
One-Dimensional Quantum Systems
The Schrodinger equation in 1-dimension is
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The solutions ψ E x( ) are the energy eigenstates (eigenfunctions). As we
have seen, their time dependence is given by
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We are thus faced with solving an ordinary differential equation with
boundary conditions.
Since ψ E x( ) is physically related to a probability amplitude and hence
to a measurable probability, we assume that ψ E x( ) is continuous.
Using this fact, we can determine the general continuity properties
of d x

dx
Eψ ( ). The continuity property at a particular point, say x x= 0,

is derived as follows:
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Taking the limit as ε → 0
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where we have used the continuity of ψ E x( ) to set lim ( )
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makes it clear that whether or not d x

dx
Eψ ( ) has a discontinuity depends

directly on the potential energy function.
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If V x( ) is continuous at x x= 0, i.e.,
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and d x

dx
Eψ ( ) is continuous.

If V x( ) has a finite discontinuity (jump) at x x= 0, i.e.,
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and d x

dx
Eψ ( ) is continuous.

Finally, if V x( ) has an infinite jump at x x= 0, then we have twochoices
(1) if the potential is infinite over an extended range of x, then we
    must force ψ E x( ) = 0 in that region and use only the continuity of
    ψ E x( ) as a boundary condition at the edge of the region
(2) if the potential is infinite at a single point, i.e.,
    V x x x( ) ( )= −δ 0 , then we would have
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and, thus, d x

dx
Eψ ( ) is discontinuous.

The last thing we must worry about is the validity of our probability
interpretation of ψ E x( ), i.e.,

ψ ψE Ex x( ) =  = probability amplitude for the
                   particle in the state ψ E  to be                   found at x

which says that we must also have

ψ ψ ψE E E x dx= < ∞
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This means that we must be able to normalize the wave functions and



make the total probability that the particle is somewhere on the
x-axis equal to one.
A wide range of interesting physical systems can be studied using
1-dimensional potential energy functions.
Quantized Energy Levels in the Infinite Square Well Potential
We now consider the potential energy function
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This is the so-called infinite square well shown in the figure below.

We consider the three regions labeled I, II, III. This is an example
of a potential that is infinite in an extended region. Therefore, we
must require that the wave function ψ ( )x = 0 in these regions or the
Schrodinger equation makes no sense mathematically. In this case we
have

ψ ψI IIIx x( ) ( )= =0 0    and     

Digression: Second-Order diffEQs
The solution technique we will use in most cases is called
exponential substitution.
Exponential Substitution
This method is applicable to all differential equations of the form

A
d y

dt
B

dy

dt
Cy

2

2 0+ + =

where A B and C, ,  are constants.
Definitions:

2nd-order = order of highest derivative
linear = no squares or worse

   homogeneous = right-hand side = 0
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Therefore this equation is a 2nd-order, homogeneous, linear
differential equation with constant coefficients.
The SHM equation(spring) has this form,
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so that A M C k= =,  and B = 0.
The 1-dimensional Schrodinger equation will also take this form in
different regions as we shall see.
The Method: consider a typical equation of the form
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We make the exponential substitution
y e t= α

into the diffEQ. This will convert the diffEQ into an algebraic 
equation for α . We have
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which gives the result
( )α α α αα2 23 2 0 3 2 0+ + = → + + =e t

since e tα ≠ 0.
The solutions of this algebraic equation tell us the allowed values
of α  that give valid solutions to the diffEQ. In particular in this
case we get

α = − −1 2,

as solutions to the quadratic equation. This result means that
y e t= −  and y e t= −2  satisfy the original diffEQ as can be seen by direct
substitution.
If there is more than one allowed value of α (as in this case), then
the most general solution will be a linear combination of all
possible solutions(because this is a linear diffEQ). Since, in this
case, the allowed values of α  are

α = − −1 2,
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the most general solution of the diffEQ is
y t ae bet t( ) = +− −2

where a and b are constants to be determined by the initial
conditions.
The number of arbitrary constants that need to be determined by the 
initial conditions is equal to the order(highest derivative → 2 in
this case) of the diffEQ.
Suppose the initial conditions are y = 0 and dy dt/ = 1 at t = 0. Then we
have
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which gives a b= − =1 and thus
y t e et t( ) = −− −2

