
Introduction to the Schrodinger Equation in One Dimension
(Difficult stuff but rewarding when done)
Time Evolution
One way of doing quantum calculations is called the Schrodinger
Picture and involves the Schrodinger equation for determining
wavefunction corresponding to energy eigenstates and for specifying
the time evolution of physical quantities.
In this picture
  (a) states are represented by ket vectors that depend on time, ψ ( )t

  (b) operators Q̂ representing observables or measurable quantities
      are independent of time
We then get a time-dependent expectation value of the form

ˆ( ) ( ) ˆ ( )Q t t Q t= ψ ψ     (01)

Let t be a continuous parameter. We consider a family of unitary
operators ˆ ( )U t , with the properties

ˆ ( ) ˆ

ˆ ( ) ˆ ( ) ˆ ( )
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U t t U t U t
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+ =
         (5.7)

Transformations such as displacements, rotations and Lorentz boosts
clearly satisfy these properties and so it make sense to require them
in general.
As we will see, this operator is the time development operator whose
existence was one of our postulates and whose form we specified
earlier.
Now we consider infinitesimal t. We can then write the infinitesimal
version of the unitary transformation (using a Taylor series) as

ˆ ( ) ˆ
ˆ ( )

( )U t I
dU t
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= + +
=0

2 (03)

Since the unitary operator must satisfy the unitarity condition
ˆ ˆ ˆUU I+ =       for all t
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which implies that



dU t

dt

dU t
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t

ˆ ( ) ˆ ( )+








 =

+

=0

0

If we define
dU t

dt
iH

t

ˆ ( ) ˆ

=

= −
0

          (04)

then the condition becomes

− = + = −+ +iH iH iHˆ ( ˆ ) ˆ
or

ˆ ˆH H= + (05)

which says that Ĥ is a Hermitian operator. It is called the generator
of the family of transformations ˆ ( )U t  because it determines these
operators uniquely.
Now consider the property

ˆ ( ) ˆ ( ) ˆ ( )U t t U t U t1 2 1 2+ = (06)
A partial derivative is defined by

∂
∂

f x y z

x

df x y z

dx y z

( , , ) ( , , )

,

=
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For example, if  f x y z x y xy z x z( , , ) sin( )= + +3 7 2  then
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∂
∂
∂
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Taking the appropriate partial derivative of equation (06) we have

∂
∂t

U t t
d

dt
U t

d

dt
U t U t iHU t

t t t t1
1 2

0 1
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1 2
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ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ˆ ( )+ = =






= −
= = =

which is the same as the equation for arbitrary  t

i
dU t

dt
HU t

ˆ ( ) ˆ ˆ ( )=           (07)

This equation is satisfied by the unique solution
ˆ ( )

ˆ
U t e iHt= −         (08)
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which gives us an expression for the time development operator in



terms of the Hamiltonian. Formally, this result is called Stone's
theorem. This is the same form as we specified earlier.
The Schrodinger picture follows directly from this discussion of the
ˆ ( )U t  operator.
Suppose we have some physical system that is represented by the state
vector ψ ( )0  at time t = 0 and represented by the state vector ψ ( )t
at time t.
We ask this question. How are these state vectors related to each
other? We make the following assumptions (our earlier postulates) :
(1) every vector ψ ( )0  such that ψ ψ( ) ( )0 0 1=  represents a
    possible state at time t = 0

(2) every vector ψ ( )t  such that ψ ψ( ) ( )t t = 1 represents a
    possible state at time t

(3) every Hermitian operator represents an observable or measurable
    quantity
(4) the properties of the physical system determine the state vectors
    to within a phase factor since  φ ψα= ei  implies that

φ φ ψ ψ ψ ψα α= = =−e ei i 1

(5) ψ ( )t  is determined by ψ ( )0

Now, if ψ ( )0  and φ( )0  represent two possible states at t = 0 and ψ ( )t
and φ( )t  represent the corresponding states at time t, then

φ ψ( ) ( )0 0
2= probability of finding the system in the state 

represented by φ( )0  given that the system is in the state
ψ ( )0  at t = 0

and
φ ψ( ) ( )t t

2= probability of finding the system in the state 
represented by  φ( )t   given that the system is in the state  
ψ ( )t  at t

(6) it makes physical sense to assume that these two probabilities
    should be the same

