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Abstract

Instabilities of equilibrium quantummechanics are common and well-understood.
They are manifested for example in phase transitions, where a quantum sys-
tem becomes so sensitive to perturbations that a symmetry can be sponta-
neously broken. Here, we consider the possibility that the time evolution
governing quantum dynamics may be similarly subject to an instability, at
which its unitarity spontaneously breaks down owing to an extreme sensitiv-
ity towards perturbations. We find that indeed such an instability exists, and
we explore its immediate consequences. Interpretations of the results both
in terms of extreme sensitivity to the influence of environmental degrees of
freedom, and in terms of a possible fundamental violation of unitarity are
discussed.

1. Singular limits

Instabilities in theories of physics are often signaled by the presence of a sin-
gular limit [1], which describes the extreme sensitivity of a physical situation
to perturbations. The stability of a ball balanced on the top of a hill, the tur-
bulent flow of a zero-viscosity fluid, and the chaotic motion of Saturn?s moon
Hyperion, are all examples of situations in which a singular limit heralds the
fact that one physical concept has reached the bounds of its usefulness, and
is surpassed by another [1]. In many cases, the culprit is the thermodynamic
limit, implementing Anderson?s celebrated expression that ‘More is Differ-
ent’ [2]. In all of these cases, the singularity of the involved limit, and the
associated sensitivity to perturbations can be expressed mathematically by
the presence of a set of non-commuting limits. As an elementary example,
consider the function y = tan−1 (zx), where z is a parameter (see figure 1).
For any finite value of z the function is perfectly smooth, and the limit of
y(x) as x goes to zero is simply zero. However, upon taking the limit z →∞,
the arctangent turns into a step function, and at that point the limit of y(x)
as x approaches zero from above, is one. We thus find that the order in which
the limits are taken matters:

lim
z→∞

lim
x↓0

tan−1 (zx) = 0

lim
x↓0

lim
z→∞

tan−1 (zx) = 1 (1)



Figure 1: (a) The function y = tan−1 (zx) for different values of the parameter Z. The
value of the function at x = 0 is infinitely sensitive to perturbations in the limit z → ∞.
(b) A pencil balanced on its tip. The pencil is not perfectly sharp, having a blunt area
with diameter b, and it is not perfectly balanced, dipping by an angle θ. The fate of the
center of mass height z depends on the order in which the limits b→ 0 and θ → 0 are taken,
signaling an extreme sensitivity to perturbations of θ in the limit of infinite sharpness.

The limit z → ∞ is said to be singular, because it is qualitatively different
from the situation with any finite z, no matter how large z gets. At the
same time, the value of y(0) in the singular limit z →∞ is very sensitive to
perturbations. In fact, the value of y(ε) differs qualitatively from y(0), even
for infinitesimally small ε. Such an extreme sensitivity to even infinitesimally
small perturbations is characteristic of singular limits throughout physics.

A physical example of this idea can be seen when we consider a sharp pencil
being balanced on its tip (see figure 1). The state of the pencil is encoded in
the height z of its center of mass. After sharpening the pencil such that it
only has a blunt area of diameter b left at its tip, and balancing it to within
an angle θ of being perfectly upright, the fate of the pencil is determined by
a singular limit:

lim
b→0

lim
θ→0

z = 1 (2)

lim
θ→0

lim
b→0

z = 0 (3)

That is, although it may be possible to perfectly balance a somewhat blunt
pencil, starting with a sufficiently sharp pencil (b → 0) makes it infinitely
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sensitive to perturbations so that even an infinitesimal perturbation away
from θ = 0 causes the pencil to tip over. In practice, it is therefore impossible
to balance a sharp pencil on its tip. Notice that we can draw this conclusion
about real pencils, even if neither of the limits is ever actually realized. The
practical implication of the singular nature of the limit is that there is an ex-
treme sensitivity to perturbations, and this sensitivity is manifested already
for very (but not infinitely) sharp, well (but not infinitely-well) balanced
pencils.

