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Abstract

In the framework of an interference setup in which only two outcomes are
possible (such as in the case of a Mach-Zehnder interferometer), we discuss
in a simple and pedagogical way the difference between a standard, unitary
quantum mechanical evolution and the existence of a real collapse of the
wave function. Moreover, we also present the Elitzur-Vaidman bomb, the
delayed choice experiment, and the effect of decoherence. In the end, we
propose two simple experiments to visualize decoherence and to test the role
of an entangled particle.

1. Introduction

Quantum Mechanics (QM) is a well-established theoretical construct, which
passed countless and ingenious experimental tests [1]. Still, it is renowned
that QM has some puzzling features [2, 3, 4, 5, 6]: are macroscopic distin-
guishable superpositions (Schrödinger-cat states) possible or there is a limit
of validity of QM? Do measurements imply a non-unitary (collapse-like) time
evolution or are they also part of a unitary evolution? In the latter case,
should we simply accept that the wave function splits in many branches (i.e.,
parallel worlds), which decohere very fast and are thus independent from
each other?

In this work we discuss in a introductory way some of these questions. We
study the quantum interference in an idealized two-slit experiment and we
analyze the effect that a detector measuring “which path has been taken”
has on the system. In particular, we shall concentrate on the collapse of the
wave function, such as the one advocated by collapse models [5, 6, 7, 8, 9,
10, 11, 12] and show what are the implications of it.

Variants of our setup also lead us to the presentation of the famous Elitzur-
Vaidman bomb [13] and to delayed choice experiments [14, 15]. Thus, we can
describe in a unified framework and with simple mathematical steps (typical
of a QM course) concepts related to modern issues and experiments of QM.

Besides the pedagogical purposes of this work, we also aim to propose two
experiments (i) to see decoherence at work in an interference setup with only



two possible outcomes and (ii) to test the dependence of the interference on
an idler entangled particle.

2. Collapse vs no-collapse: no difference?

2.1. Interference setup

We consider an interference setup as the one depicted in Figs. 1 and 2.

Figure 1: Hypothetical experiment with only two possible outcomes (A and B). Left:
only the left slit is open. Right: only the right slit is open. Note, each slit is not a simple
hole but acts as a filter which projects the particle either to a trajectory with endpoint A
or to a trajectory with endpoint B.

A particle P flies toward a barrier which contains two ‘slits’ and then flies
further to a screen S. Usually in such a situation there is a superposition of
waves which generates on the screen S many maxima and minima. Usually
in such a situation there is a superposition of waves which generates on the
screen S many maxima and minima. We would like to avoid this unnecessary
complication here but still use the language of a double-slit experiment in
which a sum over paths is present. To this end, we assume that the particle
can hit the screen in two points only, denoted as A and B, see the discussion
below. All the issues of QM can be studied in this simplified framework. We

2



assume also to ‘sit on’ the screen S: when the particle hits A or B we ‘see’ it.

First, we consider the case in which only the left slit is open (Fig. 1, left
side). In order to achieve our goal, the slit is actually not a simple hole in the
barrier (out of which a spherical wave would emerge) but a more complicated
filter which projects the particle either to a straight trajectory ending in A or
to a straight trajectory ending in B, see Fig. 1. In the language of QM, this
situation amounts to a wave function ∣L⟩ associated to the particle which has
gone through the left slit:

∣L⟩ =
1

√
2
(∣A⟩ − ∣B⟩) (1)

Then, by simply using the Born rule (i.e., by squaring the coefficient multi-
plying ∣A⟩ or ∣B⟩, we predict that the particle ends up either in the endpoint
A with probability 50% or in the endpoint B with probability 50%. This is
indeed what we measure by repeating the experiment many times. As we
see, the probability is —for us the observer on the screen S— a fundamental
ingredient of QM, which however enters only in the very last step, i.e., when
the measurement comes into the game. The state ∣L⟩ is a symmetric super-
position of ∣A⟩ and ∣B⟩, but in a single experiment we do not find a pale spot
on A and a pale spot on B: we always find the particle either fully in A or
in B. It is only after many repetitions of the experiment that we realize that
the outcome A and the outcome B are equally probable.

If only the right slit is open (Fig. 1, right side), we have a similar situation
in which only two trajectories ending in A and in B are present. The wave
function of the particle after having gone through the right slit is described
by

∣R⟩ =
1

√
2
(∣A⟩ + ∣B⟩) (2)

Then, also in this case one finds the particle in 50% of cases in A and 50%
in B.

We now turn to the case in which both slits are open, see Fig. 2.
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Figure 2: Same setup of Fig. 1, but now both slits are open: interference takes place
and all particles hit the screen in A.

The wave function of the particle is assumed to be the sum of the contribu-
tions of the two slits:

∣Ψ⟩ =
1

√
2
(∣L⟩ + ∣R⟩) (3)

i.e. the contributions of both slits add coherently. A simple calculation shows
that

∣Ψ⟩ = ∣A⟩ (4)

which means that the particle P always hits the screen in A and never in
B. Namely, in A we have a constructive interference, while in B we have a
destructive interference. (Notice that the points A and B are not equidistant
from the two slits. However, we take the two slits as being close to each other
and the points A and B as being far from each other: the difference between
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the segments LA and RA (and so between LB and RB) is assumed to be
negligible such that the two contributions of the wave packet of the particle
P from the left and right slit arrive almost simultaneously and the depicted
interference effect takes place).

In conclusion, we have chosen the language of a two-slit experiment because
it is the most intuitive. The price to pay is a slit acting as a filter and not
as a simple hole. However, one can easily build analogous setups as the one
here described by using photon polarizations, electron spins or equivalent
quantum objects, or by using a Mach-Zehnder interferometer, see details in
Sec. 2.3.3.

