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Abstract

Bell’s theorem is 50 years old. Still there is a controversy about its impli-
cations. Much of it has its roots in confusion regarding the premises from
which the theorem can be derived. Some claim that a derivation of Bell’s
inequalities requires just locality assumption, and nothing more. Violations
of the inequalities are then interpreted as “nonlocality” or “quantum nonlo-
cality”. We show that such claims are unfounded and that every derivation
of Bell’s inequalities requires a premise — in addition to locality and freedom
of choice — which is either assumed tacitly, or unconsciously, or is embedded
in a single compound condition (like Bell’s “local causality”). The premise
is equivalent to the assumption of existence of additional variables which do
not appear in the quantum formalism (in form of determinism, or joint prob-
ability for outcomes of all conceivable measurements, or “additional causes”,
or “hidden variables”, “complete description of the state” or counterfactual
definiteness, etc.). A certain irony is that perhaps the main message of vi-
olation of Bell’s inequalities is that our notion of locality should be based
on an operationally well-defined no-signalling condition, rather than on local
causality.

The terms ‘nonlocality’ or ‘quantum non-locality’ are buzzwords in founda-
tions of quantum mechanics and quantum information. Most of scientists
treat these terms as a more handy expression equivalent to the clumsy “vio-
lation of Bell?s inequalities”. Unfortunately, some treat them seriously. Even
more unfortunately Bell himself used such terms in later works [1, 2] [26].

There are two approaches to Bell?s theorem which we would like to critically
analyze:

● (A) Derivation of a Bell inequality relies only on the premise of locality,
and nothing more.

● (B) Derivation of Bell inequality does rely on the additional premise
of determinism, or any of the notions listed in the abstract. However,
these notions can be derived from the premises of locality, the freedom
of an experimenter to choose the setting of his/her local apparatus and
quantum predictions, and nothing more.

Consequently, violations of Bell’s inequalities in either approach is inter-
preted as a demonstration of “non-locality”. (As it is widely accepted that it



is difficult to dismiss the ‘freedom of choice’ assumption this aspect of Bell’s
theorem will be not discussed.) Supporters of (A), state that it is not clear
what realism, in the context of Bell’s theorem, should mean, and that those
who use this notion most probably confuse it with determinism — the notion
that outcomes for all possible measurements are pre-determined. Addition-
ally, they claim that determinism, or the other versions of the assumption
listed in the abstract, needs not to be assumed neither in stating nor in prov-
ing Bell’s inequalities, and thus cannot be the issue. Followers of (B) see this
differently. They use pre-determined values in derivation of Bell’s inequal-
ities but claim that it is an implication of locality, freedom of choice, and
experimentally observed perfect correlations. Hence, they basically follow
the Einstein-Podolsky-Rosen (EPR) argument [3].

We show that Bell’s condition of “local causality” [4] which proponents of
view (A) often adopt is equivalent to the assumption of existence of a (pos-
itive and normalized) joint probability distribution for the values of all pos-
sible measurements that could be performed on an individual system, no
matter whether any measurement — and which measurement — is actually
performed. This shows that local causality is a compound condition, which
assumes the existence of causes which are not present in quantum mechanics,
and that the causes act locally (i.e., their influence is bound to the future
light cone). Hence, locality is not the sole assumption of view (A) based on
local causality. This refutes the view (A).

We refute the view (B): any attempts to derive determinism, or hidden-
variables, via an EPR argument [3] are futile. The argument of EPR was
based on an assumption, which is often not noticed or forgotten: counter-
factual definiteness [5, 6]. This assumption allows one to assume the defi-
niteness of the results of measurements, which were actually not performed
on a given individual system. They are treated as unknown, but in principle
defined values. This is in a striking disagreement with quantum mechanics,
and complementarity principle. Therefore, it cannot be glossed over as some-
thing not worth mentioning as an additional assumption.

Our conclusion is that, despite suggestions to the contrary, one always as-
sumes an additional premise, except locality and freedom, to derive any
Bell inequality. The additional premise is either assumed tacitly, or un-
consciously[27], or is embedded in a single compound condition (like Bell’s
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‘local causality’), from which the inequalities are derived.

