
Schršdinger Equation 
The Dirac !-Function 

History 

In development of quantum mechanics by P. Dirac, the following sequence of ideas occurred 

(1) Observable = measurable quantity = Hermitian operator 

(2) Physical states are linear combinations of the eigenvectors [requires complete 
orthonormal basis] 

(3) Possible measurements are represented by the eigenvalues [must be real numbers] 

(4) Some observables have a discrete spectrum [Þnite number or denumerably inÞnite number] 
Ñ> eigenvectors satisfy

öO |! ! = ! |! ! , |! ! = eigenvector , ! = eigenvalue

! ! ! | ! " = " ! ! !

In this case, for different eigenvalues this is a well-deÞned statement. 

(5) Other observables have a continuous spectrum [non-denumerably inÞnite number of 
eigenvalues]. 

    For example, the position operator      , which we have discussed and will discuss 
further shortly, is such that 

öX |x! = x |x! , |x! = eigenvector , x = eigenvalue

öX

Now ask question, what is !x! " x#? Dirac assumed  



!x! | x" # ! x ! x # ! (x $ x!)
where he proposed the deÞnitions 

!!

"!

! (x ! x#)dx# = 1 ! (x ! x!) = 0 if x! "= x

!!

"!

f (x#)! (x ! x#)dx# = f (x)

Although, the new mathematical object assumed by Dirac did not Þt in with any mathematics 
known at time (1929), the assumption gave the correct physical theory in sense that all its 
predictions agreed with experiments.

Eventually(1960), mathematicians, who initially vehemently disputed DiracÕs assumption of new 
ÒfunctionÓ, caught up to physicists and proved all of its properties in the Theory of Distributions. 

Introduction to the Schršdinger Equation in One Dimension 

Time Evolution 

One way of doing quantum calculations Ñ> the Schršdinger Picture and involves Schršdinger 
equation for determining wavefunctions corresponding to energy eigenstates and for specifying 
time evolution of physical quantities. In this picture: 

(a) states are represented by ket vectors that depend on t, ""(t) # 

(b) operators        representing observables or measurable quantities are independent of t öQ

We then get a time-dependent expectation value of the form
D
Q̂(t)

E
= h (t)| Q̂ | (t)i

Let t be continuous parameter. Consider a family of unitary operators           , with following 
properties 

öU(t)
Û(0) = Î , Û(t1 + t2) = Û(t1)Û(t2)



Û(t) = Î +
dÛ(t)

dt

�����
t=0

t+O(t2)

Other transformations such as displacements, rotations and Lorentz boosts also satisfy these 
properties. 

The operator      is the time development operator whose existence was one of our 
postulates and whose  form we speciÞed earlier. 

Now consider inÞnitesimal t. 

We then write an inÞnitesimal version of unitary transformation (using Taylor series) as 

öU(t)

Since a unitary operator must satisfy unitarity condition öU öU+ = öI for all t, we have

which implies that 

If we deÞne then condition becomes or

öU öU+ = öI =

!

öI +
döU(t)

dt

"
"
"
"
"
t =0

t + ....

# !

öI +
döU+ (t)

dt

"
"
"
"
"
t =0

t + ....

#

= Î +

"
dÛ(t)

dt
+

dÛ+(t)

dt

#�����
t=0

t+ ....

"
dÛ(t)

dt
+

dÛ+(t)

dt

#�����
t=0

= 0

döU(t)
dt

!
!
!
!
!
t =0

= ! i öH �iĤ = +(iĤ)+ = �iĤ
+ öH = öH +

Ñ>         is Hermitian operator Ñ> generator of family of transformations                 because it 
determines operators uniquely. 

öU(t)
Now consider property ̂U(t1 + t2) = Û(t1)Û(t2)

öH
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A partial derivative is deÞned by 
! f (x, y, z)

! x
=

df (x, y, z)
dx

!
!
!
!
y,z =constants

For example, if f(x,y,z) = x3y + xy7z + x2sin(z), then 
! f
! x = 3x2y + y7z + 2x sin(z)

! f
! y = x3 + 7xy6z

! f
! x = xy7 + x2 cos(z)

Using the partial derivative we have

!
! t1

öU(t1 + t2)

!
!
!
!
t 1 =0

=
d
dt

öU(t)

!
!
!
!
t = t 2

=
"

d
dt1

öU(t1)
# !

!
!
!
t 1 =0

öU(t2) = ! i öH öU(t2)

which is the equation for arbitrary t 

i
döU(t)

dt
= öH öU(t)

This equation is satisÞed by the unique solution öU(t) = e! i öHt

which gives an expression for time development operator in terms of Hamiltonian. 

