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Abstract

A model is developed to describe state reduction in an EPR experiment as a
continuous, relativistically-invariant, dynamical process. The system under
consideration consists of two entangled isospin particles each of which un-
dergo isospin measurements at spacelike separated locations. The equations
of motion take the form of stochastic differential equations. These equa-
tions are solved explicitly in terms of random variables with a priori known
probability distribution in the physical probability measure. In the course
of solving these equations a correspondence is made between the state re-
duction process and the problem of classical nonlinear filtering. It is shown
that the solution is covariant, violates Bell inequalities, and does not permit
superluminal signaling. It is demonstrated that the model is not governed
by the Free Will Theorem and it is argued that the claims of Conway and
Kochen, that there can be no relativistic theory providing a mechanism for
state reduction, are false.

1 Introduction

The motivation for attempting to formulate a dynamical description of state
reduction [1, 2, 3, 4, 5, 6] stems from the inherent problems of quantum
measurement. In standard quantum theory the state reduction postulate is
a necessary supplement to the Schrödinger dynamics in order that we can re-
alize definite measurement outcomes from the potentiality of the initial state
vector. The problem with this picture is that the pragmatic application of
these two different laws of evolution is left to the judgment of the physicist
rather than being fixed by exact mathematical formulation. Our experience
in the use of quantum theory tells us that the state reduction postulate
should not be applied to a microscopic system consisting of a few elementary
particles until it interacts with a macroscopic object such as a measuring
device. This works perfectly well in practice for current experimental tech-
nologies, but as we begin to explore systems on intermediate scales it is not
clear whether state reduction should be assumed or not. A solution of the
problem of measurement thus requires that we somehow set a fundamental
scale to demarcate micro and macro effects within the dynamical framework.

The formulation of an empirical model, objectively describing the dynamics



of the state reduction process is a direct approach to achieving this aim. The
basic requirements we have for such a model can be characterized as follows
[7, 8]:

● Measurements involving macroscopic instruments should have definite
outcomes.

● The statistical connections between measurement outcomes and the
state vector prior to measurement should be preserved.

● The model should be consistent with known experimental results.

The task of meeting these objectives in a relativistic context has met with
technical diffi- culties related to renormalization [9, 10, 11, 12, 13, 14, 15, 16].
These issues derive from the quantum field theoretic nature of relativistic sys-
tems. In this paper we will attempt to sidestep this problem by considering a
simplified quantum system with a finite-dimensional Hilbert space free from
the problem of divergences. Our aim is to elucidate the dynamical process
of state reduction in a relativistic context.

We will consider a model describing the famous experiment devised by Ein-
stein, Podolski, and Rosen (EPR) [17]. The experiment involves two elemen-
tary particles in an entangled state and separated by a spacelike interval.
The original purpose of EPR was to argue that quantum mechanics is fun-
damentally incomplete as a theory. In order to do this they made a locality
assumption stating that the two particles are not able to instantaneously
influence each other at a distance. Theoretical and experimental advances
[18, 19] have since demonstrated the remarkable conclusion that the assump-
tion of locality is incorrect. Entangled quantum systems can indeed transmit
instantaneous influence at a distance when a measurement is performed. Al-
though this fact negates the EPR argument, instead it poses questions for
our understanding of quantum measurement. In particular, the notion of
instantaneous influence due to state reduction during measurement seems to
sit uncomfortably with the theory of relativity.

A formal relativistically-covariant description of the state reduction associ-
ated with measurement has been given by Aharanov and Albert [20]. They
show that for a consistent description of the measurement process, the state
evolution cannot take the form of a function on spacetime. The proposed
solution is that state evolution should be described by a functional on the set
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of spacelike hypersurfaces as conceived by Tomonaga and Schwinger. This
sets the scene for understanding how to formulate a fully dynamical and rel-
ativistic description of the state reduction process.

Relativistic dynamical reduction models have been critically investigated
from the perspective of the analysis of Aharanov and Albert by Ghirardi
[21]. There, the conceptual features of these models are discussed and shown
to lead to a coherent picture. It is the intention of this work to extend the
analysis of Ghirardi by constructing an explicit model of continuous state
evolution. Our model, which is described in detail in section II, is designed
to highlight the peculiar nonlocal features. In sections III and IV we derive
closed-form solutions to the stochastic equations of motion. The value of this
is that it enables us to examine the nonlocal character of the stochastic noise
processes. In section V we apply the method of Brody and Hughston [22, 23]
to demonstrate that the equations describing the dynamical state reduction
can be viewed as a description of a classical filtering problem. In section VI we
generalize our model to consider an experiment where the experimenter can
freely choose which measurement to perform on the individual particle from
an incompatible set of possible measurements. This leads us to a discussion
of the so-called Free Will Theorem [24, 25, 26, 27, 28] of Conway and Kochen
in section VII. We use our findings to argue that the axiomatic assumptions
of the Free Will Theorem are too restrictive and that the conclusions of the
theorem cannot be applied to dynamical models of state reduction.

2 The Model

We consider two particles denoted 1 and 2, each described by an internal
isospin-12 degree of freedom. The choice of an isospin system avoids compli-
cation encountered when dealing with conventional spin in a covariant for-
mulation. The initial isospin state of the two particles is defined in spacetime
on an initial spacelike hypersurface σi as the isospin singlet state

∣ψ(σi)⟩ =
1
2{∣+

1
2 ;−1

2
⟩ − ∣−1

2 ;+1
2
⟩} (1)

The isospin states for each particle are represented with respect to a fixed
axis in isospin space.

The particle trajectories in spacetime are assumed to behave classically. The
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two particles move in separate directions away from some specific location
where they have been prepared. Each particle path eventually intersects with
the path of an isospin measuring device. This leads to a localized interaction
which we assume takes place in some finite region of spacetime. We assume
that the classical trajectories of the particles and measuring devices, and
the finite regions of interaction are determined. Further we assume that the
two measurement regions are completely spacelike separated in the sense that
every point in each region is spacelike separated from every point in the other
region. We denote the two measurement regions by R1 and R2 (see figure 1).

Figure 1: The diagram represents an experiment to measure the states of two
entangled particles. The dashed lines are the (classical) particle trajectories where
particle 1 moves to the left and particle 2 moves to the right. The vertical rep-
resents a timelike direction whilst the horizontal represents a spacelike direction.
We suppose that within the spacetime region R1, a measurement is performed
on particle 1. Similarly within the spacetime region R2 (spacelike separated from
R1), a measurement is performed on particle 2. The initial state is defined on
the spacelike hypersurface σi. The state advances as described by the Tomonaga
picture through a sequence of spacelike surfaces defining a foliation of spacetime.