2. Instabilities of equilibrium quantum mechan-
ics

The most common occurrence of singular limits in quantum mechanics, is
in the spontaneous breakdown of symmetries. In this case, the thermody-
namic limit presents a boundary to the applicability of the usual equilibrium
description, and the state of the system is instead determined by infinitesi-
mally weak perturbations. To see how this instability arises, it is instructive
to consider the example of a harmonic crystal, described by the Hamiltonian:

Ĥ =∑
j

P̂ 2
j

2m
+ 1

2
mω2 (X̂j − X̂j+1)

2
(4)

Here X̂j and P̂j are the position and momentum of particle j, which has
mass m and is connected to neighboring particles by a harmonic potential
with natural frequency ω. It is easy to check that this Hamiltonian commutes
with the operator for total momentum P̂tot = ∑j P̂j. In fact, this remains true
even in the presence of anharmonic potentials, proportional to higher powers
of the distance between neighboring particles. The fact that the Hamiltonian
for a crystal and the operator for total momentum commute, implies that
they share a common set of eigenstates. The eigenstates of total momentum
are all plane waves, with an even distribution of the centre of mass position
over all of space. According to the usual rules of quantum mechanics, the
state of the crystal in thermal equilibrium is given by a thermally weighted
mixture of eigenstates of the Hamiltonian. It thus follows that for any tem-
perature whatsoever, the equilibrium centre of mass position of a crystal is
undefined, and its fluctuations diverge: ⟨X̂2

c.o.m⟩ =∞. In other c.o.m. words,
under equilibrium conditions, any crystal ought to be spread out over all of
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space.

Of course, this situation is a direct consequence of the presence of transla-
tional symmetry, and the reason that localized objects do exist in our ev-
eryday world is that translational symmetry can be spontaneously broken in
the thermodynamic limit. In that limit, the ground state of the Hamiltonian
becomes extremely sensitive to perturbations of the form:

Ĥ ′ = Ĥ + 1

2
NmΩ2 (X̂c.o.m −X0)

2
(5)

where Ω is the natural frequency of a harmonic potential which tends to
localize the center of mass coordinate X̂c.o.m of the crystal with total mass
Nm at the position X0. The strength of the perturbation is given by the
steepness of the potential, encoded in the natural frequency Ω, which is
considered to be infinitesimally small. In the limit of a crystal containing
infinitely many particles, the ground state in the presence of any perturbation
is qualitatively different from the ground state with Ω strictly zero. In that
thermodynamic limit, even an infinitesimally small perturbation suffices to
completely localize the centre of mass position of the crystal, and entirely
suppress its fluctuations [3]:

lim
N→∞

lim
Ω→0

⟨X̂2
c.o.m⟩ =∞ (6)

lim
Ω→0

lim
N→∞

⟨X̂2
c.o.m⟩ = 0 (7)

As before, the harmonic crystal is only strictly localized in the presence of an
infinitesimally small perturbation, if it is truly infinitely large. For a crystal
of finite size, the non-commuting limits instead signal an extreme sensitivity
to small, but non-zero, perturbations. Since the strength of the perturbation
required to localize an object consisting of N particles scales as 1/N , objects
as large as tables and chairs are susceptible to even the smallest perturbation
in their environment, and in practice can never avoid its symmetry breaking
influence.

Notice that any symmetric state can be written as a linear combination or
wave packet of localized states. In the case of the harmonic crystal, the
symmetric ground state of Ĥ can be formed from a superposition of lo-
calized states which are related to each other by rigid translations of the
centre of mass position. These rigid translations are the symmetry opera-
tions corresponding to the translational symmetry of the Hamiltonian, and
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are generated by the total momentum operator. They do therefore not affect
the internal degrees of freedom of the crystal, and form only a very small
subset of all available states. Seen from the opposite point of view, one could
equally well say that the localized ground state of the harmonic crystal in the
presence of a perturbation, contains only a small subset of all eigenstates of
the symmetric Hamiltonian. That is, the localized wave packet only contains
states with differ in their values of the total momentum, but which have
exactly equal quantum numbers for all internal degrees of freedom (phonon
excitations). Moreover, precisely these total momentum eigenstates which
make up the localized wave packet become degenerate in the thermodynamic
limit, enabling the formation of a superposition with only an infinitesimal
cost in energy, provided by an infinitesimally weak perturbation. The spar-
sity of the states contributing to this process as well as the collapsing nature
of this tower of states in the thermodynamic limit, has earned them the des-
ignation of ‘thin spectrum’ states [2-6].

