
The Mathematical Language of Quantum Mechanics
I. Probability and Statistics
We first need to develop several concepts of probability theory in
order to understand many aspects of quantum theory.
Let us imagine that we have a box which contains N balls, each marked
with some number, which we denote generically by ν. In general, the
same ν-number may appear on more than one ball. We let nk be the
number of balls on which there appears the particular ν-number ν k.The box of balls is therefore described by two sets of numbers

ν ν ν ν νi in n n n n{ } = { } =1 2 3 4 1 2 3 4, , , ,............ , , , , ,............

Since the total number of balls is N we must have
n n n n n Nk

k
∑ = + + + + =1 2 3 4 ............

Suppose that we select a ball at random from the box. What is the
probability pk that the selected ball will show the value ν k? Since
out of N possible selections, nk of these would yield the ν-number
ν k, we conclude that

 p
n

Nk
k=     (01)

Thus, if nk = 0 it would be impossible to select a ball showing ν k, and
we would have pk = 0. On the other hand, if n Nk =  it would be an
absolute certainty that the selected ball would show ν k, and we would
have pk = 1. These results all agree with our common sense notions of
probability. In general, the numbers pk{ }  satisfy the conditions

0 1≤ ≤p kk    for all     (02a)
and

pk
k
∑ = 1     (02b)
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Connection to quantum theory: As we mentioned earlier, it will turn
out, however, that in the quantum world I will be able to, after
making a very large number of measurements on these "identical"
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systems, calculate a "probability" that the position will have a



particular value........that is, for the next measurement to be made
of the position x, we have

probability x( ) = number of times value  x  was measured
total number of measurements

This type of statement is one that is based on the results of all
previous measurements.
The goal of quantum mechanics is to predict these probabilities
before the measurements are carried out.
This type of probability statement is one that is based on the
results of all previous measurements and is fundamental to all of
science. It is called the frequency model and is strictly valid only
if the number if identical measurements tends to infinity.
Example(recall from earlier discussion):
Suppose we measure the heights of Swarthmore students and we find for
N = 1300 = total number of measured heights(in cm)

n hh

50 150

100 160

200 170

300 180

300 190

200 200

100 210

50 220

where nh = number of times height h was measured. Then the probability
that we will measure h = 190 cm if another student (if we missed one)
walks in is

      probability h cm( ) ( %)= = =190
3

13
23

number of times value  190  was measured
total number of measurements

This is a very simple and intuitive definition and it works very well
(it is exact in the limit of total number = N → ∞, which we cannot
really do in any real experiment).
Gambling Probabilities
The probability of rolling a 2 when tossing a die is

p = =number of ways to roll a two
total number of ways to roll anything

1
6

The probability of getting heads when flipping a coin is
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p = =number of ways to flip a heads
total number of ways to flip anything

1
2

In general,
p success( ) = number of successful outcomes

number of possible outcomes

Does this rule apply to surgery where the only two possible outcomes
are survival and death?
The answer clearly is no, i.e., we hope that p survival( ) />>1 2.
To use the rule for surgery, one must delineate a wider range of
outcomes and then do the counting.
Now let us calculate the probability that a single random selection
from the box will yield a ball showing either ν k or ν j. Since out of
N possible selections, a total of ( )n nk j+  would yield one of these
ν-numbers, we conclude that

p or
n n

N
p pk j

k j
j k( )ν ν =

+
= +     (03a)

This allows us to interpret Eq.(02b) as simply stating that it is an
absolute certainty that a randomly selected ball will show some ν knumber, i.e., something must happen!
Example:  Toss a die. What is the probability of rolling either a 1
or a 3?
In this case, there are six possible outcomes and two successful
outcomes. We then get

p = + =1
6

1
6

1
3

In general, the word or is a signal to add probabilities.
Suppose we now make two random selections, taking care to return the
first selected ball back to the box before making the second
selection (thus it is possible to pick the same ball both times).
What is the probability that the first ball will show the value ν k and
the second ball will show the value ν j?

There are nk ways to select a ν k-ball, and for each of these ways
there are n j ways to select a ν j-ball; thus, there are a total of n nk j⋅
ways to select a ν k-ball and then a ν j-ball. There are, however, N
possible selections for the first ball and for each of these there
are N possible selections for the second selections; thus, there are
a total of N N⋅  possible double selections. We conclude then that

p and
n n

N N
p pk j

k j
j k( )ν ν =

⋅
⋅

= ⋅          (03b)
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Eqs.(03a) and (03b) will form the basis for almost all of our



considerations involving probability theory.
Example: Toss a die and simultaneously flip a coin. What is the
probability of getting a 2 and a tails?
In this case, there are 12 possible outcomes  