φ ψ φ ψ( ) ( ) ( ) ( )0 0
2 2

= t t           (09)
Wigner’s theorem (linear algebra)then says that there exists a
unitary, linear operator ˆ ( )U t  such that

ψ ψ( ) ˆ ( ) ( )t U t= 0           (10)
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and an expression of the form



α βˆ ( )U t
2           (11)

gives the probability that the system is in state α  at time t
given that it was in state β  at time t = 0.
We assume that this expression is a continuous function of t.  As we
have already showed, we then have ˆ ( )U t  satisfying the equation

i
dU t

dt
HU t

ˆ ( ) ˆ ˆ ( )=

or
ˆ ( )

ˆ
U t e iHt= −

and thus,
ψ ψ ψ( ) ˆ ( ) ( ) ( )

ˆ
t U t e iHt= = −0 0 (12)

which implies the following equation of motion for the state vector

i
dU t

dt
HU t

i
d

dt
t H t

ˆ ( )
( ) ˆ ˆ ( ) ( )

( ) ˆ ( )

ψ ψ

ψ ψ

0 0=

=
          (13)

which is the abstract form of the famous Schrodinger equation. We
will derive the standard form of this equation shortly.

As we said earlier, the operator ˆ ( )
ˆ

U t e iHt= −  is called the time evolution
operator .
Finally, we can write a time-dependent expectation value as

ψ ψ ψ( ) ˆ ( ) ( ) ( )
ˆ

t U t e iHt= = −0 0           (14)
ˆ( ) ( ) ˆ ( )Q t t Q t= ψ ψ           (15)

This is the Schrodinger picture where state vectors change with time
and operators are constant in time.
We note that the Schrodinger picture is not the same as the
Schrodinger equation. The Schrodinger equation involves a
mathematical object called the wave function which is one particular
representation of the state vector, namely the position
representation, as we shall see later. Thus, the Schrodinger equation
is applicable only to Hamiltonians that describe operators dependent
on external degrees of freedom like position and momentum. The
Schrodinger picture, on the other hand, works with both internal and
external degrees of freedom and can handle a much wider class of
physical systems, as will shall see.
The Schrodinger Wave equation in the Coordinate Representation
To form a representation of an abstract linear vector space we must
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carry out these steps:



(1) Choose a complete, orthonormal set of basis vectors α k{ }
(2) Construct the identity operator Î  as a sum over the
    one-dimensional subspace projection operators  α αk k

Î k k
k

= ∑ α α           (16)
(3) Write an arbitrary vector ψ  as a linear combination or
    superposition of basis vectors using the identity operator

ψ ψ α α ψ α ψ α= = =∑ ∑ˆ ( )I k k
k

k k
k

               (17)

It is clear from equation (17), that knowledge about the behavior(say
in time) of the expansion coefficients α ψk  will tell us the
behavior of the state vector ψ  and allow us to make predictions.
Remember also, that the expansion coefficient is the probability
amplitude for a particle in the state ψ  to behave like it is in the
state  α k .
A particular representation that has become very important in the
study of many systems using Quantum Mechanics is formed using the
eigenstates of the position operator as a basis. It is called the
coordinate or position representation. We will restrict our attention
to one dimension for simplicity.
The eigenstates x{ }  of the position operator x̂  satisfy

x̂ x x x=                (18)
where the eigenvalues x are continuous variables in the range −∞ ∞[ ], .
They form the basis of the coordinate representation.
Expanding our earlier discussions, in this case, the summations
become integrals and we have

Î x x dx= ∫                     (19)

ψ ψ ψ ψ= = =∫ ∫ˆ ( )I x x dx x x dx                (20)

The expansion coefficient in the coordinate representation is given
by

ψ ψ( )x x=                (21)

Since the inner product is defined for all states x , this new object
is clearly a function of the eigenvalues x. It will be the
probability amplitude for finding the particle to be at the point x
in 1-dimensional space if it is in the (abstract)state vector ψ  . It
is called the wave function.
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The bra vector corresponding to ψ   is

ψ ψ ψ ψ= = =∫ ∫ˆ *
I x x dx x x dx                     (22)

The normalization condition takes the form

ψ ψ ψ ψ ψ ψ

ψ ψ

ψ ψ

= = =

= =

=

∫
∫ ∫
∫

1

2 2

ˆ

( )

