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Abstract

We make a first attempt to axiomatically formulate the Montevideo inter-
pretation of quantum mechanics. In this interpretation environmental de-
coherence is supplemented with loss of coherence due to the use of realistic
clocks to measure time to solve the measurement problem. The resulting for-
mulation is framed entirely in terms of quantum objects. Unlike in ordinary
quantum mechanics, classical time only plays the role of an unobservable pa-
rameter. The formulation eliminates any privileged role of the measurement
process giving an objective definition of when an event occurs in a system.

1. Introduction

The usual textbook presentation of the axiomatic formulation of quantum
mechanics includes two apparently unconnected problematic issues. The first
one is the privileged role of the time variable which is assumed to be a clas-
sical variable not represented by a quantum operator. The second is the
also privileged role of certain processes called measurements where quantum
states suffer abrupt changes not described by a unitary evolution, and proba-
bilities are assigned to the values that one may obtain for a physical quantity.

The special role of measurement processes in quantum mechanics requires un-
derstanding what distinguishes such processes from the rest of the quantum
evolution. This is called the measurement problem, which many physicists
have alluded to and that ultimately refer to the uniqueness of macroscopic
phenomena within a quantum framework that only refers to potentialities.
Ghirardi calls this the problem of macro objectification.

The orthodox response of the Copenhagen interpretation argues that the
objective of quantum mechanics is not to describe what is but what we ob-
serve. The measuring devices are classical objects through which we acquire
knowledge of the quantum world. The measurement therefore acquires an
epistemological interpretation, referring to processes in which observers ac-
quire knowledge of phenomena. The question about how does quantum me-
chanics account for events observed in measurements and the multitude of
events that happen every moment in every place giving rise to the defined
perception of our experience is left out of the realm of the theory. Those



processes belong to a world of objects that our knowledge cannot have ac-
cess to. As put by d’Espagnat [1], “the (orthodox) quantum formalism is
predictive rather than descriptive... [but also] ...the formalism in question
is not predictive (probability-wise) of events. It is predictive (probability-
wise) of observations.” For him the statements of quantum mechanics are
weakly objective since they refer to certain human procedures —for instance,
of observation—. They are objective because they are true for everyone, “But
their form (or context) makes it impossible to take them as descriptions of
how the things actually are”. Such descriptions are the usual ones in the
realm of classical physics, whose statements can be considered as strongly
objective since one can consider that they inform us about certain attributes
of the objects it studies.

If the statements of quantum mechanics can only be weakly objective one
must abandon attempts to understand how the passage from quantum poten-
tialities to observed phenomena, from micro to macro, from determinism to
randomness, from quantum to classical, takes place. The question of which
systems should be treated as classical also becomes not analyzable, an issue
that acquires more relevance as more and more macro systems that display
quantum behaviors are being constructed by experimentalists.

If one adopts a realist point of view, that is, if one assumes the existence
of a reality independent of observers, the orthodox description of quantum
mechanics is incomplete since it does not tell us which events may occur nor
when may they occur. In our view this is a rather extreme point of view
that should be reserved only to the case in which one has exhausted all other
possibilities for analyzing physically the problem of the production of events.
There has been a recent renewed interest among specialists in foundations
of quantum mechanics in understanding how an objective description at a
macroscopic level compatible with quantum mechanics arises. Several av-
enues have been proposed to address such a question (for a comprehensive
review see [2]).

On the other hand the fact that time is treated unlike any other variable
in quantum mechanics has received much less attention. The usual point of
view is that to associate time with a quantum variable is impossible. This is
due to the well known Pauli observation that an observable associated with
time would be canonically conjugate to the Hamiltonian and it is impossible
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to have a bounded below operator like the Hamiltonian canonically conjugate
to a self adjoint operator. Even if one admits Leibniz’ point of view that time
is a relational notion and therefore in modern terms described by clocks sub-
ject to the laws of quantum mechanics, it is usually thought that this would
only complicate the description. The absolute Newtonian view imposed itself
not because it was the philosophically correct one but because it was the sim-
plest and yielded highly accurate predictions. A relational treatment is only
adopted if its use is inescapable, like in situations where there obviously is no
external parameter. An example of this could be quantum cosmology where
there are no external clocks, nor external apparata to make measurements,
nor an external observer. As Smolin [3] put it “Can a sensible dynamical
theory [of quantum cosmology] be formulated that does not depend on an
absolute background space or time? Can quantum mechanics be understood
in a way that does not require the existence of a classical Observer outside the
system?” Up to now there have not been formulations of theories of physics
that are completely relational without unobservable external elements.

The Montevideo interpretation [4] of quantum mechanics shows that a rela-
tional treatment with quantum clocks allows to solve the measurement prob-
lem, therefore providing a solution to both the problems we mentioned above.
In this paper we present an axiomatic formulation of the Montevideo inter-
pretation of quantum mechanics where the evolution is described in terms of
real clocks. The formulation does not require the treatment of any observable
as classical or external. In the axiomatic formulation we establish precisely
when and where events occur and what is their nature. Since the formulation
arises from an analysis of the problem of time in quantum gravity [5], the
proposed description —although presented here in the non-relativistic case
only— is formulated in a language that is ready to treat generally covariant
theories like general relativity. It can be said that it is a quantum mechanics
formulated with an eye towards a quantum theory of gravity.