1H,2H,3H,4H,5H,6H,1T,2T,3T,4T,5T,6T
The probability of success here is then

p x= =1
6

1
2

1
12

In general, the word and is a signal to multiply probabilities.
Example: Flip 3 coins(or flip 1 coin 3 times).
Outcome Table

possible

outcomes

probability

of this outcome

number 

of heads
HHH 1/8 3

HHT 1/8 2

HTH 1/8 2

THH 1/8 2

HTT 1/8 1

THT 1/8 1

TTH 1/8 1

TTT 1/8 0

Therefore
p heads p heads p head p heads( ) , ( ) , ( ) , ( )3

1
8

2
3
8

1
3
8

0
1
8

= = = =

     
Note that the sum of all terms must = 1, i.e., the probability of
something happening must = 1, which it does.
Example: Toss 2 dice(or toss 1 die 2 times). What is the probability
that the sum of the face-up dots is 4?
If the first die lands on 4 and the second on 3 we will denote the
outcome [4,3].

p x p x p

or

p n m x p n x p m n m

([ , ]) ( ) ( )

([ , ]) ( ) ( ) , , , , , , ,

1 1
1
6

1
6

1
36

2 2

1
6

1
6

1
36

1 2 3 4 5 6

= = =

= = = =
The we have

p p p p( ) ([ , ]) ([ , ]) ([ , ])sum is 4 = + + =2 2 1 3 3 1
1

12
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Arranging and Choosing
Suppose that you have 5 books on physics. In howmany ways can you
arrange them on your bookshelf?
Any of the 5 can go on the left. This leaves 4 possibilities for the
2nd book and therefore by the multiplication rule there are 5 x 4 =
20 ways to put the 1st 2 books on your shelf. That leaves 3 choices
for the 3rd book, yielding 5 x 4 x 3 = 60 ways of shelving the 1st 3
books. Then there are 2 possibilities for the penultimate book, and
only 1 choice for the last book, so there are altogether

5 x 4 x 3 x 2 x 1 = 120 = 5!
ways of arranging them.
Incidently, in the course of showing this we have shown that the
number of ways of arranging a selection of r books, 0 5≤ ≤r , is

5 5 1
5

5
× × − + =

−
......... ( )

!
( )!

r
r

that is, we can choose the 1st in 5 ways, the 2nd in 5-1 ways, and so
on, with the last chosen in 5-r+1 ways and then by the product rule,
this gives 5 5 1× × − +......... ( )r  ways in total as stated above.
The conventional name for an ordering or arrangement is a
permutation.
The number of permutations of r things from n things is then

n n n r
n

n r
r n( )......( )

!
( )!

,− − + =
−

≤ ≤1 1 0

In this example involving books we naturally assumed that the books
were all different. But, suppose that, for whatever strange reason,
you happen to have 2 copies of the same book. They are unmarked and
hence indistingusihable. How many different permutations of all 5
books are possible now? In the 120 arrangements calculated above
there are 60 pairs in which each member of the pair is obtained by
exchanging the positions of the 2 identical books. But these pairs
are indistinguishable and therefore the same. So there are just 60
different permutations. Mathematically this corresponds to the
formula

5
2

120
2

60
!
!

= =

We can generalize this result as follows. If there are n objects of
which n1 form one indistinguishable group, n2 another, and so on up to
nr where

n n n nr1 2+ + + =....

then there are
M n n n

n

n n nr
r

( , ,...., )
!

! !..... !1 2
1 2

=
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distinct permutations of these n objects.
In the example above we have

n n n n1 2 3 42 1= = = =,

n n n n1 2 3 4 2 1 1 1 5+ + + = + + = =

and
M( , , , )

!
! ! ! !

2 1 1 1
5

2 1 1 1
60= =

Finally we then have the number of permutations of r
indistinguishable things from n things is then

M r n r
n

r
n

r n r
r n( , )

!
!( )!

,− = 





=
−

≤ ≤0

This is called the binomial coefficient.
For example, consider a lottery. There are only two outcomes ....
winning or losing, but the probability of winning is not 1 2/ .
In fact, for a lottery where we must pick r different numbers from n
possibilities (no repeats) there are

n

r
n

r n r







=
−
!

!( )!

ways of choosing r different numbers from n possibilities (all
equally likely). The probability that your single selection of r
different numbers wins is therefore

p winning
n

r
combinations r n

( )
# ( , )

=






=1 1

Suppose we are to pick the correct 6 numbers out of a selection of 49
numbers(no repeats). We buy 1 ticket. The number of possible
combinations, however,  is 

49

6
49

6 43
49 48 47 46 45 44

1 2 3 4 5 6
13983816







= = × × × × ×
× × × × ×

=!
!( )!

so that the probability of winning is

p winning( ) .=






= × −1
49

6

7 1511 10 8

So the probability of winning is so small that you have a larger
chance of being hit by a meteorite!
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Suppose now that we subject our box of N balls to M samplings, that
is, we select a ball at random from the box, record its ν-number and
return it to the box a total of M times. We denote by v i( ) the ν-value
recorded on the ith sampling, and we make the following two
definitions:
The mean or average value of the ν-values recorded is

ν
ν

= =
∑ ( )i

i

M

M
1     (04)

which is the standard definition of the average or "best value" of a
series of measurements. However, one must be careful not to imply
that ν  has any truth or legitimacy beyond that of any of the
individual ν ( )i  values.
The root-mean-square (or rms) deviation of these values is