In order to describe the state evolution we use the Tomonaga picture [29, 30].
Standard unitary dynamics are described in this picture by the Tomonaga
equation,

δ ∣ψ(σ)⟩

δσ(x)
= −iHint(x) ∣ψ(σ)⟩ (2)
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where Hint is the interaction Hamiltonian. Given two spacelike hypersurfaces
σ and σ′ differing only by some small spacetime volume ∆ω about some
spacetime point x, the functional derivative is defined by

δ ∣ψ(σ)⟩

δσ(x)
= lim
σ′→σ

∣ψ(σ′)⟩ − ∣ψ(σ)⟩

∆ω
(3)

The operator Hint must be a scalar in order that equation (2) has Lorentz
invariant form. We must also have [Hint(x),Hint(x′)] = 0 for spacelike sepa-
rated x and x′ reflecting the fact that there is no temporal ordering between
spacelike separated points.

In differential form equation (2) can be written

dx ∣ψ(σ)⟩ = −iHint(x)dω ∣ψ(σ)⟩ (4)

where dx ∣ψ(σ)⟩ represents the infinitesimally small change in the state as the
hypersurface σ is deformed in a timelike direction at point x.

We specify a probability space (Ω,F ,Q) along with a filtration F ξσ of F
generated by a two-dimensional Q-Brownian motion {ξ1σ, ξ

2
σ}. For each inter-

action region Ra (a = 1,2) the spacelike hypersurfaces {σ} characterize the
time evolution for each component of the Brownian motion. Given a foliation
of spacetime, we define a “time difference” between any two surfaces as the
spacetime volume enclosed by the surfaces within the region Ra. Consider
the set (σi, σ) of all spacetime points between the two spacelike surfaces σi
and σ, and consider the intersection of this set with the interaction region
(σi, σ) ∩Ra. We denote the spacetime volume of (σi, σ) ∩Ra by ωaσ (see the
gray shaded region in figure 2).
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Figure 2: The diagram represents a sequence of spacelike hypersurfaces advancing
through the spacetime region Ra. The gray shading within Ra corresponds to the
spacetime volume ωaσ. The detail shows a small spacetime region within Ra where
the surface σ advances through a spacetime cell at point x. Associated with the cell
at point x is the incremental spacetime volume dω and the incremental Brownian
variable dξax.

The two volumes ω1
σ and ω2

σ correspond to two different time parameters
for the two component Brownian motions. This definition ensures that time
increases monotonically as the future surface σ advances. The parameteriza-
tion is covariant and has the convenience of only being relevant during the
predefined measurement events. We define an infinitesimal increment of the
Brownian motion dξax (relating to two spacelike hypersurfaces which differ
only by an infinitesimal spacetime volume dω at point x) by the following:

dξax = 0 , for x ∉ Ra;

EQ[dξax ∣F
ξ
σ] = 0 , for x to the future of σ;

dξaxdξ
a
y = δ

abδxydω , for x ∈ Ra, y ∈ Rb (5)

where EQ[⋅∣F
ξ
σ] denotes conditional expectation in Q. We attribute dξax to the

spacetime point x independent of any spacelike surface on which x may lie.
The two-dimensional Brownian motion is given by the sum of all infinitesimal
Brownian increments belonging to the set of points (σi, σ) ∩Ra,

ξaσ = ∫
σ

σi
dξaσ (6)

so that an increment of the process can be written

ξaσ′ − ξ
a
σ = ∫

σ′

σ
dξaσ (7)
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where σ′ is to the future of σ. These increments are independent and have
mean zero and variance ωaσ′−ω

a
σ as can easily be demonstrated by comparison

with the conventional time parameterization of Brownian motion.

The state reduction process which occurs as the isospin state is measured
can now be described by extension of the Tomonaga equation (4) to include
a stochastic term. We define our evolution by

dx ∣ψ(σ)⟩ = {2λS1dξ
1
x −

1
2λ

2dω} ∣ψ(σ)⟩ for x ∈ R1;

dx ∣ψ(σ)⟩ = {2λS2dξ
2
x −

1
2λ

2dω} ∣ψ(σ)⟩ for x ∈ R2;

dx ∣ψ(σ)⟩ = 0 otherwise. (8)

The operators Sa are isospin operators for each particle with the properties

S1 ∣±
1
2 ; ⋅⟩ = ±1

2
∣±1

2 ; ⋅⟩ , S2 ∣⋅;±
1
2
⟩ = ±1

2
∣⋅;±1

2
⟩ (9)

the parameter λ is a coupling constant. The model explicitly describes an
experiment to measure the isospin state of each particle in the given fixed
isospin direction (the case of a general isospin measurement direction will be
considered below). The form of equations (8) can be roughly understood by
considering an incremental stage in the evolution where dξaσ is either positive
or negative. For example, if dξ1σ is positive then the stochastic term on the
right side of the first equation in (8) will augment the +1

2 state for particle
1 whilst degrading the −1

2 state for particle 1. The opposite happens if dξ1σ
is negative. Eventually 2? after a certain period of evolution one of the two
eigenstates will dominate. This is analogous to the famous problem of the
gambler’s ruin.

The drift terms on the right side of equations (8) ensure that the state norm
is a positive martingale

dx ⟨ψ(σ) ∣ψ(σ)⟩ = 4λ ⟨ψ(σ)∣S1 ∣ψ(σ)⟩dξ
1
x for x ∈ R1

dx ⟨ψ(σ) ∣ψ(σ)⟩ = 4λ ⟨ψ(σ)∣S2 ∣ψ(σ)⟩dξ
2
x for x ∈ R2 (10)

We can then define a physical measure P equivalent to Q according to

EP[⋅∣F ξσ] =
EQ[⟨ψ(σf) ∣ψ(σf)⟩ ⋅ ∣F

ξ
σ]

EQ[⟨ψ(σf) ∣ψ(σf)⟩ ∣F
ξ
σ]

=
E[⟨ψ(σf) ∣ψ(σf)⟩ ⋅ ∣F

ξ
σ]

⟨ψ(σ) ∣ψ(σ)⟩
(11)

with σf the final surface of the state evolution we are considering. This
change of measure ensures that physical outcomes are weighted according
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to the Born rule, meeting the second bullet-pointed criterion for dynamical
state reduction stated in the introduction. Note that the processes ξaσ satisfy
a modified distribution under the P-measure.

