrence of these realizations w̃L is also appreciable
(= 1/2). Thus the nonlinear CSL model exhibits parameter dependence.

14.3.2 The case of the linear CSL model

For the linear model, we can easily solve the evolution equation, and thereby
show parameter independence in the t→∞ limit, once we simplify the descrip-
tion by considering only the spin Hilbert space.

Thus one has, in the case in which both apparatuses are switched on (gR ≠ 0
and gL ≠ 0) a linear dynamical equation analogous to (7.42):

d ∣ψwL,wR(t)⟩
dt

= [[(σL ⋅ n)wL(t) − γ] + [(σR ⋅m)wR(t) − γ]] ∣ψwL,wR⟩ (14.31)

with
⟪wL,R(t)⟫ = 0 , ⟪wL(t)wR(t′)⟫ = γδL,Rδ(t − t′) (14.32)

The probability distribution of the stochastic processes is obtained through the
cooking procedure. To compare this case with the one in which gR = 0, one has
to consider another stochastic equation, i.e.,

d ∣ψwL(t)⟩
dt

= [(σL ⋅ n)wL(t) − γ] ∣ψwL⟩ (14.33)

The solutions of Eqs. (14.31) and (14.33) at time t for the same initial conditions
are

∣ψBL,BR(t)⟩ = eFLBL(t)eFRBR(t) ∣ψ(0)⟩ (14.34)
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and
∣ψBL(t)⟩ = eFLBL(t) ∣ψ(0)⟩ (14.35)

respectively.83 In Eqs. (14.34) and (14.35) we have put

FLBL(t) = σL ⋅ nBL(t) − γt , FRBR(t) = σR ⋅ nBR(t) − γt (14.36)

where

BL(t) = ∫
t

0
dτ wL(τ) , BR(t) = ∫

t

0
dτ wR(τ) (14.37)

We come back now to Eq. (14.31) and we evaluate the cooked probability density
of occurrence of the Brownian processes BL(t) and BR(t) by multiplying the
raw probability density by the square of the norm of the state vector (14.34).
As usual we have

PCook[BL(t)&BR(t)] = PRaw[BL(t)&BR(t)]∥ ∣ψBL,BR(t)⟩ ∥2 (14.38)

and
PRaw[BL(t)&BR(t)] = PRaw[BL(t)]PRaw[BR(t)] (14.39)

Taking into account Eq. (14.34), one then gets from (14.38)

PCook[BL(t)&BR(t)] = PRaw[BL(t)]PRaw[BR(t)]∥ ∣ψBL,BR(t)⟩ ∥2

= PRaw[BL(t)]∥eFLBL(t) ∣ψ(0)⟩ ∥2

⋅ PRaw[BR(t)] ∥
eFRBR(t)eFLBL(t) ∣ψ(0)⟩

∥eFLBL(t) ∣ψ(0)⟩ ∥2
∥

2

(14.40)

Let us consider the marginal cooked probability density of BL(t)

P#
Cook[BL(t)] = ∫ DPCook[BL(t)&BR(t)]

= PRaw[BL(t)]∥eFLBL(t) ∣ψ(0)⟩ ∥2

× ∫ D[BR(t)]PRaw[BL(t)] ∥
eFRBR(t)eFLBL(t) ∣ψ(0)⟩

∥eFLBL(t) ∣ψ(0)⟩ ∥2
∥

2

(14.41)

Since the equation

d ∣ψwR(t)⟩
dt

= [(σR ⋅ n)wR(t) − γ] ∣ψwR⟩ (14.42)

preserves the stochastic average of the square of the norm of the state vector,
the last integral in Eq. (14.41) takes the value 1. This means that P#

Cook[BL(t)]
turns out to equal PCook[BL(t);⋆], i.e., the cooked probability density of occur-
rence of the Brownian process BL(t) for the same initial condition if the process

83In Eq. (14.34) and following, we change notation for the same reason as we did in Eq.
(7.45).
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were described by Eq. (14.33), i.e., if the apparatus at R were switched off.

But now recall from Section 7.4 that within linear CSL there is a one-to-one
correspondence between the outcome at left (right) at t → ∞ and the specific
value taken by the Brownian process BL(t)[BR(t)] for t → ∞. So the above

proof that P#
Cook[BL(t)] equals PCook[BL(t);⋆] amounts to a proof that linear

CSL exhibits parameter independence at the t = ∞ limit.