The axiomatic formulation has several goals: a) to give a rigorous definition
of what a real clock is; b) to list explicitly the hypotheses of the Montevideo
interpretation and to show its internal consistency and c) to make explicit
the mechanisms for macro objectification and outline a realistic ontology
based on this interpretation. The resulting description will be strongly ob-
jective in the sense indicated above without ever referring to observers or
measurements. It does not attempt to substitute the usual axiomatics in
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most practical applications, where the use of ideal clocks gives a very precise
description. An axiomatic relational formulation necessarily requires systems
with enough degrees of freedom to include the micro-systems1 one studies,
the clocks, measuring devices and the environment that is involved in the
measurement process.

2. Axioms that are Shared with Ordinary Quan-
tum Mechanics

Axiom 1: States

The state of a complete physical system (including clocks, and if present,
measuring devices and environment) S is described by positive definite self-
adjoint operators ρ in a Hilbert space H.

We adopt the idea that a state is well defined when it allows to assign prob-
abilities to any property associated with a physical quantity. Examples of
states are projectors on one-dimensional vector subspaces, in which case the
information contained in ρ is equivalent to that of a vector in the Hilbert
space. The components of the operator ρ in a basis are usually referred to as
the elements of the density matrix. The reason we are working with density
matrices is that as we will see, when one works with real clocks there is loss of
quantum coherence and this is more naturally discussed in terms of density
matrices.

The axiomatic formulation we are presenting makes reference to a set of
primitive concepts like system, state, events and the properties that constitute
them, and physical quantities, each of them associated with certain mathe-
matical objects of the formalism of ordinary quantum mechanics. All these
are defined implicitly in the axioms just like in ordinary ax- iomatic quantum
mechanics one defines system, state, measurement and physical quantities.
The first axiom associates certain operators to the states and a Hilbert space
to the systems.

1The typical systems with few degrees of freedom one usually studies in quantum
mechanics.
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Axiom 2: Physical Quantities

Any physical quantity A of S is described by a self-adjoint operator Â that
acts in H. We will call such operators observables.

In most situations, as we will see later, quantities of interest are associated
to subsystems of S .

Axiom 3: Properties

The only possible values of a physical quantity A are the eigenvalues of the
corresponding operator Â.

A physical quantity only takes values when an event occurs. If A has a value
A we will say that the event has a property PA to which we will associate a
projector P̂A on the eigenspace associated with the corresponding eigenvalue
A.

The events that constitute the physical phenomena are the most concrete
thing that attains us directly and we cannot ignore. They are what makes
the world and what physics has to account for. It is natural that physics,
which is an empirical science would take as starting point the events, which
are the data from our experience of the world. The word phenomenon comes
from the Greek and means something sufficiently apparent to be perceived
by our senses. Events are elementary phenomena that we usually associate
with a set of properties characterized by the numerical values that certain
physical quantities take, and their associated projectors. An example of event
would be the formation of a dot of silver atoms on a photographic plate of an
electron detector or the appearance of droplets in a cloud chamber. In spite
of the persistent tendency to think in terms of particles in physics, we only
observe events. The trace of a particle in a bubble chamber is just a series
of correlated events. Physical properties characterize events. For instance,
if we are interested in the position of the dot of silver on the photographic
plate, the position will be the physical quantity and the value that it takes in
a given experiment will correspond to a property that constitutes the event.
Notice that we are not assuming that all events are perceived by our senses.
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Axiom 4: Evolution in Newtonian time

In non-relativistic theories there exists a Newtonian time for which the prin-
ciple of inertia holds. That is, for which free classical particles have a uniform
rectilinear motion. Newtonian time imposes an absolute order of events and
an absolute notion of simultaneity. Such an absolute time is not an accessi-
ble physical quantity. It can only be approximately monitored by physical
clocks, which are subject to quantum fluctuations. This next axiom will refer
to the particularly simple form of the evolution of operators in Newtonian
time, which we will represent by a c-number t. We are here working in the
Heisenberg picture in which operators evolve.

The evolution in Newtonian time of a physical quantity with an associated
self-adjoint operator Â is given by the equation

ih̵
dÂ(t)
dt

= [Â(t), Ĥ(t)] + ih̵∂Â(t)
∂t

(1)

For instance, in ordinary particle mechanics where one has its classical po-
sition and momentum given by x and p, an observable associated with the
classical quantity A(x, p, t) is quantized by replacing x and p with x̂ and p̂
and appropriately symmetrizing so that the resulting operator is self-adjoint.
The partial derivative refers to the explicit dependence in the parameter
t. In ordinary quantum mechanics the Heisenberg and Schrödinger pictures
are equivalent and so they are here if one is referring to the evolution in
terms of the (unobservable) Newtonian time t. If one considers the evolution
as described by real clocks there are modifications, as we will subsequently
discuss.