The extreme sensitivity to perturbations signaled by the presence of a singu-
lar limit, and the central role played by a collapsing tower of thin spectrum
states are features which are present whenever a continuous global symmetry
is spontaneously broken. A description precisely mirroring the above anal-
ysis can be given for the symmetry breaking observed in antiferromagnets,
Bose-Einstein condensates, superconductors, and any other system with a
spontaneously broken continuous symmetry [2-11].

3. An instability of quantum dynamics

The ubiquity of the singular thermodynamic limit in equilibrium quantum
mechanics and the resulting extreme sensitivity of ground states to pertur-
bations, suggests that the time evolution operator describing the dynamics
of quantum objects in the thermodynamic limit may be similarly susceptible
to infinitesimal disturbances. The defining symmetry of quantum dynamics
is its unitary nature. The question we would thus like to pose is:

“Is the unitary time evolution implied by Schrödinger’s equation
stable against infinitesimally small perturbations?”

Or equivalently:
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“Can unitarity be spontaneously broken?”

To answer this question, we follow the same procedure as that for the usual,
static symmetries: an infinitesimally small perturbation is added to the
Hamiltonian, and if this qualitatively affects the dynamics in the thermo-
dynamic limit, the corresponding non-commuting set of limits signals the
presence of an instability [12-14].

For concreteness, consider a quantum Hamiltonian Ĥ and the time evolution
generated by it: ih̵∂/∂t ∣ψ⟩ = Ĥ ∣ψ⟩. When exploring infinitesimal additions
to Ĥ, it is clear that perturbations of the form V Ô with V real and Ô a
Hermitian operator will never break the unitarity of time evolution. To ob-
tain non-unitary evolution, one needs to add an explicitly non-Hermitian
perturbation. The simplest way to do this is to consider a perturbation of
the form iV Ô with V real and Ô Hermitian. Of course such perturbations
are not allowed in the quantum mechanical description of any closed system.
The study of spontaneous unitarity violations in closed quantum systems is
therefore by definition a study of the stability of quantum dynamics towards
perturbations beyond quantum theory [12-14]. An alternative interpretation
could be to treat the perturbed dynamics as describing the perfectly quan-
tum mechanical, but effective dynamics of only part of a full system. It is
well-known that the influence of the ignored environmental degrees of free-
dom can on average be modeled by a non-Hermitian term in the dynamics
of the open quantum system [15-17]. We will comment on the implications
of both of these interpretations after first considering the dynamics resulting
from the presence of an infinitesimal unitarity breaking term.

As we are looking for a perturbation which will have an effect in the infinite
particle limit N →∞, even for infinitesimally small strength of the perturba-
tion V → 0, it is clear that we need to consider perturbations which couple to
an observable Ô that scales with the number of particles. Only in that way
can the product of the two remain finite if the correct order of limits is taken.
A natural candidate for such an extensive observable is the order parameter
in a system which breaks a continuous symmetry. Choosing the perturbation
Ô to be an order parameter moreover has the additional advantage that even
the non-unitary time evolution will conserve energy in the thermodynamic
limit. The reason for this, is that the order parameter only has non-zero
matrix elements between states within the thin spectrum, which all collapse
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onto the ground state energy in the limit N → ∞. In other words, a non-
unitary term proportional to the order parameter field of a symmetry-broken
system will affect the global value or orientation of the order parameter, but
it cannot excite any of the internal degrees of freedom.