When one considers a finite time t of the order of or greater than the character-
istic reduction time ∆t, the situation is more complicated: the one-to-one corre-
spondence between the outcomes and the values taken by the Brownian process
is only approximate (though valid to an extremely high degree of accuracy). As
a consequence, linear CSL does not enjoy strict parameter independence at finite
times. To clarify this point, consider the values BL(t) = 2γt and BR(t) = 4γt or
the Brownian processes at time t. The cooked probability density of occurrence
of such values at the finite time t, though extremely small, is not exactly zero.
One can show [156] that these values lead, through Eq. (14.34), to a state vector
at t which corresponds to the outcomes +1 at right and −1 at left, respectively.
On the other hand, for the case in which gR = 0, the substitution BL(t) = 2γt
in Eq. (14.35) leads, at time t, to a state vector corresponding to the outcome
+1 at left. Thus, there are values of the Brownian process BL(t) for which the
outcome at left depends on whether gR is equal to zero or not. Accordingly,
there is parameter dependence at the level of individual B(t)’s. However, given
BL(t), this happens only for values BR(t) of the Brownian process at right such
that the cooked conditional probability PCook[BR(t)∣BL(t)] is extremely small.
This in turn implies that the model exhibits only negligibly small parameter
dependence effects.

To conclude, although the linear CSL model exhibits parameter dependence at
finite times, these effects are at any rate extremely small with respect to those
of the nonlinear CSL model.84

84Actually, explicit evaluations of such effects show that they are characterized by probabil-
ities which are smaller, e.g., than those of classical thermodynamical processes which violate
the second law of thermodynamics.
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Chapter 5

DYNAMICAL
REDUCTION MODELS
AND EXPERIMENTS

15. Decoherence, quantum telegraph, proton de-
cay and superconducting devices

Dynamical reduction models require a precise change of quantum dynamics, so
that they constitute a theory genuinely different from standard quantum me-
chanics. It becomes then interesting to analyze the conceptual and practical
possibility of testing them versus quantum mechanics.

In Section 15.1, we analyze the role of decoherence in experiments, and how it
can mask the physical consequences of the localization mechanism of dynami-
cal reduction models. In Sections 15.2, 15.3 and 15.4 we discuss three specific
experiments, the quantum telegraph, the nucleon decay and dissipation in super-
conducting devices respectively, and the role played by dynamical reductions.

15.1 Decoherence and the possibility of testing
dynamical reductions

We have discussed in Sections 3.2 and 5 that decoherence - i.e., the interaction
between a given physical system and the surrounding environment - by itself
does not constitute a solution of the macro-objectification problem of Quan-
tum Mechanics, since it yields only an apparent collapse of the wavefunction,
not a real one. Nonetheless, decoherence effects on quantum measurements are
very important and often pose serious limitations to the possibility of measur-
ing specific properties of physical systems, in particular to put into evidence the
superposition of different states of mesoscopic and macroscopic systems, i.e.,
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systems whose interaction with the environment is more difficult to control.

As regards the possibility of testing dynamical reduction models versus stan-
dard quantum mechanics, the role played by decoherence is very tricky. In fact,
in order to observe dynamical reductions, experiments must be performed on
quantum systems containing a sufficiently large number of particlesthis is the
case of mesoscopic or macroscopic systemsotherwise the reduction mechanism
would be ineffective for too a long time. On the other hand, mesoscopic and
macroscopic systems are very rapidly affected by decoherence in such a way that,
given a superposition of different states, what would appear to be a spontaneous
reduction into one of such states might be attributed only to the interactions
with the surrounding environment. It is then important to compare the “reduc-
tion rates” and the physical consequences of specific examples of decoherence
mechanisms with those of QMSL and CSL, in order to understand whether
there are situations in which a possibly observed reduction process is real - thus
confirming the predictions of dynamical reduction models - or only apparent,
i.e. it is a result of decoherence. Such a comparison has been presented in an
interesting paper by Tegmark [157], which we are going to discuss.

In the just quoted paper the environment is felt by the physical system of in-
terest as a background noise due to the (instantaneous) scattering of photons,
neutrinos or air molecules off a system, the effect on the compound initial state
ρS+E(ti) being determined by a transition matrix T

ρS+E(ti) → ρS+E(tf) = TρS+E(ti)T † (15.1)

Let p,k be the momenta of the system and of a background incident parti-
cle, respectively, and apk(q) the probability amplitude that the momentum
transferred to the system is q. The author makes the following reasonable as-
sumptions and approximations about the nature of the scattering processes:

1. Conservation of energy and momentum:

⟨p′,k′∣T ∣p,k⟩ = δ(p′ + k − p − k)apk(p′ − p)

2. Independence of apk(q) from the motion of the system due to the high
velocity of the incident particle:

apk(q) = ak(q)