3. Relational Axioms

The probability axiom and the reduction axiom radically change their form in
the Monte- video interpretation since they now include the observed system
and the clock that registers the event, both as quantum mechanical systems.
We will consider “almost uncoupled” clocks, that is, weakly interacting with
other degrees of freedom. In order to simplify calculations, we will also
assume this means the clock degrees on freedom are not entangled with other
degrees of freedom: the Hilbert space of the clock will be in a tensor product
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with the rest of the system. We therefore say that a system contains a
decoupled clock when the Hamiltonian may be written in the form,

Ĥ = Ĥclock + Ĥsystem (2)

where Ĥclock depends only on the coordinates and momentum of the clock
and Ĥsystem is independent of the clock variables. While this situation is,
strictly speaking, unphysical, it approximates systems which differ from (2)
only by terms that may be treated adiabatically. In correspondence with this
we will assume that the quantum state of the complete system is a tensor
product of a state for the clock and a state for the system under study, i.e.,
ρ = ρcl ⊗ ρsys as stated above.

A (linear) clock is a dynamical system which passes through a succession of
states at constant time intervals. It can measure the duration of a physical
process and provides a quantitative description of the evolution. Clocks have
been introduced and analyzed by several authors [6-9]. A recent review of
the role of time in quantum mechanics appears in [10]. These authors have
shown that dynamical position and time variables —associated to rods and
clocks— are essentially of the same quantum nature and that there is nothing
in the formalism of quantum mechanics that forces us to treat position and
time differently.

Let T̂ (t) be a self-adjoint operator (observable) in the Hilbert space H that
describes the physical quantity chosen to measure time by a clock ruled by
quantum mechanics and Q̂i(t) and P̂ i(t) observables associated to set of
quantities Q and P that commute with T̂ (t) and whose values one wishes
to assign probabilities to. We assume all variables have continuous spectrum,
because clocks normally do, results are easily reworked for variables having
discrete spectrum. Let P̂Ai

0
(t) be the projector on the eigenspace of Q̂i with

eigenvalues in the interval of a given width 2∆i centered in Qi
0, that is [Qi

0 −
∆i,Qi

0 +∆i] and analogously the clock variable T̂ with its projector P̂T0(t).
In terms of these quantities the probability postulate states that:

Axiom 5: probabilities

The probability that the quantity Qi of a physical system in a state ρ take
a value in a prescribed range of values when the clock in such state takes a
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value in the interval [T0 −∆C , T0 +∆C] is given by,

PC(Qi ∈ [Qi
0 −∆i,Qi

0 +∆i]∣T ∈ [T0 −∆C , T0 +∆C])

= ∫
τ

0 dtTr (P̂Qi
0
(t)P̂T0(t)ρP̂T0(t))

∫
τ

0 dtTr (P̂T0(t)ρ)
(3)

where P̂Q0 and P̂T0 are the projectors associated to properties Q and T taking
the eigenvalues Q0 and T0.

These conditional probabilities are positive and add to one. They refer to the
probability of occurrence of events with properties associated with the eigen-
values of the operators involved. Which specific events and when do they
occur are issues not determined by this axiom. Notice that a similar con-
struction can be carried out for the P i quantities, we wrote the expression
for the Qi for concreteness only. The only condition is that the quantities
must have vanishing Poisson bracket with T (t).

Note that we are integrating in the Newtonian time t which is taken to be
unobservable. The integration interval goes from t = 0, the instant in which
the observable clock T is started, to τ , the maximum Newtonian time for
which the clock T operates with a given precision. The quantity τ makes ref-
erence to the interval in which the clock is operational, and therefore in that
sense the left hand side of (3) depends on τ . No physical clock can operate
indefinitely. The quality of the clock depends on its initial state when it is
started, its dynamics, the admissible error ∆C and the total time the clock is
used τ . The probabilities assigned in axiom 5 are therefore clock-dependent
in various ways and we denote that with the subindex C.

If one wishes to perform subsequent measurements care should be taken to
choose the interval ∆C large enough such that the measurement of the clock
variable does not affect too much the accuracy of it. Later on, we will ob-
tain ontological realistic conclusions from this axiom in spite of its clock
dependence, since there exist physical bounds on the accuracy of clocks [11]
independent of any observer. The notion of undecidability we will introduce
later will refer to those bounds and therefore will be clock independent.

As we argued in [5], “It is worthwhile expanding on the meaning of the
probabilities (3) since there has been some confusion in the literature [12].
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Thinking in terms of ordinary quantum mechanics one may interpret that the
numerator of (3) is the sum of joint probabilities of Q and T for all values of
t. This would be incorrect since the events in different t?s are not mutually
exclusive. The probability (3) corresponds to a physically measurable quan-
tity, and such quantity is actually the only thing one can expect to measure
in systems where one does not have direct access to the (unobservable) time
t. The experimental setup we have in mind is to consider an ensemble of
non-interacting systems with two quantum variables each to be measured, Q
and T . Each system is equipped with a recording device that takes a sin-
gle snapshot of Q and T at a random unknown value of the (unobservable)
time t. One takes a large number of such systems, launches them all in the
same quantum state, “waits for a long time”, and concludes the experiment.
The recordings taken by the de- vices are then collected and analyzed all to-
gether. One computes how many times n(Tj,Qj) each reading with a given
value T = Tj,Q = Qj occurs (to simplify things, for the moment let us assume
T,Q have discrete spectra; for continuous spectra one would have to consider
values in a small finite interval of the value of interest). If one takes each
of those values n(Tj,Qj) and divides them by the number of systems in the
ensemble, one obtains, in the limit of infinite systems, a joint probability
P (Qj, Tj) that is proportional to the numerator of the above expression.”
The denominator is obtained by counting n(Tj) ignoring the values of Q.
Notice that this implies a change in the probability axiom with respect to
ordinary quantum mechanics. This is what is made explicit in axiom 5.

