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Abstract

Many of the heated arguments about the meaning of “Bell?s theorem” arise
because this phrase can refer to two different theorems that John Bell proved,
the first in 1964 and the second in 1976. His 1964 theorem is the incompat-
ibility of quantum phenomena with the dual assumptions of locality and
determinism. His 1976 theorem is the incompatibility of quantum phenom-
ena with the unitary property of local causality. This is contrary to Bell’s
own later assertions, that his 1964 theorem began with that single, and in-
divisible, assumption of local causality (even if not by that name). While
there are other forms of Bell’s theorems - which I present to explain the rela-
tion between Jarrett-completeness, “weak locality”, and EPR-completeness -
I maintain that Bell’s two versions are the essential ones. Although the two
Bell’s theorems are logically equivalent, their assumptions are not, and the
different versions of the theorem suggest quite different conclusions, which are
embraced by different communities. For realists, the notion of local causality,
ruled out by Bell’s 1976 theorem, is motivated implicitly by Reichenbach’s
Principle of common cause and explicitly by Einstein’s relativity Principle,
and it is the latter which must be forgone. Operationalists pay no heed
to Reichenbach’s Principle, but wish to keep Einstein’s relativity Principle,
which, bolstered by an implicit “Principle of causal efficacy”, implies their
notion of locality. Thus for operationalists, Bell’s theorem is the 1964 one,
and implies that it is determinism that must be forgone. I discuss why the
two ‘camps’ are drawn to these different conclusions, and what can be done
to increase mutual understanding.

1. Introduction

This special issue celebrates the 50th anniversary of both the submission and
(surprisingly1) the publication of Bell’s paper which introduced his epony-
mous theorem [1]. The present year is also the 50th anniversary of the sub-
mission of a less well-known paper by Bell [2], a prequel to the 1964 paper,

1Bell’s paper was received on 4 November 1964 and published in the Novem-
ber/December issue of that year [1]. Presumably this issue was not actually printed until
1965, which presumption is supported by the fact that in many [2, 3, 4, 5, 6] of his papers
that referred to Ref. [1], Bell gave the year of its publication as 1965. Those with the date
of 1964 may of course have been editorially “corrected”.



which, due to editorial negligence, was not published until 1966 [7]. This
delayed prequel already contained a powerful impossibility theorem relating
to hidden variables, a theorem which was formulated independently, and in
an even stronger form, by Kochen and Specker, in 1967 [8]. While the latters’
names are now irrevocably associated with this contextuality theorem, Mer-
min famously rescued Bell’s earlier result from obscurity in his 1993 paper
“Hidden variables and the two theorems of John Bell” [7].

The present paper is also about two theorems proven by John Bell, but nei-
ther of them is that published in 1966. Rather, I will argue that, contrary to
Bell’s retrospective description of his own work [5], Bell proved two different
forms of (what is known as) Bell’s theorem. The first is that proven in 1964
[1], that there are quantum predictions incompatible with any theory satis-
fying locality and determinism (L&D). The second is that proven in 1976 [4],
that there are quantum predictions incompatible with any theory satisfying
local causality (LC). I use the terms theorem and proven advisedly. I am not
concerned here with the intuitions that may have motivated Bell when he
wrote his papers, but rather with what he rigorously proved (at least with
rigor that should satisfy most theoretical physicists).

Now while LC is a strictly weaker concept than L&D (as will be discussed),
it was highlighted by Fine in 1982 [9] that the range of phenomena respect-
ing L&D is the same as the range of phenomena respecting LC. Therefore
Bell’s 1976 theorem is a corollary of Bell’s 1964 theorem, as well as implying
it. Since the two Bell’s theorems are thus logically equivalent, why should
anyone but a pedantic historian of science distinguish them? The answer
is: because the different theorems point in different directions. Bell’s 1964
theorem suggests that Bell experiments leave us a with a choice: accept that
physical phenomena violate determinism, or accept that they violate locality.
Bell’s 1976 theorem suggests that Bell experiments leave us with no choice:
we must accept that physical phenomena violate local causality.

These different interpretations of Bell’s theorem are characteristic of different
communities of physicists (which could be broadly characterized as opera-
tionalists and realists respectively). The failure to distinguish which Bell’s
theorem (1964 or 1976) one is discussing, and to use unambiguous terminol-
ogy, is, I know from experience, a significant cause of miscommunication (see
e.g. Ref. [10]). That is why I believe it is worthwhile for me to take the time
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to explain, and for the reader to take the time to understand, exactly what
Bell proved, when he proved it, how he defined the terms he used to describe
what he had proven, and how his terminology changed over time. I also take
the opportunity to examine alternate formulations of Bell’s theorems, and
to explore how neither L nor LC are immediate consequences of relativity
theory, but rather require at least one additional assumption, different in the
two cases.

Section 2 of this paper establishes the notation and assumptions that are
common to most of the paper. In Section 3 I examine the text of Bell’s 1964
paper, give my reading of it in terms of locality and determinism, but also
analyze alternate readings. In Section 4 I present Bell’s 1976 paper, with its
concept of local causality, and examine precedents for this concept. Section 5
looks critically at Bell’s later representations of his own 1964 and 1976 theo-
rems. Section 6 covers related theorems by Fine and Jarrett, and introduces
a new concept of “weak locality” in order to relate Jarrett-completeness to
EPR-completeness. Section 7 reviews the attitudes of the two “camps” (op-
erationalists and realists), how these relate to Bell’s two Bell’s theorems, and
to the Principles of relativity, common cause, and “causal efficacy”. Finally,
in Sec. 8, I discuss why we cannot avoid considering at least Bell’s two forms
of Bell’s theorem, and explain my recommendations to both communities
regarding how to cite, how to state, and how to construe, the appropriate
Bell’s theorem, if they wish for productive discussions, or at least “peaceful
coexistence” à la Ref. [11].

2. Notation and Assumptions

In this section I introduce the notation (largely following Bell [1, 4, 12, 13])
used throughout the paper and the assumptions which are implicit (or, in
some papers, explicit) in Bell’s theorems.

2.1. Notation

Consider two spatially separated and non-communicating observers, Alice
and Bob, who choose to make particular measurements, and observe their
outcomes. Alice’s choice of what measurement she is to make is represented
by a. This is a free choice from some set {a}. For Bell’s analysis [1] of the
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EPR-Bohm scenario [14], a was the direction along which to measure spin,
and was notated a⃗. I am suppressing the vector notation for convenience
and generality. The outcome of that measurement once she makes it is A.
The corresponding things for Bob are indicated by b and B. For the most
rigorous tests we should arrange that Alice’s choice a and outcome A are
space-like separated from Bob’s b and B. Here to avoid notational complex-
ity I am using these symbols both for the values and for the events yielding
them (i.e., the event of Alice’s making and implementing the choice a, and
the event of the measurement?s yielding the result A).

In the common past light cone of A and B is c, an agreed-upon reproducible
preparation procedure for the experiment which yields A and B. λ are some
other variables (in addition to c, a, and b) that may affect the outcomes ob-
tained. That is, they are variables not specified by the preparation procedure
c, and as such may be deemed ‘hidden variables’. They may be specified in
any region of space-time as long as it is earlier than the choices a and b. Any
space-like hypersurface may be chosen to define ‘earlier’ here. (Note that
there is no need to assume, as Bell did in some papers, that λ corresponds to
events in space-time. It could, for example, indicate a quantum pure state
∣ψ⟩, which is a property of a hypersurface.)

Using the above notation, we can define a phenomenon φ by the relative
frequencies fφ(A,B∣a, b, c), where c may be fixed, but a and b will in the
situations we are interested in, be allowed to vary. I use the term ‘relative
frequencies’ rather than ‘probabilities’ to emphasize that a phenomenon is
a feature of the world. However I will use the term ‘quantum phenomenon’
for a phenomenon predicted by quantum mechanics, given how empirically
succesful quantum mechanics is. Phenomena should be distinguished from
theories. A theory θ for a phenomenon φ comprises at least the following:
the set Λ of values of λ; a mapping from c to a probability measure dµθ(λ∣c)
on Λ; and a specification of a joint probability distribution Pθ(A,B∣a, b, cλ),
which predicts the phenomenon:

∫
Λ
dµθ(λ∣c)Pθ(A,B∣a, b, cλ) = fφ(A,B∣a, b, c) (1)

Note that here, as everywhere in this paper, when an equation involving vari-
ables appears without quantifiers for those variables, a universal quantifier
(∀) is to be understood.
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The set Λ could contain a single λ, or all the dependences on λ could be
trivial, in which case the theory does nothing more than reproduce the phe-
nomenon. Such theories can be called operational theories. On the other
hand, a theory θ might postulate other variables or events, in addition to A,
a, B, and b, which are later than the space-like hypersurface introduced to
define λ. For the purpose of this paper, except for the discussion of Criterion
11, I will assume that this is not the case, and restrict consideration to those
events listed.

2.2. Assumptions

Axiom 1 (Macroreality) In an individual experimental run, exactly one
outcome A and exactly one outcome B really happen, and are not ‘relative’
to anything.

Axiom 2 (Space-time) The concepts of space-like separation, light-cones,
space-like hypersurface etc. can be applied unambiguously in ordinary labo-
ratory situations.

Axiom 3 (Arrow of time) A cause can only be in the past of its effect.

Axiom 4 (Free choice) a and b are freely chosen (i.e., effectively uncaused),
and so are independent of c, of λ, and of each other.

While these axioms may be doubted (see Sec. 7), most discussions of Bell?s
theorem take them for granted and so will I, in this paper. There may be
other implicit assumptions but they would be at least as uncontroversial as
the above.

Note that the term ‘cause’ in Axiom 3 is here undefined; this axiom has force
only when used in conjunction with other notions explicitly involving the
idea of causation. In this context, I also specify the following: Principle 5
(Einsteinian relativity) In relation to causation, ‘the past’ is to be under-
stood as ‘the past light cone’.

Principle 6 (manifest causal efficacy) f a phenomenon exhibits an event
that is statistically dependent on a freely chosen action, then that action is a
cause of that event.
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I call these ‘Principles’ rather than ‘Axioms’ because I will entertain reject-
ing them, or at least closely related Principles. With regard to Einsteinian
relativity, members of the ‘realist camp’ identified in Sec 1 would, indeed,
typically reject this Principle in response to Bell’s theorem (see Sec. 7.3).
Regarding manifest causal efficacy, while Principle 6 may seem indisputable,
at least one causal decision theorist [15] rejects it (R. Briggs, pers. comm.).
While this Principle is not directly related to Bell’s theorem (see Sec. 7.3),
there is a stronger, and therefore more disputable, notion of causal efficacy
(Principle 24) which the ‘operationalist camp’ seems impelled to embrace.