3. The system is supposed to be exposed to a constant particle flux Φ per unit
area and unit time scattered off with a total scattering cross section σ and
a temporal distribution modeled by a Poisson process with intensity Λ =
σΦ. Furthermore, the background incident particles are supposed to be
in momentum eigenstates or incoherent mixtures of them with probability
momentum distribution µ(k).
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4. The momentum of the incident particles is isotropically distributed with

µ(k) = 1

4πk2
λ0ν(λ0∣k∣) (15.2)

where λ0 is a typical wavelength of the hitting particle and

If ρS(ti) and ρS(tf) are the initial (before) and final (after a scattering pro-
cess) states of the system obtained by tracing out the environmental degrees of
freedom, and

Pk(q) = ∣ak(q)∣2 (15.3)

P̂k(q) =
1

(2π)3 ∫R3
d3q e−iq⋅xPk(q) (15.4)

are the probability distributions of momentum transfer and its Fourier trans-
form, respectively, it follows that, in coordinate representation,

⟨x∣ρS(tf) ∣y⟩ = P̂ (x − y) ⟨x∣ρS(ti) ∣y⟩ (15.5)

P̂ (x − y) = ∫
R3
d3k µ(k)P̂k(x − y) (15.6)

Taking into account assumption 3 above and denoting by TSca[ρ] the ρS(tf) in
(15.5), in the time interval [t, t + dt] a scattering induced process occurs with
probability Λdt. Consequently the unitary Schrödinger evolution becomes a
master equation very much similar to (6.8):

ρ(t + δt) = − i
h̵
[H,ρ(t)]δt + (1 −Λδt)ρ(t) +ΛδtTSca[ρ(t)] (15.7)

A comparison of TSca[ρ] and TGRW [ρ] (i.e., the reduction operator given by
Eq. (6.8)) is possible by looking at the expansions of the Gaussian damping
factor that appears in (6.9) and the factor P̂x, which plays an analogous role in
(15.5) (∣P̂x∣ ≤ 1), in powers of x = (x1, x2, x3):

⟨x∣TGRW [ρ] ∣y⟩ ≃ [1 − α
4
∣x − y∣2 +⋯] ⟨x∣ρ ∣y⟩ (15.8)

⟨x∣TSca[ρ] ∣y⟩ ≃
⎡⎢⎢⎢⎣
1 − i

3

∑
j=1

(xj − yj)∫
R3
d3q qjP (q)

−1

2

3

∑
j,k=1

(xj − yj)(xk − yk)∫
R3
d3q qjqkP (q) +⋯

⎤⎥⎥⎥⎥⎦
⟨x∣ρ ∣y⟩

(15.9)

According to assumption 4, the linear term in (15.9) vanishes and the quadratic
one (covariance matrix) is completely determined by

l−2
eff = ∫

R3
d3q q2

i P (q) = ∂

∂x2
i

P̂ (x)∣
x=0

i = 1,2,3 (15.10)

189



which has dimension cm−2 and defines a characteristic length left of the reduc-
tion processes which has to be compared with (α/2)−1/2 of QMSL. Moreover, a
natural time scale is given by τ = Λ−1. Solving (15.7) for short times Λδt >> 1,
yields

⟨x∣ρ(t + δt) ∣y⟩ ≃ eΛδt(1−P̂ (x−y)) ⟨x∣ρ(t) ∣y⟩ (15.11)

Off the diagonal (∣x − y∣l−1
eff >> 1) the damping is dominated by e−Λδt, whereas

near the diagonal (∣x − y∣l−1
eff << 1) the damping goes as e−Λδt∣x−y∣2/2l2eff . We

can then introduce:

Decoherence time: τ = Λ−1 (15.12)

Decoherence rate: ∆ = Λ

l2eff
(15.13)

The decoherence time τ is fixed by the total scattering cross section σ and the
flux of incident particles per unit area and unit time, while the decoherence rate
∆ by the differential cross section that enters the expression of Pk(q) in (15.3).
Tegmark also calculates the values of leff and τ for a microsystem (electron) in
different physical backgrounds which we report in Table 15.1. The absence of

Cause of collapse leff (cm) Φ (cm2s−1 τelectron(s)
300 K air at 1 atm 10−9 1024 10−13

300 K air in lab vacuum 10−9 1011 1
Sunlight on earth 9 × 10−5 1017 107

300 K photons 2 × 10−3 1019 105

Background radioactivity 10−12 10−4 1018

Quantum gravity 105 − 1012 10109 30

GRW effect 10−5 1016

Cosmic microwave background 2 × 10−1 1013 1011

Solar neutrinos 10−9 1011 1033

Cosmic background neutrinos 3 × 10−1 1013 1051

Table 15.1: leff for various scattering processes and τelectron

a second figure in the row describing the GRW situation emphasizes the deep
conceptual difference between collapse and decoherence: there is no particle flux
scattered off the system inducing the localization mechanism on the length scale
leff = (α/2)−1/2, the effect being due to a completely new dynamics and not to
the environment. Analogously, Tegmark gives estimates of ∆ for various objects
in different backgrounds.