Formally Ñ> StoneÕs theorem. 

Same form as we speciÞed earlier for time-development operator. 



Schršdinger picture follows directly from discussion of     (t) operator. 

Suppose we have some physical system represented by state vector ""(0) # at t = 0 and 
represented by state vector ""(t) # at t. 

We ask this question. 

How are these state vectors related to each other? 

We make the following assumptions: 

(1) #every vector ""(0) # such that !"(0) " "(0) # = 1 represents a possible state at t=0 

(2) #every vector ""(t) # such that !"(t) ""(t) # = 1 represents possible state at t 

(3) #every Hermitian operator represents an observable or measurable quantity 

(4) properties of physical system determine state vectors to within phase factor since              
"$ # = ei% "" # implies that h' | 'i = h | e�i↵ei↵ | i = h |  i = 1

(5) #""(t) # is determined by ""(0) #

Now, if ""(0) # and "$(0) # represent two possible states at t = 0 and ""(t) # and "$(t) #        
represent corresponding states at t, then 

"!$(0) " "(0) #"2 = probability of Þnding system in state represented by "$(0) # given that       
system is in state ""(0) # at t=0  

"!$(t) " "(t) #"2 = probability of Þnding system in state represented by "$(t) # given that        
system is in state ""(t) # at t

öU
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(6) #It makes physical sense to assume that these two probabilities should be same 

|! ! (0) | " (0)"|2 = |! ! (t) | " (t)"|2

WignerÕs theorem (linear algebra) Ñ> exists unitary, linear operator            such thatÛ

|! (t)! = öU(t) |! (0)!

!
!
!! ! | öU(t) |" "

!
!
!
2

and an expression of the form 

gives the probability that the system is in state "%# at t given that it was in state "&# at t=0. 

We assume this expression is continuous function of t.  We already showed that                 
satisÞes the equation 

öU(t)

i
dÛ(t)

dt
= ĤÛ(t) or öU(t) = e! i öHt

and thus, 
|! (t)! = öU(t) |! (0)! = e! iĤt |! (0)!

which Ñ> an equation of motion for state vector 

i
döU(t)

dt
|! (0)! = öH öU(t) |! (0)! i

d
dt

|! (t)! = öH |! (t)!

which is the abstract form of the famous Schršdinger equation. 

We will derive the standard form of the equation shortly. 



As said earlier, operator                            Ñ> time evolution operator. Û(t) = e�iĤt

Finally, we can write the time-dependent expectation value as 

| (t)i = Û(t) | (0)i = e�iĤt | (0)i
!

öQ(t)
"

= ! ! (t)| öQ |! (t)"

Ñ> Schršdinger picture where state vectors change with time and operators are constant in 
time. 

Note that Schršdinger picture is not the same as Schršdinger equation. 

The Schršdinger equation involves mathematical object called the wave function which is one  
particular representation of state vector, namely the position representation - will see later. 

Thus, Schršdinger equation is applicable only to Hamiltonians that describe operators 
dependent on external degrees of freedom like position and momentum. 

The Schršdinger picture, on other hand, works with both internal and external degrees of 
freedom and can handle much wider class of physical systems, as shall see. 

Schršdinger Wave equation - Coordinate Representation - Wave functions: Approach #2 

To form representation of an abstract linear vector space we must carry out these steps: 

(1) Choose complete, orthonormal set of basis vectors {"%k#} 

(2) #Construct identity operator       as sum over one-dimensional subspace projection 
operators "%k#!%k" 

Î

Î =
X

k

|↵ki h↵k|



(3) #Write arbitrary vector "" # as linear combination or superposition of basis vectors using 
identity operator 

|! ! = öI |! ! = (
!

k

|" k ! " " k |) |! ! =
!

k

"" k | ! ! |" k !

. It is clear from equation, that knowledge about behavior(say in time) of the expansion 
coefÞcients !%k " " # Ñ> behavior of state vector "" # and allow us to make predictions. 

     Remember also, that the expansion coefÞcient is the probability amplitude for particle in state 
"" # to behave like it is in state "%k#. 

A particular representation, very important in study of many systems using Quantum 
Mechanics, is  formed using the eigenstates of the position operator as a basis Ñ> coordinate 
or position representation. 

We restrict our attention to one dimension for simplicity. 

öxEigenstates {"x#} of the position operator       satisfy öx |x! = x |x!

where eigenvalues x are continuous variables in range ['(,(] Ñ> basis of coordinate 
representation. 