3. Bell’s 1964 Theorem

3.1. The “almost universal” reading

My reading of Bell’s 1964 paper [1], which is the reading, Bell later com-
plained, “almost universally reported” [5], is that the theorem proven there
is:

Theorem 7 (Bell 1964) There exist quantum phenomena for which there
is no theory satisfying locality and determinism.

For such theorems I will use the more succinct expression: quantum phe-
nomena violate either locality or determinism.

Bell‘s meaning for determinism in a theory is, I think, uncontroversial:

Definition 8 (determinism) A theory θ is deterministic, i.e., satisfies de-
terminism (D), iff (if and only if) all probabilities Pθ(A,B∣a, b, cλ) are either
zero or one.

That is, determinism means that the outcomes are given by functionsAθ(a, b, c, λ)
and Bθ(a, b, c, λ). In a more general setting, determinism means that an out-
come A is determined by the “initial values” [1] of the hidden variables (since
they are specified prior to some space-like hypersurface) plus any subsequent,
freely chosen, measurement settings (which are uncaused events by Axiom
4).

Bell’s meaning for “locality” in a theory is, by contrast, extremely controver-
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sial. Therefore we must carefully examine how Bell defines it in this paper.
In his Sec. I (Introduction), a single paragraph which also serves as the
abstract, Bell states (with my edits, introduced in the interests of brevity,
indicated by curly brackets and ellipses)

... Einstein, Podolsky and Rosen . . . argu{ed} that quantum
mechanics could not be a complete theory but should be supple-
mented by additional variables {in order} to restore to the theory
causality and locality [2]. In this note that idea will be formulated
mathematically and shown to be incompatible with the statistical
predictions of quantum mechanics.

Here Bell identifies two concepts, causality and locality. He does not define
causality at this (or any other) point, and the reference “[2]” in the above
quote is to a footnote which consists solely of a quote from Einstein,

But on one supposition we should, in my opinion, absolutely hold
fast: the real factual situation of system S2 is independent of what
is done with the system S1, which is spatially separated from the
former.

and its source, my Ref. [16].

It is not immediately clear in the text whether Bell means this footnote to
gloss “causality and locality”, or just “locality”. However, in the very next
sentence Bell says

... the requirement of locality, or more precisely that the result
of a measurement on one system be unaffected by operations on
a distant system with which it has interacted in the past

That is, assuming that the “real factual situation” of a system is what is
probed by measuring it, Bell’s definition of locality follows from the supposi-
tion of Einstein’s which he quotes. Now the notions of being “independent of
what is done with” or “unaffected by operations on” a system clearly refer to
the action of an agent (say Alice) on her system, and mean that Alice’s action
has no statistical effect. In the context of a Bell experiment, Alice’s action
on her system is to perform some particular measurement a, chosen by her.
Thus we can formalize Bell’s definition of locality, provisionally (in the sense
that we will have to test this definition against what Bell says elsewhere in
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his paper), as follows:

Definition 9 (locality) A theory θ is local, i.e., satisfies locality (L), iff

Pθ(B∣a, b, c, λ) = Pθ(B∣b, c, λ) (2)

plus the corresponding equation

Pθ(A∣a, b, c, λ) = Pθ(A∣a, c, λ)

for Alice.

The “corresponding equation for Alice” will be implicit in definitions from
now on. Note that it is implicit in the above equation that the function
Pθ(B∣b, c, λ), which we have not previously considered, exists.

As yet, what Bell means by causality remains unexplained. However, Bell
closes Sec. I with these statements:

It is the requirement of locality ... that creates the essential diffi-
culty. ... There have been attempts ... to show that even without
such a separability or locality requirement no “hidden variable”
interpretation of quantum mechanics is possible. ... {However,} a
hidden variable interpretation of elementary quantum theory [5]
has been explicitly constructed. That particular interpretation
has indeed a grossly non-local structure. This is characteristic,
according to the result to be proved here, of any such theory
which reproduces exactly the quantum mechanical predictions.

This passage demonstrates a number of points with Bell’s terminology. First,
he uses “separability” and “locality” interchangeably (as he had done also in
his earlier paper [2]), though he uses the latter more often so it is the term I
have adopted. Also, rather than the two assumptions of causality and local-
ity, he states the two assumptions of “hidden variables” and locality. In Ref.
[2], Bell used “hidden variables” to mean «“dispersion free” states»which make
individual measurement results “determined”, and I am sure that is what he
intends here also. Now Bell clearly implies that for Einstein’s program, lo-
cality is the problem, not causality, because of “[5]”, which is Bohm’s pilot
wave interpretation [17], a perfectly fine (albeit nonlocal) deterministic hid-
den variable theory. All of this suggests to me that by “causality” Bell means
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nothing more than determinism, and was, again, simply being promiscuous
with his terms. That is, Bell’s theorem, as he describes in his final sentence,
is that any deterministic theory of quantum phenomena must be nonlocal.

Bell uses the term “causality” only a single time in the paper. Elsewhere
he is clear that the second assumption (i.e., in addition to locality) he re-
quires for his theorem is determinism. In the last sentence of Bell’s Sec. V,
he states: “the statistical predictions of quantum mechanics are incompati-
ble with separable predetermination.” (In the spirit of Axiom 3, Bell makes
no distinction between predetermined outcomes and determined outcomes.)
The first sentence of Bell’s Sec. VI (Conclusion) reiterates this statement of
his theorem, but with precise descriptions rather than with any of the above
terms:

In a theory in which parameters are added to quantum mechan-
ics to determine the results of individual measurements, without
changing the statistical predictions, there must be a mechanism
whereby the setting of one measuring device can influence the
reading of another instrument, however remote.

Here the italics are my addition, to highlight Bell’s definitions of determinism
and (the negation of) of locality.

As the above quote shows, Bell definitely means locality specifically as the
absence of any influence of the setting a on the remote measurement device.
This confirms my above reading of his definition of locality in Definition 9.
In fact this reading is confirmed in two more places in the paper. In the
first paragraph of Sec. II, he states it in the context of an experiment on a
spin-singlet state of two spin-half particles:

we make the hypothesis [2] ... that if the two measurements are
made at places remote from one another, the orientation of one
magnet does not influence the result obtained with the other.

Recall that Bell’s note [2] is the quote from Einstein, which Bell reuses here,
and which, as I have shown above, Bell associates with locality. Later in that
same section, he again states

The vital assumption [2] is that the result B for particle 2 does
not depend on the setting a of the magnet for particle 1, nor A
on b.
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Finally, in (my) Ref. [2], Bell’s prequel to his 1964 theorem, his use of locality
is consistent with the above, as he elucidates the “grossly nonlocal character”
of Bohm’s theory [17] by showing that “in this theory ... the disposition of
one piece of apparatus affects the results obtained with a distant piece.”

With this understanding of Bell’s assumptions, the structure of his paper is
as follows. His Section II is titled “Formulation”, and this is where he gives
the mathematical formulation (as promised in his Introduction) of the dual
assumptions of causality (i.e. determinism) and locality, his equation (1),

A(a, λ) = ±1 , B(a, λ) = ±1

In the context (spin measurements), the existence of these functions and their
possible values, does indeed capture these dual assumptions2.

Now prior to this formulation, Bell gives a one-paragraph motivation for
considering hidden variable theories, by reiterating the EPR argument in its
spin-singlet version [18]. The crucial sentence, which follows Bell’s statement
of the assumption “the orientation of one magnet does not influence the result
obtained with the other” (quoted above), is

Since we can predict in advance the result of measuring any cho-
sen component of σ⃗2 by previously measuring the same compo-
nent of σ⃗1, follows that the result of any such measurement must
actually be predetermined.

Here Bell has made a mistake. His conclusion (predetermined results) does
not follow from the hypothesis he stated in the preceding sentence. This
is simple to see by the following counter-example. Orthodox quantum me-
chanics (OQM) is a theory in which the setting a of one device does not
statistically influence the result B obtained with the other:

Pθ(B∣a, b, c, λ) = Pθ(B∣b, c, λ) (3)

Here, if c were to correspond to preparation of a mixed quantum state ρc, the
variable λ would allow for a pure-state decomposition; in purely operational

2In this paper, Bell does not use c, which is why it is absent as an argument in these
functions. However λ can always be assumed to include c for the purpose of characterizing
a theory as local or deterministic.
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QM, only c would appear.3 But in OQM it is of course not true that the
results of spin measurements are predetermined for a singlet state as Bell is
considering.

Now, as stated, Bell’s first paragraph (not counting the abstract) serves only
to motivate the formulation of the theorem. This is to be expected from
its placement (prior to the mathematical formulation). It is also reflected
in how the paragraph ends: “this predetermination implies the possibility
of a more complete specification of the state.” Having thus introduced the
possibility of hidden variable (i.e., deterministic) theories, he then formulates
such theories, in the next paragraph, under the hypothesis of locality, as per
his equation (1):

Let this more complete specification be effected by means of pa-
rameters λ. ... The result A of measuring σ⃗ ⋅ a⃗ is then determined
by a and λ, and {similarly} the result B ..., and {his equation
(1)}. The vital assumption [2] is that the result B for particle 2
does not depend on the setting a of the magnet for particle 1, nor
A on b.

The end of this quotation is the locality assumption already quoted above.
Finally, that Bell’s EPR paragraph forms no part of his 1964 theorem (which
in this paper he calls his “result”) is clear from the fact that after he has
formulated the problem in Sec. II, and illustrated it in Sec. III, he finally
gets to Sec. IV where “The main result will now be proved.”

Thus I would classify Bell’s mistake in this paragraph as a peccadillo, having
no impact on the main result in his paper. It would have been an easy
mistake for Bell to have made, if he had the idea that EPR had already
proven determinism from some sort of locality assumption, and did not think
hard about whether it was the same as the locality assumption he was about
to use in his own theorem. Indeed the paper could be made completely sound
simply by replacing “it follows” in the above (“Since we can predict ...”) quote
by “the obvious explanation is” or “EPR’s premises imply”. Although Bell
believed that he was reproducing EPR’s argument, EPR’s premises (which
are never stated by Bell) are not equivalent to locality (as defined here by
Bell), and they do justify the conclusion of predetermined outcomes; see Ref.
[19] and Appendix A.2.