As is evident from Table 15.2, the GRW effect, e.g., for a free electron, is weaker
than those of air molecules in lab vacuum or photons on earth by a factor
in between 1026 and 106, respectively, hence masked by them. There follows
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that, to put into evidence effects due to spontaneous localization mechanisms
one should isolate the physical system of interest from the environment to a
presently hardly attainable degree of accuracy. However, the figures in Table
15.2 might lead to erroneous conclusions, if not correctly understood. In fact,
e.g.,for bound electrons, QMSL can, as we shall discuss later, induce, as a
result of the localization mechanism, transitions (which are not considered in the
preceding analysis of environment induced decoherence) leading to excitations
or dissociations of the composed systems to which the electrons belong. As

Cause of apparent collapse Free electron Dust particle Bowling ball
300 K air at 1 atm 1031 1037 1045

300 K air in lab vacuum 1018 1023 1031

Sunlight on earth 10 1020 1028

300 K photons 1 1019 1027

Background radioactivity 10−4 1015 1023

Quantum gravity 10−25 1010 1022

GRW effect 10−6 1021

Cosmic microwave background 10−10 106 1017

Solar neutrinos 10−15 10 1013

Table 15.2: ∆ in cm2s−1 for various scattering processes

an example, in a recent paper [158], it is argued that the Lyman-α ultraviolet
radiation emitted by hydrogen atoms (about 1-10 photons per second per mole)
as a consequence of the spontaneous localizations suffered by electrons could
be detected by an appropriate experimental setup. On the other hand, on the
basis of energy balance considerations, it can be shown that an analogous effect
due to collisions of an atom with 300K air molecules at 1atm is, in comparison,
much smaller.

15.2 Dynamical reduction and the quantum tele-
graph

In this subsection we do not examine a suggested experimental test for the
dynamical reduction program, but, rather, some recent claims that there exists
some already available empirical evidence that spontaneous collapses, but of a
nature different from either QMSL or CS, are necessary. We quote directly from
Shimony [125]:

A great weakness of the investigations carried out so far in search
of modifications of quantum dynamics is the absence of empirical
heuristic. To be sure there is a grand body of empirical fact which
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motivates all the advocates of nonlinear modifications: that is, the
occurrence of definite events, and, in particular, the achievement of
definite outcomes of measurement. But this body of fact is singularly
unsuggestive of the details of a reasonable modification of Quantum
Mechanics. What is needed are phenomena which are suggesting
and revelatory .....

No more promising phenomena for this purpose have been found
than the intermittency of resonant fluorescence of a three-level atom.

15.2.1 The phenomenology of the quantum telegraph

The physical system consists of two laser beams of intensities I1, I2 scattered off
a single trapped atomic system which can be treated as a three-level system with
a ground state ∣0⟩ and two excited states: a higher level ∣1⟩ and a metastable
lower level ∣2⟩, with mean lives (Fig. 9)

β−1
1 ≃ 10−8 s << β−1

2 ≃ 1 s (15.14)

The laser beams are tuned so that the one of intensity I1 excites the atom from
the ground state ∣0⟩ to ∣1⟩, that the intensity I2 provokes the transition ∣0⟩ → ∣2⟩,
followed by emissions of blue, respectively, red photons and return to ∣0⟩.

Figure 9: Atomic system in the quantum telegraph phenomenon.

The emission pattern of an experiment conducted with I1 >> I2, nearly 10∗

versus 10 photons per second, reveals an intermittent blue fluorescence randomly
interrupted by periods of darkness (Fig. 10).
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Figure 10: Emission pattern in the quantum telegraph phenomenon.

15.2.2 Quantum mechanical interpretations

At first glance, the experimental evidence seems to be explainable by a naive
argument based on the concepts of photons and of transitions among energy
levels.

(A) Because of the higher intensity of the beam I1, the atom is most of the
time excited to the short-lived level ∣1⟩ from which it jumps down to the
ground state in approximately 10−8 seconds with the emission a blue pho-
ton. But, every now and then, a red photon from the beam I2 sneaks in
and the atom is excited to the metastable state ∣2⟩, where it gets shelved
for approximately 1 second before emitting a red photon and starting
again a period of blue fluorescence.