For concreteness, consider again the harmonic crystal of equation (4). The
unitarity breaking field in that case couples to the centre of mass position
(the order parameter) of the crystal [12-14]:

ih̵
d∂

∂t
∣ψ⟩ = [ P̂ 2

tot

2Nm
+ i1

2
NmΩ2 (X̂c.o.m −X0)

2] ∣psi⟩ (8)

Notice that the unitarity breaking field in this expression is an imaginary
version of the symmetry breaking field in equation (5), and that in the unitary
part we focus on the collective motion of the crystal as a whole only, since
the order parameter field will not affect the internal dynamics.

The effect of the non-unitary dynamics defined by equation (8) depends not
only on the time evolution operator, but also on the initial state it is applied
to. To characterize the possible effects, consider the three different initial
conditions displayed on the left side of figure 2: (a) a uniformly spread, zero-
momentum wave packet with equal amplitude everywhere in space, (b) a
sharply localized wave packet at a position different from x = X0, and (c) a
superposition of two sharply localized wave packets with different amplitudes
and different distances from x = X0. The first two initial states can be
seen as the extreme cases representing the ground states of the symmetric
Hamiltonian and a symmetry broken, localized crystal respectively. The
third initial state is an interpolation between these extremes. The initial
states can be straightforwardly numerically integrated forward in time [12],
resulting in the final states at late times displayed on the right of figure 2.
Notice that during the time evolution defined by equation (8), the norm of
the total wave function is not conserved.
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Figure 2: Sketch of the dynamics resulting from the non-unitary time evolution defined
by equation (8) for different initial conditions. (a) Starting from a completely delocalized
initial state, the wave function will be localized by the non-unitary perturbation within the
time tloc ∼ h̵/(NmΩ2a2). (b) Starting from an already localised initial state at position
x = Xi, the wavefunction will be re-located to position x = X0 within the time tre−loc ∼
∣Xi −X0∣/(aΩ). (c) A superposed initial state combines the two types of dynamics, and
will first be reduced to a localized wave function at a single position within time tloc, after
which it will re-locate to position x =X0 within the time tre−loc.

This is not a problem, since in quantum mechanics only relative amplitudes
lead to observable predictions. All the usual interpretations of the laws of
quantum theory remain consistent and well-defined, as long as expectation
values are taken relative to the instantaneous norm of the wave function, so
that:

⟨Ô⟩(t) ≡ ⟨ψ(t)∣ Ô ∣ψ(t)⟩
⟨ψ(t) ∣ψ(t)⟩ (9)

The eventual fate of the wave function at infinite time t → ∞ is found to
be a localized state at x = X0 regardless of the initial state. This can be
easily understood, as the non-Hermitian term in the evolution of equation
(8) suppresses any component of the wave function away from x = X0. For
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the completely delocalized initial state, which is an eigenstate of the total
momentum, the suppression of weight by the non-unitary term is the dom-
inant process, and the time scale on which the wave packet is localized can
be estimated by considering the evolution in the absence of any Hermitian
term. A straightforward calculation then shows that the spread of an initially
delocalized wave packet will be reduced to a single lattice spacing, a, within
the time tloc = h̵/(2NmΩ2a2). Direct numerical integration shows that a non-
zero kinetic energy term will affect the prefactor of this localization time, but
not its proportionality to h̵/(NmΩ2a2) [12]. Notice that this proportionality
immediately implies that the thermodynamic limit and the limit of vanishing
perturbation do not commute:

lim
N→∞

lim
Ω→0

tloc =∞ (10)

lim
Ω→0

lim
N→∞

tloc = 0 (11)

We thus find that infinitely large quantum systems are sensitive to even
infinitesimally small non-unitary perturbations, which will instantaneously
localize any delocalized state. In other words, the unitary quantum dynam-
ics of a delocalized state is unstable against non-unitary perturbations. For
finite sized objects this means that the dynamics of large delocalized quan-
tum systems will be dominated entirely by the influence of arbitrarily small
non-unitary terms, if any exist.

