
Superposition Continued
Let us remind ourselves of the interference experiments we discussed
earlier.
Interference among Electrons
Another example is one we have already discussed but it is useful to
look at it again in this new context.
We have an electron source which gives off electrons uniformly in all
directions (like a light bulb with photons). We then have a screen,
which electrons cannot pass through, with two holes in it. Still
further on is a fluorescent screen, much like a television screen,
which lights up, at the point of impact, whenever it is struck by an
electron, which implies that the fluorescent screen is a measuring
device for the POSITION  of the electrons.
How is this actually done?
In particular, let us look at a spectacular experiment that clearly
demonstrates the interference of electrons. The experiment was
carried out in 1989 in Tokyo by Tonomura, et al at the Hitachi
Advanced Research Lab. In the experimental set-up, electrons are
generated on a hot wire with a well determined energy (velocity) and
then a beam is created using electrostatic lenses. The monoenergetic
(single wavelength) electron beam is then sent through an electron
biprism to simulate a double slit geometry.  A schematic of the
biprism is shown below:
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Now back to our experiment. We close up one hole. Electrons emerge

Page 1

one by one from the source, some get through the open hole and end up



somewhere on the fluorescent screen. We get one pattern when the top
hole is closed and another similar but shifted one when the bottom
hole is closed. What pattern should we expect when both holes are
open? The results for all cases are shown below:

  
All electrons reaching the screen have either passed through the top
hole or the bottom hole or both or neither(oh no....deja vu sets
in....) so we guess(classical reasoning) the solid line pattern
shown, which is the sum of the other two patterns.
But as before, the experiment result is completely different and
totally unexplainable by any classical reasoning (like the places
where no particles arrive even though they did when one or the other
slit was open).
So once again we are forced to say that the pattern is not formed
because the electron passed through the top hole or passed through
the bottom hole or passed through both holes or passed through no
holes. We must say that the pattern forms because the electrons are
in superpositions of passing through the upper hole and passing
through the lower one (again without really knowing what that means).
The appearance of an interference fringe pattern is not in itself
extraordinary. If we say that the electrons can exhibit wave
properties(if we allow a wave-particle duality to exist), then we
have recreated an optical double slit system and the resulting
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fringes make sense and can be explained using classical wave theory.



On the other hand, suppose we reduce the electron beam intensity such
that the mean interval between successive electrons is many orders of
magnitude greater than the size of the apparatus or, in other words,
we arrange the experiment so that only one electron is in the
apparatus at any given time (the other electrons have not even been
generated at the source as yet!).
We are now sending a single quantum system through the apparatus. It
is clearly difficult, in this case, to propose that we are seeing any
cooperative interactions (wave phenomena) among the electrons of the
beam. This is the same effect as in the color/hardness device and
will require a probabilistic explanation.
This property of the experiment will be the center of our discussions
about what is really happening in quantum experiments.
How does all this stuff about superpositions connect to the
randomizing interactions between color and hardness properties?
Electrons emerge from the hard aperture of a hardness box if and only
if they are hard electrons when the enter the box (that was how we
defined the hardness box). Similarly for soft electrons.
However, when a magenta electron is sent into a hardness box it
emerges neither through the hard aperture nor through the soft one
nor through both nor through neither. So it follows that the magenta
electron can’t be a hard electron or a soft electron or somehow both
or neither.
To say that the electron is magenta MUST be just the same as saying
that it is in a SUPERPOSITION of being hard and soft. Remember that
we could not say that the color of this electron is now such-and-such
and its hardness is now such-and-such.
It isn’t that our color and hardness boxes are not built well enough.
It isn’t AT ALL a matter of our being unable to SIMULTANEOUSLY KNOW
what the color and the hardness of a certain electron is (that
is....it isn’t a matter of ignorance).
It is much deeper than that.
It is that any electron’s even HAVING any definite color apparently
means that it is neither hard nor soft nor both nor neither, and that
any electron’s even HAVING any definite hardness apparently means
that it is neither green nor magenta nor both nor neither.
As we said, it turns out also that the rules for predicting the
outcome of a measurement of (say) hardness of a magenta electron must
be probabilistic rather than deterministic.
The reasoning goes like this:
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If it could ever be said of a magenta electron that a measurement of
its hardness will with certainty produce the outcome(say) soft or if
it could ever be said of a magenta electron that a measurement of its
hardness will with certainty produce the outcome(say) hard, then that
would apparently be inconsistent with what we KNOW to be the case,
which is that such an electron(a magenta one) is in a SUPERPOSITION
(or none of the above) of being hard and soft.
But we also know that every measurement whatsoever either comes out
hard or comes out soft. Thus, the outcome of a hardness measurement
on a magenta electron has got to be a matter of probability.
The World of Stern-Gerlach
A Stern-Gerlach apparatus is a real-world device. This will be more
difficult to understand, but if we go slowly, I think we can
understand what is happening. It will convince us we can really build
color and hardness boxes. I will choose Stern-Gerlach devices
although we could do the same with Polaroids.  We will deal with
Polaroids later.
Stern-Gerlach Experiments
A schematic diagram of a Stern-Gerlach apparatus is shown below:

A Stern-Gerlach(SG) apparatus acts on an incoming beam of charged
particles with a particle property called angular momentum. There are
two types of angular momentum. The first type, is called orbital
angular momentum and is associated with the ordinary 3-space motion
of the particle(like orbital motion in Bohr atom or a planet around
the Sun) and the second is called spin angular momentum. It is
associated with internal degrees of freedom of the particle and has
no classical analogue(it is not the same as a spinning planet).
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Angular momentum is a vector quantity   h
r
J. The component of   h

r
J in the

direction of the magnetic field √n (a unit vector) is given by the
scalar product

  
h h

r
hJ J n Jn = ⋅ ≤ ≤√ cos= θ θ π0

where this operation is defined by
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as shown in the figure.
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Classically, the component of   h
r
J in the direction of the magnetic

field √n can take on all possible values(continuously) from   −hJ to
  +hJ, where   hJ = length of the angular momentum vector. This is an
infinite number of allowed values and 

  
hJn can have any of these valuesclassically.

Quantum mechanically, however, the component of   h
r
J in the direction

of the magnetic field √n can take on only a discrete number of values
for any system(it is quantized). The number of discrete values is2 1J +  and they are

  
h h h h h hJ J J J J Jn = − − + − + −, ( ), ( ),........., ( ),1 2 1

where the length of the angular momentum vector is 
  
h J J( )+ 1 .

Quantum mechanics also tells us that J  can only take on integer or a
half-integer values.
The SG device (a non-uniform magnetic field) deflects the particles
in the beam through an angle that depends on the component of the
angular momentum in the direction of the magnetic field.
If this were a classical system, then we would see a continuous
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stripe on the screen corresponding to Jn taking on all possible values



between −J and +J continuously(the vertical line in the screen).
If this were a quantum mechanical system, then the original beam
splits into 2 1J +  beams and we see 2 1J +  distinct spots on a screen
(the spots labelled 1, 2 and 3 on the screen, for example).
Observation confirms the existence of discrete spots agreeing with
the quantum prediction and interpretation.
In the diagram, spot #2(undeflected beam) is where the beam would
have hit the screen if no magnetic field were present in the
apparatus. Spots #1 and #3 are an example of what the 2 1 2J + =  spots we
would observe in an experiment when J = 1

2 (an electron).
The important features of the apparatus for our theoretical
discussion are as follows:

(1) The breakup into a finite number of discrete beams (we will
         assume we are working with J = 1

2 particles and thus have 2         beams exiting the apparatus). These are called spin-1/2
         particles.

(2) The beams are separated in 3-dimensional space and each
         contains 1/2 of the original particles entering the device.

(3) The possible values of √ √J n•  for J = 1
2 are ± 1

2 (the angular 
    momentum mvalues are 

  
± h

2
(4) One exiting beam contains only particles with √ √J n• = + 1

2
         (called spin up in the √n direction) and the other beam
         contains only particles with √ √J n• = − 1

2 (called spin down
         in the √n direction).