However, these conclusions are far too classical (à la Bohr) and underesti-
mate a relevant quantum effect, namely the interference between blue and
red photons in the laser beams which is propagated to the atom by the
linearity of the quantum evolution and results in the emergence of linear
superpositions of the atomic levels.

(B) After interacting with the laser beams, the atom, initially in its ground
state ∣0⟩, evolves in t seconds into a new state ∣φ(t)⟩ which is the coherent
superposition of the three levels:

∣0⟩ → ∣φ(t)⟩ = c0(t) ∣0⟩ + c1(t) ∣1⟩ + c2(t) ∣2⟩ (15.15)

the probability Pi of a spontaneous emission corresponding to the jump
∣i⟩ → ∣0⟩ being Pi = βi∣ci(t)∣2.

Since the amplitude ∣c2(t)∣2 << ∣c1(t)∣2 for almost all t, one expects an
emission pattern consisting in continuous fluorescence and, sometimes, the
emission of a red photon, periods of darkness resulting extremely unlikely
(Fig. 11).
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Figure 11: Emission pattern according to argument B. Thick lines correspond
to red photons.

The above attempt to embody linearity does not explain the occurrence of inter-
mittency in the emission pattern and in Ref. [159] (compare also corresponding
references in [125]) it is suggested that an explanation is only possible if a re-
duction mechanism corresponding to null measurements (seeing no photons) is
introduced into the game.

In view of these facts Shimony concludes [125]:

Two propositions seem to me to suggest themselves quite strongly.
The first is that a stochastic modi??cation of quantum dynamics is
a natural way to accommodate the jumps from a period of dark-
ness to a period of fluorescence. The second is that the natural
locus of the jumps is the interaction of a physical system with the
electromagnetic vacuum. Whether stochasticity is exhibited when
the system in question is simple and microscopic like a single atom,
or only when it is macroscopic and complex like the phosphor of a
photodetector, is not suggested preferentially by the quantum tele-
graph, for the simple reason that the single trapped atom and the
photodetector are both essential ingredients in the phenomenon ....

But, whichever choice is made points to a stochastic modification of
quantum dynamics which has little to do with spontaneous localiza-
tion.

15.2.3 The correct quantum argument

Concerning the alleged impossibility of explaining the intermittent fluorescence
of the quantum telegraph by resorting to a dynamical reduction model with
localization, it must be stressed that

(C) The presence of periods of darkness in the emission pattern can be deduced
within a purely unitary quantum mechanical scheme [160], by taking into
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account the whole system

ATOM + RADIATION FIELD

without any need of invoking reduction processes induced by detecting no
photons.

To be correct, the analysis must consider states ∣ψ(t)⟩ of the form

∣ψ(t)⟩ =
2

∑
i=0

∑
{n}

ci,{n}(t) ∣i⟩ ⊗ ∣{n}⟩ (15.16)

where ∣{n}⟩ is a state with n scattered photons. Then, with

P = [
2

∑
i=0

∣i⟩ ⟨i∣] ⊗ ∣{n}⟩ ⟨{n}∣ (15.17)

the orthogonal projection onto the Fock sector with no scattered photons, the
probability P (t) of periods of darkness extending in the interval of time [0, t]
when, initially, ∣ψ(0)⟩ = ∣0⟩ ⊗ ∣{0}⟩, is

P (t) = ∥P ∣ψ(t)⟩ ∥2 =
2

∑
i=0

∣ci,{0}(t)∣2 (15.18)

The study of P (t) leads to the correct prediction of periods of darkness in a
purely quantum dynamical context. Moreover, during a period of darkness the
state of the system ATOM + RADIATION FIELD is

[c0(t) ∣0⟩ + c1(t) ∣1⟩ + c2(t) ∣2⟩] ⊗ ∣{0}⟩ (15.19)

so that periods of darkness can end with the emission of both red and blue
photons with an emission pattern like the one of Fig. 12.

Figure 12: Emission pattern according to argument C.
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As a further remark, it must be noted that a complete account of the quantum
telegraph experiment ought to include the macroscopic detectors that are in-
volved in the measurement of the emission pattern. Consequently, the physical
system to be dealt with is

ATOM + RADIATION FIELD + MACROSCOPIC DETECTORS

Within the dynamical reduction program the actualization of the different macro-
states of the detecting apparatuses is accounted for by the new dynamics and
the corresponding objectification of macroproperties is thus obtained. One could
raise the question whether this can have any appreciable influence on the quan-
tum telegraph phenomenon.

