
BELL'S THEOREM - Introduction
Bell demonstrated that under certain conditions quantum theory and
local hidden variable theories predict different results for the same
experiments on pairs of correlated particles.
This difference, which is intrinsic to all local hidden variable
theories and is independent of the exact nature of the theory, is
summarized in Bell's derived inequalities.
This proof forced questions about hidden variables to immediately
change character.
They were no longer academic questions about philosophy but practical
questions of profound importance for quantum theory.
The choice between quantum theory and local hidden variable theories
was no longer matter of taste, but matter of correctness.
Bertlmann's Socks
Let us derive Bell's theorem with help of a famous Dr Bertlmann (this
story by Bell himself). We will do a more mathematical derivation
later.
Any philosopher in the street, who has not suffered through a course
in quantum mechanics, is quite unimpressed by the
Einstein-Podolsky-Rosen correlations.
She can point to many examples of similar correlations in everyday
life. The case of Dr. Bertlmann's socks is often cited.
Dr. Bertlmann likes to wear two socks of different colors.
Which color he will have on given foot on given day is quite
unpredictable. But when you see the first sock is pink you are sure
the second sock will not be pink. Observation of first, and
experience with Dr. Bertlmann, gives immediate information about
second. There is no mystery in such correlations.
Isn’t this EPR business just the same sort of thing?
Dr. Bertlmann happens to be physicist who is very interested in
physical characteristics of his socks. He has secured a research
grant from a leading sock manufacturer to study how his socks stand
up to the rigors of prolonged washing at different temperatures.
Bertlmann decides to subject his left socks (socks A from now on) to
3 different tests:

test a washing for 1 hour at   0.0 °C
test b washing for 1 hour at  22.5 °C
test c washing for 1 hour at  45.0 °C

He is particularly concerned about numbers of socks A that survive
intact (a + result) or are destroyed (a — result) by prolonged
washing at these different temperatures.
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He denotes the number of socks that pass test  a  and fail test  b as
  n a b+ −[ ]

Being a theoretical physicist, he knows that he can discover simple
relationships between such numbers without actually performing tests
using real socks and real washing machines. This makes his study
inexpensive and more attractive to his research sponsors.
He reasons as follows:
n a b+ −[ ] can be written as the sum of the numbers of socks belonging to
two subsets, one where individual socks pass test  a , fail  b  and
pass  c  and one where socks pass test  a , fail  b  and fail  c,
i.e.,

n a b n a b c n a b c+ −[ ] = + − +[ ]+ + − −[ ]           (1)
This works because

P C P not C( ) ( )+ = 1

so that equation (1) just says that
n a b P c P c n a b+ −[ ] = +[ ]+ −[ ] + −[ ]( )

Similarly, we get
n b c n a b c n a b c+ −[ ] = + + −[ ]+ − + −[ ]               (2)

where individual socks pass test  b , fail c and pass a  and one
where socks pass test  b , fail  c  and fail  a
and

n a c n a b c n a b c+ −[ ] = + + −[ ]+ + − −[ ]                (3)
where individual socks pass test  a , fail  c and pass  b  and
another one where socks pass test a , fail  c  and fail  b .
From equation (1) it follows that

n a b n a b c+ −[ ] ≥ + − −[ ]                        (4)
since all the numbers involved are ≥ 0.
From equation (2) it follows that

n b c n a b c+ −[ ] ≥ + + −[ ]                        (5)
Adding equations (4) and (5) gives the result

 n a b n b c n a b c n a b c n a c+ −[ ]+ + −[ ] ≥ + − −[ ]+ + + −[ ] = + −[ ]
     

or
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n a b n b c n a c+ −[ ]+ + −[ ] ≥ + −[ ]    (6)
At this stage, Dr. Bertlmann notices flaw in reasoning, which all of
you will, of course, have spotted right at the beginning.
Subjecting one of socks A to test  a  will necessarily change
irreversibly its physical characteristics such that, even if it
survives the test, it may not give the result for test  b  that might
be expected of brand new sock.
And, of course, if sock fails test  b , it will simply not be
available(destroyed) for test  c .
The numbers n a b+ −[ ], etc, therefore have no practical (we cannot
measure them in real world) relevance.
Bertlmann now remembers his socks always come in pairs.
He assumes that, apart from differences in the color, the physical
characteristics of each sock in a pair are identical.
Thus, a test performed on the right sock (sock B) can be used to
predict what the result of same test would be if the test had been
performed on left sock(sock A), even though the test on A is not
actually carried out.
He must further assumes that whatever test he chooses to perform on B
in no way affects the outcome of any other test he might perform on
A, but this seems so obviously valid that he does not give it any
thought whatsoever. Can you figure out where we are in the EPR
argument?
Bertlmann now devises three different sets of experiments to be
carried out on three samples each containing the same total number of
pairs of socks.
In experiment 1, for each pair, sock A is subjected to test  a  and
sock B is subjected to test  b . If sock B fails test  b, this
implies that sock A would also have failed test  b had it been
performed on sock A.
Thus, the number of pairs of socks for which sock A passes test  a
and sock B fails test  b , which we denote by

N a b+ −( , )

must be equal to the (hypothetical) number of socks A which pass test
a  and fail test  b , i.e.,

N a b n a b+ − = + −[ ]( , )               (7)

In experiment 2, for each pair, sock A is subjected to test  b  and
sock B is subjected to test  c . The same kind of reasoning allows
Bertlmann to deduce that
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where N b c+ −( , ) denotes the number of pairs of socks for which sock A
passes test  b  and sock B fails test  c .
Finally, in experiment 3, for each pair, sock A is subjected to test
a  and sock B is subjected to test  c . In a similar manner,
Bertlmann deduces that

N a c n a c+ − = + −[ ]( , )               (9)

where N a c+ −( , ) denotes the number of pairs of socks for which sock A
passes test  a  and sock B fails test  c .
The experimental arrangements are summarized below.