Substitute this solution into the original equation and see that it
works and has the correct initial conditions!!
Although this method is very powerful as described, we can make it
even more powerful by defining a new mathematical quantity called the
complex exponential. This will allow us to use the method for the SHM
case.
Complex Exponentials - Alternative Very Powerful Method
Remember the exponential function has the power series expansions:
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We then showed the neat result that
e t i ti t± = ±α α αcos sin

which is very useful physics. It is called Euler's formula.
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From these results we can also derived the relations
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Finally, we can use these results to solve the SHM equation
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using the exponential substitution method.
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Substituting y e t= α  we get the algebraic equation

α ω2 2 0+ =

which has solutions (allowed values of α ) of  α ω= ±i  so that the most
general solution takes the form

y t Ae Bei t i t( ) = + −ω ω

Suppose now that the initial conditions are y y= 0 and dy dt/ = 0 at t = 0.
Then we have
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Alternatively, if the initial conditions are y = 0 and dy dt v/ = 0 at t = 0,
then we have
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Returning to the Schrodinger equation:
Now in region II, the Schrodinger equation becomes
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which has a general solution(using the above method) given by
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This is an equation for the allowed values (values corresponding to a
valid solution) of  the parameter k.
The equation is e ika2 1= . The allowed values of k form a discrete
spectrum of energy eigenvalues (quantized energies) given by
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where Ãn is determined by the normalization condition

                ψ n
a

a

x dx( )
2

2

2

1=
−

∫
Substituting the value of kn we get

ψ π

ψ π π π π

ψ π π π π

ψ

II
n

n

II

II

II

x A
n

a
x

a

or

x A
a

x
a

A
x

a
A

x

a

x A
a

x
a

A
x

a
A

x

a

x

( )

( )

( )

( )

( ) ˜ sin ( )

( ) ˜ sin ( ) ˜ sin( ) ˜ cos( )

( ) ˜ sin ( ) ˜ sin( ) ˜ sin( )

(

= +

= + = + =

= + = + =

2

2 2
2

2
2 2

1
1 1 1

2
2 1 1

3 )) ˜ sin ( ) ˜ sin( ) ˜ cos( )= + = + =A
a

x
a

A
x

a
A

x

a3 3 3

3
2

3 3
2

3π π π π

or

ψ

π

πII x

n x

a

cox
n x

a

( )
sin( )

( )
=









             n even

             n odd 

We have mathematically solved the ordinary differential equation
problem, now what is the physical meaning of these results?
We find a discrete spectrum of allowed energies corresponding to
bound states of the Hamiltonian. Bound states designate states which
are localized in space, i.e., the probability is large only over
restricted regions of space and goes to zero far from the potential
region.
The lowest energy value or lowest energy level or ground state energy
is
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This minimum energy is not zero because of the Heisenberg uncertainty
principle. Since the particle has a nonzero amplitude for being in
the well, we say that it is localized such that ∆x a≈  and thus

  
∆

∆
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x a
≥ ≈h h

This says that the kinetic energy (or energy in this case because the
potential energy equals zero in region II) must have a minimum value
given approximately by
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The integer  n −1 corresponds to the number of nodes (zeros) of the
wave function (other than the well edges).
They solutions also have the property

ψ ψ
ψ ψ

( ) ( )

( ) ( )

− =
− = −

x x

x x

       n  odd

     n  even

The above discrete transformation of the wave function corresponds to
the parity operator ˆ℘  where we have
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Let us look more generally at the parity operation. Suppose that the
potential energy function obeys the rule   V x V x( ) ( )

r r= −  and let   ψ ( )
r
x  be a

solution of the Schrodinger equation with energy E
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This says that, if   ψ ( )
r
x  is a solution of the Schrodinger equation with

energy E, then   ψ ( )−r
x  is also a solution of the same Schrodinger
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are also solutions of the same Schrodinger equation with the same
energy E.  Now\
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This says that if   V x V x( ) ( )
r r= − , then we can always choose solutions that

have a definite parity (even or odd).
We formally define the parity operator by the relation
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r r r
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eigenvalues of ˆ℘  are ±1 as we indicated earlier.

We can show ˆ , ˆH ℘[ ] = 0 for symmetric potentials by
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since E  is an arbitrary state. As we saw earlier, this commutator
relationship says that
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H H
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which means that Ĥ is invariant under the ˆ℘  transformation. We have
used ˆ ˆ℘ =2 I  in this derivation. It also says that

ˆ ( ˆ ) ˆ ˆ ( ˆ )H E H E E E℘ = ℘ = ℘

or ˆ℘ E  is an eigenstate of Ĥ with energy E as we stated.