It is sufficient to observe that, according to the analysis of the previous sub-
section, the effects of the reduction mechanism are comparable with those of
environment-induced reductions that occur at the detectors level. Indeed, on
the basis of the agreement of the correct quantum mechanical computations of
the probability of occurrence of periods of darkness and of their duration with
the experimental results, one can safely conclude that:

1. QMSL and CSL dynamics play, for the process under consideration, ex-
actly the same role as for any macroscopic detection process, namely they
objectify macro-properties.

2. There is no need to require that new nonlinear and stochastic modifications
of standard quantum mechanics become effective at the microscopic level
to account for the quantum telegraph phenomenology.

3. In particular, nothing, in the considered experiments, suggests that reduc-
tions take place with respect to an “energy” rather than to a “position”
preferred basis.

15.3 Dynamical reduction and the nucleon de-
cay

The presence in nature of a mechanism that localizes particles would be accom-
panied by a corresponding spreading in their momenta. It is thus interesting
to study its effect on the stability of atoms and nuclei. It is possible to get a
rough idea of the consequences of QMSL by modeling atoms and nuclei as one
dimensional systems moving in a harmonic potential so that their ground states
can be approximated by Gaussian wavefunctions ψG(q) of appropriate width
γ−1:

ψG(q) = [2γ2

π
]

1/4

e−γ
2q2 ,

⎧⎪⎪⎨⎪⎪⎩

γ ≃ 108 cm−1 for an atom

γ ≃ 1012 cm−1 for a nucleus
(15.20)
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If the particle undergoes a localization around x as in (6.1), ψG(q) changes into

φx(q)
∥φx(q)∥

, φx(q) = [α
π
]
1/4

e−(α/2)(x−q)
2

ψG(q) (15.21)

From (6.1), the probability density that a localization take place at x is given by
∥φx∥2. Accordingly, the probability that, if a hitting process occurs, the state
of the system is still ψG(q) is given by

PND = ∫ d3x ∣ ⟨ψG ∣φx⟩ ∣2 =
1√

1 + α/4γ2
≃
⎧⎪⎪⎨⎪⎪⎩

1 − 10−7 for an atom

1 − 10−15 for a nucleus
(15.22)

Since microsystems are supposed to undergo one localization every 1016 s, the
transition rate QE+D to an excited or dissociated state is:

QE+D = λ(1 − PND) ≃ λα

8γ2
=
⎧⎪⎪⎨⎪⎪⎩

10−23 for an atom

10−31 for a nucleus
(15.23)

In [158] Pearle has considered the case of the hydrogen atom and has compared
the flux of Lyman-α ultraviolet photons emitted by intergalactic hydrogen with
the one expected if a GRW mechanism were at work, the latter turning out to
be much weaker than the one observed.

Applying the same argument to the quark model of a proton one would get a
decay time of the same order of magnitude as the one of a nucleus (1031 s),
whereas the proton lifetime is estimated longer than 1031 years, that is, 1038 s.
This fact seems to indicate that the reduction rate ∆ should be decreased by a
factor 107.

However, the consequences of ∆ ≃ 10−13 cm−2s−1 would be unacceptable. In
fact, since α−1/2 = 10−5 cm is a reasonable value for the localization length (leff
in Table 15.1), it would yield the value τN ≃ 1023/N s for the macroscopic
decoherence time in (15.12). Thus, linear superpositions of spatially separated
states of any reasonable macroscopic “pointer” (N ≃ 1023) would typically take
times of the order of the second to be suppressed.

15.3.1 Reconsidering the argument within the CSL ap-
proach

In [107] the authors have considered an initial bound state ρB = ∣ψB⟩ ⟨ψB ∣ which
evolves into ρ(t) according to the dynamics (8.12) of CSL and have studied the
transition probability P (t) to an excited orthogonal state ∣ψE⟩:

d

dt
P (t)∣

t=0
= ∂

∂t
⟨ψE ∣Qj ∣ψE⟩∣

t=0

(15.24)
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The only contribution is that from the reducing term in (8.12). By developing
ip to the first order in α one gets:

d

dt
P (t)∣

t=0
≃ ∑

j

αλN2
j

2
∣ ⟨ψB ∣Qj ∣ψB⟩ ∣2 , Qj =

1

Nj

Nj

∑
i=1

qij (15.25)

j numbering the species of identical particles making up the system, qij being
the position operators of the particles of type j and Qj their center of mass.

For just one nucleon the result agrees with that of QMSL, while, for macro-
systems, due to the more efficient decoupling rate, it appears that a correction
of ∆ = αλ/2 which would lead to no conflict with the proton lifetime is possible.
However, such a change of the value of δ would lead to the limit of acceptability
for small objects: the dynamics will not reduce within the perception time
an object containing 1015 particles like a carbon particle of radius 10−3 cm.
Similarly, the argument of [121] discussed in Section 12 about the perception
mechanism, would no longer be correct.