Starting from an already localized initial state, the dynamics resulting from
equation (8) behaves differently. In this case, the initial wave packet has zero
amplitude at position x = X0, and the non-unitary term can therefore not
amplify the relative weight of that component. The initial time evolution is
instead dominated by the Hermitian kinetic energy, which tends to spread
a localized state. Disregarding the non-unitary term entirely, it is straight-
forward to see that the time it takes for an initially localized wave packet to
be spread to a width ∣Xi −X0∣, is given by tspread = 2Nm∣Xi −X0∣2/h̵. Once
the wave function has been spread over this distance, it develops a non-zero
amplitude at the position x =X0, and the localizing effect of the non-unitary
term takes over once again. The combined time scale needed for the wave
packet to first spread in space and then localize again, can be estimated by
the geometric mean of the individual contributions. This gives a re-location
time for the initially localized state of tre−loc =

√
tspreadtloc = ∣Xi −X0∣/(aΩ).

Once again, the direct numerical evaluation of the dynamics confirms that
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the proportionality of the re-location time to ∣Xi −X0∣/(aΩ) is maintained
also if both terms in the evolution operator are simultaneously present [12].
Notice that in the case of the re-location time, the thermodynamic limit does
commute with the limit of vanishing perturbation:

lim
N→∞

lim
Ω→0

tre−loc =∞ (12)

lim
Ω→0

lim
N→∞

tre−loc = 0 (13)

Even in the presence of a non-unitary perturbation, the dynamics of a large,
localized quantum object is therefore stable. The non-unitary perturbation
will not have an effect on a localized macroscopic state within any measurable
time.

Finally, consider an initial state superposed with different weights over two
positions, at different distances to x =X0. In this case, the dynamics consists
of both a localization and a re-location. At first, the component closest to x =
X0 is amplified by the non-unitary term relative to the further component. As
before, this results in a localized wave packet, but this time the centre of mass
is determined by the position of the amplified component of the initial wave
function. The time scale over which the localization takes place is again given
by tloc. Once the wave function is localized, the slower re-location process
takes over, and the wave packet is re-located to x =X0 within the time tre−loc.
Taking the thermodynamic limit and the limit of vanishing perturbation,
we then find that the dynamics of an initially superposed state is unstable
agains non-unitary perturbations. Even an infinitesimally small non-unitary
perturbation will cause a spatially superposed macroscopic quantum state
to collapse onto just one of its components, which then is stable agains any
further effects of non-unitary terms in the dynamics.

4. Interpretation and speculation

So far, all presented results are exact. It is a mathematical fact that the
time evolution generated by the quantum mechanical Hamiltonian is un-
stable against even infinitesimally small non- unitary perturbations in the
thermodynamic limit. To see if this mathematical observation also has any
physical consequences, we need to consider whether an arbitrarily small, but
non-zero, unitarity breaking perturbation could exist even in principle. If
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we consider closed systems only, and if we additionally assume quantum me-
chanics to hold universally, then the answer is clearly that such perturbations
cannot exist, and the mathematical instability described above is irrelevant to
physics. Relaxing either one of the constraints however, non-unitary pertur-
bations are no longer strictly forbidden, and we can speculate about possible
origins of non-unitary dynamics.

If we consider open quantum systems for example, it is well known that
the influence of an unobserved environment on the system of interest can
in many cases be effectively described by a unitarity violating term in its
dynamics [15-17]. If the environment tends to localize a macroscopic object
(which is typically the case), the non-unitary evolution will be similar to
that of equation (8). One should keep in mind however that the environment
is generically unknown, unpredictable, and evolving uncontrollably in time.
The position X0 at which it tends to localize the object of interest is thus an
unknown parameter, whose value moreover changes unpredictably with time.
This effective behavior can be modeled by taking X0(t) to be a randomly
fluctuating variable, and considering the time evolution generated by:

ih̵
d∂

∂t
∣ψ⟩ = [ P̂ 2

tot

2Nm
+ i1

2
Nγ (X̂c.o.m −X0(t))

2] ∣psi⟩ (14)