3In the present case, where ρc is a singlet state (which is pure), there is no distinction.
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3.2. Alternate Readings

As the beginning of the preceding subsection implies, in later life Bell rep-
resented his 1964 paper differently from how it was “almost universally re-
ported”, as I will discuss in Sec. 5. There is also a community of Bell?s
followers [20, 21, 22] who have embraced this stance; see Sec. 7.2. Their
reading of Bell’s paper differs from the usual understanding as follows. First,
they see the first paragraph of Bell’s “Formulation” section as an essential
part of his 1964 theorem, the first part of a two-part argument. Second, they
see this first part as legitimately deriving determinism from predictability
and the assumption of locality, since they see Bell’s concept of locality as
being more general than my reading of it. Basically, they see Bell’s notion of
locality as being local causality (see next section), under which an outcome is
independent not only of the remote setting, but also of the remote outcome.
In particular, they do not see operational quantum mechanics as a counter-
example whereby predictability and locality do not imply determinism. Thus
they represent Bell’s 1964 theorem as being that quantum phenomena violate
the assumption of locality.

This reading of course has the advantage that it does not require the reader
to assume that Bell made a mistake, however inconsequential, in his epit-
ome of the EPR argument. It also has another advantage (Maudlin, pers.
comm.): Bell’s second sentence, which talks of Einstein’s hope that hidden
variables would “restore to the theory causality and locality [2]” also implies
that Bell, or least Einstein, believed that OQM did not satisfy the locality
condition. If this is meant to reflect Bell’s beliefs then, this is, on my reading,
the same mistake he made in reproducing the EPR argument, and is equally
unimportant here. Regarding Einstein’s beliefs, I will return to these in Sec.
3.3, since Bell’s definition of locality does not necessarily coincide with the
quote from Einstein he uses here.

To me, the advantages of this reading are demonstrably outweighed by its
many disadvantages: i) it does not explain why Bell would, in 1964, state
his result four times as requiring two assumptions, locality and determin-
ism, and not once as requiring only the assumption of locality; ii) it does
not explain why in his first subsequent paper on the topic of hidden vari-
ables [12], after seven years to think about how best to explain his result,
he still states it (somewhat redundantly) as being “that no local determinis-
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tic hidden-variable theory can reproduce all the experimental predictions of
quantum mechanics” [12]; iii) it does not explain why Bell would, in 1964,
define locality four times in terms of independence from the remote setting,
as per Definition 9, and never any other way4; iv) it does not explain why
Bell would state the conclusion of the supposedly crucial first part of his
theorem as being merely that it “implies the possibility of a more complete
specification of the state.”; v) it does not explain why Bell would place this
supposedly crucial first part prior to the mathematical formulation of his
result, and not mention it anywhere else in the paper.

In short, to claim that the theorem Bell proved in his 1964 paper rules out a
unitary ‘localistic’ hypothesis (to coin a word), despite the fact that he never
articulates a hypothesis that would work in this way, and invariably states
his result as also requiring the assumption of determinism, is to do violence
to the notions of theorem and proof. One might be tempted to venture that
Bell never intended to provide a rigorous argument from precisely stated
premises to the sought-for contradiction with quantum mechanics, and so
any one is free to take his heuristic argument and make it rigorous in what-
ever way seems best. This is unfair to Bell, as he certainly does give such a
rigorous argument, from the premises of D and L. Furthermore, Bell clearly
did intend his argument to be rigorous: having previously «found wanting
{others’} attempts to show that ... no “hidden variable” interpretation of
quantum mechanics is possible »he contrasts these attempts with “the result
to be proved here” (my emphasis).

Of course one is free to construct a proof using the EPR paragraph of Bell’s
paper to derive L and D, if one corrects it by beginning with a sufficiently
strong localistic hypothesis H. This may be useful to obtain a pedagogical
proof of Bell’s theorem (in a general sense), as in Ref. [23] for example, but
that should not be confused with Bell’s 1964 theorem, or its proof. In this
context, one could ask what assumption H Bell may, hypothetically, have
had in mind, which prompted him to give the motivating EPR argument,
even if he failed to articulate it, for whatever reason. Readers not interested

4In particular, there is no evidence to support the suggestion (Norsen, pers. comm.)
that Bell began with a general notion of locality, along the lines of local causality, and only
narrowed to this definition after he had established determinism via his EPR paragraph.
Bell’s statement of the locality hypothesis in the middle of that paragraph is exactly the
same as elsewhere in the paper.
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in this exploration may skip to Sec. 4.

3.3. Hypothetical hypotheses

In this subsection, I try to identify a localistic hypothesis H which is un-
ambiguous, is sufficiently powerful to make the EPR argument work, is not
tantamount to assuming D and L, and plausibly could have been held by
Bell in 1964. As we will see, even with this strictly limited aim, there are
difficulties (in particular due to the final clause) with all three candidates
that present themselves.

The first obvious candidate for H is local causality (LC), a notion which Bell
later embraced, as will be discussed in the following section. Although the
notion of LC had been formulated mathematically by the logician Boole as
early as 1854 (see Ref. [24]), and by the philosopher Reichenbach in 1956
[25], there is no reason to suspect that it was known to Bell in 19645. In
physics, the concept was developed incrementally, by Bell and others, in the
first half of the 1970s (see Sec. 4.1). The two papers which Bell references in
his EPR paragraph, Einstein’s autobiographical notes [16], and the paper on
the “Paradox of Einstein, Rosen, and Podolsky” (sic.) by Bohm and Ahara-
nov [18] both use the same sort of localistic notion Bell does, referring only
to the influence of the remote setting. The quote from Ref. [16] has already
been examined6 and will be further discussed below. The assumptions of
Ref. [18] are wholly implicit, but the only notion of locality there is in the
negative: a hypothetical nonlocal “hidden interaction” which “would have to
be instantaneous, because the orientation of the measuring apparatus {for

5Intriguingly [26], Reichenbach - whose “principle of common cause” for correlations
[25] is, given the axioms of Sec. 2.2, equivalent to LC [27] - had previously considered
(and dismissed) hidden variable theories in 1944. That he did not combine these areas of
knowledge to prove Bell’s 1976 theorem indeed “goes to show how subtle and deep was
Bell?s insight” [26].

6It must be admitted, however, that if Bell had chosen a different quote from Ref. [16],
viz. “the real situation of S2 must be independent of what happens to S1” - my emphasis -
then my case would not have been so clear cut; see Sec. 7.2 for the nuances of word choice
in this context. One should not read too much into Einstein’s diction in the quote in
this footnote, however. Writing about the same time on “quantum mechanics and reality”
[28], Einstein elevates the “principle of contiguity”, saying that without it empirical physics
would be impossible. Einstein’s definition of this principle is practically the same as the
other quote which Bell used to motivate his definition of locality: “{For} objects far apart
in space (A and B): external influence on A has no direct influence on B.”
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A} could very quickly be changed, and the spin of B would have to respond
immediately to the change.”

The second candidate for H is completeness, as EPR [29
defined it, or, rather, characterized it, using a web of several conditions, nec-
essary or sufficient as required; see Ref. [19] and Appendix A.3 of the current
paper. Furthermore, as shown there, the notion of completeness is sufficient
to derive a contradiction with the predictions of quantum mechanics, using
the arguments in Bell’s 1964 paper. The EPR paper was unquestionably
known to Bell, and he even entitled his paper “On the Einstein Podolsky
Rosen Paradox”. However, as just indicated, the EPR notion of complete-
ness is far from simple in logical terms, and there is no evidence that Bell
had a formal understanding of it. He makes no mention of any of the for-
mal criteria EPR introduce, and does not use “complete” in their technical
sense, talking, for example, of a “more complete specification of a state.” He
never quotes from the EPR paper [29], preferring Einstein’s less technical
notes [16], and in his prequel [2], the latter was his only reference for the
“Einstein-Podolsky-Rosen paradox.” Bell’s other inspiration in 1964, the pa-
per by Bohm and Aharanov [18], is even less formal than Ref. [16]. Despite
its title, it is disconcertingly disengaged from the EPR paper. It does not
avail itself of EPR’s terminology, mentioning neither “completeness” nor “re-
ality”, and ubiquitously gives the three authors? names in the wrong order.

The final candidate for H is the supposition Bell quotes from Ref. [16], al-
ready mentioned above. It is worth requoting it here:

Supposition 10 (No telepathy) The real factual situation of system S2 is
independent of what is done with the system S1, which is spatially separated
from the former.

(For the name of this supposition, see the quote below.) Now although Bell
seemed to indicate (twice) that this was equivalent to his definition of local-
ity, it is different in that it requires not that Bob’s result B be independent of
Alice’s setting a, but rather that the “real factual situation” of Bob’s system
be thus independent7. Einstein never states what qualifies something to be

7In this, Supposition 10 arguably has a similar relation to locality as per Definition 9
as does local causality to factorizability; see Sec. 4.1. For a couple of reasons, which this
footnote is too small to contain, I suggest “separability” as an appropriate name for the
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a “real factual situation”. With some thought, one can propose a strong but
reasonable formalization for this concept such that the assumption (which,
prior to the passage quoted here, Einstein makes explicitly) that systems
have real factual situations, plus the no telepathy supposition, has the same
force as local causality (see Criterion 11). However, there is no suggestion
of such a formalization in Ref. [16]. Nor does Einstein use it there to make
the argument that Bell wants to make, from predictability to determinism.
Even if Bell had worked out such a formulation from studying Einstein’s text,
Supposition 10 alone would not be strong enough to do its hypothetical role
in Bell’s EPR paragraph. As Bell would have known if he had made such a
study, Einstein readily admitted that the prior assumption mentioned above
is necessary:

One can escape from this conclusion [that statistical quantum
theory is incomplete] only by either assuming that the measure-
ment of S1 (telepathically) changes the real situation of S2 or by
denying independent real situations as such to things which are
spatially separated from each other. Both alternatives appear to
me equally unacceptable.

