
Locality, EPR and Bell - Introduction
Before proceeding into this discussion we must define the properties
of quantum states (vectors) when more than one particle is present in
a particular state. In this seminar, we will only need to look at the
case of two particles.
Imagine two particles (1 & 2) in states a1  (eigenstate of operator
Â) & b1  (eigenstate of operator B̂) respectively, We write the state
describing this situation as

a b a b1 1 1 2 1 1→ ,

and these symbols represent a vector in the state-space of the
two-particle system.
What are the properties of these vectors, especially with respect to
probabilities?
If the two particles do not interact with each other, then their
probabilities are independent. That means that the probability that
particle 1 has Â measured as a3 and particle 2 has B̂ measured as b4,is given by

1 3 2 4 1 1 1 2

2

1 3 1 1

2

2 4 1 2

2
a b a b a a b b( )( ) =

or that the joint probability that A a= 3 and B b= 4 is simply the
product of the probability for A a= 3 and the probability for B b= 4.
Our basis set of vectors for the 2-particle universe is given by

a b a bi j i j1 2
→ →, i, j

for all possible a bi j,  values, which means that the dimension of the
space is
(dimension of space of 1-basis) x (dimension of space of 2-basis)
The basis set is orthonormal,i.e.,

1 2 1 2 1 1 2 2

1

0

a b a b a a b b

i j and k m

i j and or k m

i k j m i j k m( )( )=
=

≠ ≠




   
      =     =     

        /   

This means that any linear combination of basis vectors
 Q c c c c= + + + +11 12 21 221 1 1 2 2 1 2 2, , , , ..........

will also be a vector, and hence another physical state, in the
two-particle state space.
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Now for something very interesting!
It turns out that a two-particle state Q  (one of many such examples)
as given below

Q = −1
2

1 2
1
2

2 1, ,

which is a superposition of two-particle state vectors where particle
1 is in a superposition of states 1 21 1  and   and particle 2 is
simultaneously in a superposition of states 1 22 2  and  , cannot be
decomposed into a state of the form r s, , that is, a separately
well-defined state of particle 1 and a separately well-defined state
of particle 2.
That means that states like Q  cannot possibly be described by
propositions of the form
  "the state of particle 1 is such-and-such"

and 
"the state of particle 2 is so-and-so"

In other words, in such a state, no measurable property of particle 1
alone, and no measurable property of particle 2 alone, has  any
definite value.
These are called nonseparable or entangled 2-particle states.
Nonseparability or entanglement along with superposition and
incompatibility are the ways in which quantum theory differs most
from classical physics.
Now consider the state:

    α = = = − = =1
2

5 7
1
2

9 111 2 1 2x x x x

where
ˆ ˆX x x x X x x x1 1 1 1 2 2 2 2= =  and  

i.e., the particle states are eigenvectors of the position operators
in each space.
In this state, neither the position of particle 1, nor the position
of particle 2, nor anything else about them separately, has any
definite value here.
On the other hand, the difference in their positions does have a
definite value because:

ˆ ˆX X2 1 2−( ) =α α
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i.e., it is an eigenvector of the ˆ ˆX X2 1−( ) operator with eigenvalue 2,



which implies that the difference in the positions (in this state) is
equal to 2 with certainty or probability = 1.
Two interesting cases will illustrate how we deal with probability
and collapse for these states.
First, suppose that the state of the 2-particle system is β , and
that Â and B̂, which are observables of particles 1 and 2
respectively, are measured. The probability that the outcomes of
those experiments will be A a B b= =  and  , is given by

a b, β 2

which is just one of our original postulates.

Now, suppose that only Â is measured.
The probability that the outcome of the measurement will be A a= 1  isgiven by a sum over probability amplitudes

P a b a b a b= + + +1 1 1 2 1 3

2
, , , ....β β β

where B̂ is any observable of particle 2 and the sum ranges over all
the eigenvalues bi{ }  of B̂ (all possible measured values of B̂), which
is just another of our postulates.
We say it as follows:

the probability amplitude that A a= 1 is equal to sum of the probability amplitudes of all the various different and 
indistinguishable ways it is possible for Â to be a1 , i.e., 
independent of the values of B̂ and the actual probability is
the square of the resulting total amplitude

Classically we would have the very different result

P a b a b a b a b= + + + +1 1

2

1 2

2

1 3

2

1 4

2
, , , , ......β β β β

that is, the sum of the squares of the individual amplitudes
(individual probabilities) and the possibility of any interference
would vanish (no cross-terms).
Now let us elaborate the principle(postulate) of collapse for a
two-particle state.
Suppose that the state of a certain 2-particle system just prior to
the time t1 is δ  and suppose that at t1 the observable Â (of particle
1) is measured, and suppose that the outcome of that measurement is
A a= 5 (one of the eigenvalues of Â ).
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changed(collapsed) by the Â measurement.