Here γ depends on the coupling of the system to the environmental degrees
of freedom, and the scaling of the interaction with N has been made explicit.
Assuming the environment to be infinitely large, the randomly fluctuating
variable X0(t) may be modeled by white noise over the entire range of avail-
able positions. In this interpretation of the origin of non-unitary evolution,
the implication of the singular thermodynamic limit is that it is impossi-
ble even in principle to isolate macroscopic objects from their environments.
Large objects are sensitive to infinitesimally small interactions with the en-
vironment, which will instantaneously affect their dynamics.

An alternative way of arriving at a similar description of time evolution for
macroscopic quantum objects, is to consider closed systems only, but allow
for the possibility that quantum theory may not be an exact description of
nature. It has been proposed for example, that the diffeomorphism invari-
ance underlying general relativity is incompatible with the unitary nature
of quantum dynamics, and that this must result in either one or both of
these principles being violated at the borderline between gravity and quan-
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tum physics [18]. In one particular proposal, dimensional analysis is used
to argue that this borderline may lie close to the length scales at which we
cease to be able to observe quantum behavior in experiments [18, 19]. The
non-unitary evolution discussed here, could then be interpreted as arising
from a non-unitary modification of the laws of quantum mechanics due to
gravity [12, 13, 20]. The strength of the non-unitary perturbation in that
case should be similar to the cross-over energy scale identified as the border
between the two theories. Moreover, the principle of diffeomorphism invari-
ance can be argued to cause any measure of a distance between objects in
different components of a superposed wave function (in the position basis)
to be inherently ill-defined [18]. As a poor man’s approach, one could model
such an ill-defined distance by adding a randomly fluctuating correction to
the definition of the position operator: X̂ → X̂ − X0(t). The fluctuations
X0(t) do not correspond to any physical quantum field, but instead repre-
sent the fact that when the effects of diffeomorphism invariance start to play
a role, distances between different components of the wave function cannot
be predicted with certainty anymore [12, 13]. The dynamics arising from
such considerations of a macroscopic object in the region where quantum
mechanics just begins to be affected by the principles underlying the theory
of gravity, can then be written as [12, 13]:

ih̵
d∂

∂t
∣ψ⟩ = [ P̂ 2

tot

2Nm
+ i1

2
NmGρ (X̂c.o.m −X0(t))

2] ∣psi⟩ (15)

Here G is Newton?s gravitational constant, ρ is the density of the object, and
Nm its total mass. X0(t) is again a random variable that can be modeled
by white noise over the entire range of positions. If the non-unitary term is
fundamental in the sense that it comes from physics outside of quantum me-
chanics and applies to the evolution of single-shot experiments (as opposed
to the ensemble averaged description implicit in the case of an open quan-
tum system), then the implication of the singular thermodynamic limit must
be that the dynamics of macroscopic quantum objects is unstable by itself.
Large enough objects can thus not be forced to evolve quantum mechanically
under any circumstances, because they always probe the influence of physics
beyond Schrödinger’s equation.

The overall effect of the perturbed evolution in both equation (14) and (15)
is the same as that of equation (8) which we considered before. That is,
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the unitary dynamics of an initially localized object is stable agains pertur-
bations, while the dynamics of delocalized or superposed initial states are
unstable. This time however, the infinite sensitivity to non-unitary pertur-
bations does not lead to the deterministic outcome of a localized state at a
predictable position. The reason is that the wave function component whose
amplitude is effectively amplified by the non-unitary term in the dynamics,
is the component closest to x = X0(t), which now randomly fluctuates in
time. Starting for example from a superposed wave function over two initial
locations, it may be that first one component is closer to X0(t), and hence
is amplified, while an instant later the other component is selected, and so
on. In this way, a randomly switching sequence of amplifications is applied
to the two components, which terminates only when one of the components
is suppressed to zero amplitude. The dynamics thus becomes a realization of
the “Gambler’s Ruin” game of probability theory [21, 22]. Using the principle
of ‘envariance’, it is possible to show that the only possible average outcome
of a series of such evolutions, is the emergence of Born’s rule [12, 14, 22].
That is, in each individual realization of the dynamics of equation (14) or
(15) applied to the initial state ∣ψ(0)⟩ = α ∣x =X1⟩ + β ∣x =X2⟩, the outcome
is unpredictable, but will be either ∣x =X1⟩ or ∣x =X2⟩. Repeating the same
evolution many times, the proportion of times that the state ∣x =X1⟩ is re-
alized will be given by ∣α∣2, and the proportion of outcomes at ∣x =X2⟩ will
be ∣β∣2. This conclusion is confirmed by direct numerical integration of equa-
tions (14) and (15) [12, 13].