The previous expression can be straightforwardly extended to the case in
which one or both observables involved have discrete spectrum. Since the
spectrum may be time dependent it is also convenient to talk about quanti-
ties taking values in finite intervals in the discrete case as well.

Although we spelled out the axiom explicitly for the measurement of a single
quantum observable Q̂i it is immediately generalizable to the measurement of
several commuting operators (functions of the Q̂i’s and P̂ i’s). The next ax-
iom allows to assign probabilities to histories of events that occur at different
instants of time.

9



Axiom 6: State reduction

When a set of physical quantities (that include the clock) with commuting
self-adjoint operators Â1.....Ân takes values A1....An in the intervals [A1

0 −
∆1,A1

0 +∆1]....[An0 −∆n,An0 +∆n] the state of the system can be represented
by the normalized quasi-projection of the state ρ associated with the values of
the quantities in question,

ρred =
∫
τ

0 dt P̂A1
0
(t)....P̂An

0
(t)ρP̂An

0
(t)....P̂A1

0
(t)

Tr (∫
τ

0 dt P̂A1
0
(t)....P̂An

0
(t)ρP̂An

0
(t)....P̂A1

0
(t))

(4)

This is a quasi-projection2 (as defined by Omnés [13]) since it is not an
exact projector. If one were able to have an uncoupled clock, that is, if the
total Hilbert space could be written as the tensor product of the Hilbert
space of the clock times the Hilbert space of the rest of the system, then the
probability density given by,

Pt(T ) =
Tr∣cl (P̂T (t)ρcl)

∫
τ

0 dtTr∣cl (P̂T (t)ρcl)
(5)

would be a Dirac delta Pt(T ) = δ(t − T ) and (4) would behave as an exact
projector when the reduction postulate is used to assign probabilities to his-
tories [14]. Pt(T ) is the probability density that the unobservable time takes
the value t when the physical clock reads T , and is not a directly observable
quantity in our framework (since t is not observable) but a mathematical
object that appears in intermediate calculations.

This axiom only has epistemological character, it does not say that the state
actually undergoes the above mentioned reduction process. In the present
theory if the state does or does not undergo reduction is an undecidable
proposition, as we will discuss in the next section.

Using the same construction as in ordinary quantum mechanics of combin-
ing the reduction and the probability axioms one can assign probabilities to
histories of events. In [5] we showed in model systems that the resulting

2A quasi projector is a self adjoint operator having only discrete eigenvalues lying in
the interval [0,1]. The idea is that it has many eigenvalues near 1, relatively few between
0 and 1 and many close to zero. More precisely a quasi projector of rank N and order η
satisfies Tr(F ) = N and Tr(F − F 2

) = NO(η) with η ≪ 1.
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probabilities of histories can be used to construct the ordinary particle prop-
agator to leading order in the inaccuracy of the clock. This is true even for
generally covariant systems like general relativity, resolving a longstanding
issue in the definition of a notion of time for such systems.

Introducing a reduction postulate superficially seems to leave the measure-
ment problem intact. Up to this point, the relational description of evolution
presented does not provide information about when events occur. Notice that
one cannot simply say that events happen randomly since generically they
lead to a ρred that is physically distinguishable from ρ and that would com-
pletely destroy the predictive power of quantum mechanics. As Bell noted,
this would be the situation in ordinary quantum mechanics if we adopted
the language of events instead of that of measurements. The main difference
in the current axiomatic system, as we will show, is that it allows situations
where the events can occur and gives a physical criterion to establish when
they occur. The next and final axiom will be crucial for this issue.

4. Axiom 7: Fundamental Limitations in Mea-
surements and the Ontological Axiom

A. Loss of unitarity due to the use of real clocks

In preparation to formulate the seventh axiom, we would like now to address
a new phenomenon: the loss of unitarity of quantum mechanics described
with real clocks. Let us reconsider the conditional probability (3),

P(Qi ∈ [Qi
0 −∆i,Qi

0 +∆i]∣T ∈ [T0 −∆C , T0 +∆C])

= ∫
τ

0 dtTr (P̂Qi
0
(t)P̂T0(t)ρP̂T0(t))

∫
τ

0 dtTr (P̂T0(t)ρ)
(6)

and make some reasonable assumptions about the clock and the system as
we discussed in section III. Going to the Schrödinger picture we define a new
density matrix for the system excluding the clock labeled by the physical
time T instead of the unobservable Newtonian time t,

ρsys(T ) ≡ ∫
τ

0
dtPt(T )ρsys(t) (7)
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where Pt(T ) was defined in (5). In terms of these density matrices the
conditional probability can be rewritten as,