1. Locality and Nothing More?

Bell’s discussion of the premises behind his theorem, which differs substan-
tially with respect to his original approach is given most extensively in his
final published paper ‘La nouvelle cuisine’ [4]. We will base our discussion
on it, as the work is often referred to by advocates of (A). In this work Bell
fully defines his new notion of local causality.

Consider two space-like separated parties, Alice and Bob. Either of them has
a choice between a number of measurement settings. Denote, respectively,
by x and y Alice’s and Bob’s choice of measurement settings and by A and B
their outcomes. Correlations of the outcomes are described by a conditional
probability distribution p(A,B∣x, y).

It is argued, that ??the situation described by p(A,B∣x, y) may arise out
of a statistical mixture of different situations traditionally labeled by λ and
sometimes called ‘causes’. The probabilities therefore acquire the follow-
ing form p(A,B∣x, y) = ∫ dλρ(λ)p(A,B∣x, y, λ) where ρ(λ) is a probability
distribution. The properties of conditional probabilities allow one to put
p(A,B∣x, y, λ) = p(A∣B,x, y, λ)p(B∣x, y, λ). Next, local causality stated by
Bell as ‘The direct causes (and effects) of [the] event are near by, and even
the indirect causes (and effects) are no further away than permitted by the
velocity of light’, allows one to state that ‘what happens on Alice’s side does
not depend on what happens on Bob’s side’ and vice versa [7]. This results
in p(A∣B,x, y, λ) = p(A∣x,λ) and p(B∣x, y, λ) = p(B∣y, λ). Finally, we ob-
tain the general mathematical structure underlying derivations of all Bell’s
inequalities:

p(A,B∣x, y) = ∫ dλρ(λ)p(S∣x,λ)p(B∣y, λ) (1)

Proponents of (A) then argue that besides ‘locality’ nothing more has been
assumed in the derivation of equation (1). Obviously determinism is not
required. The condition (1) holds also for any local stochastic (indetermin-
istic, hidden variable) theory. While a deterministic theory specifies which
outcome, exactly, will happen under a given λ, a stochastic theory specifies
only the probabilities for various outcomes that might be realized. (Note
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that the former is a special case of the latter, with the probabilities always
being exclusively 1 or 0.). So, where, if at all, “realism” of any sort could be
hidden in condition (1)?

Note first, that in the case of the mixed separable states, one may think that
λ specifies the “actual” quantum state in the probabilistic mixture. All this
would agree with the formula (1). However when the joint quantum state is
an entangled one, and especially if it is additionally pure, and no additional
λ’s are introduced, one cannot have a factorization like (1), see e.g., Ref.
[7], or appendix B. Thus the formula (1) is equivalent to the introduction
of additional hidden parameters, λ’s, which are not present in quantum the-
ory. The λ, which enter Eq. (1), can pop up under many guises such as,
e.g., ‘the physical state of the systems as described by any possible future
theory’ [7], ‘local beables’, ‘the real state of affairs’, ‘complete description of
the state’, etc. Since λ do not appear in quantum mechanics, thus they are
(good old) hidden variables. Anything on which one conditions probabilities,
which gives different structure to formulas for probabilities than quantum
mechanical formalism[28], is a hidden variable per se. Bell himself writes ‘λ
denote any number of hypothetical additional variables needed to complete
quantum mechanics in the way envisaged by EPR’ ([4], page 242). This sen-
tence of Bell’s is often forgotten by supporters of (A). As we will see next, we
can try to introduce λ’s not existent in quantum theory, but this will result
in a condition which is stronger than locality alone.

The condition (1) allows assignment of (positive and properly normalized)
joint probabilities for the (local) values of the entire set of pairs of (local)
measurements. Denote as Ax the value of the outcome A pertaining to the
situation in which Alice chooses setting x, which, for example, in the Clauser-
Horne-Shimony-Holt (CHSH) [8] scenario has two possible values, denoted
here as 1, 2, and similarly define By (y = 1,2). We can always introduce a
joint probability

p(A1,A2,B1,B2∣λ) = p(A∣x = 1, λ)p(A∣x = 2, λ)p(B∣y = 1, λ)p(B∣y = 2, λ)
(2)