15.3.2 The Pearle and Squires argument

Considering a macroscopic body of total mass M made up of different types of
identical particles of mass mj , one may think of relating the reduction process
to the mass density operator

M(x) = ∑
k

mk [
α

2π
]
3/2

∫
R3
d3y e−(α/2)(y−x)

2

a†
k(y)ak(y) (15.26)

(see the discussion of Section 8.6) rather than considering independent stochastic
processes for the various kinds of particles.

The first order analysis that has led to (15.25) can be similarly carried out in
this case; one merely has to consider the total center of mass Q of the system
and not only the centers of massQj of the various species

Q = 1

M
∑
j

mj

Nj

∑
i=1

qij (15.27)

as a consequence the rate of internal excitation and/or dissociation appears as
a second order effect. Indeed, the total center of mass Q cannot excite any
internal degree of freedom:

d

dt
P (t)∣

t=0
≃ ∑

j

M2αλ

2m2
0

∣ ⟨ψE ∣Qj ∣ψB⟩ ∣2 = 0 (15.28)

If one takes the QMSL value of λ for nucleons, that is if the reference mass m0

is identified with the nucleon mass, one has a remarkable decrease of the QMSL
rate QD+E in (15.23) for atoms: from one atom per mole being either excited
or dissociated every second to every 1012 s (105 years). Nevertheless, all the
important features of QMSL are preserved:
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● The decoupling of macroscopically distinguishable states is taken care of
by the nucleons of the macroscopic bodies.

● The energy increase is almost identical to acceptable one which is implied
by standard QMSL.

● The collapse induced decay probability of a proton is depressed by a fac-
tor 10−16 making the CSL predicted lifetime well compatible with the
experimental dat

Some concluding comments are in order at this point: the above analysis has
appropriately pointed out the nice features deriving from relating reduction to
the mass of the elementary particles. However one cannot avoid mentioning
that:

1. The dynamical reduction program has made clear that one can try to fol-
low a new line to solve the conceptual problems that Quantum Mechanics
meets with macro-objects and measurement processes, namely, modifying
the dynamics so that the physics of microsystems remains unaltered, while
macro-systems exhibit an acceptable behavior. However one cannot for-
get that for the time being the program still requires many improvements,
in particular the crucial problem to be faced is to work out reasonable
relativistic generalizations of it. Being the quark dynamics fundamentally
relativistic, and due to the great difficulties haunting the so called “non-
relativistic quark models”, applying directly the specific models of QMSL
and CSL to nucleons seems a little bit too hazardous.

2. Other collapse theories are still under consideration. The model presented
in Section 8.7 tries to relate the decoherence mechanism to gravity and to
reduce the number of new fundamental constants characterizing CSL. In
particular, the reduction mechanism is linked to the mass of the systems
involved, already meeting the basic request of [107].

3. The difficulties connected with nucleon decay might also be avoided by
slight modifications of the standard CSL, for instance, by using a higher
power N4/3(x) of the smeared number operator appearing in (8.1).

15.4 Spontaneous localizations in superconduct-
ing devices

We conclude the analysis of the experimental implications of dynamical reduc-
tion models mentioning the work of Rae [161], of Rimini [109] and of Buffa,
Nicrosini and Rimini [162] on the effects of spontaneous localizations on super-
conducting devices. The argument of Rae [161] goes as follows: consider the
BCS wavefunction [163] of a superconducting state

ψ = ψk1ψk2⋯ψkne
iS(x)
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where ψki represents the wavefunction of a Cooper pair of electrons with wavevec-
tors +ki and −Ki, and S(x) is the macroscopic phase associated with the su-
percurrent. The most relevant effect of spontaneous reductions of an electron
in a superconducting device is to break one of the Cooper pairs, which would
result in the supercurrent being reduced by about one part in 1020. Assuming
that a reduction happens every 10−5 s, the resulting decay would remain well
below the experimental detection limits which are of the order of one part in
1013 per second.

A more realistic model in which the possibility of recreation of Cooper particles
is taken into account (a phenomenon which lowers the effects of spontaneous
localizations) shows that dynamical reduction models are even more compatible
with the existence of superconductivity, something which is not at all trivial.

A much more detailed and mathematical precise analysis of the effect of spon-
taneous localizations on superconducting devices has been performed in Refs.
[109,162], within the framework of CSL: the conclusion is that, by taking into
account the indistinguishability of electrons, the effects are even smaller than
those predicted by Rae. We refer the reader to the above cited papers for the
complete analysis of the problem.