         

Experiment Sock A Test Sock B Test

a b

b c

a c

1

2

3

Using eqs. (7)-(9) and (6) Bertlmann then concludes that we must have
the inequality

N a b N b c N a c+ − + + − ≥ + −( , ) ( , ) ( , )    (10)

Bertlmann generalizes this result for any batch of pairs of socks by
dividing each number in equation (10) by the total number of pairs of
socks (which was same for each experiment) to arrive at frequencies
with which each joint result was obtained.
He identifies these frequencies with probabilities for obtaining
results for experiments to be performed on any batch of pairs of
socks that, statistically, have same properties.
Thus, he finds that

P a b P b c P a c+ − + + − ≥ + −( , ) ( , ) ( , )        (11)

This is Bell's inequality for this experiment.
Now we follow the above arguments again, replacing

socks with photons
pairs of socks with pairs of entangled photons
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and
temperatures with polarizer orientations

and we will still arrive at Bell's inequality, equation (11), i.e.,
we only change the words in our description of the experiments and
not the conclusions!
Our three tests now refer to polarization analyzers set with their
vertical(optic) axes oriented at

a

b

c

→ °
→ °
→ °

0 0

22 5

45 0

.

.

.

The different experimental arrangements are summarized as follows:
                     

Expt Difference

a b b a

b c c b

a c c a

Photon A 
Orientation

Photon B 
Orientation

1 0 0 22 5 22 5

2 22 5 45 0 22 5

3 0 0 45 0 45 0

= ° = ° − = °
= ° = ° − = °
= ° = ° − = °

. . .

. . .

. . .

The probabilities predicted by quantum theory for difference angle
( )b a−   between the polaroids in each test are given by

1
2

2sin ( )b a−

i.e., remember the matches and misses arguments.
Putting the angles above into equation (11) we get the Bell
inequality

1
2

2 22 5
1
2

2 22 5
1
2

2 45 0sin . sin . sin .° + ° ≥ °    (12)

or
0.1464 ≥ 0.2500                (13)

which is obviously incorrect!
Thus, for these particular arrangements of polarization analyzers,
the probability formula from quantum theory predicts results that
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However, the quantum mechanical probability formula results agrees
with experimental observations!!
The comparison of quantum mechanics and the Bell inequality is shown
in the figure below:

The experimental demonstration of the violation of the Bell
inequality on the spin correlation of proton pairs is shown below.

Clearly, quantum mechanics is correct.
The most important assumption made in the reasoning which led to the
inequality was Einstein separability or local reality of the
photons(or socks).
The inequality is quite independent of nature of any local hidden
variable theory that could be devised.
The conclusion is inescapable.
Quantum theory is incompatible with any local hidden variable theory
and hence incompatible with any form of local reality.
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predictions as quantum mechanics must be nonlocal.
We should not, perhaps, be too surprised by this result.
The predictions of quantum theory are based on the properties of a
2-particle state vector which, before collapsing into one of
measurement eigenstates, is delocalized or entangled over the whole
experimental arrangement.
The 2 particles are, in effect, always in "contact" prior to
measurement and can therefore exhibit a degree of correlation
impossible for 2 Einstein separable (locally realistic) particles.
Bell's inequality provides us with a straightforward test. If
experiments like those described here are actually performed, the
results allow us to make a choice between quantum theory and a whole
range of theories based on local hidden variables and hidden variable
theories are ruled out conclusively.
Bohr once declared when he was asked whether the quantum mechanical
algorithms could be considered as somehow mirroring an underlying
quantum reality: He said :

There is no quantum world.
There is only an abstract quantum
mechanical description.
It is wrong to think that the task of 
physics is to find out how Nature is.
Physics is concerned only with what we
can say about Nature.

Heisenberg said:
In the experiments about atomic events we 
have to do with things and facts, with 
phenomena that are just as real as any 
phenomena in daily life. But the atoms or 
the elementary particles are not as real;
they form a world of potentialities or 
possibilities rather than one of real 
things or facts.

Jordan declared:
That observations not only disturb what 
has to be measured, they produce it. In
a measurement of position of an electron, 
the electron is forced to a decision.
We compel it to assume a definite 
position; previously it was, in general, 
neither here nor there; it had not yet 
made its decision about a definite 
position.
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Next, we will do a more mathematically rigorous derivation of the
EPR/Bell phenomena.
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Then we will move on to a discussion of this new quantum reality.