Our model can be interpreted as an effective model describing the interac-
tion of the two particles with macroscopic measuring devices in regions R1

and R2. In more detail we would expect the particle states to become cor-
related with different states of the measuring devices. The state reduction
dynamics would be expected to have a negligible effect on the individual spin
particles, however, the effect would be rapid for a macroscopic superposition
of measuring device states. Collapse of the spin particle would then occur
indirectly as a result of collapse of the macro state. In our model we have
assumed that the particle states undergo a direct collapse dynamics. This
allows us to ignore the fine details of the interaction between spin particles
and measuring devices.

By designating spacetime regions where collapse of the isospin state occurs
we avoid the issue of setting a scale distinguishing micro and macro behav-
ior. Our main interest here is to understand the dynamical process of state
reduction for an entangled quantum system in a relativistic setting.

3 Solution in Terms of Q-Brownian Motion

Working in the Q-measure where ξaσ is a Brownian process we find the fol-
lowing solution for the unnormalized state evolution:

∣ψ(σ)⟩ = 1√
2
{eλξ

1
σ−λ2ω1

σe−λξ
2
σ−λ2ω2

σ ∣+1
2 ;−1

2
⟩ − e−λξ

1
σ−λ2ω1

σeλξ
2
σ−λ2ω2

σ ∣−1
2 ;+1

2
⟩} (12)

This can easily be checked with the use of (5), (6), and (8). The state norm
is given by

⟨ψ(σ) ∣ψ(σ)⟩ = 1
2
{e2λξ

1
σ−2λ2ω1

σe−2λξ
2
σ−2λ2ω2

σ + e−2λξ
1
σ−2λ2ω1

σe2λξ
2
σ−2λ2ω2

σ} (13)

We note that although equation (12) is a solution to (8), it cannot be consid-
ered as a solution to the model since it completely disregards the important
role played by the physical measure P. Equation (12) enables us to generate
sample outcomes, however, the physical probability density at a given out-
come can only be determined afterwards with reference to the state norm (a
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likely outcome in Q may be highly unlikely in P).

We define the characteristic function associated with ξ1σ and ξ2σ in the P-
measure as

Φξ
σ(t1, t2) = EP[eit1ξ

1
σeit2ξ

2
σ ∣F ξσi] (14)

= EQ[⟨ψ(σ) ∣ψ(σ)⟩ eit1ξ
1
σeit2ξ

2
σ ∣F ξσi] (15)

where we have used equation (11) and the fact that the initial state has
unit norm. Noting that ξ1σ and ξ2σ are independent in the Q-measure we can
determine the expectation using equation (13) to find

Φξ
σ(t1, t2) =

1
2 {e

2iλt1ξ
1
σ−

1
2 t

2
1ω

1
σe−2iλt2ξ

2
σ−

1
2 t

2
2ω

2
σ + e−2iλt1ξ

1
σ−

1
2 t

2
1ω

1
σe2iλt2ξ

2
σ−

1
2 t

2
2ω

2
σ} (16)

The characteristic function allows us to immediately demonstrate that space-
like separated processes ξ1σ and ξ2σ are correlated under the physical measure
P:

EP[ξaσ ∣F
ξ
σ] = −i

d

dta
[Φξ

σ(t1, t2)]∣t1=t2=0 = 0

EP[ξ1σξ
2
σ ∣F

ξ
σ] = −

d2

dt1dt2
[Φξ

σ(t1, t2)]∣t1=t2=0 = −4λ2ω1
σω

2
σ (17)

The stochastic information at one wing of the apparatus is not independent of
the stochastic information at the other wing. We might expect this since the
results of the two measurements that the information dictate are correlated.

Before demonstrating the state reducing properties of this model, we first
show in the next section how to express the solution (12) directly in terms
of a P-Brownian motion. This will allow us to generate physical sample
solutions.

4 Solution in Terms of P-Brownian Motion

Let the probability space (Ω,F ,P) be given and let Gσ be a filtration of F such
that independent P-Brownian motions Ba

σ (a = 1,2) are specified together
with random variables sa (independent of Ba

σ). The Brownian motions Ba
σ

are defined under the P-measure in the same way in which Brownian motions
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ξaσ are defined under Q-measure by equations (5) and (6). The probability
distribution for the random variables sa are given by

P(s1 = +1
2 , s2 = −

1
2) =

1
2

P(s1 = −1
2 , s2 = +

1
2) =

1
2 (18)

We assume that sa and Gσ-measurable.

Now define the random processes (c.f. [23])

ξ1σ = 4λs1ω
1
σ +B

1
σ

ξ2σ = 4λs2ω
2
σ +B

2
σ (19)

Our aim is to show that these processes, defined under the P-measure, can be
identified as the Q-Brownian processes ξaσ involved in the equations of motion
for the state (8). In order to do this we must show that their characteristic
function under the P-measure is identical to that found for the Q-Brownian
processes, as given by equation (16).

Again let F ξσ denote the filtration generated by {ξ1σ, ξ
2
σ}. The use of F ξσ ensures

that we have no more or less information than is given by the processes
{ξ1σ, ξ

2
σ} as in the original presentation of the model in section 2. Neither

sa nor Ba
σ are F ξσ-measurable. The only information we have regarding the

realization of these variables is {ξ1σ, ξ
2
σ}.

The characteristic function for ξ1σ and ξ2σ is given by equation (14),

Φξ
σ(t1, t2) = EP[eit1ξ

1
σeit2ξ

2
σ ∣F ξσi]

but now we write

Φξ
σ(t1, t2) =

1
2E

P [eit1(4λs1ω
1
σ+B1

σ)eit2(4λs2ω
2
σ+B2

σ)∣F ξσi ; s1 = +
1
2 , s2 = −

1
2
]

+ 1
2E

P [eit1(4λs1ω
1
σ+B1

σ)eit2(4λs2ω
2
σ+B2

σ)∣F ξσi ; s1 = −
1
2 , s2 = +

1
2
] (20)

Noting that B1
σ and B2

σ are independent we can work directly in the P-
measure to confirm that the characteristic function is once more given by
equation (16). This demonstrates that the processes defined by equation
(19) can indeed be identified as Q-Brownian motions ξaσ.