P(Qi ∈ [Qi
0−∆i,Qi

0+∆i]∣T ∈ [T0−∆C , T0+∆C]) =
Tr∣sys (P̂ S

Qi
0

(T )ρsys(T ))

∫
τ

0 dtTr∣sys (ρsys(T )) (8)

where P̂ S
Qi

0

is the projector in the Schrödinger picture. We therefore see that
we have recovered the ordinary definition of probability of measuring Qi at
time T in usual quantum mechanics. This shows the usefulness of the def-
inition (7). Within such definition one can immediately see the root of the
loss of unitarity when one uses real clocks to describe quantum mechanics.
The density matrix in the right hand side of (7) evolves unitarily in the un-
observable time t. However, due to the presence of the probability Pt(T ) the
left hand side does not evolve unitarily. If one starts with a pure state, in
the right hand side it will remain pure, but in the left hand side after some
time has evolved one will end up with a mixture of pure states due to the
integral. Only if the probability Pt(T ) were a Dirac delta one would have
a unitary evolution. That would mean that one has a clock that correlates
perfectly with t, which is not possible with a real clock.

We therefore see that the result of Axiom 5 is to have a theory that looks like
ordinary quantum mechanics but in terms of the physical time T . The only
difference is that the evolution in terms of the physical time is only approx-
imately unitary. If one assumes that the clock is very good the probability
Pt(T ) will be a Dirac delta with small corrections,

Pt(T ) = δ(T − t) = a(T )δ′(T − t) + b(T )δ′′(T − t) + ..... (9)

and one can show that in such a case the density matrix evolves according
to the equation,

ih̵
∂ρ

∂t
= [Ĥ, ρ] + ∂b(T )

∂T
[Ĥ, [Ĥ, ρ]] (10)

so we see that to leading order we get the ordinary Schrödinger evolution
and the first corrective term has to do with the rate of spread of the width of
the probability Pt(T ) plus higher order corrections. Another way of putting
it is that it is determined by how inaccurate the physical clock becomes over
time. The effect can therefore be reduced by choosing clocks that remain as
accurate as possible over time. However, there exist fundamental physical
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limitations to how accurate one can keep a clock over time. There are several
arguments in the literature [11] that suggest that the best accuracy one can
achieve with a clock is given by δT ∼ T aT 1−a

P lanck and TPlanck = 10−44s is Planck’s
time. The estimates for a vary but several authors claim it is 1/3. From the
point of view of the purposes of this paper, it suffices to say that δT is a
growing function of T . Then unitarity is inevitably lost.

There have been attempts to bypass these limitations and construct clocks
whose inaccuracy does not grow with time. Those attempts, as for instance
the Larmor clock [15] produced by using a finite-dimensional quantum dial,
are not physically implementable. This particular one involves an infinite
mass rigid rotator. All physically implementable linear clocks proposed up
to present have uncertainties in the measurement of time that grows with
time.

The fundamental bounds on the accuracy of physical clocks follow from a
joint consideration of quantum mechanics and general relativity. If one were
able to start from an axiomatic formulation of quantum gravity they would
not imply an additional hypothesis. However as these considerations play a
crucial role in the fundamental loss of coherence that leads to the production
of events, this assumption should be stated explicitly as an

Auxiliary axiom: There is a fundamental uncertainty in the measurements
of time that grows with a positive fractional power a of the time interval
δT = T aT 1−a

P lanck.

The loss of coherence due to imperfect clocks makes the off-diagonal elements
of the density matrix of a quantum system in the energy eigen-basis decrease
exponentially. For a = 1/3, the exponent for the mn-th matrix element
is given by ω2

mnT
4/3
PlanckT

2/3, where ωmn = Emn/h̵ is the difference of energy
between levels m and n divided by ??h̵ (the Bohr frequency between n and
m). One could see this effect in the lab in reasonable times (hours) only if
one were handling “macroscopic” quantum states corresponding to about 1013

atoms in coherence. The direct observation of this effect is therefore beyond
our current experimental capabilities. However, it has profound implications
at a foundational level, as this new formulation of quantum mechanics we
are presenting attests to. It should be noted that what is not currently
observable experimentally is the fundamental limit to the accuracy of clocks.
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The effect associated with the loss of coherence in realistic clocks can be
made arbitrarily large by choosing inaccurate clocks and has been observed
experimentally in ion traps [8].

B. Undecidability

The loss of unitarity due to the inaccuracies of real clocks has implications
for the usual explanation of the measurement process through environmental
decoherence. The results of such program can be summarized as follows:
consider a system S interacting with an environment E with a total Hamil-
tonian Ĥ = ĤSA + ĤE + Ĥint with ĤSA the Hamiltonian of the micro-system,
which may include a measuring apparatus, ĤE that of the environment and
Ĥint the interaction Hamiltonian between the system and the environment.
The effect of such interaction is an attenuation of the interference terms in
the reduced density matrix of the system S , obtained by partially tracing
over the degrees of freedom of the environment. This effect happens in the so-
called “pointer basis”, determined by the Hamiltonian, as has been discussed
in some detail in [16]. The interpretation of this attenuation is as follows:
when one carries out local measurements on the system S it will behave
classically, any expectation value will be equal to the case in which the sys-
tem has suffered a state reduction, and we cannot see the typical interference
terms of quantum superpositions. Since interactions with the environment
are almost inevitable, this is the reason why the world we experience every-
day behaves classically and quantum behavior can only be directly seen in
very controlled circumstances in the lab. This is therefore portrayed as a
solution to the measurement problem.