2.2. Detector measuring the path

As a next step we put a detector D right after the two slits (both open). D
measures through which hole the particle has passed, without destroying it
(see Fig. 3).

Figure 3: A detector which measures which slit the particle has gone through is placed
just after the slits. The wave functions for the collapse and no-collapse scenarios are
depicted.
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We analyze the situation in two ways: first, by assuming the collapse of the
wave function as induced by D and, second, by studying the entanglement
of the particle with the detector. Note, we still assume that we sit on (or
watch) the screen S only, but we are not directly connected to the detector
D.

Collapse: In this case we assume that the detector D generates a collapse
of the wave function. Suddenly after the interaction with D, the state of
the particle P collapses into ∣L⟩ with a probability of 50% or into ∣R⟩ with
a probability of 50%. Then, the state is described by either ∣L⟩ or ∣R⟩, but
not any longer by the superposition of them. As a consequence, we have in
half of the cases a situation analogous to having only the left slit open and
in the other half to having only the right slit open.

What we will then see on the screen S? The probability to find the particle
in A is given by

p[A] = p[L,A] + p[R,A] =
1

2
⋅
1

2
+

1

2
⋅
1

2
=

1

2
(5)

where p[L,A] = 1/4 is the probability that the detector D has measured the
particle going through the left slit and then the particle has hit the screen
in A. Similarly, p[R,A] = 1/4 is the probability that the detector D has
measured the particle going through the right slit before the latter hits A. A
similar description holds for p[B] = 1/2 with

p[B] = p[L,B] + p[R,B] =
1

2
⋅
1

2
+

1

2
⋅
1

2
=

1

2
(6)

The collapse is obviously part of the standard interpretation of QM, in which
a detector is treated as a classical object which induces the collapse of the
quantum state. As a result, there is no interference on the screen S. As is well
known, the standard interpretation does not put any border between what is
a classical system and what is a quantum system. Nevertheless, one can in-
terpret the collapse postulate as an effective description of a physical process.
Namely, in theories with the collapse of the wave function, the collapse is a
real physical phenomenon which takes place when one has a macroscopic dis-
placement of the position wave function of the detector (or, more generally,
of the environment). In this framework, somewhere in between the quantum
world and the classical macroscopic world, a new physical process takes place
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which realizes the collapse: this could be, for instance, the stochastic hit in
the Ghirardi-Rimini-Weber model [5, 7, 8] or the instability due to gravita-
tion in the Penrose-Diosi approach [6, 10, 11]. Neglecting details, the main
point is that such collapse theories realize physically the collapse which is
postulated in the standard interpretation and liberates it from inconsisten-
cies. Still, it is an open and well posed physical question if (at least one of)
such collapse theories are (is) correct.

No-collapse: In this case we do not assume that the detector D generates a
collapse of the wave function, but we enlarge the whole wave function of the
system by including also the wave function of the detector. We assume that,
prior to measurement, the detector is in the state ∣D0⟩ (we can, for definite-
ness, think of a old-fashion indicator which points to 0, see Fig. 3). Then,
when both slits are open, the state of the whole system just after having
passed through them but not yet in contact with the detector D, is given by

∣Ψ⟩ =
1

√
2
(∣L⟩ + ∣R⟩) ∣D0⟩ (7)

Then, the particle-detector interaction induces a (we assume very fast) time
evolution which generates the following state:

∣Ψ⟩ =
1

√
2
(∣L⟩ ∣DL⟩ + ∣R⟩ ∣DR⟩) (8)

where ∣DL⟩ (∣DR⟩) describes the pointer of the detector pointing to the left
(right). Thus, no collapse is here taken into account, because the whole wave
function still includes a superposition of ∣L⟩ and ∣R⟩, which, however, are
now entangled with the detector states ∣DL⟩ and ∣DR⟩, respectively.

An important point is that the overlap of ∣DL⟩ and ∣DR⟩ is small:

⟨DL ∣DR⟩ ≃ 0 (9)

to a very good degree of accuracy. To show it, let us ignore the rest of the
detector and the environment and concentrate on the pointer only, which is
assumed to be made of N atoms, where N is of the order of the Avogadro
constant. The atom α of the pointer is in a superposition of the type

1
√

2
(ψαL(x⃗) + ψ

α
R(x⃗))
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where ψαL(x⃗)(ψ
α
R(x⃗)) is the wave function of the atom when the pointer points

to the left (right). We have:

⟨DL ∣DR⟩ =
N

∏
α=1
∫ d3x (ψαL(x⃗))

∗ψαR(x⃗) (10)

The quantity

∫ d3x (ψαL(x⃗))
∗ψαR(x⃗) = λα

is such that ∣λα∣ < 1. For a large displacement, λα is itself a very small
number (small overlap), but the crucial point is to observe that ⟨DL ∣DR⟩ is
the product of many numbers with modulus smaller then 1. Assuming that
λα = λ for each α (each atom gets a similar displacement: this assumption is
crude but surely sufficient for an estimate), we get

⟨DL ∣DR⟩ ≃ λ
N (11)

which is extremely small for largeN . Even if we take λ = 0.99 (which is indeed
quite large and actually overestimates the overlap of the wave functions of
an atom belonging to macroscopic distinguishable configuration), we obtain

⟨DL ∣DR⟩ ≃ 0.99NA ∼ 10−10
21

(12)

which is tremendously small.