Expanding earlier discussions, in this case, the summations become integrals and we have 

The expansion coefÞcient in the coordinate representation is given by "(x) = !x " " # 

Î =

Z
|xi hx| dx |! ! = öI |! ! =

!
(|x! " x|) |! ! dx =

!
"x | ! ! |x! dx



The normalization condition takes the form 

! |  " = 1 = ! | öI | " =
!

! | x" ! x |  " dx =
!

|!x | ! "|2dx =
!

|! (x)|2dx =
!

! ! (x)! (x)dx

The probability amplitude for a particle in state "" # to behave like it is in state "$ # is 

! ! | " " = (
!

!x | ! "! !x| dx)(
!

!x" | " " |x"" dx") =
!

dx
!

dx! !x | ! "" !x! | " " ! x | x!"

In order to evaluate this, need the normalization condition                  .

| i =
Z

hx0 |  i |x0i dx0 !x | ! " =
!

!x! | ! " ! x | x!" dx! ! (x) =
!

! (x!) !x | x!" dx!

which implies that 

hx | x0i

!x | x!" = ! (x # x!)

Since the inner product deÞned for all states "x#, the new object is clearly function of 
eigenvalues x Ñ>  probability amplitude for Þnding particle at point x in 1-dimensional space    
if in (abstract)state vector "" # Ñ> wave function. 

Bra vector corresponding to "" # is ! ! | = ! ! | öI =
!

! ! | x" ! x| dx =
!

!x | ! "! !x| dx

We have 

where and ! (x ! a) =

!
undeÞned x "= a
0 otherwise

!!

"!

f (x)! (x ! a)dx = f (a)

for any function f(x) Ñ> Dirac delta function as mentioned earlier.



Putting into above equation for "(x), we have

! (x) =
!

! (x!) !x | x!" dx! =
!

! (x!)" (x # x!)dx! Ñ> deÞning integral. 

Thus, delta function normalization follows from completeness property of projection operators. 

Using this result we get 

! ! | " " =
!

dx
!

dx! !x | ! "" !x! | " " #(x # x!) =
!

!x | ! "! !x | " " dx =
!

! ! (x)" (x)dx

We formally write        operator using expansion in eigenvalues and projection operators as öx

öx =
!

x |x! " x| dx

Will also need properties of linear momentum operator. Eigenstates {"p#} of momentum 
operator          satisfyöp öp|p! = p|p!

where eigenvalues p are continuous variables in range ['(,(] Ñ>  basis of momentum 
representation. Repeating the mathematical step used with x-representation we have

öI =
1

2! !

!
|p! " p| dp|! ! = öI |! ! =

1
2" !

!
(|p! " p|) |! ! dp =

1
2" !

!
"p | ! ! |p! dp ! (p) = !p | ! "

! ! | = ! ! | öI =
1

2" !

!
! ! | p" ! p| dp =

1
2" !

!
!p | ! "! !p| dp

1

2⇡~ hp | p0i = �(p� p0)

öp =
1

2! !

!
p |p! " p| dp



Now we derive connections between two representations. 

Need to determine quantity !x " p# Ñ>                                      Ñ> key result. 

It will enable us to derive the Schršdinger equation. 

!x | p" = eipx/ !

A representation of Dirac delta function is Derivation:

1
2! !

!!

"!

eip (x " x ! ) dp = " (x ! x#)

By representation Ñ> can show that 
!!

"!

f (x)

"

# 1
2! !

!!

"!

eip (x " a) dp

$

%dx = f (a)

for any function f(x). 

Result follows from Fourier transform theory. 

Now can rewrite equation in another way 

1
2! !

!!

"!

eip (x " x ! ) dp = " (x ! x#) = "x | x##= "x| öI |x##

= "x|

"

#
!!

"!

|p# "p| dp

$

%|x##=

!!

"!

"x | p# "p | x##dp =

!!

"!

!x | p" ! x# | p"$ dp

which is clearly satisÞed by !x | p" = eipx/ !



It is not unique choice, however. 

It is choice, however, that allows Quantum Mechanics to make predictions that agree with 
experiment. 

We might even say that this choice is another postulate! 

Now, we can use these results to determine the expectation values of operators involving 
position and momentum operators. 

Since we are interested in coordinate representation need only determine these relationships. 

Position operator calculations are straightforward 

!x| öx |! " = x !x | ! " , !x| f (öx) |! " = f (x) !x | ! "

For the momentum operator write 

!x| öp|! " =
1

2" !

