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Abstract

Public talk at the EmQM13 conference opening event on ”The Future of
Quantum Mechanics”

The organizers have asked me to state my views on the direction of the fu-
ture development of quantum mechanics. Will it evolve within the standard
framework, without the addition of new foundational physics? Or will the
foundations require modification in an, at least in principle, experimentally
detectable way?

First, let’s discuss the current status of quantum theory. Quantum mechanics
is our most successful physical theory. It underlies our detailed understanding
of atomic physics, chemistry, and nuclear physics, and the many technologies
based on this knowledge. Additionally, relativistic quantum mechanics is the
basis for the very successful standard model of elementary particles.

However, from its beginnings there have been conceptual problems associ-
ated with the nature of measurement in quantum mechanics. These can be
simply illustrated with the famous Stern-Gerlach experiment (Fig. 1).

Stern-Gerlach Experiment

Figure 1: Schematic representation of the Stern-Gerlach experiment

Silver atoms boiled off from a furnace are sent through a non-uniform mag-
netic field, and impinge on a photographic plate. Instead of a continuous
distribution of spots, one sees two spots, corresponding to spin up and spin
down relative to the magnetic field axis. Each atom goes up OR down, but



one cannot predict which in any given run - the results of the experiment are
probabilistic. There is a 50% chance of an atom going up, and a 50% chance
that it will go down.

From the point of view of the Schrödinger equation of quantum theory, this
result has no explanation. In quantum theory, the state of the particle is
described by its wave function, and the Schrödinger equation says that at
a post-measurement final time Tf , the wave function is related to that at a
pre-measurement initial time Ti, by a deterministic relation

Ψ(Tf) = U(Tf , Ti)Ψ(Ti)
U(Tf , Ti) = eiH(Tf−Ti)

with the transition operator U completely specified by the Hamiltonian H.
To explain what is observed, the Schrödinger equation must be supplemented
by the reduction postulate and the Born rule. These state that the wave
function only gives a description of probabilities when a measurement is
made, with the probabilities for an “up” outcome and a “down” outcome
given by the squares of the coefficients of the corresponding components in
the initial wave function Ψ(Ti),

Born Rule for Probabilities

Ψ(Ti) = CupΨup +CdownΨdown

probup = ∣Cup∣2

probdown = ∣Cdown∣2

∣Cup∣2 + ∣Cdown∣2 = 1

with the sum of the up and down probabilities equal to one. The reduction
postulate and Born rule are an add-on to the Schrödinger equation. Accord-
ing to the Copenhagen interpretation of quantum mechanics, the Schrödinger
equation applies when a microscopic system, the silver atom, is time-evolving
in isolation. But when the atom interacts with a macroscopic measuring ap-
paratus, as in the Stern-Gerlach setup, you have to use the reduction postu-
late and Born rule.

This situation leads to puzzles that have been debated for over eighty years.
If quantum mechanics describes the whole universe, then why can’t one use
the Schrödinger equation to describe the system consisting of the silver atom
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plus the measuring apparatus? But we never see a superposition state of the
atom plus apparatus. This is Schrödinger’s famous cat paradox. Arrange
the experiment so that an “up” outcome triggers a mechanism that kills the
cat, while a “down” outcome keeps the cat alive. Of course we don’t do this,
but if we were to do it, we would always see a live cat OR a dead one, never
a superposition of the two (Fig. 2).

Stern-Gerlach Experiment

Figure 2: The Stern-Gerlach experiment with a Schrödinger cat as the out-
come registration

So we have the problem of definite outcomes: where does the “either”-“or”
dichotomy arise?

A related question is where do the probabilities come from? Quantum me-
chanics has probabilities without a sample space! An example of a sample
space is a population of people, 40% blonde and 60% brunette. If you pick a
person at random from the population, there is a probability probblonde = 0.4
that you will have a blonde, and probbrunette = 0.6 that you will have a
brunette. But the population (the sample space) is composed of individuals,
with definite hair coloring - the probabilities only reflect our ignorance of
details if we make a random pick without looking. Another example of a
sample space, closer to our Stern-Gerlach experiment, is a coin toss. Con-
sider 1000 coin tosses. If the coin is tossed without bias, you will find close to
500 heads and 500 tails, corresponding to probheads = 0.5 and probtails = 0.5.
Here the sample space consists of the 1000 detailed trajectories of the toss,
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which your eye cannot follow, but which if analyzed by a very fast computer
could predict which toss would give a head and which a tail (Fig. 3).

Sample Space

Figure 3: Some sample spaces: (a) Populations of individuals with
blonde/brunette hair coloring (b) Trajectories in a coin toss

Again, the probabilities are just reflections of our ignorance of the details,
but the details are there. So we have the questions - are there hidden details
underlying the probabilities in quantum mechanics? Is there a hidden sample
space?

Now we come to the question with which I began - where is future work to deal
with these problems headed? Two routes proceed within quantum theory: (i)
The first route within quantum theory is to try to change the interpretational
rules. Examples are the so-called “many worlds” interpretation (all possibil-
ities are there, we just only see one), and the so-called “histories” program,
which sets up an observer-free generalization of the Copenhagen rules. (ii)
The second route within quantum theory is to say there is a sample space,
but we don?t see it. One example is the proposal of Bohmian trajectories
as the sample space underlying the Born rule. Another example comprises
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various statistical interpretations, which attribute the probabilistic outcomes
to different internal states of the apparatus and or its environment, with the
aim of deriving the Born rule.

None of these routes within orthodox quantum theory has gained general ac-
ceptance. Also, none makes experimental predictions at odds with standard
theory, so experimentally they are not distinguishable.