When the probabilities are 0 or 1 the model is deterministic, otherwise it is
stochastic. Hence, we have defined a joint probability for all possible out-
comes under all possible pairs of settings in the CHSH scenario. These out-
comes include, for a single run of a Bell experiment, the actually measured
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ones and on an equal footing the ones which could have been potentially
measured. Note that λ is no m??ore necessary here, as to get predictions
for such a model it is enough to know p(A1,A2,B1,B2), which is given by
∫ dλp(A1,A2,B1,B2∣λ)ρ(λ). Starting from equation (1) one can introduce
the joint probability p(A1,A2, ...,B1,B2, ....) for an arbitrary number of set-
tings. Note that the existence of such joint probability implies the existence
of p(A1,A2, .....) ≥ 0, which has nothing to do with locality and is already in
conflict with the Kochen-Specker theorem [9].

Conversely, starting from the existence of the joint probability one can de-
rive (1) for any pair of local settings. This is because in Kolmogorovian
probability theory, which is the standard axiomatization of classical prob-
ability, if Ω is a probability space with probability measure rho(λ) and A
is a measurable set contained in Ω, then indicator of A, that is Ω A, gives
by the formula P (A) = ∫Ω χAρ(λ)dλ the probability of the event A. The
probability p(A1,A2, ...,B1,B2) can be modelled by p(A1,A2, ...,B1,B2∣λ) =
χA1(λ)χA2(λ)χB1(λ)χB2(λ), that is, one can put p(A1,A2, ...,B1,B2) =

∫Ω χA1(λ)χA2(λ)χB1(λ)χB2(λ)ρ(λ)dλ. Then by calculating the marginals,
i.e., summing up the probabilities over the outcomes of the observables which
are not measured in an actual experiment, one obtains: P (A,B∣x, y) =

∫Ω χAx(λ)χBy(λ)ρ(λ)dλ, where χAx(λ) and χBy(λ) are the indicator func-
tions for the events Ax and By respectively. This is of course, equivalent to
equation (1).

Thus, we see that local causality condition (1) is mathematically equivalent
to the assumption of joint probabilities, p(A1,A2, ...,B1,B2). The latter is a
form of realism: complementary observables are treated as mere numbers (‘c-
numbers’ in Dirac’s terminology [10]). One can speak about the joint proba-
bility of A1,A2 and B1,B2 only if in a theoretical construction these all values
coexist together independently of which experiment is actually performed on
either side, and in this sense are “real”. Expressing it differently, the existence
of a proper distribution p(A1,A2, ...,B1,B2) means that we model everything
with Kolmogorovian probabilities, which always have a lack of knowledge in-
terpretation, with the underlying Ω is treated as a sample space. Indeed, ac-
cording to the previous results due to Fine [11], Hall [12], Gill et al. [13] and
others, the probabilities of a local stochastic model can always be understood
as stemming from our ignorance about supposed local deterministic values.
However, we do not need to insist on the existence of deterministic values of
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A1,A2 and B1,B2. The supposed existence of their joint probabilities is suf-
ficient for our argument. In fact, the entire discussion on local deterministic
vs. stochastic models — on which the proponents of view (A) build up their
argument — is irrelevant for the current discussion. This is most evident if
one takes into account the Greenberger-Horne-Zeilinger (GHZ) [14] type of
argument, which involves only perfect correlations between three (or more)
systems and thus no stochastic model can ever recover them. (Note, that
it is symptomatic, that followers of view (A) always base their argument on
correlations between two systems.) Furthermore, assuming a fundamental
local indeterminism (that is some fundamental finite irreducible stochastic-
ity, which does not allow one to use deterministic models ? even as only a
mathematical tool) would lead to different bounds of the Bell inequalities.
We show this in Appendix A. Somewhat ironically, not any assumption of
realism but its most stringent version, namely determinism itself, must be
invoked to obtain the proper bounds of Bell’s inequalities.

The following observation can be made. Some researchers are willing to
accept that an outcome measured on a single (local) system may be intrin-
sically probabilistic. However, they do not accept the same for correlations
between outcomes measured on several such systems; the probabilities for
correlations are always taken to be reducible to probabilities for local out-
comes in the form like (1). Confronted with the experimental violation of
Bell’s inequalities, they accept an inherently probabilistic explanation for an
individual quantum system but hold fast to a pseudo-causal [29] nonlocal
one for correlations (e.g., by introducing faster-then-light influences between
distant quantum systems).