Start with state δ  expressed in terms of eigenstates of Â and B̂

δ = + + + +d d d d11 12 21 221 1 1 2 2 1 2 2, , , , ..........

where
d i j i j a bij i j= =, , ,δ   and  

Then, throw away all the terms where A a≠ 5 (that is what the
measurement A a= 5 does according to the postulates). This leaves

δ = + + + +d d d d51 52 53 545 1 5 2 5 3 5 4, , , , ..........

Renormalize the new vector to 1 (one of our postulates) and the
resulting vector is the state vector of the system after the
measurement.

Note that it has only one value of Â, but many, possibly all, values
of B̂.

If the original state had only one component with A a= 5  then B̂ would
necessarily have the value in that state. So if the state is

      α = = = − = =1
2

5 7
1
2

9 111 2 1 2x x x x

and we measure X1 5= , then we necessarily have X2 7= (particle 2 must
be in this state) due to our collapse postulate, even though we did
not measure X̂2. This is a most important point! We state that X2 7=
even though we have not measured it; this is called a counterfactual
statement.
With these properties of 2-particle states, we can continue our
discussions.
E(instein)P(odolsky)R(osen) - Version #1
A famous attempt to escape from the standard (Copenhagen) way of
thinking about quantum mechanics was initiated in the 1930s by
Einstein, Podolsky and Rosen, and had a surprising aftermath, in the
1960s, in the work of John Bell. We first discuss the escape attempt
itself and then delve into the most fundamental work of Bell. In
1935, Einstein, Podolsky and Rosen (EPR) produced an argument, which
was supposed to open the way to an escape from the standard way of
thinking about quantum mechanics.
First, they define completeness:

A description of the world is complete (for EPR) if
nothing that is true about the world, nothing that
is an element of the reality of the world is left
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EPR never actually presented a prescription for determining what all
the elements of reality are (made it very difficult to challenge them
because they could always say....."you must have missed one").
Instead, they did something much narrower (which was sufficient for
the purposes of their argument). They wrote down a condition for a
measurable property of a certain system at a certain moment to be an
element of the reality of that system at that moment.
The condition is that:

if, without in any way disturbing a system, we
can predict with certainty (with probability = 1 )
the value of a physical quantity, then there exists
an element of reality corresponding to this physical 
quantity

Let us see what this condition means. Consider the following
question:

If a measurement of a particular observable Ô of a certain particular
physical system S were to be carried out at a certain particular
future time T, what would the outcome be?
Suppose that there is a method available to me so that I can, prior
to time T, answer that question with certainty.
Also, suppose that the method I used involves no disturbance of the
system S whatsoever.
Then(according to EPR) there must now already be some definite
information(hidden away somewhere) about what the outcome of the
future Ô measurement on S would be at time T.
Some Examples:
Suppose we have just measured the color of some particular electron.
Having done that (and since measurements of color are repeatable) we
are in a position to predict with certainty what the outcome of a
later color measurement will be, if such a measurement were to be
carried out. Making such a prediction need not involve any further
interaction with the electron at all. So the EPR reality condition
says that color must, at present, be an element of the reality of
this electron.
This is identical to any statements we might make in the standard way
of thinking!
Suppose, on the other hand, that I had just now measured the hardness
of an electron. In order to be able to predict with certainty what
the outcome of a future measurement of the color of that electron
would be (if we made such a measurement), I would need to measure the
color of that electron (I would need to interact with it and
potentially disturb it).
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is an element of the reality of this electron at present.
Again this agrees completely with the standard way of thinking!
So what EPR want to argue is the following:

if the predictions of quantum mechanics are correct,
then there must be elements of reality of the world
which have no corresponding elements in the
quantum-mechanical description of the world

They are attempting to use quantum mechanics against itself. They are
saying that quantum mechanics is missing something!
Their argument goes something like this:
Consider a system consisting of two electrons. Electron 1 is located
at position 1, and electron 2 is located at position 2.
Assume that the color-space state of these two electrons  is (note
that it is a nonseparable or entangled state)