The concept of parity invariance and the fact that Ĥ and ˆ℘  share a
common set of eigenfunctions can greatly simplify the solution of the
Schrodinger equation in many cases.
Tunneling through a Potential Barrier
We now change the potential energy function so that we have a
barrier. The new potential energy function is shown in the figure
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The interesting physical case for quantum systems corresponds to when
E V< 0.
In the classical case, there is no probability of the particle
appearing on the right side of the barrier if it started out on the
left side of the barrier. In order to appear on the right side of the
barrier, the particle would some how have to pass through region II
where E V T mv< → = <0

21
2

0. Classically, the kinetic energy cannot be
negative, which means there would have to be a violation of
conservation of energy if the classical particle appeared on the
right side of the barrier.
As we shall see, it turns out that a real traveling wave can appear
on the other side of the barrier (even though it started on the left
side and there are no sources of particles on the right side) in this
case. This is called quantum tunneling. Let us see how it works.
We have three regions I, II and III to consider as shown in the
figure. We get three equations in the three regions
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A term of the form A eikx
1  corresponds physically to a particle traveling

towards +x (to the right) and a term of the form B e ikx
1

−  corresponds
physically to a particle traveling towards −x (to the left).
If we set up the experiment so that there are particles moving
towards +x (on the left) at the start, then later we expect particles
also to be traveling to towards −x (on the left). Hence, we expect
both coefficients A B1 1  and   to be nonzero. On the other hand, there are
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be on the right is if they came from the left side and therefore must
be traveling towards +x.  We therefore assume that the coefficient
B2 0=

We have two sets of continuity equations (at x = 0 and x a= ). At x = 0
we get
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and at x a=  we get
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The reflection and transmission probabilities are given by
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A
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Algebra shows R T+ =1 as it must in order to conserve probability (or
particles). Evaluating (horrible algebra that you will do in a later
course) the expression for T we get is
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The fact that T > 0 for E V< 0 implies the existence of tunneling. Theprobability amplitude leaks through the barrier.
It is important to realize that the fact that T > 0 DOES NOT say that
particles passed through the barrier.
No measurement can be done on the system that will allow us to
observe a particle in the region 0 < <x a with E V< 0, since this wouldviolate energy conservation.
It is ONLY probability that is leaking through.
If this causes the probability amplitude and hence the probability to
be nonzero on the other side of the barrier, than it must be possible
for us to observe the particle on the other side, i.e., we can
observe the particle on the left side of the barrier with E V< 0 and
later in time on the right side of the barrier with E V< 0, but we can
never observer it in the region of the barrier with E V< 0.
That is what is being said here.
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The Finite Square Well
We now consider the potential energy function

V x

a
x

a

a( ) =
− − ≤ ≤

≥









V         

                 x

0 2 2

0
2

This is the so-called finite square well shown in the figure below.

    
The solutions are:
Region I : x

a< −
2
  ,   

  
− = ≥ ≥ = −h

h

2 2

2
2 2

2
2

m

d

dx
E k m E E EI

I

ψ ψ       ,   0 E -V   ,       ,    =o 

 ψ I
kx kxx Ae Be( ) = +−

Since x = −∞  is included in this region, we must exclude the e kx−  term
by choosing A = 0(otherwise the wave function cannot be normalized),
which gives

ψ I
kxx Be x

a
( ) = < −           

2

Region II:   a
x

a

2 2
≥ ≥ −   ,        

  
− − =h

2 2

2 02m

d

dx
V EII

II II

ψ ψ ψ

       
  
 0 E -V   ,       ,    =    ,    o ≥ ≥ = − = −h

2 2 2
02 2k m E E E p m V E( )

            ψ II

i
p

x i
p

x
x Ce De( ) = +

−
h h

Region III: x
a>
2
  ,   

  
− = ≥ ≥ = −h

h

2 2

2
2 2

2
2

m

d

dx
E k m E E EIII

III

ψ ψ       ,   0 E -V   ,       ,    =o 

 ψ III
kx kxx Fe Ge( ) = + −

Since x = ∞ is included in this region, we must exclude the ekx term by
choosing F = 0, which gives
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ψ III
kxx Ge x

a
( ) = >−            

2

This represents a general solution to the problem. There seems to be
4 unknown constants, namely, B, C, D, and G. However, since
V x V x( ) ( )= − , parity is conserved and we can choose even and odd
solutions, or solutions of definite parity.
Even parity implies ψ ψ( ) ( )x x= −  or G = B and C = D.  This solution is