After having clarified the de facto orthogonality of ∣DL⟩ and ∣DR⟩, we rewrite
the full wave function of the system ∣S⟩ as

∣Ψ⟩ =
1

2
[∣A⟩ (∣DR⟩ + ∣DL⟩) + ∣B⟩ (∣DR⟩ − ∣DL⟩)] (13)

Then, the probability to find the particle P in A is obtained (now by using
the Born rule, because we are observing the screen S):

p[A] = p[L,A] + p[R,A] =
1

2
⋅
1

2
+

1

2
⋅
1

2
=

1

2
(14)

where p[L,A] = 1/4 is the probability that the system is described by ∣A⟩ ∣DL⟩

and p[R,A] = 1/4 is the probability that the system is described by ∣A⟩ ∣DR⟩.
A similar situation holds for p[B] = 1/2. Thus, also in this case the presence
of D causes the disappearance of interference.
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The same result is obtained if we use the formalism of the statistical operator,
which is defined by ρ̂ = ∣Ψ⟩ ⟨Ψ∣ (see, for instance, Refs. [1, 5]). Upon tracing
over the detector states (environment states) the reduced statistical operator
reads (we use here ⟨DL ∣DR⟩ = 0):

ρ̂red = ⟨DL∣ ρ̂ ∣DL⟩ + ⟨DR∣ ρ̂ ∣DR⟩

= (∣A⟩ ∣B⟩) (
1
2 0
0 1

2

)(
⟨A∣

⟨B∣
) (15)

where the diagonal elements represent p[A] = p[B] = 1/2 respectively, while
the off-diagonal elements vanish in virtue of the (for all practical purposes)
orthogonality of ∣DL⟩ and ∣DR⟩.

Sum up: We find that, for us sitting on the screen S, the very same outcome,
i.e., the absence of interference, is obtained by applying the collapse postulate
as an intermediate step due to the detector D or by considering the whole
quantum state —including the detector D— and by applying the Born rule
only in the very end. This equivalence holds as long as the (anyhow very
small) overlap of the detector states of Eq. (12) is neglected (see also the
related discussion in Sec. 3). The question is then: do we need the collapse?
The second calculation (no-collapse) seems to answer us: ‘no, we don’t’.
In this respect, one has a superposition of macroscopic distinct states, which
coexist and are nothing else but the branches of the Everett?s or many worlds
interpretation (MWI) of QM [16]. Thus, assuming that no collapse takes
place brings us quite naturally to the MWI [3, 17, 18, 19, 20].

However, care is needed: in fact, the ‘no collapse’ assumption is a general
statement and means also that there is no collapse when the particle P hits
the screen S (where our own wave function is part of the game). Let us
clarify better this point by going back to the very first case we have studied,
in which only the left slit was open and no detector D was present (Fig. 1,
left part). The wave function of the particle just before hitting the screen is
given by

∣L⟩ =
1

√
2
(∣A⟩ − ∣B⟩)
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But then, after the hit and assuming no collapse, the whole wave function
—including us, who are the observers— reads:

∣Ψ⟩ =
1

√
2
∣A⟩ ∣Screen recording A and we observing A⟩

−
1

√
2
∣B⟩ ∣Screen recording B and we observing B⟩ (16)

The question is why the coefficient in front of the vector

∣A⟩ ∣Screen recording A and we observing A⟩

tells us what is the subjective probability of observing A for the observer
(us) sitting on the screen. In other words, how does the MWI explain the
probabilities according to the Born rule? The Born rule seems to be an
additional postulate, which has to be put ad hoc into it. This situation is
however not satisfactory, because the main idea of the MWI is to eliminate
the collapse from the description of the QM and consequently to derive the
standard Born probabilities. Although there are attempts to show that there
is no need of postulating the Born rule in this context [21], no agreement has
been reached up to now [5, 22, 23, 24]. This is indeed an argumentation
in favor of the possibility that a collapse really takes place. Surely, ‘real
collapse’ scenarios deserve to be studied theoretically and experimentally [5,
6, 7].

Note, up to now we did not mention the decoherence, see e.g. Refs. [2, 25,
26, 27] and refs. therein. This is possible because we have put a detector
that makes a measurement by evolving from the state ∣D0⟩ into two (almost)
orthogonal states ∣DL⟩ and ∣DR⟩, but actually one can interpret this fast
change of the detector state as the result of a decoherence phenomenon.
This is however a rather peculiar decoherence, because we have prepared the
detector in a particular (low entropic) ∣D0⟩ state, which is ‘ready to’ evolve
into ∣DL⟩ and ∣DR⟩ s soon as it interacts with the particle P . In Sec. 3 we
will describe what changes when the environment, instead of the detector, is
taken into account.
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3. Variants of the setup

3.1. The bomb

A simple change of the setup allows us to present the famous Elitzur-Vaidman
bomb, first described in Ref. [13] and then experimentally verified in Ref.
[28]. We substitute the detector with a ‘bomb’, which can be activated by
the particle P. We place the bomb only in front of the left slit, see Fig. 4.

Figure 4: Variant of the Elitzur-Vaidman experiment: a bomb is placed just after the
left slit.

This means that, if only the left slit is open, the bomb explodes soon after the
particle has gone through the slit. If, instead, only the right slit is open, it
doesn’t explode. For definiteness and simplicity we assume that the particle
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is not destroyed nor absorbed by the bomb.

Just as previously, we can interpret the experiment applying either the col-
lapse or by studying the whole wave function. In the collapse approach, the
bomb simply makes a measurement. When both slits are open the wave func-
tion, before the interaction with the bomb, is given by

∣Ψ⟩ =
1

√
2
(∣L⟩ + ∣R⟩)

we will have an explosion in 50% of cases and no explosion in the remaining
50%. Notice that in the second case the bomb is doing a null measurement.
The very fact that the bomb does not explode means that the particle went
to the right slit (we assume 100% efficiency in our ideal experiment). When
the bomb explodes there is a collapse into ∣Ψ⟩ = ∣L⟩, when it doesn’t into
∣Ψ⟩ = ∣R⟩. Then, we have a situation which is very similar to the case of the
detector D which we have studied previously: no interference on the screen
S is observed, but we observe the particle in the endpoint A and B with
probability 1/2 each.