We thus find that spatial superpositions of macroscopic objects spontaneously
collapse into the position basis according to the prescription of Born’s rule.
This collapse process is a direct consequence of the instability of their unitary
quantum dynamics to even infinitesimally small non-unitary perturbations.
The non-unitary term can be provided either by a modification to quantum
mechanics originating from gravity, or from an effective description of the
environment in an open quantum system.

5. Experimental consequences

The final result of the sensitivity of macroscopic objects to non-unitary per-
turbations is that such objects cannot retain a state of spatial superposition.
The absence of macroscopic superpositions in the world around us is indeed
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easily verified. If an interaction between a microscopic quantum particle in
a spatially superposed state and a localized macroscopic object is instanta-
neously turned on, this may instantaneously cause the macroscopic object to
become entangled with the microscopic particle, and to enter into a super-
posed state. The subsequent very fast collapse to just one of the components,
in accordance with Born’s rule can then be interpreted as a measurement of
the particle’s position by the macroscopic object. Indeed, this process sat-
isfies all of the usual requirements for a description of wavefunction collapse
during a quantum measurement. To determine whether an evolution like the
one imposed by equation (14) or (15) is responsible for these observations
however, requires the experimental observation of the actual dynamical evo-
lution, rather than only its eventual outcome.

To observe the dynamics imposed by a non-unitary perturbation within ex-
perimentally accessible time scales, the object to be studied should not be
too macroscopic, so that the effect of the perturbation is not too strong and
hence tloc is large enough to be observable. On the other hand, it should also
not be too microscopic, as otherwise the perturbation has no effect at all, and
tloc becomes too large to be observed. The region in between, where collapse
times can be expected to be of observable sizes, falls precisely in the region
that is hard to access experimentally, and which is only very recently starting
to be explored by modern experiments involving macroscopic superpositions
[13, 18, 23].

If such experiments succeed in observing collapse dynamics, the scaling of
the time scales involved may give some hint as to the origin of the non-
unitary perturbation that underlies it. A more pertinent question however,
will be whether such experiments can also distinguish between perturbations
coming from the effective action of an unobserved environment, and pertur-
bation coming from a fundamental modification of Schrödinger’s equation.
The expected dynamics resulting from these sources is practically indistin-
guishable, as shown by the similarity of equations (14) and (15). There is
however an essential difference between the effective dynamics of an open
system, and the possibly fundamentally non-unitary dynamics of a closed
system [13]: in the former case, the effective dynamics has to emerge from
the neglect (tracing out) of some environmental degrees of freedom which
are beyond the control of the experimental setup. The environment may
be external or internal and involve spin, charge, massive, massless, or any
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other kinds of degrees of freedom, but it has to become entangled with the
observed properties of the macroscopic object for the dynamics to become ef-
fectively non-unitary. Since the experiment by definition has no control over
the environmental degrees of freedom, the entanglement between observed
properties and the state of the environment cannot be undone once it has
been created, and the collapse dynamics cannot be turned off once it has
started. If on the other hand the non-unitary term is fundamental, no entan-
glement with environmental degrees of freedom is required. In that case, one
can create a macroscopic superposition, let it begin its collapse dynamics,
and then bring back both superposed components onto the initial position
before the collapse is completed. Since there is no entanglement with the
environment, the situation is just as it was before creating the macroscopic
superposition, and this procedure can be repeated an arbitrary number of
times. When entanglement with environmental degrees of freedom is present
however, bringing the components of the superposed object back to their
initial positions will not undo the entanglement, and hence a subsequent run
of the experiment will be influenced by the entanglement left behind from
previous runs. This will enhance the effectively non-unitary dynamics, which
thus occurs on a shorter and shorter time scale as the experiment is repeated
again and again. In this way, sequences of collapse experiments can be used
to distinguish between effectively non-unitary dynamics in open systems,
and truly non-unitary dynamics resulting from a fundamental modification
of quantum theory [13].