  

ψ even
kx

kx

x

C
px

x
a

Be x
a

Be x
a

( )

cos

=

≤

>

< −













−

h
    ,         

           ,        

          ,         

2

2

2

Odd parity implies ψ ψ( ) ( )x x= − −  or G = -B and D = -C. This solution is

  

ψ odd
kx

kx

x

C
px

x
a

Be x
a

Be x
a

( )

sin

=

≤

>

− < −













−

h
    ,         

           ,        

          ,         

2

2

2

Thus, by using parity we reduce the number of unknowns in the problem
to two for each type of solution. We now impose the continuity
conditions of the wave function and its derivative only at x

a=
2
 for

both solutions. Since these are definite parity solutions the
continuity condition at x

a= −
2
 will give no new information and is not

needed.
Even parity     

   

  

A
pa

Ce
p

A
pa

kCe

C

A
e

pa p

k
e

pa

p
pa

k

ka ka

ka ka

cos sin

cos sin

tan

2 2

2 2

2

2 2

2 2

h h h

h h h

h
h

= − = −

= =

=

− −
   and   

          

This last equation is a transcendental equation for the E and its
solutions determine the allowed E values for the even parity states
for this potential energy function. These E values are the even
parity energies or energy levels of a particle in the finite square
well potential.
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Odd Parity       



  

  

A
pa

Ce
p

A
pa

kCe

C

A
e

pa p

k
e

pa

p
pa

k

ka ka

ka ka

sin cos

sin cos

cot

2 2

2 2

2

2 2

2 2

h h h

h h h

h
h

= = −

= = −

= −

− −
   and   

          

Again, this last equation is a transcendental equation for the E and
its solutions determine the allowed E values for the odd parity
states  for this potential energy function. These E values are the
odd parity energies or energy levels of a particle in the finite
square well potential.
In general, at this stage of the solution, we must either devise a
clever numerical or graphical trick to find the solutions of the
transcendental equations or resort to a computer.
The first thing one should always do is change variables to get rid
of as many extraneous constants as possible. In this case we let

  
β α γ= = = = = −ka

a
m E a

p
a

a
m V E

h h h
2 2 0    ,     ( )

The first useful equation we can derive is

  
α β2 2 0

2

2

2+ = mV a

h
 =  constant for a given well

This is the equation of a circle or radius 
  

2 0
2

2

mV a

h
.  With these new

variables the two transcendental equations are

β α α β α α= = −tan cot
2 2

        even parity     and           odd parity

We can find solutions graphically by plotting as shown below for the
case (effectively a choice of the quantity V a0

2)

  

circle radius =  
2 5

2
0

2

2

mV a

h
= π
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The solutions correspond to the intersections of the circle (fixed
for a given well) and the curves represented by the two
transcendental equations. It is shown in the figure.
For the choice of potential well shown in the figure we have 2 even
parity solutions and 1 odd parity solution. These correspond to the
allowed energy levels for this particular well and the corresponding
wave functions and energies represent bound states of the well.
We can also do a straight numerical solution for even parity by
rearranging the equations as follows:

  

α β β α α

α α α
α

α α

2 2 0
2

2

2 2
2

2

0
2

2

2 0
2

2
2

2
2

1
2

2

2

2
2

0

+ = =

+ = =

− =

mV a

mV a

mV a

h

h

h

    and      tan

( tan )
cos

cos

For the case 
  

2 5
2

0
2

2

mV a

h
= π  we have α π α α2

2
225

4 2
0− = =cos ( )f
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The numerical solution of this equation can be carried out by any
standard technique (Newton-Raphson method, for instance) for finding
the zeros of the function f ( )α .  For this case we get

α = 2 4950 7 1416. .   and    

which is clearly in agreement with the graphical result.
Delta-Function Potentials
We now consider the potential energy function

V x A x a( ) ( )= −δ
where

δ

δ

( )

( ) ( ) ( )

x a

f x x a dx f a

− = ≠

− =
−∞

∞

∫

0    x a

and  solve the corresponding Schrodinger equation

  
− + =h

2 2

22m

d x

dx
V x x E x

ψ ψ ψ( )
( ) ( ) ( )