∆ν
ν

=
−( )

=
∑ v

M

i

i

M
( ) 2

1     (05)

To calculate this quantity, we must first calculate the deviation
from the mean v i( ) − ν , of each ν-number obtained. We next compute the
average of the squares of these deviations (the squares taken to keep
the positive and negative deviations from cancelling each other) and
finally, to counteract, to some extent, the squaring, we take the
square root of this average. Thus ∆ν  is the square root of the mean
of the squares of the deviations of the ν ( )i  values from ν . This
quantity is also called the rms dispersion, since it clearly measures
the extent to which the ν ( )i  values are dispersed about ν .
We can rewrite this expression in a more useful form that is easier
to calculate. We have

  ( )

( ) ( ) ( ) ( ) ( )

∆ν
ν ν ν

ν ν

ν ν ν ν ν ν

2

2

1

2 2

1

2

1 1 2 1

2 2 2 2

2
2

1

2

=
−( )

=
( ) − +( )

=
( )

− +

= − + = −

= = = = =
∑ ∑ ∑ ∑ ∑v

M

v v

M

v

M

v

M M
M

M

i

i

M
i i

i

M
i

i

M
i

i

M

i

M

        

or
∆ν ν ν= −2 2      (06)

In words, the rms deviation of the ν ( )i  values is equal to the square
root of the difference between the average of the square and the
square of the average. We note that ν ν2 2=  only if every ν ( )i  value
coincides with ν  so that there is no dispersion or no deviation from
the mean.
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If we have knowledge of the two sets of numbers ν k{ }  and pk{ } , it would
seem that we ought to be able to predict approximately what values
would be obtained for ν  and ∆ν . The key to making such a prediction
is the following assumption: since nk of the N balls have the number
ν k, then in M random samplings of these balls we ought to obtain the
value ν k approximately mk times where

m

M

n

N
k k=

Using Eq.(01) we then find the approximate number of times the value
ν k should appear in the set of values ν ν ν( ) ( ) ( ), ,.......,1 2 M  is

m
n

N
M p Mk

k
k= =

With this result, the sum in Eq.(04) can be written

ν ν ν ν ν= = = ( ) =
=
∑ ∑ ∑ ∑1 1 1

1M M
m

M
p M pi

i

M

k k
k

k k
k

k k
k

( )     (07)

Eq.(07) expresses ν  as a "weighted sum" of the possible ν k values;
the weight assigned to any particular value ν k is just the probability
of its occurrence pk . This value is the "theoretically expected"value; the "experimental" value in Eq.(04) will generally differ
somewhat from this theoretical value owing to the randomness
involved. However, in the limit of very many experimental samplings

M → ∞( ), the value in Eq.(04) may be expected to get arbitrarily
closes to the value in Eq.(07), that is, the rms deviation from ν  in
Eq.(07) should approach zero.
Equation (07) may be generalized quite easily as shown in the
following exercise.
Let f  be a given function of ν, and let this function be evaluated
for each of the ν ( )i -values. The average or mean of the resulting set
of f i( )( )ν -values is

f p fk
k

k( ) ( )ν ν= ∑     (08)

We note that by putting f v( )ν =  we get Eq.(07).
Proof: we have

f v
M

f v
M

m f v
M

p M f v p f vi

i

M

k k
i

M

k k
i

M

k k
i

M

( ) ( ) ( ) ( ) ( ) ( )( )= = = =
= = = =
∑ ∑ ∑ ∑1 1 1

1 1 1 1

By putting f v( )ν = 2 in Eq.(08) we see that
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ν ν2 2= ∑ pk
k

k

Using this result and Eq.(07), we can then write Eq.(06) as

∆ν ν ν= 





− 



∑ ∑p pk k

k
k k

k

2

2

    (09)

We now see that Eqs.(07) and (09) express the two basic quantities ν
and ∆ν  wholly in terms of the numbers ν k{ }  and pk{ } . Thus, given a set
of values ν k{ }  distributed with probabilities pk{ }  Eqs.(07) and (09)
allows us to calculate the theoretically expected mean and rms
deviation to be obtained by any random sampling of these ν-values.
In terms of this definition of the average value for a set of
measurements, the average height of our earlier sample of heights is
given by

height h
L

H j
j

L

= =
=
∑1

1

and we get
height h

x x x x x

x x x

=

=
+ + + +

+ + +






= =

            
                                           

           

1
1300

50 150 100 160 200 170 300 180 300 190

200 200 100 210 50 220

240500
1300

185 0.

or
height h

N
n h h

n

N
h prob hh

h

h

h h

= = = = ⋅∑ ∑ ∑1
( )

and

     

( )

.

height h

x x x x x

x x x

2 2

2 2 2 2 2

2 2 2

1
1300

50 150 100 160 200 170 300 180 300 190

200 200 100 210 50 220

44845000
1300

34496 2

=

=
+ + + +

+ + +








= =

                
                                            

                

Finally,
∆

∆

h h h

h

( ) = − =

=

2 2 2 271 2

16 5

.