A green magenta magenta green= −1
2

1
21 2 1 2

The state A , like any state in the space, is necessarily an
eigenstate of some observable (Hermitian operator) of this pair of
electrons, say Ô, where Ô A A= +1  (eigenvalue = +1). Now we have
written A  in the color basis. Let us convert it to the hardness
basis.
Remember

green hard soft

magenta hard soft

= +

= −

1
2

1
2

1
2

1
2

Substituting we get

A soft hard hard soft= −1
2

1
21 2 1 2

It takes the same nonseparable form in both bases(in fact, it would
do so in any basis we might use!).
Now suppose we carry out a measurement of the color of electron 1 (in
the state in the color basis). The outcome of the measurement will be
either green or magenta with equal probability (using our
two-particle state probability rules).
Moreover, quantum mechanics says(and it is experimentally confirmed)
that in the event that the outcome of the measurement is green, then
the outcome of any subsequent measurement of the color of electron 2
will necessarily be magenta and in the event  that the outcome of the
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measurement of the color of electron 2 will necessarily be green.
Both of these statements follow directly from the collapse postulate
for two-particle states.
EPR assumed (this is the only assumption (it is called locality) they
make on top of the basic assumption that the predictions of quantum
mechanics are correct) that things could in principle be set up in
such a way as to guarantee that the measurement of the color of
electron 1 produces no physical disturbance whatsoever in electron 2.
To them it was a self-evident statement!
What influence could there be???
There seemed to be any number of ways for them satisfy this
condition.
You could separate the two electrons by some immense distance
(nothing we have said so far says that any of the properties of
quantum mechanics changes with electron separation). Then the two
measurement events could be made spacelike and according to special
relativity could not influence each other.
Or you could insert an impenetrable wall between them (nothing we
have said so far say that any of the properties of quantum mechanics
depends on what happens to be located in between the electrons).
Or we could set up any array of detectors you like in order to verify
that no measurable signals pass from one of the electrons to the
other in the course of the experiment (since quantum mechanics
predicts that no such array, in such circumstances, whatever sort of
signals it may be designed to detect, will ever register anything ).
This is a very important point.
The locality assumption says that

I cannot punch you in the nose unless
my fist gets to the place where your
nose is (in space and time)

Of course, something I do with my fist far from where your nose is
can cause some other fist which is near your nose to punch your nose
(i.e., something I do with my fist might signal somebody else to
punch you in the nose). Their seemingly obvious assumption is just
this:

if my fist never gets anywhere near
your nose then I cannot punch you in
the nose directly. If you got punched
in such an arrangement, then it cannot
be my fist that punched you

If something I do with my fist far from your nose is the cause of
your getting punched in the nose, then necessarily some causal
sequence of events at contiguous points in space and at contiguous
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stretches all the way without a break from whatever it was I did with
my fist to your being punched in the nose.
The important thing about the sequence of events is that it must
necessarily require some finite time(exact amount depends on what is
along the path in space and time) to completely unfold. The shortest
time possible would occur if the signal(s) travel with the speed of
light in a straight line (the maximum speed of propagation of
information).
So summarizing their assumption:
Locality

measurement on color 1 has no effect on measurement
of color 2 if measurements spacelike separated

Returning to the color basis entangled state

A green magenta magenta green= −1
2 1 2

1
2 1 2

it is clear that we can predict with certainty, if locality is true,
without disturbing electron 2, what outcome of subsequent measurement
of color 2  will be.
Measure color 1 → know outcome of measurement of color 2 opposite of
outcome of measurement of color 1
or we know color 2 without measuring it!
The reality condition then says that color is element of the reality
of electron 2. The color of 2 has a definite value when in state A .
So both 1 & 2 have definite color values!
Now switch to the hardness basis so we can talk about hardness
measurements.