If we do not assume the collapse of the wave function, the whole wave function
is given by (after interaction with the bomb)

∣Ψ⟩ =
1

√
2
(∣L⟩ ∣BE⟩ + ∣R⟩ ∣B0⟩)

=
1

2
[∣A⟩ (∣B0⟩ + ∣BE⟩) + ∣B⟩ (∣B0⟩ − ∣BE⟩)] (17)

where ∣B0⟩ is the state describing the unexploded bomb and ∣BE⟩ the ex-
ploded one. Obviously, as in Eq. (12), we have ⟨BE ∣B0⟩ ≃ 0. Again and
just as before no interference is seen on S but the two outcomes A and B are
equiprobable. Clearly, no difference between assuming the collapse or not
is found, but the interesting fact is that the non-explosion of the bomb is
enough to destroy interference.

If, instead of the bomb we put a fake bomb (referred to as the dud bomb,
which has the very same aspect of the real functioning bomb but does not
interact at all with the particle P), the wave function of the system is given
by

∣Ψ⟩ =
1

√
2
(∣L⟩ + ∣R⟩) ∣Bdud

0 ⟩ = ∣A⟩ ∣Bdud
0 ⟩ (18)
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where ∣Bdud
0 ⟩ describes the wave function of the dud bomb. In this case, there

is interference and the particle P always ends up in A.

Then, the amusing part comes: if we do not know if the bomb is a dud or
not, we can —in some but not all cases— find out by placing it in front of the
left slit. If there is no explosion and the particle ends up in B, we deduce for
sure that the bomb is real. Namely, this outcome is not possible for a dud,
see Eq. (18). Note, we have deduced that the bomb is ‘good’ without making
it explode (that would be easy: just send the particle P toward the bomb, if
it goes ‘boom’ it was real). This situation occurs in 25% of cases in which a
functioning bomb is placed behind the slit, see Eq. (17): we can immediately
‘save’ 25% of the good bombs. Conversely, in 50% of cases the good bomb
simply explodes and we lose it (then, the particle P goes to either A (25%)
or to B (25%)). In the remaining 25% the good bomb does not explode, but
the particle P hits A. Then, we simply do not know if the bomb is good or
fake: this situation is compatible with both hypotheses. We can, however,
repeat the experiment: in the end, we will be able to save 1/4 +1/4 ⋅ 1/4 +
... = 1/3 of the functioning bombs.

3.2. The idler particle and the delayed choice experiment

Another interesting configuration is obtained by assuming that a second en-
tangled particle, denoted as I (for idler), is emitted when P goes through
the slit(s). The system is built in the following way: if the particle P goes
through the left slit, the particle I is described by the state ∣IL⟩. Similarly,
when the particle P goes to the right slit, the particle I is described by the
state ∣IR⟩. We assume that the two idler states are orthogonal: ⟨IL ∣ IR⟩ = 0.
This situation resembles closely that of delayed choice experiments [14, 15].

When both slits are open the whole wave function of the system is given by:

∣Ψ⟩ =
1

√
2
(∣L⟩ ∣IL⟩ + ∣R⟩ ∣IR⟩)

=
1

2
[∣A⟩ (∣IR⟩ + ∣IL⟩) + ∣B⟩ (∣IR⟩ − ∣IL⟩)] (19)

The particle I is entangled with P, but being the latter a microscopic object,
we surely cannot apply the collapse hypothesis because the particle I is not
a measuring apparatus.
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Do we have interference on the screen S in this case? The answer is clear: no.
The states ∣A⟩ ∣IL⟩, ∣A⟩ ∣IR⟩, ∣B⟩ ∣IL⟩, ∣B⟩ ∣IR⟩ represent a basis of this system,
thus the probability to obtain ∣A⟩ (that is, the probability of P hitting S in
A) is 1/4 + 1/4 = 1/2. Same for B. The presence of the entangled idler state
destroys the interference on S.

It is sometime stated that this result is a consequence of the fact that the
state of the idler particle I carries the information of which way P has fol-
lowed. For this reason, the interference has disappeared (this is a modern
reformulation of the complementarity principle). However, such expressions,
although appealing, are often too vague and need to be taken with care.

As a next step we study what happens if we perform a measurement on the
particle I. We study separately two distinct types of measurements.

Measuring I in the ∣IL⟩ − ∣IR⟩ basis. First, we perform a measurement
which tells us if the state of the idler particle is ∣IL⟩ or ∣IR⟩. For simplicity,
we apply the collapse hypothesis (as usual, the results would not change by
keeping track of the whole unitary quantum evolution). But first, we have to
clarify the following issue: when do we perform the measurement on I? We
have two possibilities:

● If we measure the state of I before the particle S hits the screen, the
wave function reduces to ∣L⟩ ∣IL⟩ or to ∣R⟩ ∣IR⟩ with 50% probability,
respectively. Then, the screen S performs a second measurement: we
find -as usual- 50% of times A (25% ∣A⟩ ∣L⟩ and 25% ∣A⟩ ∣R⟩) and 50%
of times B (25% ∣B⟩ ∣L⟩ and 25% ∣B⟩ ∣R⟩).