.

Meaning of the Standard Deviation
For normal experimental data with random errors, the standard
deviation has the following meaning. If we do a set of N measurements
and obtain a mean value x  and a standard deviation σ  then
(1) the probability is 0.68 that any subsequent measurement of the
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(2) the interval x r± , where r m= =0 67. σ probable error, is such that the
    probability is 1/2 that a new measurement of the mean value would
    lie in this interval (and so also that the probability is 1/2
    that it would lie outside the interval), that is, a 50%
    confidence level.
Exercise 4 illustrates the overall significance of ν  and ∆ν .
Certainly a complete description of the expected results of a
"multiple sampling" experiment requires the specification of all the
numbers ( , ),( , ),( , ),.........ν ν ν1 1 2 2 3 3p p p . However, if we are asked to describe the
results with only two numbers, we would evidently do well to state
the values ν  and ∆ν . ν  is essentially a "collective value" for the
set of v-numbers, while ∆ν  (or the smallness thereof) provides a
quantitative measure of the degree to which it is actually meaningful
to so characterize the set of v-values by the single value ν .
Probability Concepts (more mathematical details)
Quantum mechanics will necessarily involve probability in order for
us to make the connection with experimental measurements.
We will be interested in understanding the quantity

P A B( | ) = probability of event A given that event B is true
In essence, event B sets up the conditions or an environment and then
we ask about the (conditional) probability of event A given that
those conditions exist. The |  symbol  means "given" so that items to
the right of this "conditioning" symbol are taken as being true.
In other words, we set up an experimental apparatus, which is
expressed by  properties B and do a measurement with that apparatus,
which is expressed by properties A. We generate numbers
(measurements) which we use to give a value to the quantity P A B( | ) .
We start with the standard mathematical formalism based on axioms. We
define these events

A occurrence of A A

A NOT A nonoccurrence of A A

A B A AND B occurrence of A and B A B

A B A OR B occurrence of A and B

A B

=
= =

= =
∨ = =

   (denotes that proposition  is true)

     (denotes that proposition  is false)

       both      (denotes proposition  and  is true)

       at least one of the events       

(denotes proposition  or  is true)

~

&

and standard Boolean logic as shown below:
Boolean logic uses the basic statements AND, OR, and NOT.
Using these and a series of Boolean expressions, the final
output would be one TRUE or FALSE statement.

This is illustrated below:
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If A is true AND B is true, then  (A AND B) is true



If A is true AND B is false, then (A AND B) is false
If A is true OR B is false, then (A OR B) is true
If A is false OR B is false, then (A OR B) is false

or written as a "truth" table:
A B A B A B( )) ( )∧ ∨
1 1 1 1

1 0 0 1

0 1 0 1

0 0 0 0

where 1 0= =TRUE FALSE, .
We then set up a theory of probability with these axioms:

(1) P A A( | ) = 1

This is the probability of the occurrence A given the occurrence of
A. This represents a certainty and, thus, the probability must = 1.
This is clearly an obvious assumption that we must make if our
probability ideas are to make any sense at all.
In other words, if I set the experimental apparatus such that the
meter reads A, then it reads A with probability = 1.

(2) 0 1≤ ≤ =P A B P B B( | ) ( | )

This just expresses the sensible idea that no probability is greater
than the probability of a certainty and it make no sense to have the
probability be less than 0.

(3) P A B P A B or P A B P A B( | ) (~ | ) (~ | ) ( | )+ = = −1 1      

This just expresses the fact that the probability of something
(anything) happening (A or A    ~ ) given B is a certainty (=1), that is,
since the set A or A    ~  includes everything that can happen, the total
probability that one or the other occurs must be the probability of a
certainty and be equal to one.

(4) P A B C P A C P B A C( & | ) ( | ) ( | & )=

This says that the probability that 2 events A, B both occur given
that C occurs equals the probability of A given C multiplied by the
probability of B given (A&C), which makes sense if you think of them
happening in sequence.
All other probability relationships can be derived from these axioms.
The nonoccurrence of A given that A occurs must have probability = 0.
This is expressed by
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P A A(~ | ) = 0

This result clearly follows from the axioms since
P A B P A B

P A A P A A

P A A P A A

( | ) (~ | )

( | ) (~ | )

(~ | ) ( | )

+ =
+ =

= − = − =

1

1

1 1 1 0

   

Example:  Let us evaluate P X Y C P X Y C( & | ) ( & ~ | )+ .
We use axiom (4) in the 1st term with A X B Y and C C= = =      ,  and in the
2nd term with A X B Y and C C= = =      , ~  to get

       P X Y C P X Y C P X C P Y X C P X C P Y X C

P X C P Y X C P Y X C P X C

( & | ) ( & ~ | ) ( | ) ( | & ) ( | ) (~ | & )

( | ) ( | & ) (~ | & ) ( | ) ( )