!
dp!x|öp|p" ! p | ! " =

1
2! !

!
dp!x|p |p" ! p | " " =

1
2! !

!
pdp!x | p" ! p | " "

Using we have 

and 

!x | p" = eipx/ ! p !x | p" = # i !
d

dx
!x | p" = !x| öp|p"

!x| öp|! " =
1

2" !

!
dp!x|öp|p" ! p | ! "

=
1

2" !

!
dp!x|p |p" ! p | ! " =

1
2" !

!
dp

"
# i !

d
dx

!x | p"
#

!p | ! "

=
! i
2!

d
dx

!
dp"x | p# "p | " #= ! i !

d
dx

"x | " #



Can also show that 

Using these results, we can now derive Schršdinger wave equation. 

! !x| öp2 |" " = #
!

# i !
d

dx

" 2

! !x | " " = # ! 2 d2

dx2 ! !x | " "

Schršdinger wave equation in one dimension is a differential equation that corresponds to 
eigenvector/eigenvalue equation for Hamiltonian operator or energy operator. 

The resulting states are energy eigenstates. 

We already saw that energy eigenstates are stationary states and thus have simple time 
dependence. 

This property allows us to Þnd time dependence of amplitudes for very complex systems in 
straightforward way. 

We have öH |! E ! = E |! E ! where E is a number and 

öH = energy operator = (kinetic energy + potential energy) operators =
öp2

2m
+ V(öx)

Then have 

Ñ> time-independent Schršdinger wave equation in 1 dimension. 

hx|
öp2

2m
+ V(öx) |! Ei = E hx | ! Ei !x|

öp2

2m
|! E " + !x| V (öx) |! E " = E !x | ! E "

!
! 2

2m
d2

dx2 "x | ! E #+ V(x) "x | ! E #= E "x | ! E # !
! 2

2m
d2! E (x)

dx2 + V (x)! E (x) = E ! E (x)

! E (x) = !x | ! E "Quantity                              is the wave function or energy eigenfunction in the position 
representation corresponding to energy E. 



|! E (x)|2 = |!x | ! E "|2Quantity

coordinate x if in  state represented by vector "" E#.

represents probability density to Þnd particle at 

Since 

have 

Therefore, 

öU(t) |! E ! = e! i öH
! t |! E ! = e! i E

! t |! E ! !x| öU(t) |! E " = ! E (x, t ) = e! i E
! t !x | ! E "

! E (x, t ) = e! i E
! t ! E (x, 0)

!
! 2

2m
d2! E (x, t )

dx2 + V (x)! E (x, t ) = E ! E (x, t )

!
! 2

2m
d2! E (x, t )

dx2 + V ("x)! E (x, t ) = i !
#
#t

! E (x, t )

which is time-dependent Schršdinger wave equation. 

Clearly, systems change in time. 

One change is collapse process, discontinuous (and non-unitary). 

We have also developed (from postulate #4) a deterministic (unitary) time evolution between 
measurements. 

Between measurements states evolve according to equation 

|! (t)! = öU(t) |! (0)! = e! i öHt/ ! |! (0)!

For energy eigenstates we Þnd that 
|! E (t)! = öU(t) |! E (0)! = e! i öH

! t |! E (0)! = e! i E
! t |! E (0)!

that is, they only change by a phase factor. 



Consider particle with hardness property but now place it in an external force that makes the 
system have a higher energy when particle in hard state "h# than when in soft state "s#. 

DeÞne two energies +E0 for "h# and 'E 0 for "s#. 

These energies Ñ> corresponding energy eigenvalues for two states. 

Therefore, energy operator (in hard-soft basis) given by 

öH =
!

+ E0 0
0 ! E0

"

Thus, have 

Case #1 

Case #2 

and |! (0)! = |h! |! (t)! = e! i öHt/ ! |h! = e! iE 0 t/ ! |h!

|! (0)! = |s! |! (t)! = e! i öHt/ ! |s! = eiE 0 t/ ! |s!

In either case, if measure hardness of this particle at t, still has same value as at t = 0, that is, 
for case #1 

|!h | ! (t)"|2 =
!
!
!!h| e! iE 0 t/ ! |h"

!
!
!
2

= |!h | h"|2 = 1

|!s | ! (t)"|2 =
!
!
!!s| e! iE 0 t/ ! |h"

!
!
!
2

= |!s | h"|2 = 0

or hardness of particle does not change in time if starts out in state of deÞnite hardness      
(Ñ> energy eigenstates) 

Look at simple example to illustrate process. 