We are now in a position to express the solution to equations (8) and (11)
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in terms of the P-Brownian motions Ba
σ, and the random variables sa. This

is summarized in the following subsection. The fact that the solution is ex-
pressed in terms of variables with an a prior i known probability distribution
in the physical measure is to be contrasted with the solution in terms of
Q-Brownian motion where physical probabilities can only be determined a
posteriori with knowledge of the state norm.

A. Summary of solution

The solution to the equations of motion (8) is given by the unnormalized
state

∣ψ(σ)⟩ = 1√
2
{eλξ

1
σ−λ2ω1

σe−λξ
2
σ−λ2ω2

σ ∣+1
2 ;−1

2
⟩ − e−λξ

1
σ−λ2ω1

σeλξ
2
σ−λ2ω2

σ ∣−1
2 ;+1

2
⟩} (21)

(This is the same solution in terms of ξaσ as presented in equation (12), how-
ever, we now treat ξaσ, not as a Q-Brownian motion, but as an information
process defined in terms of variables with known P-distributions). The ran-
dom variables ξaσ are given by

ξ1σ = 4λs1ω
1
σ +B

1
σ

ξ2σ = 4λs2ω
2
σ +B

2
σ (22)

The stochastic processes B1
σ and B2

σ are independent P-Brownian motions.
The random variables sa take values s1 = +1/2, s2 = −1/2 with probability
1/2 and s1 = −1/2, s2 = +1/2 with probability 1/2. Brownian motions Ba

σ and
random variables sa are independent. Only the processes ξaσ are measurable.

This solution is as relativistically invariant as a description of state reduction
can be. We expect the state to depend on the spacelike surface σ we choose
to query. The dependence on σ results in equation (21) from the spacetime
volume variables ωaσ and the random variables Ba

σ. We note that neither of
these variables depends on the chosen foliation of spacetime. For example,
the distribution of Ba

σ is characterized by the spacetime volume ωaσ which in
turn is determined only by the surface σ. A foliation dependence would be
undesirable as it would indicate a preferred frame in the model. The fact
that there is no foliation dependence indicates also that the choice σ has no
prior physical significance.

B. State reduction
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In this subsection we explicitly demonstrate how the solution outlined above
exhibits state reduction to a state of well-defined isospin. Consider the isospin
operators Sa. The conditional expectation of Sa for the state ∣ψ(σ)⟩ is given
by

⟨Sa⟩σ =
⟨ψ(σ)∣Sa∣ ∣ψ(σ)⟩

⟨ψ(σ) ∣ψ(σ)⟩
(23)

From equation (21) we find choosing, for example, a = 1,

⟨S1⟩σ =

1
2e

2λξ1σ−2λ2ω1
σe−2λξ

2
σ−2λ2ω2

σ − 1
2e

−2λξ1σ−2λ2ω1
σe2λξ

2
σ−2λ2ω2

σ

e2λξ1σ−2λ2ω1
σe−2λξ2σ−2λ2ω2

σ + e−2λξ1σ−2λ2ω1
σe2λξ2σ−2λ2ω2

σ
(24)

Now suppose we condition on the event s1 = +1/2, s2 = −1/2. We find

⟨S1⟩σ =

1
2e

2λB1
σ+2λ2ω1

σe−2λB
2
σ+2λ2ω2

σ − 1
2e

−2λB1
σ−6λ2ω1

σe2λB
2
σ−6λ2ω2

σ

e2λB1
σ+2λ2ω1

σe−2λB2
σ+2λ2ω2

σ + e−2λB1
σ−6λ2ω1

σe2λB2
σ−6λ2ω2

σ

=

1
2 −

1
2e

−4λB1
σ−8λ2ω1

σe4λB
2
σ−8λ2ω2

σ

e−4λB1
σ−8λ2ω1

σe4λB2
σ−8λ2ω2

σ
(25)

Next we use the result that

lim
ωσ→∞

P (e±4λBσ−8λ
2ωσ > 0) = 0 (26)

to deduce that ⟨S1⟩σ → 1/2 as ω1
σ → ∞ or ω2

σ → ∞. These volumes increase
in size as the surface σ passes the spacetime regions R1 and R2 respectively.
Since these regions are of finite size, ω1

σ and ω2
σ can only attain fixed maximal

values. We assume that these maximal values are sufficiently large that the
limit of equation (26) is approached with high precision. Note that the rate
at which this limit is approached can be controlled by the choice of coupling
parameter λ.

A similar analysis leads to the conclusion that ⟨S2⟩σ → −1/2. Conversely,
if we were to condition on the event s1 = −1/2, s2 = +1/2, we would find
⟨S1⟩σ → −1/2 and ⟨S2⟩σ → +1/2. We observe that the unmeasurable random
variable sa dictates the outcome of the experiment. Only the processes ξaσ are
known to the state, the Brownian processes Ba

σ act as noise terms obscuring
the values sa.

C. Probabilities for reduction

Here we demonstrate that the stochastic probabilities for outcomes are those
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predicted by the quantum state prior to the measurement event. For example,
we define the +1

2 state projection operator on particle 1 by

P +
1 ∣+1

2 ; ⋅⟩ = ∣+1
2 ; ⋅⟩ ; P +

1 ∣−1
2 ; ⋅⟩ = 0 (27)

and the conditional expectation of this operator for the state ∣ψ(σ)⟩ by

⟨P +
1 ⟩σ =

⟨ψ(σ)∣P +
1 ∣ ∣ψ(σ)⟩

⟨ψ(σ) ∣ψ(σ)⟩
(28)

In order to calculate the unconditional expectation of ⟨P +
1 ⟩σ it turns out to

be simpler to work in the Q-measure. We proceed as follows:

EP[⟨P +
1 ⟩σ ∣F

ξ
σ] = EQ[⟨ψ(σ) ∣ψ(σ)⟩ ⟨P +

1 ⟩σ ∣F
ξ
σ]

= EQ[⟨ψ(σ)∣P +
1 ∣ ∣ψ(σ)⟩ ∣F

ξ
σ]

= EQ[12e
2λξ1σ−2λ2ω1

σe−2λξ
2
σ−2λ2ω2

σ ∣F ξσ] =
1
2 (29)

From the previous subsection we know that as ωaσ → ∞ then the state of
each particle tends towards a definite isospin state and consequently the
conditional expectation of P +

1 tends to either 0 or 1. This means that as
ωaσ →∞ we have

EP[⟨P +
1 ⟩σ ∣F

ξ
σ] = EP [1

⟨S1⟩σ=
1
2 ∣F

ξ
σ
] = P (⟨S1⟩σ =

1
2 ∣F

ξ
σ) (30)

where 1{E} takes the value 1 if the event E is true, and 0 otherwise. From
equation (29) we can now write

P (⟨S1⟩σ =
1
2 ∣F

ξ
σ) =

1
2⟨P

+
1 ⟩σ (31)

This tells us that as the dynamics lead to a definite state for each particle then
the stochastic probability of a given outcome matches the initial quantum
probability. The same is true of other projection operators as can easily be
shown.