● If, instead, the particle P arrives first on the screen S, the quantum
state collapses into ∣A⟩ (∣IL⟩+ ∣IR⟩)/

√
2 in 50% of cases (A has clicked),

or into ∣B⟩ (∣IL⟩ − ∣IR⟩)/
√

2 in the other 50% of cases (B has clicked).
The subsequent measurement of the I particle will then give ∣IL⟩ or ∣IR⟩
(50% each).

In conclusion, we realize that it is absolutely not relevant which experiment
is done before the other. In particular, for us sitting on the screen S, it does
not matter at all when and if the measurement of the idler state is performed.
We simply see no interference.
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Measuring I in the (∣IR⟩ + ∣IL⟩)/
√

2 − (∣IR⟩ − ∣IL⟩)/
√

2 basis. Since the
particle P is entangled with another particle and not with a macroscopic
state, we can also decide to perform a different kind of measurement on I.
For instance, we can have a detector measuring I by projecting onto the
basis (∣IL⟩+ ∣IR⟩)/

√
2 and (∣IL⟩− ∣IR⟩)/

√
2. If we do this measurement before

the particle P has hit the screen S, we have the following outcome as a
consequence of the collapse ?induced by the I-detector:

∣Ψ⟩ = ∣A⟩ (∣IR⟩ + ∣IL⟩)/
√

2 with prob. 50% (20)

∣Ψ⟩ = ∣B⟩ (∣IR⟩ − ∣IL⟩)/
√

2 with prob. 50% (21)

In the former case, the particle P will surely hit S in A, in the latter in B.

One sometimes interpret the experiment in the following way: the detector
measuring the state of I as being either (∣IR⟩ + ∣IL⟩)/

√
2 or (∣IR⟩ − ∣IL⟩)/

√
2

‘erases the which-way information’. When the detector measures (∣IR⟩ +
∣IL⟩)/

√
2 we still have interference and we see the particle P in the position

A, just as the case with two open slits (Fig. 2). In the other case, when
the detector measures (∣IR⟩− ∣IL⟩)/

√
2, we also have a kind of interference in

which the final position B is the only outcome. In the language of Ref. [14],
one speaks of ‘fringes’ in the former case, and of ‘anti-fringes’ in the latter.

However, care is needed: for us sitting on S, if we do not know which mea-
surement is performed on I, we simply see that no interference occurs (50%-
A and 50%-B). But, if we could then speak with a colleague working with
the I-detector, we would realize that, each time we have measured A he has
found (∣IR⟩ + ∣IL⟩)/

√
2, while each time we have measured B he has found

(∣IR⟩ − ∣IL⟩)/
√

2. Thus, we have a correlation of our results (measurement
of the screen S) with those of the I-detector. This is actually no surprise if
we look at the quantum state of Eq. (19). This statement is indeed more
precise than the statement of having interference because we have erased the
which-way information. Namely, we do not have interference.

Indeed, we can perform the measurement of I even after (in principle much
time after) the screen S has measured P in either A or B. Here the name
‘delayed choice’ comes from: we choose if we retain the which-way informa-
tion or not. Still, the result is the same because there is no influence on
the time-ordering of the measurements. If the measurement of the screen S
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occurs first, we have a collapse onto the very same Eqs. (20)-(21). Then, a
measurement of the idler particle I would simply find either (∣IR⟩+ ∣IL⟩)/

√
2

(correlated with A) and (∣IR⟩− ∣IL⟩)/
√

2 (correlated with B). For sure, there
is no change of the past by a measurement of the idler state, but simply a
correlation of states. Still, such a very interesting setup visualizes many of
the peculiarities of QM and can be used for quantum cryptography.

3.3. Realizations of the setup

In a two-slit experiment all the peculiarities of QM are evident due to the
fact that the particle P follows (at least) two paths at the same time. This is
extremely fascinating as well as counterintuitive for our imagination based on
a childhood with rolling ‘classical’ marbles. However, as already mentioned
in Sec. 1.1, a simple implementation of the two-slit experiment does not
produce only two possible outcomes, but gives rise to a superposition of
waves with many maxima and minima. In the following we present two
possible realizations of our Gedankenexperiment which do not make use of
slits.

An interference experiment in which only two outcomes are possible can
be realized by using particles with spin 1/2 (such as electrons in a Stern-
Gerlach-type experiment) or photons (spin 1, but due to gauge invariance
only two polarizations are realized). Clearly, all the QM features do not
depend on which particle or on which quantum number are implemented, but
solely on the presence of superpositions and on the effect of measurements.
In the case of photon polarizations we can use the fact that a photon can
be horizontally or vertically polarized (corresponding to the kets ∣h⟩ and
∣v⟩ respectively). In our analogy, the state ∣h⟩ corresponds to the state of
our particle P coming out from the left slit, ∣h⟩ ≡ ∣L⟩, and similarly ∣v⟩
from the right slit, ∣v⟩ ≡ ∣R⟩. Then, we place a detector which acts as the
screen S by making a measurement in the basis ∣A⟩ = (∣v⟩ + ∣h⟩)/sqrt2 and
∣B⟩ = (∣v⟩ − ∣h⟩)/sqrt2. In addition, we can place a second detector which
plays the role of the detector D by measuring the polarization in the ∣h⟩− ∣v⟩
basis. Indeed, in this case we do not need to send the photons along two
different paths, because the polarization degree of freedom is enough for our
purposes.

Another possible realization of our setup is the Mach-Zehnder interferometer
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[29], see Fig. 5, which makes use of beam splitters.

Figure 5: The Mach-Zehnder interferometer. M stands for mirror, BS for beam splitter,
and PD for photon detector. The case (a) is analogous to having only the left slit open
(Fig. 1, left side), (b) to only the right slit open (Fig. 1, right side), (c) to both slits open
(Fig. 2).