Leaving aside any hypothetical formulation of of Einstein’s “real factual sit-
uation” that could have worked for Bell, it is interesting to ask the question
whether Supposition 10 alone is violated by OQM (as Bell implies). Ein-
stein certainly argues in Ref. [16] that this is so, if, as “it appears to me”,
“one may speak of the real factual situation of the partial system S2” even
when one takes OQM to be complete. That is, in Einstein’s understand-
ing, the quantum state of S2, conditioned on measurements on S1, must be
a “real factual situation”. A ‘realist’ understanding of OQM does involve
such a physical collapse of the wavefunction, which requires specifying some
foliation of space-time and does indeed violate Einstein’s supposition. How-
ever strictly operational QM does not violate Supposition 10, because strict
operationalists do indeed operate “by denying independent real situations
as such”, as Einstein subsequently allowed. Thus even if Bell did have “no
telepathy” in mind for locality, his implication that OQM violates locality
would be incorrect, because OQM can be interpreted purely operationally.
It is also important to remember that, regardless of how one interprets it,
OQM satisfies locality as Bell actually expresses it, as per Definition 9.

exact analogue to local causality.
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4. Bell’s 1976 theorem

As mentioned above, Bell wrote another (i.e., in addition to Ref. [2]) review
of the “hidden-variable question” in 1971 [12], this time with the opportu-
nity to give his own result its due emphasis. With characteristic modesty,
he co-referenced his own 1964 paper with Refs. [30, 31], which closely fol-
lowed his own presentation, relying upon (deterministic) “hidden variables”
with the “locality” condition or assumption. As will be discussed below, the
presentation in Ref. [12] does show some evolution in Bell’s thinking, but a
clear conceptual advance is not to be found until his 1976 paper [4], where
he introduced the term “local causality” (LC).

Ref. [4] made use of the concept “local be able”, Bell’s term (introduced
in Ref. [32]) for elements of reality that were assumed to be localizable to
points, or at least small regions, in space-time. Many potential elements of
reality are not usually conceived this way - a quantum state, for example,
does not exist in space at all, but rather is defined on a space-like hyper-
surface [21]. As Bell himself said in 1981 [5], “These variables {(λ)} could
well include, for example, quantum mechanical state vectors, which have no
particular localization in ordinary space time.” However, one could, if one
wished, imagine that every point on that space-like hypersurface carries a
representation of the quantum state, and in that way one could construct
an ontology of the sort Bell wished for in 1976. Thus we can continue to
use Bell’s earlier notation of Ref. [1], to which he returned in his definitive
presentation on the subject [13], just before he died. The conceptual advance
which the notion of local beables prompted for Bell was to treat settings and
outcomes (and other, postulated, beables) on the same footing.

Thankfully, unlike the case for Ref. [1], it is not necessary to do a detailed
textual analysis to convince anyone of the premise Bell introduced in 19768

He first mentions the idea that theories of classical physics exhibit local de-
terminism. Being formulated in terms of beables, this is more general than
his considerations in 1964, but it certainly implies the joint premises of L&D
he made there. Then he says

8That said, one may become confused if one tries to follow his argument from his
equations and figures alone, since he introduces in his Eq. (2) the notion of local causality
as the statistical irrelevance of beable B, but applies it to his Eq. (5) as the statistical
irrelevance of beables M and B.
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We would like to form some notion of local causality, in theories
which are not deterministic, in which the correlations prescribed
by the theory, for the beables, are weaker.

Using the usual notation, Bell’s new concept can be characterized as follows:

Criterion 11 (local causality) A theory θ is locally causal, i.e., satisfies
local causality (LC), only if

Pθ(B∣A,a, b, c, λ) = Pθ(B∣b, c, λ) (4)

Note that this is a necessary criterion (‘only if’, not ‘iff’) because here Bell’s
general notion is applied only to the specific beables relating to hidden vari-
ables (λ) prior to some particular space-like hypersurface, and settings and
outcomes posterior to it.

The idea of local causality is that any events, such as A and a, which lie out-
side the past light cone of event B, are statistically irrelevant to B. Note that,
despite the presence of λ, there is no longer any assumption of determinism
here. That is, the concept of LC may apply even for non-deterministic the-
ories such as OQM. Indeed, when ρc is an unentangled state, there is always
an instance of OQM which satisfies LC. But for entangled states, (orthodox)
quantum mechanics is not locally causal, as Bell says as his 3rd section head-
ing of Ref. [4]. Moreover, using assumption (4), one can (and Bell does)
derive an inequality which contradicts quantum predictions, thus proving

Theorem 12 (Bell 1976) There exist quantum phenomena for which there
is no theory satisfying local causality.

To put it another way, “quantum mechanics is not embeddable in a locally
causal theory” [4].

It is unfortunate (for me writing this article, and for anyone reading of Ref.
[4] subsequent to his more famous 1964 paper) that, almost as soon as he
had introduced the term LC, Bell started using the term “locality” for the
same thing, referring to a “locality inequality” (for what everyone else calls a
Bell inequality) and the “locality hypothesis” in Ref. [4]. However, at least in
his final word on the subject [13], Bell showed his preference unequivocally.
Here Bell carefully discusses various answers to the question “what cannot
go faster than light?”, and when referring to the concept 11, he uses the term
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“local causality” at least 17 times, and the term “locality” only twice (in a
single paragraph discussing experiments which is rather disconnected from
the rest of the paper)9 Thus I believe it respects Bell’s intentions (and avoids
confusion when reading his pre-1976 papers) to use only the term LC for this
concept, and to ignore Bell’s occasional lapses in this regard.

4.1. Precedents for Bell’s concept of Local Causality

While Bell certainly introduced, and promoted, the term LC for the concept
11, there is a brief history, in the context of quantum phenomenology, of
similarly formulated mathematical conditions. In particular, in 1974 Clauser
and Horne introduced the notion of a “factored form” [33] of the joint prob-
ability distribution:

Definition 13 (factorisability) A theory θ is factorizable, i.e., satisfies
factorizabilty (F), iff

Pθ(A,B∣a, b, c, λ) = Pθ(A∣a, c, λ)Pθ(B∣b, c, λ) (5)

Equation (5) is mathematically equivalent to Eq. (4) (with the corresponding
equation for Alice of course). Clauser and Horne describe it as “a reasonable
locality condition” and an “extrapolation of the common-sense view that there
is no action at {a} distance.” They go on “{W}e call any theory in which it
holds an objective local theory.” A principal result of their paper is that “the
predictions of objective local theories and of quantum mechanics differ.”

On the basis of the above, one could argue that Theorem 12, which I have
called the 1976 Bell theorem, should be called the 1974 Clauser-Horne the-
orem. However, Bell considered his formulation to be more fundamental,
saying [13]

Very often ... factorization is taken as the starting point for the
analysis. Here we have preferred to see it not as the formulation
of “local causality”, but as a consequence thereof.

9He does however use, quite deliberately, the term “locally explicable” as synonym
for “locally causal” with reference to correlations. It would be a mistake to regard the
“explicable” here as inessential. The concept of LC is all about explaining correlations, as
Bell goes to great lengths to explain in Ref. [13] and elsewhere. The idea of “explaining”
correlations is formalized in Principle 25.
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In the sense that Bell defined local causality generally, in terms of beables
rather than outcomes and settings etc., Bell’s point is an important one.
Bell’s terminology is also to be preferred, as “locally causal” has a unique
associated noun (local causality), whereas “objective local”, comprising two
adjectives, does not, and instead suggests two separate assumptions, objec-
tivity and locality. The conceptual advance of Bell’s 1976 theorem lies in the
unitarity of the notion of local causality, so I believe it is appropriate to give
the credit to Bell.

As a final point, Clauser and Horne themselves say, in their footnote (15) to
the above quote, «The class of OLT ... is essentially the class of stochastic
hidden-variable theories “with a certain local character” considered by Bell
(Ref. 4).»Here Ref. 4 is Bell’s 1971 paper [12], so the credit for their theorem
arguably lies with Bell in any case. Indeed his 1971 paper gives the general
expression for a correlation function allowing (in a footnote) for “indetermin-
ism with a certain local character”. Using the notation of Sec. 2.1, Bell’s
expression is

⟨AB⟩a,b,c = ∫
Λ
dµθ(λ∣c)Āθ(a, λ, c)B̄θ(b, λ, c) (6)

where Āθ and B̄θ are some real-valued functions specified by the theory, which
give the average over local indeterminism not described by λ. Since a and
b can be arbitrary observables, including the identity, the above characteri-
zation does capture all possible statistics of the measurement results A and
B in a theory “with a certain local character”. This phrase is, unfortunately,
not fit to appear in a theorem, and Bell offers nothing better in Ref. [12].
Thus, again, it seems better to stick with Bell’s far more elegant notion of
LC, and to keep my nomenclature for Theorem 12.

5. Later Commentary by Bell

As noted in Sec. 3.2, with the benefit of hindsight, Bell represented the logic
of his 1964 paper [1] rather differently from how it appears to me. He had,
as mentioned in Sec. 4.1, considered “indeterminism with a certain local
character” in 1971, and in a commentary from 1972 [34] he wrote:

It can ... be shown that the quantum mechanical correlations
cannot be reproduced by a hidden variable theory even if one
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allows a “local” sort of indeterminism. For example, one could
imagine that the indeterminism might be introduced at every
space-time point and allowing the result of each throw to influence
physical events in the future light cone of the point in question.
This would not work: the quantum mechanical correlations are
too perfect to permit any such statistical slop. Popper remarks
{in a volume published in 1971} that he does not find this point
manifest in my own paper on the subject, but it is there - very
briefly.

Here Bell’s “own paper” is Ref. [1], and the implication is that Bell believed
he covered the «“local” sort of indeterminism »in that paper. Presumably
the “very brief” manifestation Bell has in mind is his argument from locality
as per Definition 9 to determinism via predictability - the incorrect argument
I discussed in Sec. 3.

In the concluding paragraph of his 1976 paper, Bell writes:

This paper has been an attempt to be rather explicit and general
about the notion of locality, along lines hinted at in previous
publications {[1, 12, 34, 32]}.

With regard to the later references, this quote is more than fair, as the
“certain local character” of Ref. [12] did capture the implications of the
notion of LC, as discussed in Sec. 4.1. With regard to Bell’s 1964 paper [1],
it is also true that the explicit notion of locality (L) used there was not as
general as LC. But the latter was hinted at only in so far as: (i) it is related
to (though much more general than; see Appendix A) the notions used by
EPR, to whom Bell attributes his pseudoderivation of D from predictability;
(ii) unlike Bell?s 1964 explicit notion (L), it does allow one to derive D from
predictability. Point (ii) is easy to show: If P (A∣a,B, b, c) = 1 or 0, then the
same must be true for all Pθ(A∣a,B, b, c, λ).10 But if we assume LC (Criterion
11) it follows that Pθ(A∣a, c, λ) = 1 or 0 also, which is |&D.