5 Interpretation in Terms of Nonlinear Fil-

tering

In this section we use the method of Brody and Hughston [22, 23] to demon-
strate that the problem under consideration can be interpreted as a classical

13



nonlinear filtering problem. The method was originally applied to solve an
energy-based state diffusion equation.

From section 4B we understand that the F ξσ-unmeasurable random variables
sa represent the true outcomes for the isospin eigenvalues of each particle af-
ter the measurement process. Only information in the form ξaσ = 4λsaωaσ +B

a
σ

is accessible to the state where the realized value of sa is masked by the
F
ξ
σ-unmeasurable noise processes Ba

σ.

Suppose we attempt to address the problem of finding sa directly, that is,
given {ξaσ} what is the best estimate we can make for sa. This is a classi-
cal nonlinear filtering problem. It is straightforward to show that the best
estimate for the value of sa is given by the conditional expectation

ŝaσ = EP[sa∣F
ξ
σ] (32)

The aim is now to identify ŝaσ with the quantum expectation processes ⟨Sa⟩σ.

We first show that ξaσ are Markov processes. To do this we show that

P(ξaσ < y∣ξ1σ1 , ξ
1
σ2 ,⋯, ξ

1
σk

; ξ2σ1 , ξ
2
σ2 ,⋯, ξ

2
σk
) = P(ξaσ < y∣ξ1σ1 ; ξ

2
σ1) (33)

where {σ,σ1, σ2,⋯, σk} is a sequence of spacelike surfaces belonging to some
spacetime foliation such that

ω1
σ ≥ ω

1
σ1 ≥ ω

1
σ2 ≥ ⋯ ≥ ω1

σk
> 0

ω2
σ ≥ ω

2
σ1 ≥ ω

2
σ2 ≥ ⋯ ≥ ω2

σk
> 0 (34)

The proof of equation (33) is more or less identical to that given by Brody
and Hughston [22]. We use the fact that EP[Bb

σ′B
b
σ′′] = ω

b
σ′ , where ωbσ′′ ≥ ω

b
σ′

for b = 1,2. Then for ωbσ ≥ ω
b
σ1 ≥ ω

b
σ2 > 0 we have that

Bb
σ and

Bb
σ1

ωbσ1
−
Bb
σ2

ωbσ2
are independent. (35)

Furthermore,
Bb
σ1

ωbσ1
−
Bb
σ2

ωbσ2
=
ξbσ1
ωbσ1

−
ξbσ2
ωbσ2

(36)
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from which it follows that

P(ξaσ < y∣ξ1σ1 , ξ
1
σ2 , ξ

1
σ3 ,⋯, ξ

2
σ1 , ξ

2
σ2 , ξ

2
σ3 ,⋯)

=P(ξaσ < y∣ξ
1
σ1 ,

ξ1σ1
ω1
σ1

−
ξ1σ2
ω1
σ2

,
ξ1σ2
ω1
σ2

−
ξ1σ3
ω1
σ3

,⋯, ξ2σ1 ,
ξ2σ1
ω2
σ1

−
ξ2σ2
ω2
σ2

,
ξ2σ2
ω2
σ2

−
ξ2σ3
ω2
σ3

,⋯)

=P(ξaσ < y∣ξ
1
σ1 ,

B1
σ1

ω1
σ1

−
B1
σ2

ω1
σ2

,
B1
σ2

ω1
σ2

−
B1
σ3

ω1
σ3

,⋯, ξ2σ1 ,
B2
σ1

ω2
σ1

−
B2
σ2

ω2
σ2

,
B2
σ2

ω2
σ2

−
B2
σ3

ω2
σ3

,⋯) (37)

Now from (35) we have that ξaσ, ξ
1
σ1 and ξ2σ2 are each independent of B1

σ1/ω
1
σ1−

B1
σ2/ω

1
σ2 , B

1
σ2/ω

1
σ2 −B

1
σ3/ω

1
σ3 , etc. Equation (33) follows. The same argument

shows that

P(Ba
σ < y∣ξ

1
σ1 , ξ

1
σ2 ,⋯, ξ

1
σk

; ξ2σ1 , ξ
2
σ2 ,⋯, ξ

2
σk
) = P(Ba

σ < y∣ξ
1
σ1 ; ξ

2
σ1) (38)

and therefore
P(sa = ±1

2 ∣F
ξ
σ) = P(sa = ±1

2 ∣ξ
1
σ1 ; ξ

2
σ1) (39)

Next we use a version of Bayes formula to calculate this conditional proba-
bility

P(s1 = ±1
2 , s1 = ∓

1
2 ∣ξ

1
σ; ξ2σ) =

P(s1 = ±1
2 , s1 = ∓

1
2)ρ(ξ

1
σ; ξ2σ ∣s1 = ±

1
2 , s1 = ∓

1
2)

ρ(ξ1σ; ξ2σ)
(40)

The density function for the random variables (ξ1σ; ξ2σ) conditional on sa is
Gaussian (since Ba

σ is a Brownian motion under P) and is given by

ρ(ξ1σ; ξ2σ ∣s1 = ±
1
2 , s1 = ∓

1
2)∝ e

− 1
2ω1
σ
(ξ1σ∓2λω1

σ)2e
− 1
2ω2
σ
(ξ2σ±2λω2

σ)2 (41)

We also have that

ρ(ξ1σ; ξ2σ) =
1
2ρ(ξ

1
σ; ξ2σ ∣s1 = +

1
2 , s2 = −

1
2) +

1
2ρ(ξ

1
σ; ξ2σ ∣s1 = −

1
2 , s2 = +

1
2) (42)

We are now in a position to calculate the conditional expectation ŝaσ given
by equation (32). For example, choosing a = 1 we have

ŝ1σ = EP[s1∣F
ξ
σ] =

1
2P(ξ

1
σ; ξ2σ ∣s1 = +

1
2 , s2 = −

1
2) −

1
2P(ξ

1
σ; ξ2σ ∣s1 = −

1
2 , s2 = +

1
2)

=

1
2e

2λξ1σe−2λξ
2
σ − 1

2e
−2λξ1σe2λξ

2
σ

e2λξ1σe−2λξ2σ + e−2λξ1σe2λξ2σ
(43)
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This is the same expression as that given for ⟨S1⟩σ in equation (24). This
demonstrates that the conditional expression ŝ1σ, which represents our best
estimate for the random variable s1 given only the information from the
filtration F ξσ, corresponds to the quantum expectation of the operator S1,
conditional on the same information. It is remarkable that the complexity
of the stochastic quantum formalism corresponds to a such a conceptually
intuitive classical analogue.