( ) ( )*

I x x dx

x dx x dx

x x dx

               

               

          (23)

The probability amplitude for a particle in the state ψ  to behave
like it is in the state φ , where

φ φ φ φ= = =∫ ∫ˆ ( )I x x dx x x dx                (24)
is given by

 
φ ψ φ ψ

φ ψ

=

=

∫ ∫
∫∫

( )( ' ' ' )

' ' '

*

*

x x dx x x dx

dx dx x x x x         

We need the normalization condition 
  

r r
x x' . We have

 
ψ ψ

ψ ψ

ψ ψ

=

=

=

∫
∫
∫

x x dx

x x x x dx

x x x x dx

' ' '

' ' '

( ) ( ' ) ' '

(25)

which implies that
  

r r r r
x x x x' ( ' )= −δ           (26)

where
δ

δ

( )

( ) ( ) ( ) ( )

x a

f x x a dx f a f x

− = 



− =
−∞

∞

∫

undefined        

       otherwise

     for any function 

0 (27)

This "function" is called the Dirac delta function.
Putting this into equation (25) we have

ψ ψ ψ δ( ) ( ' ) ' ' ( ' ) ( ' ) 'x x x x dx x x x dx= = −∫ ∫
which is the defining integral.
Thus, the delta function normalization follows from the completeness
property of the projection operators.
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Using this result we get



φ ψ φ ψ δ

φ ψ φ ψ

= −

= =

∫∫
∫ ∫

dx dx x x x x

x x dx x x dx

' ' ( ' )

( ) ( )

*

* *         
        (28)

We formally write the x̂ operator using the expansion in eigenvalues
and projection operators as

x̂ x x dx= ∫ x           (29)

We will also need the properties of the linear momentum operator. The
eigenstates p{ }  of the momentum operator p̂ satisfy

p̂ p p p=         (30)
   

where the eigenvalues  p are continuous variables in the range
−∞ ∞[ ], .  They form the basis of the momentum representation.
As before, we have

  
Î p p dp= ∫1

2πh
        (31)

         
  
ψ ψ

π
ψ

π
ψ= = =∫ ∫ˆ ( )I p p dp p p dp

1
2

1
2h h

       (32)

The expansion coefficient in the momentum representation is
Ψ( )p p= ψ           (33)

It is the probability amplitude for finding the particle with
momentum p if it is in the state ψ .

The bra vector corresponding to ψ  is

  
ψ ψ

π
ψ

π
ψ= = =∫ ∫ˆ *

I p p dp p p dp
1

2
1

2h h
               (34)

The normalization condition takes the form

 
  

ψ ψ ψ ψ
π

ψ ψ
π

ψ

π π

= = = =

= =

∫ ∫

∫ ∫

1
1

2
1

2
1

2
1

2

2

2

ˆ

( ) ( ) ( )*

I p p dp p dp

p dp p p dp

h h

h h
               Ψ Ψ Ψ

        (35)

The probability amplitude for a particle in the state ψ  to behave
like it is in the state φ , where

  
φ φ

π
φ

π
φ= = =∫ ∫ˆ ( )I p p dp p p dp

1
2

1
2h h
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is given by



 

  

φ ψ
π

φ
π

ψ

π
φ ψ

=

=

∫ ∫

∫∫

( )( ' ' ' )

( )
' ' '

*

*

1
2

1
2

1
2 2

h h

h

p p dp p p dp

dp dp p p p p         

The normalization condition follows from

 

  

ψ
π

ψ

ψ
π

ψ

π
ψ

=

=

=

∫

∫

∫

1
2

1
2
1

2

h

h

h

p p dp

p p p p dp

p p p p dp

' ' '

' ' '

( ) ( ' ) ' 'Ψ

which implies that
     

  

1
2π

δ
h

p p p p' ( ' )= −           (36)

Using this result we get

      
  

φ ψ
π

φ ψ δ

π
φ ψ

π

= −

= =

∫∫

∫ ∫

1
2

1
2

1
2

h

h h

dp dp p p p p

p p dp p p dp

' ' ( ' )

( ) ( )

*

* *         Φ Ψ
          (37)

We formally write the p̂ operator using the expansion in eigenvalues
and projection operators as

  
p̂ p p p dp= ∫1

2πh
          (38)

We will now derive the connections between the two representation.
We now need to determine the quantity 