In any case, it seems that once Bell had explicitly defined LC, he wished all
previous localistic notions he had used, in particular the notion of locality

10Strictly, this need not hold for those λ such that dµθ(λ∣c) = 0, that is, for those λ
which never occur in the experiment. We are not concerned with such λ in definitions of
D, L, or LC.
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as per Definition 9, to be forgotten. Moreover, after a few years he became
convinced that it was the notion of LC that he had in mind all along. In
1981 Bell says (Ref. [5], text and footnote 10 stitched together)

It is important to note that to the limited degree to which de-
terminism plays a role in the EPR argument, it is not assumed
but inferred. What is held sacred is the principle of “local causal-
ity” - or “no action at a distance”.... There is a widespread and
erroneous conviction that for Einstein (and his followers) deter-
minism was always the sacred principle. (My own first paper on
this subject {[1]} starts with a summary of the EPR argument
from locality to deterministic hidden variables. But the com-
mentators have almost universally reported that it begins with
deterministic hidden variables.)

Thus, Bell implies in 1981 that both he and Einstein were always using the
notion of LC, which Bell characterizes later in this 1981 paper in the same
way (Criterion 11) as in 1976. As argued in Sec. 3, there is only one plausi-
ble reading of “locality” in Bell?s 1964 paper, and it is not LC. Nor did EPR
formulate such a general notion, Refs. [20, 22] notwithstanding.

Let this be absolutely clear: I am not accusing Bell or his followers of intel-
lectual dishonesty. Local causality is such an elegant notion that in hindsight
it is astonishing that it had to wait until 1976 (or at least 1974 [33]) to be
applied to quantum phenomena. If EPR had stated this assumption in 1935,
they could have used their example to formulate a far simpler argument
showing that OQM is an unsatisfactory theory (by their lights). Indeed, Bell
credits them with exactly this argument, in Sec. 6.8 of Ref. [13]11. Fur-
thermore LC seems to me a more natural localistic notion than L, as will be
discussed in Sec. 8. The fact that Bell thought, mistakenly, that one can ob-
tain determinism from locality (as defined by him in 1964) suggests strongly
that he already had then an intuitive localistic notion (e.g., “no action at a
distance” [5]) that was different from, and stronger than, L. From personal
experience I know that it is easy to forget, after a decade or two, the details
of a published argument, and to remember the intuitive idea which in fact
only crystalized in one?s mind later. I have no doubt that anyone familiar

11Of course EPR would not necessarily have embraced the name LC in this context be-
cause their aim was to prove the incompleteness of OQM. That is why they built localistic
notions into their definition of completeness; see Appendix A.2.
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with Bell’s later work could have educed from Bell in 1964 the precise notion
of LC in Criterion 11, with little effort on either?s part. But hypotheticals
do not alter history, and the theorem Bell proved in his 1964 paper is not the
same as Theorem 12 from 1976.

6. Related Theorems

The interpretation of Bell’s theorem has generated a large literature. In
this section I briefly review some of the results that will be relevant to my
Discussion section.

6.1. Fine

As discussed above, Clauser and Horne in 1974 [33] recognized that factor-
izability (5) - which is a consequence of LC - is no more general than Bell’s
1971 “certain local character” [12]. And in that paper Bell noted that the
same formula (6) applied to correlations under this constraint as under the
constraint of L&D. That is,

Theorem 14 (Fine 1982) A phenomenon respects LC iff it respects L&D

Note that this theorem is not saying that LC and L&D are logically equiva-
lent concepts. Recall that there are theories that satisfy LC but that do not
satisfy L&D, such as OQM for product states.

I call the above Fine’s theorem, even though his paper [9] came much later
than the above, because it was he who focussed attention on it, rather than
burying it in footnotes, as in Refs. [33, 12]. Fine refers to “factorizable
stochastic models” (i.e. F of Definition 13) rather than to LC, but in terms
of the observable events they are equivalent. Fine duly credits Clauser and
Horne [33] with Theorem 14, but also establishes it directly, for the case of
two settings per party, each with two outcomes [9]. The ‘if’ part of Theo-
rem 14 is trivial, since L&D implies F. But F does not imply L&D, so the
non-triviality is in the ‘only if’ part. For a general proof, see Appendix A of
Ref. [35]. The basic idea, as in Ref. [12], is that in a factorizable theory, any
stochasticity can be reproduced by additional deterministic hidden variables
that may be assumed to reside locally.
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6.2. Jarrett / Shimony

Fine’s theorem showed that, in terms of its experimental consequences, LC
might as well be thought of as L&D. Not long after, Jarrett [36] showed that
LC is in fact logically equivalent to a subtly different conjunction. He (and,
independently, Shimony [37]) introduced a new concept,

Definition 15 (Jarrett-completeness)A theory satisfies Jarrett-completeness
(JC) iff

Pθ(B∣A,a, b, c, λ) = Pθ(B∣a, b, c, λ) (7)

Using this he proved

Theorem 16 (Jarrett 1984) Factorizability (or “strong locality” [36]) is
equivalent to the conjunction of:

(i) Locality12, also known as “parameter independence” [37].

(ii) Jarrett-completeness, also known as “outcome independence” [37].

The corollary, via Theorem 12, is

Corollary 17 (Bell 1976 as L&JC)Quantum phenomena violate either
locality, or Jarrett-completeness.

Here my theorem-naming convention indicates that Bell’s 1976 argument
would have gone through with the assumptions of L&JC rather than the as-
sumption he did make there (LC); the same convention applies to Theorems
22, 23, and 34 below.

Orthodox quantum mechanics of course satisfies L but violates JC, while de-
terministic hidden-variable theories (such as Bohm’s theory [17]) satisfy JC
but violate L. Thus the options presented by Theorem 17 (Jarrett’s version
of Bell 1976) are resolved in the same way as in Theorem 7 (Bell 1964) for
these two leading approaches to QM (of those that satisfy the axioms of Sec.

12Jarrett [36] agrees with Definition 9. So does Howard [38]. But the latter uses the term
“separability” for Jarrett-completeness, a usage which for me is not intuitive, and which has
not caught on. Recall that Bell used the terms “separable” and “local” interchangeably in
his earliest papers. One might be tempted to call Jarrett-completeness “causality” because
of Theorem 16 (since factorizability amounts to local causality here) but it is clear that
these concepts are already overloaded with proposed names.
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2.2). This is not surprising because JC can be thought of as a weak version
of determinism:

Lemma 18Determinism implies Jarrett-completeness.

Shimony [37] called the violation of L “controllable nonlocality”, which is per-
haps fair enough. However it is another matter to state that such violations
“provide (at least in principle) the means for superluminal signal transmis-
sion,” as does Jarrett [36] (and also Shimony [39]). For example, although
Bohm’s theory violates locality, its statistical predictions are identical to
OQM, and so it does not allow superluminal signalling. This is because the
value of a particle?s position (a hidden variable in Bohm’s theory) cannot be
known to a macroscopic agent any better than in OQM. In some approaches
to Bohm’s theory [40] - although not others [41] - this lack of knowledge is
inevitable. It is only for operational theories that locality is the same as
signal-locality,

Definition 19 (signal-locality)A phenomenon respects signal-locality [42]
iff f(B∣a, b, c) = f(B∣b, c)

See Ref. [43] for further discussion of the distinction between L and signal-
locality.

It is important to note, again contra Jarrett [36], that only signal-locality
is an absolute “requirement of relativity theory”, which can be seen as fol-
lows. Let us assume, in addition to Axioms 1-4, Principle 6, for manifest
causal efficacy. Now since Definition 19 involves relative frequencies, any
violation of signal-locality would mean, by Principle 6, that a is a cause for
B. But because a is not in the past light-cone for B, Principle 5 (Einsteinian
relativity), would be violated. By contrast, if a theory violates L, but not
signal-locality, these assumptions do not entail that a causes B, because the
phenomenon exhibits no dependence of B on a. Hence there is no conflict
with Einsteinian relativity. I will revisit this point in Sec. 7.3.

Jarrett naturally calls JC merely “completeness”; I have prepended his name
because this concept is neither implied by, nor implies, EPR-completeness,
Com(θ), as I have analyzed it (see Appendix A.2). In Jarrett’s defense, how-
ever, one can relate them with only a weak additional assumption as follows.
First I will define
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Definition 20 (weak locality) A theory satisfies weak locality (WL) iff

Pθ(B∣a, b, c, λ) ∈ {0,1}⇒ Pθ(B∣a, b, c, λ) = Pθ(B∣b, c, λ) (8)

That is, if, for some values of its arguments, there exists a functionBθ(a, b, c, λ),
then that function does not depend upon a. The terminology “weak locality”
may be justified by the fact that Jarrett’s “strong locality” (i.e., LC) implies
locality, which in turn implies weak locality. Furthermore, just as locality
can be motivated from Einstein’s Principle of relativity using a certain no-
tion of causal efficacy (see Sec. 7.3), weak locality can be motivated using a
weaker notion of causal efficacy, in which a causes B in a theory only if B is
determined by a (nontrivially) and the other variables in the theory.

Given Definition 20, it is not difficult to show (see Appendix A.4) that

Theorem 21If EPR-completeness implies X, then Jarrett-completeness plus
weak locality implies X.

(Indeed, it could be argued that weak locality is one of the localistic notions
that EPR implicitly assume; see Appendix A.2.) A corollary of this, via
Theorem 34, is

Corollary 22 (Bell 1964 as WL&JC) Quantum phenomena violate either
weak locality, or Jarrett-completeness.

Note that the joint assumption of weak-locality and Jarret-completeness does
not imply LC. Thus, this version (Theorem 22) of Bell’s 1964 theorem, un-
like Bell’s original version, does not have stronger premises than Bell’s 1976
theorem. That is, it is not subsumed by Theorem 12 (using LC) in the way
that Theorem 7 (using L&D) is. The same remarks also apply to Theorem
34.

Like Theorem 34, the statement of Bell’s 1964 theorem as 22 can only be
proven for quantum phenomena with perfect correlations (as Bell assumed
in 1964). Thus it does not say anything about phenomena that are experi-
mentally accessible; see Appendix A.3 for details. This shortcoming in the
theorem can be removed by strengthening WL to L (giving Theorem 17), or
JC to D, giving

Corollary 23 (Bell 1964 as WL&D) Quantum phenomena violate either
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weak locality, or determinism.