6 Bell Test Experiments

We now suppose that the experimenters at each wing of the apparatus can
choose the orientation of their isospin measurement in isospin space. We
suppose that each wing of the experiment now consists of several measuring
devices each set up to measure the isospin value for different isospin orienta-
tions (see figure 3).

Figure 3: A Bell test experiment for two entangled isospin particles. The dashed
lines are the (classical) particle trajectories where particle 1 moves initially to the
left and particle 2 moves initially to the right. The vertical represents a timelike
direction whilst the horizontal represents a spacelike direction. At D1 a device is
used to deflect particle 1 towards one of several measuring devices each set up to
perform an isospin measurement for a different orientation in isospin space. Space-
time regions Ru1 ,Rv1 , ...,Rw1 are the different interaction regions corresponding to
the different isospin orientations u1,v1, ...,w1. Similarly for particle 2. The state
advances through a sequence of spacelike surfaces (bold lines) defining a foliation
of spacetime. The example foliation shows particle 1 measured before particle 2.

16



Each particle passes through a deflection device, sending it towards any one
of these isospin measuring devices. The deflection device can be controlled by
the experimenter and each experimenter makes their choice of which isospin
orientation to measure independently of the other. Furthermore, the deflec-
tion and measuring devices on one wing of the experiment are completely
spacelike separated from the deflection and measuring devices on the other
wing. This is essentially the experimental design used by Aspect in his tests
of Bell inequalities [19].

We can represent the initial singlet state in terms of isospin eigenstates in a
basis defined by the arbitrarily chosen measurement directions. Suppose that
the chosen measurement directions correspond to the unit isospin vectors n1

and n2 and that the angle between n1 and n2 is θ, then

∣ψ(σi)⟩ =
1√
2
{cos ( θ2) ∣+

1
2
⟩
n1

∣−1
2
⟩
n2
− i sin ( θ

2
) ∣+1

2
⟩
n1

∣+1
2
⟩
n2

+i sin ( θ
2
) ∣−1

2
⟩
n1

∣−1
2
⟩
n2
− cos ( θ2) ∣−

1
2
⟩
n1

∣+1
2
⟩
n2

} (44)

where, for isospin vector operators Sa, the orthonormal eigenstates satisfy

na ⋅ Sa ∣+
1
2
⟩
na

= 1
2
∣+1

2
⟩
na

; na ⋅ Sa ∣−
1
2
⟩
na

= −1
2
∣−1

2
⟩
na

(45)

We denote the spacetime locations of the deflection devices as Da and the
particle-measuring device interaction regions as Rua ,Rva , ...,Rwa for the dif-
ferent measurement directions ua,va, ...,wa (see figure 3). For each a, a
choice of measurement direction na made and only one interaction region
Rna is activated. Given n1 and n2, the equations of motion for the state are
now

dx ∣ψ(σ)⟩ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

{2λn1 ⋅ S1dξ1x −
1
2λ

2dω} ∣ψ(σ)⟩ for x ∈ Rn1

{2λn2 ⋅ S2dξ2x −
1
2λ

2dω} ∣ψ(σ)⟩ for x ∈ Rn2

0 otherwise

(46)

where the stochastic increments have the generalized properties

dξax = 0 for x ∉ Rna

EP[dξax ∣F
ξ
σ] = for x to the future of σ

dξaxdξ
b
y = δ

abδxydω for x ∈ Rna , y ∈ Rnb (47)

These equations describe state reduction onto isospin eigenstates defined with
respect to the n1 and n2 directions. Again we consider these equations as
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effective descriptions of the particle behavior resulting from interactions with
macroscopic measuring devices.

The solution of (46) for an initial isospin singlet state is found to be

∣ψ(σ)⟩ = 1√
2
{cos ( θ2)e

λξ1σ−λ2ω1
σe−λξ

2
σ−λ2ω2

σ ∣+1
2
⟩
n1

∣−1
2
⟩
n2

− i sin ( θ
2
) ∣+1

2
⟩
n1
eλξ

1
σ−λ2ω1

σeλξ
2
σ−λ2ω2

σ ∣+1
2
⟩
n2

+ i sin ( θ
2
) ∣−1

2
⟩
n1
e−λξ

1
σ−λ2ω1

σe−λξ
2
σ−λ2ω2

σ ∣−1
2
⟩
n2

− cos ( θ2) ∣−
1
2
⟩
n1
e−λξ

1
σ−λ2ω1

σeλξ
2
σ−λ2ω2

σ ∣+1
2
⟩
n2

} (48)

As demonstrated in sections 3 and 4 it is straightforward to show that the
characteristic function associated with the Q-Brownian processes ξ1σ and ξ2σ
(equation (14)) can be reproduced directly in the P-measure if we define

ξ1σ = 4λs1ω
1
σ +B

1
σ

ξ2σ = 4λs2ω
2
σ +B

2
σ (49)

where Ba
σ are P-Brownian motions and the random variables sa now have the

joint conditional probability distribution

P(s1 = +1
2 , s2 = −

1
2 ∣n1,n2) =

1
2 cos2 ( θ2)

P(s1 = +1
2 , s2 = +

1
2 ∣n1,n2) =

1
2 sin2 ( θ

2
)

P(s1 = −1
2 , s2 = −

1
2 ∣n1,n2) =

1
2 sin2 ( θ

2
)

P(s1 = −1
2 , s2 = +

1
2 ∣n1,n2) =

1
2 cos2 ( θ2) (50)

We assume a filtration Gσ such that Ba
σ and sa are specified. However, since

the probability distribution for s1 and s2 depends on both experimenters’
choice of measurement directions, we cannot simply assume that sa are Gσ-
measurable. To understand the structure of the filtration we can treat the
parameters n1 and n2 as random variables which are independent of any other
random variables or processes in the system we are describing. We assume
that n1 and n2 are specified by Gσ in such a way that na is Gσ-measurable if
and only if the deflection event for particle a is to the past of σ. Note that
within this filtration, the variable na is associated with the entire surface σ.