+ = +
= +[ ] = [ ]                     using axiom 1 3

and finally
P X Y C P X Y C P X C( & | ) ( & ~ | ) ( | )+ =

which says probability that X is true regardless of whether Y is
true, is the sum of the probabilities of X and Y for all
possibilities associated with Y(Y and ~ Y  in this case).
Now let us use this result with  X A Y B=  ~   =  ~,  . This gives
P A B C P A C P A B C P A C P A B C(~ & ~ | ) (~ | ) (~ & | ) ( | ) (~ & | )= − = − −1

Expanding the last term using X B Y A=    =  ,  we then have
P B A C P B A C P B C( & ~ | ) ( & | ) ( | )+ =

or
P A B C P B C P B A C(~ & | ) ( | ) ( & | )= −

which gives
P A B C P A C P B C P A B C(~ & ~ | ) ( | ) ( | ) ( & | )= − − +1

Now
P A B P A B C P A B C( ) (~ ( ) | ) (~ & ~ ) | )∨ = − ∨ = −1 1

and since
(~ ( )) (~ & ~ )A B A B∨ =

i.e., we can construct a 'truth table" as shown below, which
illustrates the equality directly

A B A B A B(~ ( )) (~ & ~ )∨
1 1 0 0

1 0 0 0

0 1 0 0

0 0 1 1

(this is the "truth table")

we finally get
P A B P A C P B C P A B C( ) ( | ) ( | ) ( & | )∨ = + −
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If we have P A B C( & | ) = 0, then events A and B are said to be mutually
exclusive given that  C  is true and the relation then reduces to

P A B P A C P B C( ) ( | ) ( | )∨ = +         
This is the rule of addition of probabilities for exclusive events.
Some other important results are:

If A B B A then        P(A | C)P(B | A & C) = P(B | C)P(A | B & C)& & ,=

If P A C then P B A C P A B C
P B C

P A C
        ( | ) , ( | & ) ( | & )

( | )
( | )

≠ =0

which is Baye’s theorem. It relates the probability of B given A to
the probability of A given B.
When we say that B is independent of A, we will mean

P B A C P B C( | & ) ( | )=   
or the occurrence of  A has NO influence on the probability of B
given C. Using axiom (4) we then have the result:
     if A and B are independent given C,

then P A B C P A C P B C( & | ) ( | ) ( | )=

This is called statistical or stochastic independence. The result
generalizes to a set of events Ai   ,    i = 1,2,....,n{ } . All these events are
independent if and only if

        P A A A C P A C P A C P A Cm m( & & .... & | ) ( | ) ( | ).......... ( | )1 2 1 2=

for all m n≤ .
Now let us think about these ideas in another way that has
fundamental importance in modern approaches to quantum theory. The
fundamental result in this view will turn out to be the Bayes formula
and its relationship to measurements.
Suppose that we have an experimental measurement, M, that can yield
either A or A    ~  as results, with a probability for result A given by

P A M p( | ) =

In general, we let any sequence of n independent measurements be
labelled as event Mn and we define nA as the number of times A
occurs, where 0 ≤ ≤n nA .
Now imagine we carry out a sequence of n independent measurements and
we find that A occurs r times. The probability for a sequence of
results that includes result A r times and ~ A ( )n r−  times
(independent of their order in the sequence) is given by
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p qr n r−

where
q P A M P A M p= = − = −(~ | ) ( | )1 1

The different sequence orderings are mutually exclusive events and
thus we have

P n r M p qA
n r

all possible
orderings

n r( | )= = ∑ −

 

   

The sum 
all possible
orderings

 
∑  just counts the number of ways to distribute r A’s and

( )n r−  ~ A‘s, where all the terms contain the common factor p qr n r− . This
result is given(as we saw earlier) by the Binomial probability
distribution as

n

r n r

!
!( )!−

so that
P n r M

n

r n r
p qA

n r n r( | )
!

!( )!
= =

−
−          

These ideas will play a very important role in understanding basic
concepts in quantum theory.
II. Complex Numbers
The equations of quantum theory will involve complex numbers. Let us
review a few elementary properties of complex numbers.
Complex numbers involve the quantity i where

i i i i i i i i etc1 2 3 4 51 1= = − = − = =, , , , ,

You will notice that I never said that i = −1 which is a nonsense
statement mathematically since the square root function is not
defined for negative numbers.
A complex number is then defined as z p iq= +  where p = real part of
z = Re z and q = imaginary part of z = Im z.

The complex conjugate of z is defined by z p iq* = −

Complex arithmetic is straightforward.
If z p iq z r is1 2= + = +   and    then

z z p r i q s

z z p iq r is pr qs i qr ps
1 2

1 2

− = − + −
= + + = − + +

( ) ( )

( ,)( ) ( ) ( )

In addition, we define
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or
z p q p iq p iq zz z z2 2 2= + = + − = =( )( ) * *

Various functions are defined by power series, i.e.,

e
n

x

x
n

x

x
n

x

x
n

n

n

n
n

n

n

n
n

n

n

α α

α α

α α

=

= −
+

= −

=

∞

+

=

∞
+

=

∞

∑

∑

∑

!

sin ( )
( )!

cos ( )
( )!