There exist three limitations that have been pointed out in the literature that
may preclude some people from accepting that environmental decoherence is
a solution to the measurement problem. The first two limitations are related
to the fact that the evolution for the total system S plus E is unitary. The
first limitation is the possibility of revivals. That is, for a closed total system
one could wait for a long time and see the quantum coherence in the system
S plus the measuring apparatus reappear. The use of real clocks prevents
this from happening, since waiting for very long actually increases the loss of
coherence due to the clocks. The second limitation, suggested in [17], argues
that one could perhaps construct global observables that depend on vari-
ables in the system and the environment that would suffer different changes

14



in their expectation values if a reduction takes place or not. A detailed anal-
ysis [18] in model systems shows that one is prevented from measuring such
observables when one takes into account the loss of coherence due to real
clocks. The third limitation to viewing the use of environmental decoherence
as a solution to the measurement problem is that “nothing happens”, that is,
there is no criterion given for telling when an event (or a measurement) takes
place. The fact that the reduced matrix of the open subsystem composed
by the micro-system and the measurement device takes a diagonal form does
not change the interpretation of the state as a superposition of options. This
is what Bell called “the and/or problem” alluding to the lack of justification
for assuming that a transition from superposed options to alternative options
takes place. We will resolve this in our approach by providing a criterion for
when an event takes place.

Returning to the first objection, one may ask how many degrees of freedom
one needs to consider for the exponential decrease to kill the possibility of
revivals? A criterion would be that the magnitude of the off diagonal term
in the revivals be smaller than the magnitude of the off diagonal terms in
the intermediate region between revivals. If that were the case the revival
would be less than the “background noise” in regions where there is no revival.
The magnitude of the interference terms in the density matrix were studied
by Zurek [19] in a simple model with two levels where the environment is
characterized as N particles, and goes as ρ+− ∼ 1/2N/2 with N the number of
particles. The time for revivals to occur goes as T ∼ N !. This implies, at least
in this particular example, that if one has more than hundreds of particles in
the environment the loss of coherence will make the observation of revivals
impossible. In realistic environments the number of degrees of freedom is of
course vastly higher.

As was discussed in [18], it is worthwhile emphasizing the robustness of this
result in practical terms. One could, for instance, question how reliable the
fundamental limits for the inaccuracy of clocks we are considering are. Some
authors have characterized the fundamental limit as too optimistically large,
arguing that the real fundamental limit should not be larger than Planck time
itself. In view of this it is interesting to notice that if one posits a much more
conservative estimate of the error of a clock, for instance δT ∼ T εT 1−ε

P lanck, for
any small value of ε the only modification would be to change the number
of particles N0 ∼ 100 to at least N ∼ N0/(3ε). So the only real requirement
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is that the inaccuracy of the clock increases with the time measured, a very
reasonable characteristic for any realistic clock.

Using a real clock introduces a fundamental difference. Whereas in the usual
formalism the state of the system plus apparatus plus environment will evolve
unitarily, here it will lose coherence without the possibility of recovering it
in another part of the system. This brings us to the idea of undecidability.
If a system suffers an interaction such that one cannot distinguish by any
means if a unitary evolution or a reduction took place we will claim that an
event took place. This provides a criterion for the production of events, as
we had anticipated. We will provide a detailed form of the criterion later on.
Notice that for a quantum micro-system in isolation, events would not occur.
However for a quantum system interacting with an environment, events will
be plentiful. The same goes for a system being measured by a macroscopic
measuring device. It should be emphasized that the notion of undecidability
is independent of a particular clock, since it is based on the best possible
clock. Precisely, the situation becomes undecidable when the distinction is
impossible for any physical clock. This is the reason why the fundamental
limitations for the measurement of time intervals mentioned above become
important.

C. Axiom 7: The ontological axiom

The analysis of the previous section shows that contrary to what happens
in quantum mechanics with an ideal clock, in the relational picture the pos-
sibility to determine (not just in practice but in principle) if a system has
suffered a state reduction or evolved unitarily decreases exponentially with
the number of degrees of freedom of the system. That is, it requires to con-
sider ensembles with a number of identical macroscopic systems exponential
in the number of degrees of freedom of the total system including environ-
ment and measuring apparatus. One cannot therefore argue ?as is done in
the case of ordinary environmental decoherence? that the problem moves
on to the complete system that retains the complete initial quantum infor-
mation. The existence of this phenomenon in systems that interact with an
environment implies, as follows from the above analysis, that in processes
where there does not exist an unlimited capability of preparing the initial
state of the system it will be undecidable if there irrespective of a reduction
taking place (or not). By undecidable we mean that the expectation values
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of any observable of S will be identical in both cases.