6. Conclusions

We have found that the unitarity of quantum mechanical time evolution
can be spontaneously broken, in precise analogy with the usual breaking of
continuous symmetries under equilibrium conditions. The loss of unitary
dynamics arises from an extreme sensitivity in the evolution of large quan-
tum objects to even infinitesimally small non-unitary perturbations. If such
perturbations can (effectively) exist, then regardless of their origin, it im-
mediately follows that truly macroscopic objects can never be observed to
evolve unitarily, as even the weakest unitarity violating interaction will in-
stantaneously dominate its dynamics. The effect of this instability is that
delocalized or spatially superposed macroscopic objects are instantaneously
reduced to a single location. Objects which are already localized on the other
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hand, are insensitive to the non-unitarity, and will remain localized at the
same position.

Two possible sources of unitarity violating perturbations to quantum dynam-
ics are the influence of an unseen environment, or a fundamental modifica-
tion of Schrödinger’s equation. In the former case, the dynamics of an open
system entangled with environmental degrees of freedom can be effectively
described by a non-unitary evolution after tracing over the environmental
degrees of freedom. The effective dynamics generated in this way generically
tends to localize large objects. For the latter case, it has been suggested
that the conflict between general relativity and quantum physics originates
in the fundamentally non-unitary nature of the diffeomorphism invariant the-
ory of gravity. It may then be expected that the laws of quantum mechanics
break down at an energy scale where gravity starts to appear, and that the
first effect of this breakdown can be modeled by a non-unitary modifica-
tion of quantum dynamics. In either case, the scaling of the non-unitary
term with system size and the randomly fluctuating nature of the location
at which it tends to localize large objects, is the same. The result of a non-
unitary perturbation which includes random fluctuations, is the emergence
of probabilistic dynamics for large objects. That is, the instability of unitary
quantum dynamics in this case implies that a superposition of a macroscopic
object over multiple spatial locations is instantaneously reduced to just one
of these positions. The selection of which place the wave function collapses
to, is a probabilistic process. The probability for a particular component of
the initial state to be selected according to the dynamics generated by an
infinitesimal, fluctuating, non-unitary perturbation, is given by Born’s rule.

Experimentally capturing the predicted non-unitary dynamics of macroscopic
objects requires studying the dynamics of objects which are large enough to
be influenced by the non-unitarity, but small enough not the instantaneously
reduced to a localised state. Such mesoscopic quantum superpostions have
very recently begun to become accessible in state of the art experimental
setups. As further technological development allows these experiments to
proceed to spatial superposition of large enough objects for the instability
to non-unitary perturbations to become noticeable, it will be necessary to
develop protocols which can distinguish between the effectively non-unitary,
but strictly quantum mechanical, evolution induced by environmental de-
grees of freedom, and fundamental modifications of Schrödinger’s equation.
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The presence of entanglement with environmental degrees of freedom in the
former case, but not the latter, is an unavoidable difference that may be
employed to tell them apart.

Regardless of the source of non-unitary contributions to the (effective) dy-
namics, the fact that spatial superpositions of sufficiently large quantum
objects are inherently unstable against arbitrarily small perturbations, will
affect experiments accessing quantum states at these scales within the near
future.
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