2. Derived Realism?

The school of thought (B) claims that one does need any version of the
assumption of realism, or hidden variables to derive Bell’s inequalities. How-
ever, it is purported, that everything is deductible via EPR type reasoning.
The current classic expositions of such line of thought can be found in Refs.
[15-17]. For example, the argumentation in Ref. [17] tries to oppose the re-
sults of the “Free Will Theorem” of Ref. [18]. To this end, the following two
logical statements are both claimed to be true. The first one is, that the logic
of Bell’s theorem is in the validity of the following implication (we use the
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following terminology for the structure of a logical implication: assumption
⇒ thesis):

freedom and QF and locality ⇒ contradiction (3)

where freedom stands for the freedom of choice of local measurement settings
assumption, locality for locality assumption and QF for quantum formalism.
On the other hand, the logic of the EPR paper supposedly allows to establish
a yet another implication as valid:

freedom and QF and locality ⇒ determinism (4)

The validity of these statements is used to challenge the implication of Ref.
[18], which as put in Ref. [17], is

freedom and QF and locality and determinism ⇒ contradiction (5)

Obviously, if the implication (3) is valid, the assumption which leads to it
cannot hold. This is because contradiction means a false statement (like
2 ≥ 2

√
2). The rules of Aristotelian two-valued logic say that if the thesis

of a valid (that is, true) implication is false, then its assumption must be
false too (modus tollens, see the truth table of logical implication). Thus the
assumption of (4), as it is the same as of (3), must be false and one cannot
‘determine’ whether determinism is true, from the validity of the implication
(4), as from false statements one can derive via a valid implication both true
and false statements (see again the truth table).

Of course the first implication (3) is highly appealing to proponents of (A),
while the second one (4) for supporters of (B). Alone the first implication
would mean non-locality of quantum mechanics (provided freedom holds).
But, “it ain’t necessarily so” [19]. It is the implication (5), which correctly
describes the situation, see below.

A. EPR Reasoning

The works [15] and [16] are based on an assumption of the validity of the
EPR reasoning. For example in Ref. [16] one can find that ‘the existence of
these local, deterministic, non-contextual hidden variables [...] is not simply
assumed, but is inferred from Locality plus a certain subset of the quantum
mechanical predictions, using (in essence) the EPR argument.’ The work
[15] is aimed at showing that: ‘The hidden variables posited by Bell are not

7



an ‘ad hoc assumption’ but, rather, a logical implication of locality.’

The reasoning of EPR is often presented in the form of (4), but this is wrong.
The logical structure of the EPR argumentation about elements of reality is

freedom and QF and locality and counterfactual definitness
⇒ for specific observables elements of reality exist for the EPR state. (6)

The thesis of the implication is true, provided one does not make an un-
founded generalization of it to arbitrary observables and arbitrary states.
Indeed, for the EPR state and momentum and position observables (P and
Q), elements of reality seem to be a consistent notion. However this is ar-
rived at by considering two situations of which only one can be the case in
the given run of the experiment (measuring either P and Q, page 780 of [3]).
This is counterfactual definitness at work.

As a matter of fact such a generalization mentioned above is the effective
claim of EPR, as they aimed to prove incompleteness of the entire theory
of quantum mechanics. A missing (hidden) part of the theory would be
according to them inherently deterministic “elements of reality”. By EPR,
since they correspond to values of observables which can be predicted with
certainty (i.e., with probability equal to unity), an act of measurement just
displays the previously hidden values. However, there is a logical flaw in the
paper of EPR. General existence of elements of reality is just their conjec-
ture, based on just one example, while they claim that this is their thesis,
holding always. Why conjecture? EPR introduced elements of reality just
for the ‘original EPR’ state. And this was successful, that is it did not lead
to a contradiction, only because they limited themselves to specific observ-
ables, which do not exhaust all possible ones. Note here, that for different
observables and the original EPR state, in Ref. [21], one can find a proof of
internal inconsistency of the EPR concepts.