0

2 1

0

2 1

2

0

2

1
2 1

1
2

These expansions are valid even if the parameter α  is a complex
number.
Complex Exponentials
We then have the very important relation

e
i

n
x i x x i x x i x

x x i x i x i x

x

i x
n n

n

nα α α α α α α

α α α α α

α

= = + − − + + −

= − + −





+ − + −





= +

=

∞

∑ ! ! ! ! !
........

! !
........

! !
........

cos

0

2
2

3
3

4
4

5
5

2
2

4
4

3
3

5
5

1
2 3 4 5

1
2 4 3 5

     

     ii xsinα

This is called the Euler relation.
Using the Euler relation we have the important results

sin cosα α
α α α α

x
e e

i
x

e ei x i x i x i x

= − = +− −

2 2
   and   

The Euler relation allows us to define i in a better manner. We have
e iiπ π π= + = −cos sin 1

and
e i iiπ π π/ cos / sin /2 2 2= + =

We also have the properties
e e e

e e e e e

e e

a b a b

a a a a a

a n na

+ =

= → =

( ) =

/ / /2 2 2

Therefore
e e i ii iπ π π π= = + =/ cos / sin /2 2 2

Another useful relationship:
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Now suppose we let
a r b r

z a ib r ir

= =
= + = +

cos , sin

cos sin

θ θ
θ θ

This change of variables is always possible.
We can then write

z r i rei= + =(cos sin )θ θ θ

where
a b r z

b

a
2 2+ = = =, tanθ

Using these relations we then have

  l l l l lnz nre nr ne nr ii i= = + = +θ θ θ

Some More Useful Mathematics
• Taylor Series
Functions can be expanded in power series. Let f x a xn

n

n

( ) =
=

∞

∑
0

 (a power
series). Then, we get by differentiation

f a f a f a( ) , ' ( ) ,
!

' ' ( )0 0
1
2

00 1 2= = =    and so on..... or in general 1
0

n
f an

n!
( )( ) = .

Therefore,
f x

n
f xn n

n

( )
!

( )( )=
=

∞

∑ 1
0

0

which is called a Maclaurin series for f x( ) or a Taylor series for
f x( ) about the origin.
A Taylor series, in general, means a power series in powers of ( )x a−
where a = some constant(a Taylor series for  f x( ) about the point
x a= ). The derivation of the coefficients is identical to the last
derivation except that we use x a=  instead of x = 0. Let

f x a x an
n

n

( ) ( )= −
=

∞

∑
0

Then, we get by differentiation

f a a f a a f a a( ) , ' ( ) ,
!

' ' ( )= = =0 1 2

1
2

  and so on.....

or in general 1
n

f a an
n!

( )( ) =  . Therefore,

Page 16

f x
n

f a x an n

n

( )
!

( )( )( )= −
=

∞

∑ 1

0



• Binomial Series
Now consider the following function f x x n( ) = +( )1 . If we expand this as
a Taylor series we get

f x
n

f xn n

n

( )
!

( )( )=
=

∞

∑ 1
0

0where
f f n f n n( ) , ' ( ) ,

!
' ' ( ) ( )0 1 0

1
2

0 1= = = −    and so on.....

so that
f x x nx

n n
x

n

m n m
x

n

m
xn

m

m

m

m( )
( )

!
.......

!
!( )!

= +( ) = + + − + =
−

= 



=

∞

=

∞

∑ ∑1 1
1

2
2

0 0

which is the Binomial series. For n = integer, the series terminates
and we have an nth-order polynomial. The expression n

m
n

m n m







=
−
!

!( )!
 is

the Binomial coefficient.
Examples:

Taylor Series
sin

! ! !
.....

cos
! ! !

.....

!
( )

!
( )

!
.....

x x
x x x

x
x x x

e
x x xx

= − + − +

= − + − +

= + + + +

3 5 7

2 4 6

2 3

3 5 7

1
2 4 6

1
1 2 3

α α α α

Binomial Series

  

( )
( )

!
.....

( )

1 1
1

2
1

1
1 1

2+ = + + − +

±
≈ <<

x nx
n n

x

x
nx x

n

n m

Complex Exponential

e
i x i x i x i x

i x x i x x

x x
i

x x

i xα α α α α

α α α α

α α α α

= + + + +

= + − − +

= − + + −

=

1
1 2 3 4

1
1 2 3 4

1
2 4 1 3

2 3 4

2 3 4

2 4 3

!
( )

!
( )

!
( )

!
.....

!
( )

!
( )

!
( )

!
.....