When a photon is sent to the path of Fig. 5.a (denoted as path-1), both
photon counters A and B can detect the photon with a probability of 50%
. For our analogy, we have ∣path − 1⟩ ≡ ∣L⟩. Similarly, when the photon is
sent to the path of Fig. 5.b (path-2), we hear a click in A or in B with
50% probability. For the analogy: ∣path − 2⟩ ≡ ∣R⟩. When a beam splitter is
put in the beginning of the setup, after the photon passes through, we get a
superposition

1
√

2
(∣path − 1⟩ + ∣path − 2⟩)

(Fig. 5.c). The inclusion of the detector D, the bomb, entangled particle(s)
as well as the environment can be easily carried out.

4. Collapse vs no-collapse: there is a difference

In this section we show that there is a difference between the collapse and
no-collapse scenarios. To this end, instead of having a detector, a bomb,
or an idler entangled state, we assume that the space between the slits and
the screen is not the vacuum. Then, we study the time evolution of the
environment which interacts with the particle P . This interaction is assumed
to be soft enough not to absorb or kick away the particle in such a way that
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the final outcomes on the screen S are still the endpoints A or B.

Before the particle P goes through the slit(s), the environment is described
by the state ∣E0⟩. First, we study the case in which only the left slit is open.
Denoting as t = 0 the time at which P passes through the left slit, the wave
function of the environment evolves as function of time t as

∣Ψ(t)⟩ = ∣L⟩ ∣EL(t)⟩ (22)

where by construction ∣EL(0)⟩ = ∣E0⟩. Similarly, if only the right slit is open,
at the time t the system is described by

∣Ψ(t)⟩ = ∣R⟩ ∣ER(t)⟩

with ∣ER(0)⟩ = ∣E0⟩.

We now turn to the case in which both slits are open. It is important to stress
that, by assuming a weak interaction of the particle P with the environment,
we surely do not have —at first— a collapse of the wave function, but an
evolution of the whole quantum state given by:

∣Ψ(t)⟩ =
1

√
2
(∣L⟩ ∣EL(t)⟩ + ∣R⟩ ∣ER(t)⟩)

=
1

2
[∣A⟩ (∣ER(t)⟩ + ∣EL(t)⟩) + ∣B⟩ (∣ER(t)⟩ − ∣EL(t)⟩)] (23)

This is indeed very similar to the detector case, but there is a crucial aspect
that we now take into consideration. The states ∣EL(t)⟩ and ∣ER(t)⟩ coincide
at t = 0 and then smoothly depart from each other. At the time t we assume
to have

c(t) = ⟨EL(t) ∣ER(t)⟩ = e
−λt (24)

(where c(t) is taken to be real for simplicity). This is nothing else than
a gradual decoherence process. The states of the environment entangled
with ∣L⟩ and ∣R⟩ overlap less and less by the time passing. The constant λ
describes the speed of the decoherence and depends on the number of particles
involved and the intensity of the interaction. Note, strictly speaking, this
non-orthogonality is also present in the case of the detector (if no collapse is
assumed), but the overlap is amazingly small, see the estimate in Eq. (12).
(In the case of the detector D of Sec. 2.2, λ is very large and consequently
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λ−1 is a very short time scale, shorter than any other time scale in the setup
of Fig. 3. For that reason we assumed that the detector state evolved for
all practical purposes instantaneously from the ready-state (pointer up) to
pointing either to the left or to the right.)

Now we ask the following question: what is the probability that the particle P
hits the screen in A? We assume that the particle P hits the screen at the time
τ . At this instant, the state is given by ∣Ψ(τ)⟩ with ⟨EL(τ) ∣ER(τ)⟩ = c(τ).

We now present the mathematical steps leading to p[A, τ], which, although
still simple, are a bit more difficult than the previous ones. The reader who
is only interested in the result can go directly to Eq. (29).

At the time τ we express the state ∣EL(τ)⟩ as

∣EL(τ)⟩ = c(τ) ∣ER(τ)⟩ +∑
α

bα(τ) ∣ER,⊥(τ)⟩ (25)

where the summation over α includes all states of the environment which are
orthogonal to ∣ER(τ)⟩: ⟨∣Eα

R,⊥(τ)⟩ ∣ER(τ)⟩ = 0. This expression is possible
because the set {RR(τ), ∣Eα

R,⊥(τ)⟩} represents a orthonormal basis for the
environment state. Its explicit expression is be extremely complicated, but
we do not need to specify it. The normalization of the state ∣EL(τ)⟩ implies
that

∣c(τ)∣2 +∑
α

∣bα(τ)∣
2 = 1 (26)

Then, the state of the system at the instant τ is given by the superposition

∣Ψ(τ)⟩ =
1

2
[1 + c(τ)] ∣A⟩ ∣ER(τ)⟩ +

1

2
∣A⟩∑

α

bα(τ) ∣ER,⊥(τ)⟩

+
1

2
[1 − c(τ)] ∣B⟩ ∣ER(τ)⟩ +

1

2
∣B⟩∑

α

bα(τ) ∣ER,⊥(τ)⟩ (27)

At the time τ the probability of the particle P hitting A is given by

p[A, τ] =
1

4
∣1 + c(τ)∣2 +

1

4
∑
α

∣bα(τ)∣
2 =

1

4
∣1 + c(τ)∣2 +

1

4
(1 − ∣c(τ)∣2) (28)

where in the last step we have used Eq. (26). A simple calculation leads to

p[A, τ] =
1

2
+

1

2
c(τ) =

1

2
+

1

2
e−λτ (29)
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A similar calculation leads to the probability of the particle P hitting S in B
as

p[B, τ] =
1

2
−

1

2
c(τ) =

1

2
−

1

2
e−λτ (30)

We see that ‘a bit’ of interference is left (no matter how large the time interval
τ is):

p[A, τ] − p[B, τ] = e−λτ (31)

showing that there is always an (eventually very slightly) enhanced proba-
bility to see the particle in A rather than in B.