In their conclusions EPR tacitly assumed that one can establish local ele-
ments of reality for all states with perfect correlations, and for all observables.
This is wrong, as it can be directly shown in the case of the GHZ states. The
GHZ reasoning shows that the very definition of elements of reality must be
wrong, as it implies contradictory values (a 1 = −1 contradiction in the case
of GHZ correlations, or 2

√
2 ≤ 2 in the case of the CHSH version of the Bell

theorem). This means that the thought-provoking paper of EPR does not

8



contain a valid general statement on quantum mechanics! One could only
counterfactually wonder what would have been the views of EPR, had the
GHZ paper appeared before 1935.

Note further that the thesis of Bohm’s version of the EPR implication [20]

freedom and QF and locality and counterfactual definitness
⇒ elements of reality exist for the two — spins — 1/2 — singlet state,

(7)

is plainly not true. The thesis of this implication leads to a 2 ≥ 2
√

2 con-
tradiction, if one forms the CHSH inequality for the elements of reality, and
uses again quantum predictions. Of course, counterfactual definitness was a
tacit assumption in Bohm’s reasoning.

Comparing the relation of (6) with the views of proponents of (B), one sees
the following differences with the simplified description of the EPR result
given by (4). The assumption of freedom is sometimes thought to encompass
also counterfactual definitness, and pre-determined values are thought to be
derivable for all states with perfect correlations. The second is invalidated by
the Bell theorem and even more strikingly by the GHZ reasoning. However,
the basic problem here is that freedom does not encompass counterfactual
definitness. This is evident, for example, in the case of the CHSH inequality
where we discuss four situations (four possible pairs of local settings), only
one of which can actually occur for the given pair or particles (run of the ex-
periment). However, the proper bounds of inequalities (see appendix A) are
derived by an algebraic manipulation of values for a single pair, for the ac-
tual situation and three counterfactual ones (“had one or both the observers
chosen different settings”)[30]. The results that would have been obtained in
such cases are then treated as unknown, but nevertheless definite real num-
bers (±1 in the case of the CHSH scenario). This is counterfactual definitness
per se. In this way an effective determinism enters.

Counterfactual definiteness is directly irreconcilable with Bohr’s complemen-
tarity principle. The principle says that, once a value of an observable is
measured, one is not allowed to even speak about values for complementary
observables. This is reflected by quantum formalism, according to which
probability distributions for complementary (non-commuting) observables
are in general not defined, or rather they a undefinable within the theory.
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Thus, introduction of hidden variables, determinism, counterfactual definite-
ness etc., is not a minor point, a soft option, or something so obvious that
may be treated as a tacit, indisputable assumption. It goes directly against
the very essence of quantum mechanics.

3. Conclusions

The terms ‘nonlocality’ or ‘quantum nonlocality’ suggest that there is some
‘spooky’ faster-than-light influence between distant quantum systems (for a
critical analysis see Ref. [12]). While the possibility of such an influence
cannot be excluded, it is just a one-sided view. A failure of realism in all of
its forms, for example, futility of considering joint probabilities for outcomes
for the entire set of conceivable measurements or rejection of counterfactual
reasoning, is an equally valid option, just as a failure of both realism and
locality.

In “La Nouvelle Cuisine” Bell describes failure of local causality in the quan-
tum world. This failure does not mean that we have to accept non-local
causality. Individual events may have spontaneous, acausal nature. There
seem to be no need to go beyond quantum mechanics within this aspect
[31]. Paradoxically, it was Einstein who reluctantly introduced the notion of
spontaneous events, which might be after all the root of Bell’s theorem. The
lesson for future could however be that we should build the notion of local-
ity on the operationally clear “no-signalling” condition — the impossibility
to transfer information faster-than-light. After all this is all what theory of
relativity requires.

The moral of the story is that Bell’s theorem, in all its forms, tells us not
what quantum mechanics is, but what quantum mechanics is not.