(
( )

!
( )

!
.....) (

!
( )

!
.....)

cos

     

     

     αα αx i x+ sin

e x i x

x
e e

x
e e

i

i x

i x i x i x i x

±

+ − + −

= ±

= + = −

α

α α α α

α α

α α

cos sin

cos , sin
2 2
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III. Hilbert Space Vectors and Dirac Language
There is an algorithm, named Quantum Mechanics, for predicting the
behavior of physical systems. It correctly predicts all of the
strange behaviors of the electron that we have already described in
the fictitious world of color and hardness.
There is a standard way of interpreting this algorithm - a way of
confronting the meaning of superposition - which comes from Neils
Bohr and Max Born. It is called the Copenhagen Interpretation.
During this course, we will develop a language, which is due to
Dirac, to describe the algorithm and the standard interpretation. The
language of quantum mechanics that we must use in our description is
mathematics. In particular, a branch of mathematics called "vector
spaces". As mentioned earlier, as we attempt to delve into the
workings of any new world or culture, we must make some attempt to
learn the language of the new culture. Otherwise, we would have no
hope of ever understanding the inner workings of this new culture.
Science, especially physics, is another culture for almost all human
beings. In the case of physics, especially quantum physics, the
language of the new culture is mathematics. It is important to
understand that mathematics is just another language....another way
of thinking about things and that this language of mathematics
happens to be better at explaining the inner workings of quantum
physics than other languages developed from everyday experiences.
Although, I will sometimes use words that are new to you, which is
something that always happens when learning a new language, you are
already familiar with all of the concepts and ideas I will use, i.e.,
you have come across these ideas before in other mathematics courses.
It will take us some time to work out the kinks in your knowledge,
but only because you have never seen these ideas used in this context
nor have you tried to use this language to explain complex physical
phenomena before.
We will start this discussion using the language of vectors in
2- and 3-dimensional space that is familiar to you and then I will
shift to Dirac language and repeat some of our earlier discussion so
that you can get used to the new language.
During this discussion we will learn many of the fundamental ideas of
linear algebra. Let us start with objects called vectors.
A vector has many levels of complexity and is a very abstract
mathematical object. A vector is a mathematical(geometrical) object
that is representable by two numbers in two dimensions, three numbers
in three dimensions, and so on. One characterization is to specify
its magnitude or length and orientation or direction - imagine that
it is a directed line segment. As we shall see, quantum mechanics
will be formulated in terms of vectors, but they will not be directed
line segments.
The Standard Language of Vectors
As we said, in ordinary space, we can represent a vector by a
directed line segment(an arrow).
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A straightforward property of a vector is multiplication of the
vector by a scalar (a real number)   

r r
C A= α . In this case the magnitude

of the vector changes and the direction stays the same (it might
reverse if α < 0).
Now given two vectors as shown below

A
B

we define the sum and difference of the two vectors or the general
property vector addition by the diagrams shown below:

A B+

A B_

Clearly, vector addition as defined above, i.e.,

  

r r r r r r r r
C A B D A B A B= + = − = + −, ( )

yields a new vector in each case. This new vector can have both a
different direction and a different magnitude than either of the two
vectors that are used to create it.
These two properties allow us to define a linear combination of
vectors as

  

r r r
C A B= +α β      (11)

which is also a well-defined vector.
Although this is a perfectly good way to proceed, it will not allow
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us to generalize the notion of a vector beyond ordinary physical



space, which is an arena that will turn out to be much too confining
in our effort to understand quantum mechanics.
We need to formulate these same concepts in another way.
Consider the vectors shown below:

A

x

y

A

A y

x1

1

e

e

^

^

x

y α

In this figure, we have defined two special vectors, namely,
ˆ

ˆ

e

e
x

y

=
=

unit(length = 1) vector in x - direction

unit(length = 1) vector in y - direction
    (12)

In terms of these unit vectors we can write

  

r
A A e A ex x y y= +ˆ ˆ     (13)

where
A e A

A e A
x x x

y y y

ˆ

ˆ

=
=

vector of length    in the x - direction

vector of length    in the y - direction
    (14)

and the sum of these two vectors equals   
r
A because of the rule for

adding vectors that we defined earlier.
We now define

  

A A

A A

x

y

=

=

component of vector    in the x - direction

component of vector    in the y - direction

r

r     (15)

From the diagram it is also clear that
A A A Ax y= =cos sinα α   and       (16)

where
A = length of the vector    

r
A = A Ax y

2 2+       (17)
(by Pythagorous theorem)

We can then redefine vector addition in terms of components and unit
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r

r

r r

r r

A A e A e

B B e B e

A B A B e A B e

A B A B e A B e

x x y y

x x y y

x x x y y y

x x x y y y

= +

= +

+ = + + +

− = − + −

ˆ ˆ

ˆ ˆ

( ) ˆ ( ) ˆ

( ) ˆ ( ) ˆ

    (18)

i.e., we can just add and subtract components.
We now define a very important and useful new mathematical object
using unit vectors. It is the scalar or inner product and its symbol
is a . (a dot). We define this operation with a set of rules
involving the unit vectors:

ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ˆ

ˆ ˆ

e e e e e e e e

or e e

x x y y x y y x

i j ij

⋅ = = ⋅ ⋅ = = ⋅

⋅ = =
≠





1 0

1

0

  

        i = j

        i j
 =  the Kronecker delta

      