  

r r
x p . This is, in fact, the key

result. It will enable us to derive the Schrodinger equation. We will
find that

  

r r r r
hx p eip x= • /          (39)

Derivation:
A representation of the Dirac delta function is

  

1
2π

δ
h

e dp x xip x x( ' ) ( ' )−

−∞

∞

∫ = − (40)

By representation it is implied that we can show that

  

f x e dp dx f a f xip x a( ) ( ) ( )( )1
2πh

−

−∞

∞

−∞

∞

∫∫








 =      for any function 

which follows from Fourier transform theory.
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Now we can rewrite equation (40) in another way



  

1
2π

δ
h

e dp x x x x x I x

x p p dp x x p p x dp x p x p dp

ip x x( ' )

*

( ' ) ' ˆ '

' ' '

−

−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫

∫ ∫ ∫

= − = =

=








 = =                         

which is clearly satisfied by (39).
It is not a unique choice, however. It is the choice, however, that
allows Quantum mechanics to make predictions that agree with
experiment.
We might even say that this choice is another postulate.
Now, we can use these results to determine the expectation values of
operators involving the position and momentum operators.
Since we are interested in the coordinate representation we need only
determine the following quantities.
The position operator calculations are straightforward

x x x x x f x f x xˆ ˆ ( )ψ ψ ψ ψ= =    and     ( )          (41)
For the momentum operator we write

  

x p dp x p p p

dp x p p p pdp x p p

ˆ ˆψ
π

ψ

π
ψ

π
ψ

=

= =

∫

∫ ∫

1
2
1

2
1

2

h

h h
           

Using equation (39) we have

  
  
p x p i

d

dx
x p x p p= − =h ˆ          (42)

and

  

x p dp x p p p

dp x p p p dp i
d

dx
x p p

i d

dx
dp x p p i

d

dx
x

ˆ ˆψ
π

ψ

π
ψ

π
ψ

π
ψ ψ

=

= = −





= − = −

∫

∫ ∫

∫

1
2
1

2
1

2

2

h

h h
h

h

           

          

       (43)

We can also show that

  

r
h

r
h

r
x p i

d

dx
x

d

dx
xˆ 2

2
2

2

2ψ ψ ψ= − −



 = −          (44)

Using these equations, we can now derive the Schrodinger wave
equation.
The Schrodinger wave equation in one dimension is the differential
equation that corresponds to the eigenvector/eigenvalue equation for

Page 9
the Hamiltonian operator or the energy operator.



The resulting states are the energy eigenstates. We already saw that
energy eigenstates are stationary states and thus have simple time
dependence. This property will allow us to find the time dependence
of amplitudes for very complex systems in a straightforward way.

We have Ĥ EE Eψ ψ=  where E = a number and
ˆ

ˆ
( ˆ)

H

p

m
V x

=

+

energy operator =  (kinetic energy +  potential energy) operators

   =  
2

2

We then have

  

x
p

m
V x E x

x
p

m
x V x E x

m

d

dx
x V x x E x

m

d x

dx
V x x E x

E E

E E E

E E E

E
E E

ˆ
( ˆ)

ˆ
( ˆ)

( )

( )
( ) ( ) ( )

2

2 2

2

2 2

2

2

2

2

2

+ =

+ =

− + =

− + =

ψ ψ

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

2

h

h

          (45)

which is the time-independent Schrodinger wave equation in one
dimension. The quantity ψ ψE Ex x( ) =  is the wave function or the energy
eigenfunction in the position representation corresponding to energy
E.

The quantity ψ ψE Ex x( )
2 2

=  represents the probability density to find
a particle at coordinate x if it is the state represented by the
vector ψ E .
Now the energy eigenfunctions have a simple time dependence, as we
can see from the following.
Since

  
ˆ ( )

ˆ

U t e eE

i
H

t

E

i
E

t

Eψ ψ ψ= =
− −

h h      (46)
we have

  

x U t x t e x

x t e x

E E

i
E

t

E

E

i
E

t

E

ˆ ( ) ( , )

( , ) ( , )

ψ ψ ψ

ψ ψ

= =

=

−

−

h

h 0

(47)

Therefore,

  

− + =

− + =

h

h r
h

2 2

2

2 2

2

2

2

m

d x t

dx
V x x t E x t

m

d x t

dx
V x x t i

t
x t

E
E E

E
E E

ψ ψ ψ

ψ ψ ∂
∂

ψ

( , )
( ) ( , ) ( , )