Notice that the very same result is found by using the reduced statistical
operator:

ρ̂red(τ) = ⟨ER(τ)∣ ρ̂(τ) ∣ER(τ)⟩ +∑
α

⟨Eα
R,⊥(τ)∣ ρ̂(τ) ∣E

α
R,⊥(τ)⟩

= (∣A⟩ ∣B⟩) (
p[A, τ] c(τ)
c(τ) p[B, τ]

)(
⟨A∣

⟨B∣
) (32)

where ρ̂(τ) = ∣Ψ(τ)⟩ ⟨Ψ(τ)∣. The diagonal elements are the usual Born prob-
abilities, while the non-diagonal elements quantify the overlap of the two
branches and become very small for increasing time.

All these considerations do not require any collapse of the wave function due
to the environment (see also Ref. [30]). Indeed, if we replace the environ-
ment with the detector D of Sec. 2 (which was nothing else than a particular
en- vironment), the whole discussion is still valid (but see the comments on
time scale after Eq. (24)). The only point when the Born rule enters is
when we see the particle being either in A or in B, but —as we commented
previously— in this no-collapse MWI scenario, we do not know why the Born
rule applies [22, 23]. In this sense, decoherence alone is not a solution of the
measurement problem [31]. The wave function is still a superposition of dif-
ferent and distinguishable macroscopic states. Still, because of decoherence,
these states (branches) be- come almost orthogonal, thus decoherence is an
important element of the MWI although it does not explain the emergence
of probabilities.

What do theories with the collapse of the wave function predict? As long as
few particles of the environment are involved (i.e., at small times), for sure
we do not have any collapse and the entanglement in Eq. (23) is the correct
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description of the system. Namely, we know that interference effects occur
for systems which contains about 1000 (and even more) particles [32]. But, if
we wait long enough we can reach a critical number of particles at which the
collapse takes place. Thus, simplifying the discussion as much as possible,
according to collapse models there should be a critical time-interval τ∗ at
which the probability p[A, τ] suddenly jumps to 1/2 [33]:

p[A, τ] =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
2 +

1
2e

−λτ

textforτ < τ∗
1
2 for τ ≥ τ∗

(33)

Indeed, such a sudden jump is an oversimplification, but is enough for our
purposes: it shows that a new phenomenon, the collapse, takes place. In
Fig. 6 we show schematically the difference between the ‘no-collapse’ and
the ‘collapse’ cases.

Figure 6: The quantity p[A, τ] is plotted as function of τ . The dashed line represents the
prediction of the unitary evolution of Eq. (23). The solid line represents the prediction
of the collapse hypothesis of Eq. (33): if the detection of the screen takes place for
τ larger than the critical value τ∗, the state has collapsed to either A or B, therefore
p[A, τ > τ∗] = 1/2. Note, we use arbitrary units. The choice of τ∗ is also arbitrary and
serves to visualize the effect (it is expected to be much larger in reality).

Obviously, if τ∗ is very large, it becomes experimentally very difficult to dis-
tinguish the two curves, but the qualitative difference between them is clear.
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In Ref. [34] the gradual appearance of decoherence due to interaction of elec-
trons with image charges has been experimentally observed. This is analo-
gous to our Eq. (29). (For other decoherence experiment see Ref. [27] and
refs. therein.) Indeed, it would be very interesting to study decoherence in a
setup with only two outcomes, for instance with the help of a Mach-Zehnder
interferometer. Even if the distinction between collapse/non-collapse is not
yet reachable [7], a clear demonstration of decoherence and the experimental
verification of Eq. (29) would be useful.

As a last step, we show that the behavior

p[A, t] = 1/2 ∀t > τ∗

is a peculiarity of the collapse approach which is impossible if only a unitary
evolution is taken into account. The proof makes use of the Hamiltonian H
of the whole system (particle+slits+environment), for which we assume that
⟨R∣H ∣L⟩ = ⟨L∣H ∣ketR = 0, i.e., the full hamiltonian does not mix the states
∣L⟩ and ∣R⟩. Then

∣Ψ(t)⟩ = e−iHt
1

√
2
(∣L⟩ ∣E0⟩ + ∣R⟩ ∣E0⟩)

=
1

√
2
(∣L⟩ e−iHLt ∣E0⟩ + ∣R⟩ e−iHRt ∣E0⟩) (34)

where we have expressed ∣EL(t)⟩ = e−iHLt ∣E0⟩ and ∣ERL(t)⟩ = e−iHRt ∣E0⟩

by introducing the Hamiltonians HL = ⟨L∣H ∣L⟩ and HR = ⟨R∣H ∣R⟩ which
act in the subspace of the environment. (These expressions hold because
Hn ∣L⟩ ∣E0⟩ = ∣L⟩Hn

L ∣E0⟩ for each n). The overlap c(t) defined in Eq. (24)
can be formally expressed as

c(t) = ⟨EL(t) ∣ER(t)⟩ = ∣E0⟩ e
−i(HR−HL)t ∣E0⟩ (35)

Since HL and HR are Hermitian, then HR − HL is also Hermitian. For a
finite number of degrees of freedom of the system, the quantity c(t) shows
a (almost) periodic behavior and returns (very close) to the initial value 1
in the so-called Poincaré duration time (which can be very large for large
systems). It is then excluded that c(t) vanishes for t > τ∗. (At most, it can
vanish for certain discrete times, see Sec. 4, but not continuously). Even in
the limit of an infinite number of states the quantity c(t) does not vanish
but approaches smoothly zero for t→∞.
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5. Entanglement with a non-orthogonal idler state

As a last example, we design an ideal setup in which the environment is rep-
resented again by a single particle, the idler state (see Sec. 2.3.2). However,
we assume now that a time-evolution of the idler state takes place:

∣Ψ(t)⟩ =
1

√
2
(∣L⟩ ∣EL(t)⟩ + ∣R⟩ ∣ER(t)⟩) (36)

with the ‘environment’ states now expressed in terms of the orthonormal
idler-basis {∣I1⟩ , ∣I2⟩}.