δ              (19)

The inner product satisfies the following relations:

α β αβ

α γ β η αβ αη γβ γη

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

e e e e

e e e e e e e e e e e e

i j i j

i k j m i j i m k j k m

( ) ⋅ ( ) = ⋅

+( ) ⋅ +( ) = ⋅ + ⋅ + ⋅ + ⋅
    (20)

Using these defining relations we can now determine the scalar
product of any two vectors as follows

  

r

r

r r

A A e A e

B B e B e

A B A e A e B e B e

A B e e A B e e A B e e A B e e

A B

x x y y

x x y y

x x y y x x y y

x x x x x y x y y x y x y y y y

x x

= +

= +

⋅ = + ⋅ +

= ⋅ + ⋅ + ⋅ + ⋅

=

ˆ ˆ

ˆ ˆ

( ˆ ˆ ) ( ˆ ˆ )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ       

       (( ) ( ) ( ) ( )1 0 0 1+ + + = +A B A B A B A B A Bx y y x y y x x y y

    (21)

We note that

  

r r r

r r r

A A A A A A A A A norm of A

A A A A

x x y y x y⋅ = + = + = =

= ⋅ =

2 2 2

length of the vector 
    (22)

Now looking at the diagram below, we can derive another important
result.
Although we are deriving this result using two vectors in a plane,
the result is completely general since two vectors always define a
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A

B
θ

θ
θ

A
B

y

xA

A

B

B

x

y

y

x
We have

  

r r
A B A B A B AB

AB AB

x x y y A A A A

A B

⋅ = + = ( ) ( ) + ( ) ( )( )
= −( ) =

cos cos sin sin

cos cos

θ θ θ θ

θ θ θ       
    (23)

so that

  

r r

r r r r

r r r

r r r

A B AB

length of A length of B angle between A and B

length of A length of B in the direction of A

length of A projection of B onto the direction of A

⋅ =

= ( )
=

=

cos

( )( )cos

( )( )

( )( )

θ

       

       

       

Therefore, we have

  

r r r r

r r r r

r r r r

B A A A A

B A A B

or vice versa if A B then A B

= → = → ⋅ =

→ = = ° → ⋅ =

⋅ =

θ

θ π
0

2
90 0

0

2   as before

  perpendicular(orthogonal) to 

 is orthogonal to ,

    (24)

If two unit vectors satisfy Eq.(19), then they are said to
orthonormal = orthogonal (inner product = 0) + normalized to one
(length = 1).
We also have for any vector

  

r

r

r

r r r

A A e A e

A e A e A e e A

A e A e A e e A

A A e e A e e

x x y y

x x x y y x x

y x x y y y y

x x y y

= +

⋅ = +( ) ⋅ = =

⋅ = +( ) ⋅ = =

= ⋅ + ⋅

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

( ˆ ) ˆ ( ˆ ) ˆ

x - component

y - component
    (25)
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Generalizing to 3 dimensions we have

  

r
A A e A e A ex x y y z z= ˆ ˆ ˆ+ +  =  any vector in the vector space     (26)

where the set of three orthonormal vectors ˆ , ˆ , ˆe e ex y z{ }  are called a basis
for the vector space (any vector can be written as a linear
combination of the basis vectors) and we have

 ˆ ˆe ei j⋅ =
≠





1

0

        i = j

        i j
         i ,  j =  x,y,z or 1,2,3

The number of required basis vectors is the number of numbers needed
to characterize a general vector = the dimension of the space.
The entire collection of vectors we can generate from a given basis
set is called a vector space.
So in this room, I would need 3 numbers to characterize each vector.
This room is a small part of a 3-dimensional vector space, which is
called the universe at an instant of time.
Completely removing (x,y,z) from our notation(because it limits us to
a maximum of 3 dimensions) we have

  

r

r

A A e

e A e A e A e e A

j
j

j

k k j
j

j j
j

k j j
j

kj

=

⋅ = ⋅ ⋅ =

=

= = =

∑

∑ ∑ ∑
1

3

1

3

1

3

1

3

ˆ

ˆ ˆ ˆ ˆ ˆ

 

 = δ
    (27)

so that
  ̂

( ) ( ) ( )e A A A A A A A A component1 1 11 2 12 3 13 1 2 3 11 0 0 1⋅ = + + = + + = = −
r

δ δ δ

  ̂
( ) ( ) ( )e A A A A A A A A component2 1 21 2 22 3 23 1 2 3 20 1 0 2⋅ = + + = + + = = −

r
δ δ δ

  ̂
( ) ( ) ( )e A A A A A A A A component3 1 31 2 32 3 33 1 2 3 30 0 1 3⋅ = + + = + + = = −

r
δ δ δ

or
  ̂
e A A k componentk k

th⋅ = = −
r

Therefore,

  

r r
A A e e A ej

j
j j

j
j= ⋅( )

= =
∑ ∑

1

3

1

3

ˆ ˆ ˆ=   (28)

Thus, any vector can be written in terms of its components and the
unit vectors.
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