A soft hard hard soft= −1
2 1 2

1
2 1 2

Using the same arguments in hardness basis we find that both 1 & 2
have definite hardness values!
Since we actually can prepare states like A  in the real world, EPR
say the standard interpretation must be false.
EPR conclude both color and hardness are elements of reality of
electron 2, even though the two observables are supposed to be
incompatible according to quantum mechanics.
So the formalism must be incomplete, since some elements of the
physical reality of world have no corresponding elements in Quantum
Mechanics.
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hardness of 2, when in state A .
Is there way out of EPR’s proposed dilemma?
Nothing in QM formalism allows both the color/hardness of electron 2
to be predicted with certainty simultaneously.
Similar arguments hold for electron 1.
EPR were clearly very clever!
If true, the statement that system is in state A  then constitutes an
incomplete description of state of pair of electrons ---there are
some hidden variables somewhere.
EPR say QM predicts everything correctly, but is wrong.
EPR noticed something very odd about collapse postulate for
two-particle systems.
It was nonlocal.
If two particles are initially in nonseparable state, then a
measurement carried out on one can cause changes, instantaneously, in
the quantum mechanical description of the other, no matter how far
apart two particles are or what lies in between.
Suppose that a pair of electrons is initially in state A  and a
measurement of color 1 carried out. The outcome of the measurement is
either green or magenta, with equal probabilities. The collapse
postulate for a two-particle systems says as soon as the measurement
is over, the state of 2 will be either magenta  (if 1 was green) or
green  (if 1 was magenta) depending on what happened in the
measurement.
EPR said nonlocality is disposable artifact of particular
mathematical formalism, of a particular procedure for calculating
statistics of outcomes of experiments and that there must be other
(as yet undiscovered) procedures, which give rise to some statistical
properties, but are local (no infinite speeds necessary).
30 years later, Bell showed that their suspicion was wrong.
Bell’s work, as we shall see, is taken as a proof that any attempt to
be realistic about values of observables of pair of electrons in
state A , must necessarily be nonlocal.
Things are actually even more serious than that!!
Bell actually gives a proof that there is genuine nonlocality in the
actual workings of nature, however we attempt to describe it.
Nonlocality is feature of quantum mechanics, and via Bell’s theorem
is necessarily a feature  of every possible manner of calculating
(with or without superpositions) which produces same probability
predictions (which are experimentally correct) as quantum mechanics.
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What is this quantum nonlocality?
First, in state A , statistics(probabilities) of outcomes of
measurements on 2 depend nonlocally on outcomes of measurements on 1,
and vice versa. But do statistics of outcomes of measurements on 2,
when system in state A , depend nonlocally on whether a measurement
is actually carried out on 1 (and vice versa)?
Let us figure it out.
Suppose system in state A , and suppose we measure color 2. Using A
in the color basis plus the standard quantum-mechanical rules for
calculating probabilities of measurement outcomes implies the outcome
of the measurement is equally likely to be green or magenta.
Suppose the system in state A  and we measure color 1, and then
measure color 2. The measurement of color 1 is equally likely to be
green or magenta. If green, the collapse postulate says a subsequent
measurement of color 2 will be magenta, and if magenta, the collapse
postulate says that subsequent measurement of color 2 will be green.
So, when system in state A , the outcome of a measurement of color 2
is equally likely to be green or magenta whether or not measurement
of color 1 carried out first.
Suppose system in state A  and we measure hardness 1, and then
measure color 2. Using A  in hardness basis plus probability rules
says the outcome of hardness measurement on 1 equally likely to be
hard or soft.
If the outcome of first measurement is soft, the collapse postulate
plus probability rules say outcome of second measurement (color 2) is
equally likely to be green or magenta. The same result is true if
outcome of first measurement is hard.
So here is where we are:
When system is in state A , the outcome of a measurement of color 2
is equally likely to be green or magenta, whether
 measurement color 1 carried out first
or
 measurement of hardness 1 carried out first
or

no measurement on 1 is carried out
The probabilities of various outcomes of measurement on 2 do not
depend in any way on whether or not a measurement is made on 1
first.
Since the predictions of QM are correct, there must be non-local
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The outcomes of measurements do sometimes depend non-locally on
outcomes of other, distant measurements, but outcomes of measurements
invariably do not depend non-locally on whether any other distant
measurements actually get carried out.
Another way (tricky...must think about this one) to say this:

Non-local influences are so subtle (they surely exist)
that they cannot be used to transmit any signal containing 
information, non-locally, between two distant points. They 
cannot encode information you want to  send in decision to
make a measurement or not to make one, or in a decision about 
which measurement to make, since no such decisions can have 
detectable non-local effects.

Let us look at a simple experiment (actually done in 1980 with
photons) that refutes EPR and agrees with Bell's results. We will
discuss this experiment again later in more detail and mathematical
rigor.
Consider a pair of electrons in an entangled state like A  where we
use the observable spin(up/down in any direction).