For a given spacetime foliation the isospin measurement on one wing of the

18



apparatus may be complete before the other experimenter has chosen their
direction. Suppose for definiteness that a given foliation has Rn1 before D2

(see figure 3). In order to realize the process ξ1σ say, it is necessary to realize
a definite s1. Since n2 is not Gσ-measurable for spacelike surfaces which have
not crossed D2, it is necessary to show that the marginal distribution of s1
is independent of n2.

In fact we have

P(s1 = +1
2 ∣n1,n2) = P(s1 = +1

2 , s2 = −
1
2 ∣n1,n2) + P(s1 = +1

2 , s2 = +
1
2 ∣n1,n2)

= 1
2 cos2 ( θ2) +

1
2 sin2 ( θ

2
)

= 1
2 (51)

as required, and similarly for other marginal probabilities. This enables us to
draw values of s1 from the correct probability distribution without knowledge
of n2 which happens in the future for the given example foliation. In this
case we require that s1 is Gσ-measurable for some surface σ1 to the past of
Rn1 (figure 3).

We can define some other surface σ2 that is to the past of R2 but to the
future of σ1 and both particle deflection events (see figure 3). Since n1,n2,
and s1, are all Gσ-measurable we can write, for example,

P(s2 = +1
2 ∣Gσ2) = P(s2 = +1

2 , s1 = +
1
2 ∣n1,n2)

=
P(s1 = +1

2 , s2 = +
1
2 ∣n1,n2)

P(s1 = +1
2 ∣n1,n2)

= sin2 ( θ
2
) (52)

and similarly for other conditional probabilities. This enables us to draw
values of s2 from the correct probability distribution with global knowledge
of n1,n2, and s1. We can therefore say that s2 is Gσ2-measurable.

For a different foliation where Rn2 precedes D1 we would use the marginal
probability distribution to determine s2 and the conditional distribution to
determine s1. In any case the joint distribution is the same. The order in
which s1 and s2 are assigned has no physical significance. It is simply related
to our arbitrary choice of spacetime foliation within the covariant Tomonaga
picture of state evolution. We also stress that the random variables sa were
introduced to facilitate solution of the dynamical equations. They are not

19



part of the physical model as originally presented. The purpose of the argu-
ment presented here is simply to show that the picture of state evolution is
consistent and does not require prior knowledge of the experimenter?s deci-
sions.

A. State reduction

State reduction follows from the solution in the same way as shown in section
4B. For example, given n1 and n2 we condition on the event s1 = +1/2.s2 =
+1/2. The unnormalized expectation of the spin operator for particle 1 is
found from equation (48) to be

⟨ψ(σ)∣n1 ⋅ S1 ∣ψ(σ)⟩ =
1
2e

2λB1
σ+2λ2ω1

σe2λB
2
σ+2λ2ω2

σ

×{cos2 ( θ2) (e
−4λB2

σ−8λ2ω2
σ − e−4λB

1
σ−8λ2ω1

σ)

+ sin2 ( θ
2
) (1 − e−4λB

1
σ−8λ2ω1

σe−4λB
2
σ−8λ2ω2

σ)} (53)

and the state norm is

⟨ψ(σ)⟩ ∣ ∣ψ(σ)⟩ =e2λB
1
σ+2λ2ω1

σe2λB
2
σ+2λ2ω2

σ

×{cos2 ( θ2) (e
−4λB2

σ−8λ2ω2
σ − e−4λB

1
σ−8λ2ω1

σ)

+ sin2 ( θ
2
) (1 − e−4λB

1
σ−8λ2ω1

σe−4λB
2
σ−8λ2ω2

σ)} (54)

Using equation (26) we then find that as ω1
σ →∞,

⟨n1 ⋅ S1⟩σ =
⟨ψ(σ)∣n1 ⋅ S1 ∣ψ(σ)⟩

⟨ψ(σ)⟩ ∣ ∣ψ(σ)⟩
→ 1

2 (55)

As expected the isospin of particle 1 in the direction n1 tends to the value 1
2 .

A similar calculation shows that ⟨n1 ⋅S1⟩σ →
1
2 as ω2

σ →∞, along with similar
results for other given values of sa.

It is also straightforward to show that

lim
ω1
σ ,ω

2
σ→∞

⟨(n1 ⋅ S1)(n2 ⋅ S2)⟩σ =

⎧⎪⎪
⎨
⎪⎪⎩

1
4 with probability sin2 ( θ

2
)

−1
4 with probability cos2 ( θ2)

(56)

such that

EP [ lim
ω1
σ ,ω

2
σ→∞

⟨(n1 ⋅ S1)(n2 ⋅ S2)⟩σ ∣F
ξ
σi
] = −1

4 cos θ = −1
4n1 ⋅ n2 (57)

20



This agrees with the result predicted by standard quantum theory and is
confirmed by Bell test experiments.

B. Parameter Independence

The parameter independence condition states that the probability of a given
outcome for an isospin measurement on one wing of the experiment is in-
dependent of the chosen measurement direction on the other wing. This is
an important feature since if the model were parameter dependent we could
transmit messages at superluminal speeds.

Parameter independence can be stated as follows:

P( lim
ω1
σ→∞

⟨(n1 ⋅ S1)⟩σ = +
1
2 ∣F

ξ
σi

;n1,n2) = P( lim
ω1
σ→∞

⟨(n1 ⋅ S1)⟩σ = +
1
2 ∣F

ξ
σi

;n1)

(58)
and similarly for 1↔ 2. In order to prove this relation we define projection
operators P +

na by
P +
na ∣+

1
2
⟩ = ∣+1

2
⟩ ; P +

na ∣−
1
2
⟩ = 0 (59)

In the limit that ω1
σ →∞ we can write

P (⟨(n1 ⋅ S1)⟩σ = +
1
2 ∣F

ξ
σi

;n1,n2) = EP[⟨P +
n1

⟩σ ∣F
ξ
σi

;n1,n2]

= EQ[⟨ψ(σ)∣P +
n1

∣ψ(σ)⟩ ∣F ξσi ;n1,n2]

= 1
2E

Q[cos2 ( θ2)e
2λξ1σ−2λ2ω1

σe−2λξ
2
σ−2λ2ω2

σ ∣F ξσi ;n1,n2]

= +1
2E

Q[sin2 ( θ
2
)e2λξ

1
σ−2λ2ω1

σe2λξ
2
σ−2λ2ω2

σ ∣F ξσi ;n1,n2]

= 1
2 cos2 ( θ2) +

1
2 sin2 ( θ

2
)

= 1
2 (60)

The probability of a given outcome for particle 1 is independent of n2 as
required.