This leads to the following ontological axiom that gives sufficient physical
conditions for the production of an event. We lay it out for variables with
continuous spectrum but it is readily generalizable to other cases. The axiom
reads:

Consider a closed system S with its associated Hilbert space H and a phys-
ical quantity ?? represented by an observable Â in H with a decomposition
of the identity allowing to write Â(t) = ∑n anP̂an(t). We will say that an
event occurs when it becomes impossible to distinguish (in terms of the ex-
pectation values of any observable quantity), in a certain instant in which the
clock reads in an interval 2∆C centered in T0, between the initial state3 of S
modified by the clock reading,

ρmod = ∫
τ

0 dt P̂T0(t)ρP̂T0(t)
∫
τ

0 dtTr (P̂T0(t)ρ)
(11)

and

ρe = ∫
τ

0 dt ∑n P̂an(t)P̂T0(t)ρP̂T0(t)P̂an(t)
∫
τ

0 dtTr (P̂T0(t)ρ)
(12)

The event associated with the physical quantity A taking the value an occurs
with a probability given by axiom 5. Such event will have a property associ-
ated with the projector P̂an(t) with relative probability Pt(T0). Notice that ρe
is the density matrix that one would have after a traditional wavefunction
collapse and that ρmod and ρe are states in the Hilbert space of the system
plus environment.

We are assuming that we have a good clock that works with a certain degree
of accuracy for a period of Newtonian time τ ≫ T0. With this hypothesis the
above construction is independent of τ It is not possible to assign a single
property to the observation of an since the clock does not allow to identify a
single projector due to the ambiguity in the value of the unobservable time
t in which the event occurs. In realistic situations, with good clocks, such
ambiguity does not have practical consequences since the variation of P̂an(t)
in the interval [T0 −∆C , T0 +∆C] will be negligible.

3Notice that we are in the Heisenberg representation. In the Schrödinger representation
it would be the density matrix at time t modified.
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As explained above, an event occurs when one cannot distinguish the phys-
ical predictions4 of the modified density matrix ρmod and the ones given by
ρe. This situation arises typically in systems that interact with an environ-
ment with a large number of degrees of freedom. When this happens the
physical quantity characterized by Â will take a definite value. As we have
emphasized, S includes the micro-system and the environment with which
it has interacted.

In general many observables will satisfy the above condition, and therefore
many properties of the system will actualize. To illustrate this point we will
consider a simplified situation. Let us assume that after the process of de-
coherence has been completed, the only Hamiltonian present is that of the
clock and that the system does not evolve, so that we have time independent
projectors,

ρe =∑
n

P̂an
⎛
⎝
∫
τ

0 dt P̂T0(t)ρP̂T0(t)
∫
τ

0 dtTr (P̂T0(t)ρ)
⎞
⎠
P̂an ≡∑

n

P̂anρ(T0)P̂an (13)

and it should be noted that ρ(T0) is the density matrix of the complete
system, in the Schrödinger picture labeled by the real clock time T0. We
will show that the condition for an observable B to also actualize is that its
projectors’ eigen-spaces include the eigen-spaces of A’s projectors. That is,

P̂bnP̂an ∣ψ⟩ = P̂an ∣ψ⟩ (14)

and
P̂bmP̂an ∣ψ⟩ = 0; m ≠ n (15)

When the above conditions are satisfied we will say that the projector P̂an
includes P̂bn , and that the property corresponding to the first includes the
second, Pbn ⊂ Pan .

Let us assume that we have undecidability,

ρe =∑
n

P̂anρ(T0)P̂an (16)

4To be mathematically precise, given the states ρmod and ρe and any property of S
given by a projector P̂ one has that ∣Tr(P (ρmod − ρe))∣ < ε with ε = exp (−αN). α is a
positive constant and N the number of particles in the system (for an example see [20]).
Notice that the term on the left of the inequality is clock dependent. We request that the
inequality be satisfied for the best possible clock.
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then we will see that for observable B the undecidability condition is also
satisfied.

Using the closure relationship we have that,

∑
n

P̂bnρ(T0)P̂bn =∑
n

P̂bn (∑
k

P̂ak)ρ(T0)(∑
l

P̂al) P̂bn (17)

and together with (15) imply,

∑
n

P̂bnρ(T0)P̂bn =∑
n

P̂bnP̂anρ(T0)P̂anP̂bn (18)

Now using (14) we have that,

∑
n

P̂bnρ(T0)P̂bn =∑
n

P̂anρ(T0)P̂an = ρe (19)

and therefore B is also undecidable.

We will call “essential property” the one that includes all properties that
actualize, that is, all properties whose projectors satisfy the undecidability
condition. This “essential property” contains the information of every physi-
cal quantity that the system acquires.