∣EL(t)⟩ = ∣I1⟩ (37)

∣ER(t)⟩ = cos (ωt) ∣I1⟩ + sin (ωt) ∣I2⟩ (38)

Thus, while ∣EL(t)⟩ = ∣I1⟩ is a constant over time, we assume that ∣ER(t)⟩
rotates in the space spanned by ∣I1⟩ and ∣I2⟩. Then we can rewrite ∣Ψ(t)⟩ as

∣Ψ(t)⟩ =
1

2
∣A⟩ [(1 + cos (ωt)) ∣I1⟩ + sin (ωt) ∣I2⟩]

+
1

2
∣B⟩ [(−1 + cos (ωt)) ∣I1⟩ + sin (ωt) ∣I2⟩] (39)

The probability p[A, τ] is given by

p[A, τ] =
1

2
+

1

2
cos (ωτ) (40)

where τ is the time at which the particle P hits the screen.

In conclusion, in a real implementation of this simple idea, it would be in-
teresting to see the appearance and the disappearance of interference (with
both fringes and antifringes) as function of the time of flight τ , see Fig. 7.
It should be however stressed that the full interaction Hamiltonian does not
act on the idler state alone. Indeed, the corresponding Hamiltonian has the
form

H = α(∣R⟩ ∣I1⟩ ⟨R∣ ⟨I2∣ + h.c.) (41)

This is indeed a quite peculiar type of interaction because the idler state
rotates only if the particle P is in the state ∣R⟩ (in the language of Sec.
4, it means: HL = 0, HR = α(∣I1⟩ ⟨I2∣ + h.c.), This implies that the spatial
trajectory of both states ∣I1⟩ and ∣I2⟩ must be the same, otherwise the overlap
⟨EL(t) ∣ER(t)⟩ would be an extremely small number and the effect that we
have described would not take place.
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Figure 7: Quantity p[A, τ] as function of τ in the case of entanglement with an idler
state according to Eq. (39).

6. Conclusions

We have presented an ideal interference experiment in which we have com-
pared the unitary evolution and the existence of a collapse of the wave func-
tion. We have analyzed the case in which a detector measures the which-way
information and we have shown that the collapse postulate as well as the
no-collapse unitary evolution lead to the same outcome: the disappearance
of interference on the screen. In the unitary (no-collapse) evolution, this is
true only if the states of the detector are orthogonal. This is surely a very
good, but not exact, approximation. It was then possible to describe within
the very same Gedankenexperiment two astonishing quantum phenomena:
the Elitzur-Vaidman bomb and the delayed-choice experiment.

We have then turned to a description of the entanglement with the en-
vironment. The phenomenon of decoherence ensures that the interference
smoothly disappears. However, as long as the quantum evolution is unitary,
it never disappears completely. Conversely, the real collapse of the wave
function introduces a new kind of dynamics which is not part of the linear
Schrödinger equation. While the details differ according to which model is
chosen [7], the main features are similar: a quantum state in which one has a
delocalized object (superposition of ‘here’ and ‘there’) is not a stable config-
uration, but is metastable and decays to a definite position (either ‘here’ or
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‘there’). In conclusion, the collapse and the no-collapse views are intrinsically
different, as Fig. 5 shows. At a fundamental level, the unitary (no-collapse)
evolution leads quite naturally to the many worlds interpretation in which
also detectors and observers are described as a superposition (for a different
view see the Bohm interpretation [35]).

Even if the distinction between the collapse and the no-collapse alternatives
is probably still too difficult to be detected at the moment, the demonstration
of decoherence in an experiment with two final states would be an interest-
ing outcome on its own (see the dashed curve in Fig. 6) . Also a situation
in which an entangled particle is emitted in such a way that an ‘oscillating
interference’ takes place (see Fig. 7) might be an interesting possibility.

A further promising line of research to test the existence of the collapse of
the wave function is the theoretical and experimental study of unstable quan-
tum systems. The non-exponential behavior of the survival probability for
short times renders the so-called Zeno and Anti-Zeno effects possible [36, 37,
38, 39]: these are modifications of the survival probability due to the effect
of the measurement, which have been experimentally observed [40]. The
measurement of an unstable system (for instance, the detection of the decay
products) can be modeled as a series of ideal measurements in which the col-
lapse of the wave function occurs, but can also be modeled through a unitary
evolution in which the wave function of the detector is taken into account
and no collapse takes place [41, 42, 43]. Then, if differences between these
types of measurement appear, one can test how a detector is performing a
certain measurement [44]. Quite remarkably, such effects are not restricted
to nonrelativistic QM, but hold practically unchanged also in the context
of relativistic quantum field theory [45] and are therefore applicable in the
realm of elementary particles.

In conclusions, Quantum Mechanics still awaits for better understanding in
the future. It is surely of primary importance to test the validity of (unitary)
standard QM for larger and heavier bodies. In this way the new collapse
dynamics, if existent, may be discovered.
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