7 The Free Will Theorem

The Free Will Theorem of Conway and Kochen [24, 25] asserts that if an
experimenter is free to make decisions about which directions to orient their
apparatus in a spin measurement, then the response of the spin particle can-
not be a function of information content in the part of the universe that is
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earlier than the response itself. The conclusion of Conway and Kochen is that
this rules out the possibility of being able to formulate a relativistic model
of dynamical state reduction. It is claimed that a classical stochastic process
which dictates a definite spin measurement outcome must be considered to
be information as defined within the theorem. The theorem then states that
the particle’s response cannot be determined by this classical information,
undermining the construction of dynamical models of state reduction. We
do not reproduce the proof of the theorem here (it can be found in [24, 25]).
In order to understand that the conclusion of Conway and Kochen is inap-
propriate it will suffice to analyze the three axioms of the Free Will Theorem
with reference to the model outlined in this paper.

The first axiom SPIN specifies the existence of a spin-1 particle for which
measurements of the squared components of spin performed in three orthog-
onal directions will always yield the results 1,0,1 in some order. The second
axiom TWIN asserts that it is possible to form an entangled pair of spin-1
particles in a combined singlet state such that if measurements of the compo-
nents of squared spin were performed in the same direction for each particle
they would yield identical results. These two axioms follow directly from the
quantum mechanics of spin particles. A situation is considered where ex-
perimenters at spacelike separated locations D1 and D2 can each choose the
orthogonal set of directions in which to measure the components of squared
spin for each particle. (The proof of the Free Will Theorem makes use of
the Peres configuration of 33 directions for which it can be shown that it
is impossible to find a function on the set of directions with the property
that its value for any orthogonal set of directions is always 1,0,1 in some
order.) Although we have considered a different spin system in this paper,
the similarities between the experimental set-ups allow us to evaluate the
applicability of the Free Will Theorem to dynamical state reduction.

The third axiom MIN (in the latest version of the proof [25]) states that the
particle response at Rn1 (using our notation where it is understood that the
choice of spin measurement direction n1 corresponds to an orthogonal triple
of directions) is independent of the choice of measurement direction at D2

and similarly that the particle response at Rn2 is independent of the choice
of measurement direction at D1. Information is defined in the context of
MIN in such a way that any information which influences the measurement
outcome at Rn1 is independent of n2 and any information which influences
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the measurement outcome at Rn2 is independent of n1. We can immedi-
ately see that this definition of information does not apply to the classical
stochastic processes ξaσ considered in our model. As highlighted above, ξaσ
can be expressed in terms of a random variable sa whose value corresponds
to the eventual spin measurement outcome, and a physical Brownian motion
process Ba

σ which acts as a noise term, obscuring the value of sa. The real-
ized value of sa indeed depends on the choice of measurement direction at
the opposite wing of the experiment in the way shown in section 6. Since
the process ξaσ influences the measurement outcome in a way which depends
critically on the realized value of sa, it does not satisfy the definition of MIN
information. Furthermore, there is no reason why the mechanism of state
reduction outlined in this paper cannot be applied to any spin system in-
cluding the TWIN SPIN system used to prove the Free Will Theorem.

More generally we are able to see that the MIN axiom need not be satis-
fied whilst still maintaining independence from any specific inertial frame.
Viewing state evolution in the Tomonaga picture we must choose a foliation
of spacetime to provide a framework for a consistent narrative of the state
evolution. Covariance enters with the fact that all choices of foliation are
equivalent; the state can be defined on any spacelike hypersurface. For a
foliation where Rn1 happens before D2, the state will collapse across the en-
tire hypersurface as it crosses Rn1 , to a new state consistent with the isospin
measurement direction n1. In this way the response of particle 1 is inde-
pendent of the choice of measurement direction at D2 (which happens later
in the evolution) but the response of particle 2 depends (via the collapsed
state) on the random variable θ. The opposite interpretation can be made
for a foliation where Rn2 is before D1. Thus the MIN axiom should read
that either the particle response at Rn2 is independent of the choice of mea-
surement direction at D1 or the particle response at Rn1 is independent of
the choice of measurement direction at D2, the difference being a matter of
interpretation. With this modification the proof of the Free Will Theorem
no longer holds.

We stress that the choice of spacetime foliation is analogous to an arbitrary
gauge choice. It allows us to form a global covariant picture of state evolution
without reference to any individual observer’s frame.
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8 Conclusions

We have argued that the principles of quantum mechanics are in need of
modification if we hope to find a unified description of micro and macro be-
havior. We have seen that alternatives to quantum dynamics can feasibly be
constructed despite the apparent invulnerability of standard quantum theory
when faced with experimental evidence. It may even be possible to test new
theories against standard quantum theory in the near future [31, 32].

We have demonstrated a continuous state reduction dynamics describing the
measurement of two spacelike separated spin particles in an EPR experiment.
The correlation between measured outcomes for the two particles, particu-
larly when the experimenters are free to choose the orientations of their spin
measurements, offers an interesting challenge for dynamical models of state
reduction. We have seen that the use of the physical probability measure in-
duces a corresponding correlation between the stochastic processes to which
the particle states are coupled. State evolution is covariantly described using
the Tomonaga picture with no dependence on any chosen frame and no pos-
sibility for superluminal communication. The results of measurements agree
with standard quantum theory, in particular for the purpose of performing a
test of Bell inequalities for the system.

The value of this model is to show that the state reduction process can
indeed be described by a relativistically-invariant stochastic dynamics (con-
trary to the claims of Conway and Kochen). We have shown how to solve
the dynamical equations and this has led to new insight into the structure
of the filtration. In the physical measure, the covariantly-defined stochastic
processes are seen to be constructed from a random variable which relates
directly to the measurement outcome and a noise process which obscures the
random variable, making it inaccessible from the point of view of the state
dynamics. This allows us to reinterpret the problem of solving the stochastic
equations of motion as a nonlinear filtering problem whereby the aim is to
form a best estimate of the hidden random variable based only on information
contained in the observable processes. It is hoped that these insights might
help to indicate ways in which we might tackle state reduction dynamics in
relativistic quantum field systems.
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