200



16. Conclusions

In this paper we have analyzed in detail a quite radical proposal which, at
the non relativistic level, allows one to circumvent the conceptual difficulties
that standard quantum mechanics meets with the macro-objectification prob-
lem. Obviously, even though the theory is not a reinterpretation (as many of the
attempts we have discussed in part I) of the standard theory, but qualifies itself
as a rival theory of it, up to the moment in which technological improvements
will make experimental tests actually feasible, to accept it is, to a large extent,
a matter of taste and of the attitude one has with respect to the foundational
problems of quantum theory. The theory we have reviewed in this report in
its present formulation still has a phenomenological character and necessitates
further hard work before it can be taken as a fundamental theory of natural
processes. As we have already remarked, the real (and, we believe, relevant)
merits which characterize it derive from the fact that it represents a concep-
tually new proposal for overcoming the embarrassing questions raised by the
macro-objectification problem. However, finding a consistent relativistic gener-
alization of the dynamical reduction theories, remains, as Bell has stressed, the
big problem to be faced.

Having made clear the perspective we consider appropriate for the dynamical
reduction program and its limitations, it seems useful to conclude this report
by recalling the nice features which characterize it.

First of all, according to the theory all natural processes, the microscopic and
the macroscopic ones, as well as those involving interactions between micro- and
macro-systems, are governed by the universal evolution equation of the theory.
Such an equation has never to be disregarded, contrary to what happens for
Schrödinger’s evolution of the standard scheme, on the basis of supplementary,
imprecise, verbal prescriptions. All the embarrassing ambiguities of the stan-
dard theory concerning macro processes are only momentary in the new scheme.
Again, in Bell’s words [32], within the GRW theory the cat is not both dead and
alive for more that a split second.

Another feature of the theory which deserves to be stressed is its structural
difference from the (in our opinion) unique other consistent and fully worked
out proposal to solve the measurement problem, i.e., Bohmian mechanics. The
GRW theory is a genuine Hilbert space theory and does not add any kind of
variables to standard quantum mechanics. However, by introducing mathemat-
ically precise modifications to it, it allows one to answer in an unambiguous
way to all the fundamental questions which characterize the debate on quan-
tum mechanics since its birth: which systems and processes must be treated as
classical and which ones as quantum, which are essentially reversible and for
which ones irreversibility plays a fundamental role, and so on. Moreover the
definite mathematical description of reductions makes also precise the action at
a distance of ordinary quantum mechanics, throwing a new light on EPR-like
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situations and on quantum non locality. The nice features of the proposal we
have reviewed have been summarized by Bell in a very concise sentence [32]
for myself, I see the GRW model as a very nice illustration of how quantum
mechanics, to become rational, requires only a change which is very small (on
some measures!).

Coming to the relativistic aspect we recall that the theory, even though no con-
sistent relativistic generalization of it has been fully worked out, presents some
nice aspects which, once more, can be taken as interesting hints for the elabo-
ration of a relativistic theory inducing reductions, an old problem which, as we
have discussed in this report, has drawn a lot of attention. In this respect, it is
useful to stress the different conceptual status of the dynamical reduction the-
ories with respect, e.g., hidden variable theories. We are making reference here
to the fact that the locality requirement can be split in the two conditions of
parameter and outcome independence and that the linear version of dynamical
reduction theories exhibits only outcome dependence, a fact that conflicts less
than parameter dependence with a relativistic point of view. Actually, what
J.S. Bell has proved in Ref. [32] is equivalent to checking that the GRW theory
does not present parameter dependence. This analysis led him to state: the
model is as Lorentz invariant as it could be in the non relativistic version. It
takes away the grounds of my fear that any exact formulation of quantum me-
chanics must conflict with fundamental Lorentz invariance. Finally, we would
like to conclude by stressing that the natural interpretation of the theories we
have reviewed implies that they do not deal, as does the standard theory, with
the probabilities of something occurring provided some specific action (a mea-
surement) is performed by a conscious observer, i.e, with what we would find,
but they speak directly of what is (i.e., an objective mass distribution), at the
appropriate macroscopic level.

Concerning the philosophical implications of these approaches, if one is inter-
ested also in these aspects of scientific knowledge, it has to be remarked that
they allow one to close the circle in the precise sense of Shimony [1], i.e., to
build up a coherent worldview which can accommodate at the same time what
we know about the peculiar behavior of microscopic systems and the definite-
ness of the macroscopic world and of our perceptions about it. In particular,
the theory makes fully legitimate a macrorealistic position about nature and
has no need whatsoever to attribute any peculiar role to conscious observers,
an unavoidable fact within the standard formalism and most of the proposed
interpretations aiming to solve its conceptual difficulties.
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