(5) These same results occur for all beams no matter what the
         direction of the unit vector √n
Thus, the SG device with spin-1/2 particles behaves exactly like the
color and hardness boxes. In fact, if we say a color box is an SG
device with √n in the z-direction (say green = spin up along z and
magenta = spin down along z), then a hardness box is an SG device
with √n in the x- or y-direction (say hard = spin up along x(or y) and
soft = spin down along x(or y)).
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We will represent the Stern-Gerlach apparatus with a magnetic field



in the √n-direction by the symbol SG√n .
We now report the results of some actual experiments with SG devices:
Experiment #1
We send N particles in a superposition of the states spin up and spin
down (any direction) into an SG√z device ... like sending a hard
electron beam into a color box.
The beam splits into spin up( √ √J • = +z

1
2) and spin down( √ √J • = −z

1
2) beams.

We select out the beam where the particles are in the spin up state
( √ √J • = +z

1
2) (put in a wall in the other beam). It contains N / 2

particles. We then send this second beam into another SG√z device. We
find that all N / 2 exit in the spin up ( √ √J • = +z

1
2) state, i.e., there isonly one exit beam as shown below:

This says that when we make a measurement, say √ √J z•  and then we
immediately make another measurement of the same quantity, we get the
same result as first measurement.
The is just the repeatability assumption we made earlier.
The first measurement seems to have caused the system to change from
a superposition of states into a definite state so that the next
measurement has a definite value.
Experiment #2
We send N particles in a superposition state into an SG√z device and
select out the beam (put in a wall) where the particles are in the
spin up state ( √ √J • = +z

1
2). It contains N / 2 particles. We then send the

selected beam into an SG√x device. We find that N / 4 exit in the spin
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up state( √ √J • = + →x
1
2  now up in the x-direction) and N / 4 exit in the



spin down state( √ √J • = −x
1
2). There are now two exit beams as shown.

         
The same thing happens if we stop the ( √ √J • = +z

1
2) spin up beam and let

the ( √ √J • = −z
1
2) spin down beam into the SG√x device. So an SG√x device

takes a beam with a definite value of √ √J • z and randomizes it, i.e., we
once again have two exiting beams with equal numbers of particles
with spin up/down in the x-direction.
Again this is identical to what happened with the color and hardness
boxes.
Experiment #3
We now add a third SG device to experiment #2.
It is an SG√z device. This is the same as our earlier experiment with

→ → → →COLOR HARDNESS COLOR

We also block the √ √J • = −x
1
2 exiting spin down beam as shown.

We found that N / 4 exited in the spin up state √ √J • = +x
1
2 from the SG√x
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device. After the third device we find that N / 8 exit in the spin up



state √ √J • = +z
1
2 and N/8 exit in the spin down state √ √J • = −z

1
2.

What has happened?

It seems that making a measurement of √ √J x•  on a beam with definite√ √J z•  modifies the system rather dramatically(same as with
color/hardness).
We did two successive measurements on these particles. Since we
isolated the + beam in each case we might be led to think that the
beam entering the last  (because of our selections) has

√ √ √ √J z J x• = + • = +1
2

1
2   AND    

   spin up(z) AND spin up(x)    (like magenta AND soft)
But the experiment says this cannot is not so, since 50% of the
particles exiting the last device have √ √J z• = − 1

2  or spin down.
We are forced to say that the SG√z device takes a definite value of√ √J x•  and randomizes it so that we end up with two exiting beams with
equal numbers of particles. Why?

Like color and hardness, √ √J x•  and √ √J z•  must be incompatible which means
that we cannot simultaneously measure them. Our two successive
measurements DOES NOT produce definite values for both quantities.
Each measurement only produces a definite value for the quantity it
is measuring and randomizes the incompatible quantity (actually
randomizes all other incompatible quantities)!
Another way to think about this is to say the following:
An SG√n device is a measurement of the angular momentum in the√n-direction. Any such measurement then randomizes the next
measurement of any other incompatible quantity.
So we can find real-world devices that behave like color and hardness
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boxes (there analysis is more complicated).