I call this a version of Bell’s 1964 theorem because D&WL ⇔ D&L (even
though only L ⇒ WL). In fact one might deem Bell’s characterization of
locality in Ref. [1] to be too imprecise to distinguish between L of Definition
9 and WL of Definition 20, but to avoid further terminological complication
I will not pursue that line of argument.

7. The Two Camps

As stated in the Introduction, those who think about the implications of
Bell’s theorem, (physicists, philosophers, and, increasingly, information sci-
entists), and who accept Axioms 1-4, can broadly be grouped into two camps:
operationalists and realists. Note that these Axioms rule out: relativist ap-
proaches such as Everett’s relative state interpretation [44] (popularly known
as the many worlds interpretation [45]); giving up free choice (albeit maybe
to only a modest degree [46]), which Bell called “superdeterminism” [13];
ubiquitous wormholes [47]; and retrocausal ideas [48, 49].

7.1. Operationalists

The operationalist attitude is particularly common among quantum informa-
tion theorists, and is well represented by this quote from a recent text-book
[50]:

{To derive Bell?s theorem, we} now make two hypotheses about
the behavior of the composite system:

Hidden variables. We assume that the results of any mea-
surement on an individual system are predetermined. Any
probabilities we may use to describe the system merely re-
flect our ignorance of these hidden definite values, which
may vary from one experimental run to another.
Locality. We assume that Alice’s choice of measurement
does not affect the outcomes of Bob’s measurements, and
vice versa.

As we have seen, these two hypotheses more or less capture the
point of view advocated by EPR.
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Note that Schumacher and Westmoreland use exactly the same terminology
(hidden variables, predetermined, and locality) as Bell’s 1964 paper, and I
think their presentation very fairly captures the definitions in that paper. As
for its implication, they state

From a philosophical point of view, Bell’s theorem and the ex-
perimental confirmation of quantum theory constitute one of the
most remarkable results in all of physics. The dual hypotheses
of hidden variables and locality have a pretty good claim to the
“common sense” view of the world. Nevertheless, at least one of
them must be wrong.

Another famous quantum information text-book with a similar presentation
is Ref. [51]. Showing some appreciation of the literature, they say

Vast tomes have been written analyzing ... the subtly different
assumptions which must be made to reach Bell-like inequalities.
Here we merely summarize the main points.

But their summary is very similar to that of Ref. [50]. In place of “hidden
variables” or “predeterminism” they state

The assumption that ... physical properties ... have definite val-
ues ... which exist independently of observation. This is some-
times known as the assumption of realism.

Having then stated the locality assumption (practically identically to Ref.
[50]), they go on:

These two assumptions together are known as the assumption of
local realism. They are certainly intuitively plausible assumptions
about how the world works, and they fit our everyday experience.
Yet the Bell inequalities show that at least one of these assump-
tions must be incorrect.

It is worth making a few remarks about this terminology. “Local realism” is
certainly a common term these days for what Bell experiments disprove. As
far as I can tell, it was introduced by d’Espagnat in 1979 [52], although it
is reminiscent of the term “objective local” used by Clauser and Horne [33].
However, the term “realism” was never used by Bell, and is generally used
synonymously with (pre)determinism, as Mermin (another early proponent)
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admits [53]. It is because of this that I have called Axiom 1 - the independent
existence of detectors and results - “macroreality”. (For further discussion of
the infelicity of “local realism”, see Ref. [54].) By my casual observation,
“realism” is used more often by those who see it as the obvious hypothesis to
reject, such as Nielsen and Chuang [51]:

Most physicists take the point of view that it is realism that must
be dropped from our worldview in quantum mechanics.

Because operational QM satisfies locality, it is natural for operationalists to
advocate holding to locality, and rejecting the second assumption required
for Bell’s 1964 theorem. Nevertheless I find it a surprising development
in the language surrounding Bell’s theorem, that this second assumption
should often be called “realism”. The usual philosophical meaning of “realism”
is the belief that entities exist independent of the mind, a worldview one
might expect to be foundational for physical scientists. However, there is an
influential sub-community of operationalists, the most vocal among which go
by the name of QBists (Quantum Bayesianists), who reject precisely that,
saying [55] “reality differs from one agent to another.” For QBists, reality
means the experience of a single agent, and they dismiss Bell’s theorem by
emphatically rejecting Axiom 1 (macroreality). Each QBist believes in his
own reality, but refuses to

assign correlations, spooky or otherwise, to space-like separated
events, since they cannot be experienced by any single agent.
Quantum mechanics is thus explicitly local in the QBist interpre-
tation.

As Louis XIV might have said, «L’état quantique, c’est moi.»

7.2. Realists

Since operationalism, taken to its logical extreme in QBism, is anti-realist
in all senses of the word, it seems appropriate to use the term “realists” for
those at the other end of the spectrum in the debate on the meaning of Bell’s
theorems. This camp, in which we can locate Bell himself, even if he was
never so dogmatic as some [20, 21, 22], is characterized by two convictions:
(1) that correlations need to be explained (Bell [5] calls this nothing less than
“the scientific attitude”); (2) that nature should have a unified description,
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in which anthropocentric notions such as “detector settings” should play no
fundamental role.

Despite the name I have given it, the realist camp does not advocate that
one should cleave to “reality” [51, 53] (that is, determinism, also expressed
as “hidden variables” [50, 7]) and spurn the locality of Definition 9. Rather,
its members generally read Bell’s theorem as requiring (in addition to the
axioms of Sec. 2.2) only a single assumption [20, 21, 22], and often explicitly
reject the two-assumption formulation of the operationalist camp. A quote
from the textbook of Maudlin [21] (p. 19) will suffice:

Bell himself derived the result as part of an examination of so-
called local hidden-variable’s theories {which add} parameters
whose values determine the results of experiments. Bell’s results
are therefore sometimes portrayed as a proof that local determin-
istic hidden variables theories are not possible.

This is a misleading claim. It suggests that the violation of the in-
equality may be recovered if one just gives up determinism or hid-
den variables. But as we have seen, the only assumption needed
to derive the inequality is that the result of observing one parti-
cle is unaffected by the experiment carried out on the other ... a
condition which is generally called “locality”.

At first sight this seems in blatant conflict with the operationalist camp who
claim that an additional assumption to locality, which I would call deter-
minism, is necessary to derive Bell inequalities. But on closer inspection,
Maudlin’s definition of locality is subtly different. It refers not to the effect
of “Alice?s choice of measurement” [50], but to Alice’s “experiment” (or, a few
pages earlier, Alice’s “observation”) which presumably includes the outcome
she gets as well as her choice of measurement. That is, by “locality”, Maudlin
means “local causality” as introduced by Bell in 1976.

The preference for the 1976 theorem was Bell’s own, as already noted, and
the Conclusion to his final paper on the matter expresses the realist view
well [13]:

The obvious definition of “local causality” does not work in quan-
tum mechanics, and this cannot be attributed to the “incomplete-
ness” of that theory. ...
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Do we then have to fall back on “no signalling faster than light” as
the expression of the fundamental causal structure of contempo-
rary theoretical physics? That is hard for me to accept. For one
thing we have lost the idea that correlations can be explained ....
More importantly, the “no signalling {faster than light}” notion
rests on concepts which are desperately vague, or vaguely appli-
cable. The assertion that “we cannot signal faster than light”
immediately provokes the question

Who do we think we are?

Bell clearly expresses the two tenets of the realist camp, as listed in the first
paragraph of this section, but here gives greater weight to the second. While
“no signalling faster than light” is not the same as locality (see Sec. 6.2), the
objection to using anthropocentric concepts (i.e., actions by agents) as the
basis for physical theory applies equally to both.

The important point is that the notion of LC does not rely on action by
agents: a theory could violate LC with no agent choice at all. For example,
consider a single quantum particle in a pure state split between two boxes,
one sent to Alice and the other to Bob. Then simultaneously (by some
foliation) they open the boxes, and observe whether the particle is there
or not. Clearly their observations will be perfectly correlated (the particle
is seen by one and only one of them) but in OQM there is no variable λ
that factorizes the joint probability distribution as per Eq. (5); there is no
variable that determines which box the particle will be found in. Thus OQM
can be shown to violate LC without measurement choice. (This is sometimes
known as the “Einstein boxes” argument [56].) The subtlety of Bell’s insight
is that the only phenomena that violate LC do require agency (free choice of
settings).

7.3. Irreconcilable differences?

If one has ambitions to reconcile these two camps, then first one must un-
derstand the reasons for the differences between their presentations.

The first, and perhaps most important, difference is in terminology, as I have
already discussed. As I have shown, exemplars in Bell’s writings exist for
both, competing, notions for “locality”. The operationalist camp use it as
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Bell used it 1964 and a few subsequent papers, and the realist camp as he
used it, occasionally, from 1976 onwards, as a synonym for LC. The second
difference is that the two camps then, as expected, state Bell’s theorem as
Theorems 7 and 12 respectively.

Being followers of Bell, the realist camp must be aware that, from 1976
onwards, Bell used the term “local causality” in preference to “locality”, es-
pecially in formal expositions. While some prominent realists sometimes
promote Bell’s preferred term [23], it is more common to see “locality” used
for LC. For example, the above quote from Maudlin’s 1994 book [21] is un-
changed in the 2011 edition, while I must admit that in an earlier work [57]
I mentioned “local causality” only to say that it was “often abbreviated to
locality,” which I thereafter used. Presumably this substitution is made be-
cause “locality” is (a) shorter and thus more memorable, (b) a single word
and thus not able to be confused with a dual concept; and (c) simpler and
thus suggestive of a natural concept. My present stance is that these advan-
tages do not outweigh the disadvantages: (1) it disregards Bell’s final and
most thorough communication on the subject [13]; and (2) it makes it appear
as if the two camps are in disagreement over basic logic, when in fact that is
not the case.

The realist camp might object along these lines: «Why should we change
our terminology? Let the operationalist camp use the phrases “parameter
independence” [37] or “setting independence” if they need a term for such
an unnatural notion.»There are two answers to that. First, the operational-
ists (being, by nature, primarily interested in the applications of quantum
mechanics) are generally less well read in the metaphysics of Bell’s theorem,
and are less likely to be familiar with such alternate phrases. Second, the
one piece of literature everybody reads (or at least references) with regards
Bell’s theorem is his 1964 paper, and there the operationalist (or indeed any-
one without the “benefit” of hindsight) will read Definition 9 for “locality” in
Bell’s words no fewer than four times, as well as a similar concept in Ein-
stein’s words.