Let us see how this works more explicitly in a simple example. We will con-
sider a system composed of only three spins, and the clock. Let us assume
that the initial state for the spins is

ρ(0) = ∣c1∣
2

2
(∣+ + −⟩ + ∣+ − +⟩)(⟨+ + −∣ + ⟨+ − +∣) + ∣c2∣2

2
∣− + +⟩ ⟨− + +∣

+ c1c
∗
2√
2
(∣+ + −⟩ + ∣+ − +⟩) ⟨− + +∣ + c

∗
1c2√

2
∣− + +⟩ (⟨+ + −∣ + ⟨+ − +∣) (20)

Suppose that the evolution is such that an event occurs5, with essential prop-
erties characterized by,

P̂a1 = (∣+ + −⟩ + ∣+ − +⟩)(⟨+ + −∣ + ⟨+ − +∣) (21)

and
P̂a2 = ∣− + +⟩ ⟨− + +∣ (22)

5for small systems like the one we are considering events will not occur in general,
since there is no undecidability.
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As we noticed before, if for instance the property given by P̂a1 is attained, it
gives all the information about the physical quantities the system has. We
can now consider the compatible property associated with the projector,

P̂up = ∣+⟩ ⟨+∣⊗ I2 ⊗ I3 (23)

which corresponds to “spin 1 is up”. And we could also consider the compat-
ible property associated to

P̂2opposite3 = I1 ⊗ (∣+−⟩ + ∣−+⟩)(⟨+−∣ + ⟨−+∣) (24)

which corresponds to “spins 2 and 3 are opposite”. Both P̂up and P̂2opposite3

satisfy condition (14), so these properties will actualize.

The projectors compatible with the essential properties determine the prop-
erties that can be associated to different subsystems. So, in the case of the
property corresponding to P̂a1 being acquired by the system, we can ask
whether spin 1 is up or not, we can ask whether spins 2 and 3 are opposite or
not, but we cannot ask whether spin 2 is up or not, because this last property
is incompatible and is therefore not acquired by the subsystem.

Usually the essential property acquired by the system is complicated and not
experimentally accessible, but we are interested in properties acquired by the
subsystems when events occur.

The ontological axiom completes the formulation of the Montevideo interpre-
tation of quantum mechanics. It eliminates the need to give special treatment
to measurements and observers and gives rise to an objective description com-
pletely independent of cognizant beings.

The reader may question what is the situation in an actual measurement
in the lab. There we have the possibility of forcing the occurrence of events
by designing a measuring apparatus/environment combination that interacts
with the system under study in such a way that the pointer basis corresponds
to eigenstates of the observable one desires to measure. The effects discussed
above occur and an event takes place. The measurements discussed in quan-
tum mechanics textbooks therefore reduce to finding the correct Hamilto-
nians so that the properties that actualize their values correspond to the
observables that one wishes to measure in each case.
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5. The Role of States: Do They Describe Sys-
tems or Ensembles?

What happens with the states? As we observed, it is not empirically de-
cidable what happens with the states when an event occurs. Although the
interpretation is compatible with a state of the universe given once and for
all, for practical purposes we will not have predictive power if we do not know
all the actualizations of events prior to the moment of interest. Due to this
it will be convenient (and possible) from the epistemological point of view
to postulate that a reduction takes place after the observation of an event.
As Omnès points out: “reduction is not in itself a physical effect but a con-
venient way of speaking” [13]. More precisely, in the construction presented
in this paper it is not physically decidable if the reduction of the state takes
place or not. This is precisely the condition, as established in axiom 7, for
events to occur.

If it were the case that the state undergoes an effective reduction process
every time an event occurs, then the state can be associated at all times with
an individual system and knowledge of the state represents the maximum
information available to make predictions about future behaviors.

If one adopts the opposite point of view and assumes that the state remains
unchanged during the processes in which events occur, the state —which
would be none other than the initial state of the universe— would describe
ensembles of systems in which in every member of the ensemble events of dif-
ferent nature would occur. In this case in order to have complete information
about the future behavior of the universe would require not only knowledge
of the state but all the events that have occurred previously to the instant in
which one wishes to have the information. It is important to notice here that
the proposed formulation would be complete without axiom number 6. It
only has the purpose of resolving the ambiguity noted above in order to use
the information added by the occurrence of the event in future predictions.
Axiom 6 is therefore, as we have mentioned, of epistemological character. It
allows to actualize the information available after each measurement.

We have limited ourselves to closed systems. The systems have to be general
enough to include the various subsystems involved in the occurrence of the

21



events of interest. Some subsystems are agents that initiate the process, like
the electron in the double-slit experiment. Others are recipients of the ac-
tion, like the photographic plate in that experiment. The total systems will
only allow a complete description of some processes that lead to events in S .
We are able to describe events in which the system S contains as subsys-
tems the quantum micro-system, the environment and perhaps a measuring
device. There might be situations in which subsystems of S act or are acted
upon by subsystems not included in S . Events and states have a primary
ontological status whereas the systems considered here have circumstantial
character and are considered as long as they support the events and states
of interest.

6. Conclusions

We have presented an axiomatic formulation of the Montevideo interpretation
of quantum mechanics. In this interpretation environmental decoherence
is supplemented with a fundamental mechanism of loss of coherence due
to the inaccuracy in tracking time that real clocks introduce to produce
a resolution to the measurement problem and a characterization of when
events occur. The resulting construction is completely formulated in terms
of quantum mechanical objects, without requiring the observation of any
classical preferred quantity. More work is needed in order to fill some gaps
related with the proofs of undecidability in more general contexts and the
inclusion of interactions between the system and the clock.

The formulation is naturally geared towards dealing with generally covariant
theories like quantum general relativity. It may also have implications for
how the quantum to classical transition in cosmological perturbations in the
inflationary period take place.
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