As we discussed earlier the wave function ψ ( )x  is assumed to be
continuous for physical reasons relating to the probability
interpretation. The derivative of the wave function, however, is not
continuous at x a=  for this potential. We can see this as follows. We
have

  

− + − =
−

+

−

+

−

+

∫ ∫ ∫h
2 2

22m

d x

dx
dx A x a V x x dx E x dx

a

a

a

a

a

aψ δ ψ ψ
ε

ε

ε

ε

ε

ε( )
( ) ( ) ( ) ( )

In the limit ε → 0, using the continuity of ψ ( )x , we get

  

− −





= −
+ − −

+

∫h
2

2m

d

dx

d

dx
E a dx A a

a a a

aψ ψ ψ ψ
ε ε ε

ε

( ) ( )

  

− −





= −





 = 



 =

+ − −

+

=

∫h

h

2

2

2

2

m

d

dx

d

dx
E a dx A a

discontinuity
d

dx

d

dx

mA
a

a a a

a

x a

ψ ψ ψ ψ

ψ ψ ψ

ε ε ε

ε

( ) ( )

( )∆

For simplicity we choose a = 0. We have two regions to consider
       region I  x < 0, region II  x > 0

and the derivative is discontinuous at x = 0.
Transmission Problem

Page 17
We first carry out the calculation of the transmission and reflection



probabilities. We assume that A > 0 (we have a delta function
barrier), E > 0 and an incident wave of unit intensity coming in form
the left.
In region I we have

  
− = → = + = >−h h

2 2

2

2 2

2 2
0

m

d

dx
E x e Be E

k

m
I

I I
ikx ikxψ ψ ψ ( )     with    

We have both an incident and a reflected wave.
In region II we have

  
− = → = = >h h

2 2

2

2 2

2 2
0

m

d

dx
E x Ce E

k

m
II

II II
ikxψ ψ ψ ( )     with    

There is only a transmitted wave.
The boundary conditions (at x = 0) give

  

ψ ψ
ψ ψ ψ

I II

II I
II

B C

d

dx

d

dx

m
A ikC ik B

m
AC

( ) ( )

( ) ( )
( ) ( )

0 0 1

0 0 2
0 1

2
2 2

= → + =

− = → − − =
h h

The solutions are

  

C
ik

ik
mA B

mA

ik
mA=

−
=

−
h

h

h
2

2

2

    and    

We then have

  

T C
mA

E

= = =
+

transmission probability 2
2

2

1

1
2h

  

R B
E

mA

= = =
+

reflection probability 2
2

2

1

1
2h

We note that T R+ =1 as it must for the probability interpretation to
make sense.
From our previous discussion, we suspect that the energy values of
the poles of the transmission probability correspond to the bound
state energies for the delta function well problem (A < 0). For the
single delta function potential, T has a pole at

  
E

mA= −
2

22hBound-State Problem
We let A A A→ − >, 0. In region I we have
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− = − → = = − = − <h h

2 2

2

2 2

2 2
0

m

d

dx
E x Be E E

m
I

I I
xψ ψ ψ αα( )     with    



We have excluded the negative exponential term since it would diverge
in region I as x → −∞.
In region II we have

  
− = − → = = − = <−h h

2 2

2

2 2

2 2
0

m

d

dx
E x Ce E E

m
II

II II
xψ ψ ψ αα( )     with    

We have excluded the positive exponential term since it would diverge
in region II as x → +∞.
The boundary conditions give

  

ψ ψ
ψ ψ ψ α α

I II

II I
I

B C

d

dx

d

dx

m
A C B

m
AB

( ) ( )

( ) ( )
( )

0 0

0 0 2
0

2
2 2

= → =

− = − → − − = −
h h

The resulting equation for α  gives the allowed the bound state
energies. We have

  

α

α

= → →

= − = − = −

mA

E E
m

mA

h

h

h

2

2 2 2

22 2

only 1 solution only  1 bound state

which is the same value as we obtained from the pole of the
transmission probability.
We also note that the solution has definite parity (even) since
ψ ψ( ) ( )x x= − . This must occur since V x V x( ) ( )= −  and hence parity commutes
with the Hamiltonian. As we also saw in the square well case, if only
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one solution exists then it is always an even parity solution.