For the operationalist, locality is a natural assumption because OQM re-
spects it, and because it follows from the assumptions of Sec. 2.2, if one
strengthens Principle 6 to the (still reasonable)
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Principle 24 (causal efficacy) If, in a theory, an event is statistically de-
pendent on a freely chosen action, then, in that theory, that action is a cause
of that event.

Holding to this principle would be, as far as I can tell, the simplest way for
the operationalist camp to justify L from relativity (Principle 5), and thereby
conclude, from Theorem 7 (Bell 1964), that D must be violated.13 While re-
alists would not necessarily reject Principle 24, they would not see it as an
appropriate one for fundamental analysis of the physical world, because of
the central role of the “freely chosen action” in it (see the extended quote
from Bell in the preceding section).

The challenge for the the operationalist camp is to recognize that there is
another localist notion (I speak of LC of course) which OQM does not re-
spect, and which is not only meaningful, but which also follows from the
assumptions of Sec. 2.2 (with or without Principle 6), if one holds to an-
other reasonable principle:

Principle 25 (common cause [25]) If two events with no direct causal
relation are correlated, then they have a common cause κ, such that condi-
tioning on κ will eliminate the correlation. This is so even if the correlation
is already conditional, as long as the conditioning events are potential causes
for one or both events.

The significance of specifying an event (say p) to be a potential cause of an
event (say e) in the above principles is that, by Axiom 3, p cannot be in
the future light cone of e, and if Principle 5 is also assumed then p must be
within the past light cone of e. Just as local causality ⇒ locality ⇒ signal
locality, we have for these principles that common cause⇒ causal efficacy⇒
manifest causal efficacy. The less obvious (the first) of these implications can
be seen as follows. If an event A is statistically dependent upon a free choice
a, that means that they are correlated. Now a is uncaused, so by Principle
25 the only option is that a causes A, as in Principle 24.

13Alternatively, since signal-locality is a matter of fact about quantum phenomena (and
the world, as far as we know), it would presumably be possible to derive L using some sort
of “no fine-tuning” Principle (i.e., that the causal structure of the theory should not change
under small changes in the probability distribution for the hidden variables). There is a
similar argument deriving LC from signal-locality, Reichenbach’s Principle 25, and “no
fine-tuning” [58].
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For the realist camp, Principle 25 is fundamental (correlations need to be
explained), and is used implicitly to motivate LC (rather than L) from rel-
ativity. Thus, since Theorem 12 (Bell 1976) rules out LC, members of the
realist camp would typically reject Principle 5. That is, they would allow
space-like causal influences, as long as they respect Axiom 3 according to
some foliation of space-time. As an aside, it seems to me that, for this pur-
pose, one could use, in place of Principle 25, the rather simpler

Principle 26 (sufficient causes) The probability of an event, conditioned
on all its actual causes, is unchanged if further conditioned on other events
that are potential causes.

To close, the above challenge to operationalists evokes a third reason the
realist camp should not try to own “locality”: (3) by using “local causality”
and referencing Bell’s 1976 paper, realists might induce operationalists to
read something else by Bell, and to appreciate the power of Criterion 11
and Theorem 12. That said, operationalists would still not be compelled to
accept space-like causal influences, as they could follow Ref. [27] and reject
Principle 25 (common cause) rather than Principle 5 (Einsteinian relativity).
This is simply a sophisticated way of saying that operationalists could still,
in Bell’s words [59], “shrug off a correlation.”

8. Discussion

Bell’s theorem is the most profound ramification of quantum theory that
has been experimentally confirmed. In this paper I have presented several
different formulations of it: Theorems 7, 12, 17, 22, 23, and 34. However,
I would argue that there are only two essential forms with which quantum
physicists should be familiar, corresponding to the two Bell’s theorems of
my title, Theorem 7 (Bell 1964), and Theorem 12 (Bell 1976). Even though
either theorem implies the other, the two have independent roles in quantum
foundations, as the expressions of Bell’s insight preferred by operationalists
and realists respectively.

Of these I side with the realists in thinking that Bell’s 1976 theorem is the
more important. The assumption of local causality is strictly weaker than
the assumption of locality and determinism, so Bell’s 1976 theorem subsumes
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Bell’s 1964 theorem. Also, the notion of local causality seems to me the
most natural expression of the spirit of special relativity for statistical theo-
ries: that, given a complete (within the theory) specification of the physical
situation prior to Alice’s and Bob’s choices of measurement settings, Alice’s
outcomes are statistically independent of space-like separated events (such as
Bob’s choice and his outcomes). Then, as Bell proved, “quantum mechanics
is not locally causal and cannot be embedded in a locally causal theory” [4].
That is, orthodox quantum mechanics violates local causality, and adding
hidden variables cannot alleviate the problem.

I have argued strongly (in Secs. 4 and 7.3) for using the term “local causality”,
not “locality”, in this statement of Bell’s theorem for two principal reasons.
First, it follows the formal definition Bell proposed in 1976 [4], and the usage
he promoted in his ultimate presentation [13]. Second, and more impor-
tantly, it is necessary to avoid the confusion (and even hostility) which can
arise when people read Bell’s 1964 paper - or other seminal papers such as
Refs. [30, 60, 61, 36] - and see there “locality” defined in a weaker (i.e. less
general) sense, in which Alice’s outcomes are required only to be statisti-
cally independent of Bob’s choice of measurement settings. Another reason
to endorse the terminology “local causality” is that, under Axioms 1-4 and
Einsteinian relativity (Principle 5), local causality is simply the expression
of Reichenbach?s “Principle of common cause” [25], Principle 25.

If (as I am advocating) Bell’s promulgation of the term “local causality”
should be respected, then why not also his abandonment of his earlier notion
of locality? Unfortunately for Bell, one cannot choose which contribution
one will be remembered for. Bell’s 1964 paper is, and probably always will
be, the most famous of his papers, the one to which new researchers in the
field will turn as a primary source. It is thus hard to argue that “locality” as
per Definition 9 should not be taken seriously as a concept when it played
such a foundational role. Also, locality can be derived from assumptions 1-
5, together with the reasonable Principle 24 which I have tentatively called
“causal efficacy”.

Bell’s 964 theorem - that quantum phenomena are incompatible with either
locality or determinism - is naturally favored by operationalists because op-
erational quantum mechanics does respect locality, leaving determinism as
the obvious assumption to forgo. Rather than determinism (or “hidden vari-
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ables” or “realism”), some have suggested a weaker assumption (see Sec. 6.2)
which can be combined with locality in order to derive a contradiction with
the predictions of quantum mechanics (Theorem 17). I do not believe such
formulations shed much light beyond Bell’s original formulation, any more
than I believe Theorems 23 (replacing locality with a weaker assumption) or
22 (replacing both locality and determinism with weaker assumptions) do.

For operationalists, Bell’s 1964 theorem is not only more natural, it is also
more useful, in the following sense. As an operationalist, one is interested
only in theories in which the hidden variables (λ) are, in principle, knowable
to some agent. Such theories must be local if signal locality is to hold even
when the knowledge of all agents is taken into account. Similarly, such theo-
ries must be deterministic if the measurement outcomes are to be predictable
when taking into account the knowledge of all agents. Thus, if one believes
in signal locality as a matter of principle, then Bell’s 1964 theorem implies
that quantum phenomena must be unpredictable in principle [62]. (See Ref.
[63] for a more formal presentation.) In information science, guaranteed un-
predictability or randomness is a valued resource for numerical algorithms
and security protocols [64]. It is thus of interest that a Bell experiment can
be turned into a protocol that generates (or, rather, expands) randomness,
certified by the principle of signal-locality [64]. Moreover, because Alice’s
and Bob’s results are correlated in Bell-type experiments, it is possible, in
principle, to use them to obtain secret shared randomness between distant
parties, which is even more valuable, enabling communication with security
guaranteed by signal locality [65]14.

While distributing a secret key is the most important proposed application of
Bell’s inequalities, there are more specialized applications of quantum corre-
lations that are, in themselves, a proof of violation of local causality, without
statements about secrecy being required. In particular, there are protocols
- such as those enabling teams of accused robbers [67] or crooked accoun-

14In fact, other assumptions are also necessary to guarantee security, in particular that
neither Alice’s nor Bob’s laboratory inadvertently leaks any kind of information. The
proof in Ref. [65] requires perfect correlations (as do the protocols in the subsequent
paragraph), but the idea can be applied in quantum key distribution even with imperfect
correlations, as follows. If one assumes the correctness of quantum mechanics (a strictly
stronger assumption than signal locality), then violating a Bell inequality may allow the
distribution of a secret key without Alice or Bob having to trust the entanglement source
or their detectors [66]. Similar results apply for randomness expansion [64].
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tants [68] to lie to their interrogators without fear of discovery - in which
all correlations are perfect15, and the appearance of predetermination is so
strong that it is hard not to feel that they must be nonlocal. Nevertheless,
according to the terminology I recommend, neither of Bell’s theorems allow
us to conclude that quantum phenomena are nonlocal, taking that word to
mean the negation of “local”.

In conclusion, for a proper appreciation of the foundational importance of
Bell’s theorem to physics, information science, and the philosophy of cau-
sation, one should be familiar with both the 1964 Bell?s theorem and the
1976 Bell?s theorem, even though they are logically equivalent. The former
proves that quantum phenomena are either nonlocal (in a “causal efficacy of
agents” sense) or undetermined, while the latter proves that quantum phe-
nomena violate local causality (in a “common cause for correlations” sense).
For those who prefer the latter theorem, as Bell ultimately did, and who
find the verb phrase “violate local causality” lacking in pith, I make one final
terminological suggestion, regarding a pre-existing term:

Definition 27 ‘Bell-local’ is an acceptable synonym for ‘locally causal’, and
‘Bell-nonlocal’ for its negation.

This usage has a long history (going back at least to 1981 [70], in the neg-
ative) and is still very much current (see e.g., the review [71]). It is not a
term which Bell would ever have used, and, because of Bell’s inconsistent use
of “locality”, it risks confusing unwary readers of the ‘historical’ literature on
Bell-nonlocality16. But, on the positive side, it is surely a term of which the
latter-day Bell would have approved.
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Appendix A. EPR, Completeness, Bell’s Theorem, and Weak Lo-
cality

In this Appendix, I summarize the formalization in Ref. [19] of the criteria
used by EPR [29]. The purpose of this material is three-fold. The first is
to explain how, at least on my reading of EPR, Bell’s 1964 theorem can be
thought of as a proof that no theory of quantum phenomena can be complete.
Thus, EPR’s completeness is a candidate for Bell’s imagined hypothesis H
in his 1964 paper. The second is so that the reader will appreciate how
subtle EPR-completeness is. This is to explain, in part, why it is implau-
sible to imagine that Bell had this concept in mind. The third is to relate
EPR-completeness to Jarrett-completeness, which forms the last part of the
Appendix. This Appendix draws some of its material directly from Ref. [19].