The other possibility is to modify the foundations of quantum theory. Specif-
ically, one gets a sample space by postulating additional degrees of freedom
- so called “hidden variables”. There are two possibilities for hidden vari-
ables ? they can be local, or nonlocal. Local variables have the property that
variables V (x1, t1) and W (x2, t2), with x1, x2 the spatial points and t1, t2 the
times of occurrence, cannot influence one another if the distance between
them ∣x1 − x2∣ is greater than the distance c∣t1 − t2∣ that light can travel, at
velocity c, in the time interval from t1 to t2. Such local variables are called
causally separated. In quantum theory, causally separated variables have a
commutative multiplication law

V (x1, t1) ×W (x2, t2) =W (x2, t2) × V (x1, t1)

Ordinary numbers obey such a commutative law of multiplication, for exam-
ple AB = BA for A = 7 and B = 11, whereas in non-commutative multiplica-
tion, one would have AB ≠ BA.

John Bell’s theorem asserts that local hidden variables plus the usual rules
for probabilities imply certain inequalities that are not satisfied by quantum
mechanical systems - and experiment sees that these inequalities are in fact
violated. There is much discussion of possible loopholes, but I believe the
result is robust, and that local hidden variables are excluded.

The other possibility is that the hidden variables are non-local: the hidden
variables can act faster than the speed of light to establish correlations (as
long as no faster than light signaling is possible). The hidden variables can
also obey a non-commutative multiplication law.

For the rest of the talk I’ll focus on the possibility of non-local hidden vari-
ables - this is where my research interests lie. At a phenomenological level,
there are very interesting models for the emergence of probabilities within the
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usual wave function formulation of nonrelativistic quantum theory, pioneered
by Ghirardi, Rimini, and Weber in Trieste and by also by Pearle at Hamilton
College in the U. S., and worked on by many others. These models postu-
late that space is filled with a very low level noise with a coupling to matter
proportional to the imaginary unit i, rather than with a real-valued cou-
pling (more technically, they couple through an anti-Hermitian Hamiltonian
term). For example, there could be a small, rapidly fluctuating contribution
to the gravitational potential or g00 metric component proportional to the
imaginary unit i. If such a theory obeys two general properties, (1) the total
probability of a particle being present remains one for all times (that is, the
wave function normalization is preserved), and (2) there is no faster than
light signaling, then the extra terms in the Schrödinger equation equation
must have a special structure. This special structure allows one to prove
definite outcomes obeying the Born rule!

In these models, for each repetition of the Stern?Gerlach experiment, the
noise variable takes different values. For a large apparatus, these have a
measurable effect, whereas for an atom not interacting with an apparatus,
the effect is not measurable. The noise leads to different outcomes for dif-
ferent runs, with probabilities given by the Born rule. The different noises
for different runs of the experiment are analogous, in the coin toss example
I gave earlier, to different details of the tumbling coin trajectories for the
different coin tosses (Fig. 4).

Figure 4: Different noise histories, in objective reduction models, can explain
“up” and “down” registrations in the Stern?Gerlach experiment
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I’ve worked on phenomenological reduction models, but my main long term
interest has been at the foundational level. I am trying to make an analogy
between quantum mechanics emerging from a possible pre-quantum theory,
and the known fact that thermodynamics emerges from the laws of statisti-
cal mechanics. Thermodynamics - the science of heat and work (Fig. 5) -
reflects averaged properties of huge numbers of atoms.

Figure 5: (a) Thermodynamics: the science of heat and work (b) Brownian
motion of a pollen grain being bombarded by molecules in the liquid in which
it is suspended

It is a complete, consistent system by itself, and remarkably was discovered
in the 19th century before the existence of atoms was established. But from
statistical mechanics - the laws of motion of large systems of atoms, one can
deduce the laws of thermodynamics, together with details of fluctuation cor-
rections to thermodynamics, so called Brownian motion corrections. (The
figure shows the random walk trajectory of a pollen grain being bombarded
by molecules in thermal motion.)

My suggestion, in articles with collaborators and a small book that I wrote
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in 2004 [1] , is a theory that I call “trace dynamics”. It is a classical-like
system of non-commutating variables - even distant systems in the universe
are interacting instantaneously with us. One can make sense of the mathe-
matics of non-commuting variables by using the cyclic property of a mathe-
matical operation called the Trace: TraceABCD..FG = TraceGABCD..F =
TraceFGABCD.. This is a very powerful tool. One can use it to set up a
system of equations analogous to classical mechanics, and to do statistical
averaging. Getting a little technical now, for those in the audience famil-
iar with quantum theory and statistical physics, what distinguishes trace
dynamics from ordinary classical mechanics is the existence of a generic con-
served quantity in addition to the energy and momentum. This quantity is
operator-valued, and has the form

Conserved operator in trace dynamics =
∑

bosons

[qbosonpboson − pbosonqboson]

− ∑
fermions

[qfermionpfermion + pfermionqfermion]

with the qs he canonical coordinates and the ps the canonical momenta.
This is reminiscent in structure to the canonical commutation and anti-
commutation relations of quantum theory. Just as energy in statistical me-
chanics is equally partitioned between the various degrees of freedom, one
might expect this conserved operator, in a statistical mechanical treatment
of trace dynamics, to also be equi-partitioned, giving the starting point for
quantum theory. My conjectures thus are: statistical averages in trace dy-
namics give the Schrödinger equation and operator algebra of quantum the-
ory, while Brownian motion corrections give the low level noise on which
phenomenological reduction models are based. I talked about this program
in my keynote address at the Vienna conference two years ago. Currently
I am working on incorporating gravity into trace dynamics [2] , and that is
what I will talk about tomorrow. My approach to an emergent quantum
theory is still a work in progress - there is much yet to be done!
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