( , )
( ) ( , ) ( , )

          (48)

which is the time-dependent Schrodinger wave equation.
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Clearly, system change in time. One change is the collapse process,
which is discontinuous (and non-unitary). We have also developed
(from postulate #4) a deterministic (unitary) time evolution between
measurements.
Between measurements states evolve according to the equation

  
ψ ψ ψ( ) ˆ ( ) ( ) ( )

ˆ /t U t e iHt= = −0 0h

For energy eigenstates we found that

  
ψ ψ ψ ψE E

i
H

t

E

i
E

t

Et U t e e( ) ˆ ( ) ( ) ( ) ( )
ˆ

0 0 0= =
− −

h h

that is, they only change by a phase factor.
Let us look at a simple example to illustrate the process.
We consider a particle with the hardness property but now we place it
in an external force that makes the system have a higher energy when
the particle is in the hard state h  than when it is in the soft
state s . We define these two energies to be +E0 for h  and −E0 for
s . These energies are just the corresponding energy eigenvalues for
these two states. Therefoe, the energy operator (in the hard-soft
basis) is given by

Ĥ
E

E
=

+
−







0

0

0

0

Thus, we have
Case #1

  

ψ

ψ

( )

( )
ˆ / /

0

0

=

= =− −

h

t e h e hiHt iE th h

and
Case #2

  

ψ

ψ

( )

( )
ˆ / /

0

0

=

= =−

s

t e s e siHt iE th h

In either case, if we measure the hardness of this particle at time
t, it still has the same value as at t=0, that is, for case #1

  

h t h e h h h

s t s e h s h

iE t

iE t

ψ

ψ

( )

( )

/

/

2 2 2

2 2 2

0

0

1

0

= = =

= = =

−

−

h

h

or the hardness of the particle does not change in time if it starts
out in a state of definite hardness (they are energy eigenstates).
When the initial state is not an energy eigenstate, that is, when it
is a superposition of hard and soft states, the it will change with
time. The change will be in the relative phase between the
components.
We illustrate this below:
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ψ

ψ ψ

( )

( ) ( )
ˆ / ˆ / ˆ / ˆ /

/ /

0
1
2

0
1
2

1
2

1
2

0 0

= +( ) →

= = +( ) = +( )
= +( )

− − − −

−

h s g

t e e h s e h e s

e h e s

iHt iHt iHt iHt

iE t iE t

h h h h

h h        

so that the relative phase is   e
iE t2 0 / h. This state is not an eigenstate

of hardness or color! What is the probaility of measuring various
results?
Initially:

h s

g m

ψ ψ

ψ ψ

( ) ( )

( ) , ( )

0
1
2

0

0 1 0 0

2 2

2 2

= =

= =

At time t:

  

h t h e h e s e

s t s e h e s e

g t g e h e

iE t iE t iE t

iE t iE t iE t

iE t iE t

ψ

ψ

ψ

( )

( )

( )

/ / /

/ / /

/ /

2
2 2

2
2 2

2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 0 0

0 0 0

0 0

= +( )



 = =

= +( )



 = =

= +

− −

−

−

h h h

h h h

h hh

h h h h

h h

h

h

s

e g h e g s e e
E t

m t m e h e s

e m h e

iE t iE t iE t iE t

iE t iE t

iE t iE

( )





= + = + =

= +( )





= +

− −

−

−

2

2 2
2 0

2
2

1
2

1
2

1
2

1
2

2

1
2

1
2

1
2

0 0 0 0

0 0

0 0

              

             

/ / / /

/ /

/

cos

( )ψ

tt iE t iE tm s e e
E t/ / / sinh h h

h

2 2
2 01

2
1
2

2
0 0= − =−

So the probability of measuring the hardness of this particle that
was originally in the green state remains 1/2 (as it was at t=0). But
much more interesting is the fact that the probability for
measurements of color oscillates between probability = 1 for green
and probability = 1 for magenta.
So the procedure is the following:
(1) find the energy operator for the physical system
(2) Express the initial state as a superposition of energy
    eigenstates
(3) Insert the simple time dependence of the energy eigenstate to
    obtain the time dependence of the state of the system
(4) Determine probability for final measurements by taking
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    appropriate inner products.