4. Appendix A

We show that inherently stochastic local hidden variable theories (that is, the
theories with some fundamental finite irreducible stochasticity) lead to lower
bounds than the standard ones of Bell inequalities. To this end we derive a
Bell inequality for a local strictly stochastic theory. The latter is equivalent
to the requirement that all p(A∣x,λ) and p(B∣y, λ) are strictly different from
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0 or 1. Therefore, suppose that there is inherent stochasticity parameter,
s > 0, which gives the following upper bound: for any λ

s < ps(X ∣z, λ) < 1 − s (8)

where X = A,B, and z = x, y. As Bell’s inequalities are in form of multi-
linear combinations (functions) of the underlying probabilities, their bounds
(maxima and minima) are at the border of the region of validity of the prob-
abilities. In the standard case the bo??rders are 0 ≤ p(X ∣z, λ) ≤ 1. Thus,
the standard bounds cannot be reached in the case of probabilities satisfy-
ing (8). For example, take the CHSH inequality [8]. With (8), for every
λ one can introduce the expectation value I(z, λ) = ∑x=±1Xp(X ∣z, λ) (we
assume here the usual spectrum of the Bell observables: X = ±1). Obviously
−1 + 2s ≤ I(z, λ) ≤ 1 − 2s. Thus, ‘renormalized’ variables I ′ = 1

1−2sI give the
usual of the CHSH inequality, ?that is 2. However, we have

⟨I(x,λ)I(y, λ)+I(x,λ)I(y′, λ)+I(x′, λ)I(y, λ)−I(x′, λ)I(y′, λ)⟩ ≤ 2(1−2s)2 < 2

The bound[32] of the CHSH inequality in a local (intrinsically) stochastic
theory is strictly smaller than 2. One must assume both locality and deter-
minism in order to obtain the proper bounds for Bell’s inequalities[33].

5. Appendix B: Alternative Analysis

One can formulate the analysis of the assumption of local causality also in
another alternative way. The principle of local causality, p(A∣B,x, y, λ) =

p(A∣x,λ) and P (B∣A,x, y, λ) = p(B∣x,λ), implies in the case of correlated
systems :

● An easily derivable relation

p(A∣x, y, λ) = p(A∣x,λ) (9)

which is a form of the no-signaling condition. This is because under lo-
cal causality p(A∣x, y, λ) = ∑B P (A,B∣x, y, λ) = p(A∣x,λ)∑B p(B∣y, λ).

● Existence of at least two different values of ‘causes’ λ, which makes λ
a non-trivial parameter (variable) outside quantum formalism (i.e., a
non-trivial hidden variable).
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Why the second implication? If one Assumes just one common cause and
local causality, this immediately leads to no correlations. To see this consider
the following relations:

P (A,B∣x, y,ψ) = P (A∣B,x, y,ψ)P (B∣y,ψ) = P (A∣x,ψ)p(B∣y,ψ) (10)

where ψ is the sole cause, which can be thought of as a pure (entangled)
quantum state describing the preparation. Here we used first probability
rules and later local causality. The factorization means: no correlations. In
order to describe correlations one must have at least two values for λ and
this implies that λ is outside of the quantum formalism, as the only common
cause, in the case of pure quantum states, allowed by quantum mechanics ψ
is the quantum state. Just one λ = ψ cannot give us any correlations what-
soever.

Thus local causal theories (of correlated systems) are a subset of non-trivial
hidden variable theories (ones allowing for λ, outside of the quantum formal-
ism), and local theories (which additionally impose p(A∣x, y, λ) = p(A∣x,λ).
That is, a local causal theory is a specific example of a local hidden variable
theory.

Quantummechanics (QM) and quantum field theory (QFT) are no-signalling.
In QFT it is assumed the for two gauge invariant observables, O1,O2 at two
spatially separated space time points ξ1, ξ2 one has [O1(ξ1),O2(ξ2)] = 0, and
in QM one has for the results of a local observable x defined on one of the
local subsystems: P (A∣x, y, λ) = P (A∣x,λ) (the meaning of the symbols is
as above). Note that both QFT and QM are not local causal, but this is
precisely the point of Bell’s theorem. Briefly, if one wants to work outside
local hidden variable theories, one cannot even formulate the local causality
principle. Local causal hidden variable theories assume first of all non-trivial
hidden variables λ, and next that a form of locality principle is satisfied, in
the form of P (A∣B,x, y, λ) = P (A∣x,λ), etc.
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