Appendix A.1. Preliminaries

To connect the formalism of Bell’s papers to the language of EPR, it is nec-
essary to talk of systems. To give this an operational meaning (that is, one
grounded in macroscopic events), assume that events a and A are locatable
within a space time region α which is disjoint from another region β con-
taining b and B. We can then identify Alice’s and Bob’s systems with α and
β, respectively. While EPR (surprisingly) never mention spatial separation
of their systems (let alone space-like separations) they do assume that their
systems are “no longer interacting”. For ease of comparison with Bell’s work
I will take this to hold because they are space-like separated.

EPR also refer to physical quantities pertaining to systems α and β. I will
denote these by â ∈ Pα and b̂ ∈ Pβ. I use a hat because in quantum mechanics
physical quantities are represented by operators, but there is no implication
here that quantum mechanics must be correct. Because there are many ways
to measure a physical quantity, â is associated with an equivalence class of
settings: a ∈ Sâ, and similarly for b̂ and b. In what follows, unless otherwise
specified, the symbol ∀a is to be understood as meaning all possible a; that

38



is, ∀a ∈ Sâ for some â ∈ Pα; and likewise for b, A, and B, mutatis mutandis17.
I will assume that c is fixed throughout.

Appendix A.2. Completeness

As with most of the concepts they introduce, EPR explain completeness
reasonably precisely:

{T}he following requirement for a complete theory seems to be a
necessary one: every element of the physical reality must have a
counterpart in the theory.

Here, and - except where noted - below, the italics are as in the original.
From a careful examination of EPR’s text [19], one finds that their criterion
for completeness, for a theory θ, should be expressed using formal logic as
Criterion 28 (EPR-completeness)

Com(θ)⇒ [∀ b ∈ Pβ,EPR(b̂∣c)⇒Repθ(b̂∣c)]

Here I have used Repθ(b̂∣c), standing for ‘is represented’, to denote EPR’s
concept that b̂ “has a counterpart” in theory θ, and EPR(b̂∣c) to mean that
the property b̂ is an ‘element of physical reality’.

EPR do not actually define what it means for b̂ to ‘have a counterpart in the
theory’, but I think it is uncontroversial to take it to imply that the outcome
of any measurement of b̂ is determined in the theory:

Criterion 29 (Representation in the theory)

Repθ(b̂∣c)⇒ ∀B, b, λ,Pθ(B∣b, λ, c) ∈ {0,1}

In other words, Repθ(b̂∣c) implies that there exists a function Bθ(b, λ, c).
Note that saying this is strictly stronger than saying that a measurement of b̂
has predetermined outcomes, which would allow for a functional dependence
on a, the measurement setting for the other system: Bθ(b, a, λ, c). For an
explanation as to why EPR cannot have intended a to appear as an argument
in their notion of representation in the theory, see Ref. [19]. However, this

17with the necessary changes having been made
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explanation does not actually rule out the alternative criterion where the
consequent in Criterion 29 is replaced by

∀a,B, b, λ,Pθ(B∣a, b, λ, c) ∈ {0,1}

Interestingly, adding the assumption of weak locality, as per Definition 20 in
Sec. 6.2, would immediately transform this alternative criterion into Crite-
rion 29.

Regarding elements of physical reality, EPR give the following sufficient cri-
terion:

If, without in any way disturbing a system, we can predict with
certainty (i.e., with probability equal to unity) the value of a phys-
ical quantity, then there exists an element of physical reality cor-
responding to this physical quantity.

To enable a non-disturbing measurement on β they consider an indirect mea-
surement (i.e., a measurement on the other system α), so formally we have:

Criterion 30 (Element of Physical Reality)

EPR(b̂∣c)⇐ ∃a ∶ [¬Dist(β∣a, c) ∧Pre(b̂∣a, c)]

Here Dist(β∣a, c) means that the measurement a disturbs the system β, while
Pre(b̂∣a, c) means that the measurement a makes the value of b̂ predictable.

Like representation, predictability can be defined uncontroversially:

Definition 31 (Predictability)

Pre(b̂∣a, c)⇔ ∀B, b,A, f(B∣A,a, b, c) ∈ {0,1}

Note the use here of the operationally determined relative frequencies f , not
the theory probabilities Pθ - this is what differentiates predictability from
determinism; see e.g., Ref. [63]. The second new notion - disturbance - is the
most problematic in EPR’s paper, and it was the notion of disturbance which
for Bohr [72, 73] was the key to refuting EPR, as he rejected their notion
and proposed his own, clearly stated, sufficient condition [19]. Regardless of
how EPR understood disturbance intuitively, it is apparent from the form of
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their argument that they thought it obvious that a measurement on system α
would not disturb system β if the systems were no longer interacting. Since
throughout we are taking α and β to be space-like separated, no disturbance
is (for EPR but not for Bohr) a property of all indirect measurements:

Assumption 32 (No Disturbance)

∀a,¬DistEPR(β∣a, c)

Appendix A.3. From Completeness to Bell’s Theorem

If we accept the criteria given by EPR as set out above, and EPR’s assump-
tion 32, we can follow EPR’s argument to conclude that

Com(θ) ∧ [∃a ∶ Pre(b̂∣a, c)]⇒Rep(b̂∣c) (A.1)

As noted above, Rep(b̂∣c) is equivalent to the local predetermination of
all outcomes B, which is what Bell claimed to have derived in 1964 from
the assumption of locality. Here we see that Com(θ) works, where locality
does not. Clearly EPR-completeness involves localistic notions, in the func-
tional dependencies of Rep(b̂∣c) and EPR(b̂∣c) and in the assumption that
¬Dist(β∣a, c), but EPR never explicitly appeal to locality as defined by Bell
in 1964, or to local causality as defined by Bell in 1976. At the end of the
paper, EPR entertain, but then reject, the possibility of allowing EPR(b̂∣a, c):

{T}his point of view ... makes the reality of P and Q {(properties
b̂ of the first system)} depend upon the process of measurement
{(a)} carried out on the first system, which does not disturb the
second system in any way. No reasonable definition of reality
could be expected to permit this.

While this quote certainly suggests that EPR would consider locality as per
Definition 9 to be a sine qua non, it is not an explicit assumption which they
use in conjunction with other assumptions to derive their result. Rather, it
is built into the very structure of their criteria [19].

If we say that, in assuming EPR’s notion of completeness, we accept all of
EPR’s criteria and assumptions, then we can, following their argument, prove
their theorem:

Theorem 33 (EPR) There exist quantum phenomena for which OQM is

41



not an EPR-complete theory.

Moreover, assuming completeness in this way, for the singlet state and pro-
jective measurements we can follow Bell’s argument to derive that any spin
observable, for either party, must be an EPR, and hence that it must have a
counterpart in the theory, that is, be locally predetermined. But Bell’s theo-
rem says that any theory satisfying L&D fails to predict certain correlations
on the singlet state. Thus we could state

Theorem 34 (Bell 1964 as EPR-completeness) There exist quantum
phenomena for which there is no EPR-complete theory.

Note that this statement of Bell’s theorem can only be proven for a joint
system with perfect correlations, as in a spin-singlet state with projective
measurements. Without perfect predictability, EPR’s network of conditions
literally lead nowhere. But perfect correlation is an idealization that is never
seen in experiment. Hence, while Theorem 34 is formally valid, one cannot
conclude from it that there exist phenomena in the world for which there is
no EPR-complete theory. The same criticism applies to Bell’s original proof
of theorem 7 in 1964. However the assumptions Bell made for this theorem,
L&D rather than completeness, enables other proofs that are not subject to
this criticism. That is, the assumption of L&D does give testable predictions
even when the correlation is not perfect, as proven later by Clauser et al.,
[30].

Appendix A.4. EPR-Completeness versus Jarrett-Completeness

In this section I prove Theorem 21, that whatever is implied by assuming
Com(θ) is also implied by assuming that θ respects Jarrett-completeness and
weak locality.

First recall that, as in Eq. (A.1), there is only one implication of assuming
Com(θ), namely

∀ b̂ ∈ Pβ, [∃a ∶ Pre(b̂∣a, c)]⇒Repθ)b̂∣c) (A.2)

Using Criteria 31 and 29, this means

∀ b̂ ∈ Pβ, [∃a ∶ ∀A,B, b, f(B∣A,a, b, c) ∈ {0,1}]
⇒ [∀B, b, λ, Pθ(B∣b, λ, c) ∈ {0,1}]

(A.3)
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I now show the same implication follows from JC&WL, being more careful
with quantifiers than in the main text.

Conjoining Jarrett-completeness,

∀A,a,B, b, λ, Pθ(B∣A,a, b, c, λ) = Pθ(B∣a, b, c, λ)

and weak locality

∀a,B, b, λ, [Pθ(B∣a, b, c, λ) ∈ {0,1}⇒ Pθ(B∣a, b, c, λ) = Pθ(B∣b, c, λ)]

we have

∀A,a,B, b, λ, [Pθ(B∣A,a, b, c, λ) ∈ {0,1}⇒ Pθ(B∣b, c, λ) ∈ {0,1}]

Now it is true by definition that

∀A,a,B, b, λ, [f(B∣A,a, b, c) ∈ {0,1}⇒ Pθ(B∣A,a, b, c, λ) ∈ {0,1}]

so we have

∀A,a,B, b, λ, [f(B∣A,a, b, c) ∈ {0,1}⇒ Pθ(B∣b, c, λ) ∈ {0,1}] (A.4)

We can weaken Eq. (A.4) to

∀ b̂ ∈ Pβ,∀a, [[∀A,B, b f(B∣A,a, b, c) ∈ {0,1}]⇒ [∀B, b, Pθ(B∣b, c, λ) ∈ {0,1}]

which is the same as Eq. (A.3). In other words, the only implication that
from EPR’s network of criteria, Eq. (A.3), can be derived from the assump-
tion that θ is JC and WL. This completes the proof.
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