A z up z down z down z up= − − − − −1
2 1 2

1
2 1 2

The electrons separate in physical space without changing this state
vector. We end up with two separated electron beams. Each beam has
equal numbers of z-up and z-down electrons (since probability = 1/2
for each in each component).
Each electron in one beam is correlated with a partner in other beam
since if measure electron in one beam z-up, then partner in other
beam is z-down due to entanglement and vice versa.
This nonseparable state remains nonseparable no matter what basis
(direction we measure spin) we use.
We define the direction of measurement by the angle θ it makes with
an arbitrarily chosen z-axis direction. The original state is (θ = 0,
i.e., we chose the z-axis). So we can write

A z up z down z down z up= − − − − −1
2

0 1 0 2
1
2

0 1 0 2( ) ( ) ( ) ( )

A state in an arbitrary direction basis is

A z up z down z down z up= − − − − −1
2 1 2

1
2 1 2( ) ( ) ( ) ( )θ θ θ θ

where (in original basis)
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z up z up z down

z down z up z down

( ) cos ( ) sin ( )

( ) sin ( ) cos ( )

θ θ θ

θ θ θ

− = − + −

− = − − + −

2
0

2
0

2
0

2
0

Does this make sense? Stand on your head → θ = 180 →

z up z down

z down z up

( ) ( )

( ) ( )

180 0

180 0

− = −

− = −
as expected.
Suppose we measure beam 1 in a direction θ1 and beam 2 in a direction
θ2 and count number of times

beam 1 up and beam 2 up  
or      = a MATCH

     beam 1 down and beam 2 down
and count the number of times

beam 1 up and beam 2 down 
 or  = a MISS

beam 1 down and beam 2 up
Quantum mechanics says the experimental results depend only on the
angle difference

φ θ θ= −2 1

and not separately on θ1 and θ2. These results are confirmedexperimentally no matter where two detectors are located...in same
room, or on opposite sides of city or wherever!!!!.
Suppose we code the results coming from two detectors:
If φ = 0, z-axes of the 2 detectors are in the same direction and we
get

beam

beam

1

2

→↑↓↑↓↓↑↓↓↓↑↑↓↑↓↓↑

→↓↑↓↑↑↓↑↑↑↓↓↑↓↑↑↓

...........

..........

i.e., ALL MISSES (remember if 1 is up, 2 is down).
We get two opposite binary data sequences in the two detectors

1010010001101001.......
0101101110010110.......

If φ = 180, the z-axes of two detectors are in opposite directions and
we get ALL MATCHES, i.e.,
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beam

beam

1

2

→↑↓↑↓↓↑↓↓↓↑↑↓↑↓↓↑

→↑↓↑↓↓↑↓↓↓↑↑↓↑↓↓↑

...........

..........

(up in 1 is in opposite direction to up in 2 or up in 2 is down in
1).
Quantum mechanics predicts the number of MATCHES varies like

[#MATCHES]       = [#ELECTRONS] sin2
2
φ

[#MISSES]       = [#ELECTRONS] cos2
2
φ

[#MATCHES + #MISSES] = [#ELECTRONS][sin2
2
φ+cos2

2
φ] = [#ELECTRONS]

as it should!
We now set the angle between the detector axes to be φ = °120 . Quantum
mechanics predicts

[#MATCHES] = 3/4 [#ELECTRONS]
What would EPR say?
If φ = °60 , then

[#MATCHES] = 1/4 [#ELECTRONS]
(this is same as the quantum mechanical prediction - check it!).
So now EPR align the detectors (φ = °0 ).
They the rotate detector 1 such that φ = °60  and get

1/4 MATCHES.
So now EPR re-align the detectors (φ = °0 ).
They then rotate detector 2(opposite direction) such that φ = − °60  and
also get

1/4 MATCHES.
The EPR version of reality (locality) says rotating 1 detector can
ONLY change sequence of ups/downs at 1 detector and rotating 2
detector can ONLY change sequence of ups/downs at 2  detector.

That is their LOCALITY assumption
Now they rotate detector 1 by φ = °60  from the aligned direction and
rotate the detector 1 by φ = − °60  from the aligned direction(total
angle between = 120°).
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1/4 + 1/4 = 1/2 MATCHES (not 3/4)
Experiment says answer is 3/4 !!. Quantum mechanics is correct!
The local view of reality due to EPR cannot be correct.
Somehow information is flowing between detectors 1 and 2 NO MATTER
WHAT WE DO. The speed of information flow might even be infinite(best
measurement so far ≈ = ×10 3 107 15c m / sec).
It is important to emphasize that we have not observed any non-local
interactions directly, but only indirectly demonstrated the need for
them.
Each measurement is separately local, i.e., we measure any spin
direction in either detector and always get 50-50 up and down no
matter what the other detector is doing.
It is the sequences that differ(in a random way) as we change the
angles. This means, as before, that we cannot transmit any messages.
We only find out the sequences(messages) when we bring them together.
So, it seems in QM, that my QM fist can punch your QM nose without
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being at your QM nose!!