When initial state is not an energy eigenstate, that is, when it is superposition of hard and soft 
states, then it will change with time.



The change will be in relative phase between the components. 

so relative phase is                   . 

This state is not eigenstate of hardness or color! What is probability of measuring various 
results? 

Initially: 

|! (0)! =
1

"
2

(|h! + |s! ) # |g!

|! (t)! = e! i öHt/ ! |! (0)! =
1

"
2

e! i öHt/ ! (|h! + |s! ) =
1

"
2

!
e! i öHt/ ! |h! + e! i öHt/ ! |s!

"

=
1

!
2

!
e! iE 0 t/ ! |h" + eiE 0 t/ ! |s"

"

e2iE 0 t/ !

At time t:

|!h | ! (0)"|2 =
1
2

= |!s | ! (0)"|2 |!g | ! (0)"|2 = 1 , |!m | ! (0)"|2 = 0

|!h | ! (t)"|2 =

!
!
!
!!h|

"
1

#
2

#
e! iE 0 t/ ! |h" + eiE 0 t/ ! |s"

$%!
!
!
!

2

=

!
!
!
!

1
#

2
e! iE 0 t/ !

!
!
!
!

2

=
1
2

|!s | ! (t)"|2 =

!
!
!
!!s|

"
1

#
2

#
e! iE 0 t/ ! |h" + eiE 0 t/ ! |s"

$%!
!
!
!

2

=

!
!
!
!

1
#

2
eiE 0 t/ !

!
!
!
!

2

=
1
2

|!g | ! (t)"|2 =

!
!
!
!!g|

"
1

#
2

#
e! iE 0 t/ ! |h" + eiE 0 t/ ! |s"

$%!
!
!
!

2

=

!
!
!
!

1
!

2
e! iE 0 t/ ! "g | h#+

1
!

2
eiE 0 t/ ! "g | s#

!
!
!
!

2

=

!
!
!
!
1
2

e! iE 0 t/ ! +
1
2

eiE 0 t/ !

!
!
!
!

2

= cos2 2E0t
!



|!m | ! (t)"|2 =

!
!
!
!!m|

"
1

#
2

#
e! iE 0 t/ ! |h" + eiE 0 t/ ! |s"

$%!
!
!
!

2

=

!
!
!
!

1
!

2
e! iE 0 t/ ! "m | h#+

1
!

2
eiE 0 t/ ! "m | s#

!
!
!
!

2

=

!
!
!
!
1
2

e! iE 0 t/ ! !
1
2

eiE 0 t/ !

!
!
!
!

2

= sin 2 2E0t
!

So the probability of measuring the hardness of a particle that was originally in green state 
remains 1/2 (as was at t = 0) since they are energy eigenstates or stationary states. 

But much more interesting is the fact that probability for measurements of color oscillates 
between probability =1 for green and probability = 1 for magenta. 

So the procedure is as follows: 

(1) #Find the energy operator for the physical system. 

(2) #Express the initial state as a superposition of energy eigenstates. 

(3) #Insert the simple time dependence of the energy eigenstate to obtain the time dependence 
of the state of the system. 

(4) #Determine probability for Þnal measurements by taking appropriate inner products. 



One-Dimensional Quantum Systems 

Schrodinger equation in 1-dimension is 

!
! 2

2m
d2! E (x)

dx2 + V (x)! E (x) = E ! E (x)

Solutions " E(x) are energy eigenstates (eigenfunctions). Time dependence given by 

! E (x, t ) = e! i E
! t ! E (x, 0) where ! E (x, 0) = !x | E"

and where öH |E ! = E |E ! öH =
öp2

2m
+ V(öx)

Thus we are faced with solving an ordinary differential equation with boundary conditions. 

Since " E(x) is physically related to the probability amplitude and hence to the measurable 
probability, we assume that " E(x) is continuous. 

Using this fact, we can determine the general continuity properties of d" E (x)/dx. 

The continuity property at a particular point, say x = x0, is derived as follows: 
x 0 + !!

x 0 ! !

d2! E (x)
dx2 dx =

x 0 + !!

x 0 ! !

d
"
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or 
!

!
d! E (x)

dx

"
=

2m
! 2 lim

! ! 0

x 0 + !#

x 0 " !

V (x)! E (x)dx

where have used continuity of " E(x) to set 
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Ñ> that whether or not d" E(x)/dx has a discontinuity depends directly on the potential energy 
function. 

If V(x) continuous at x = x0, i.e., if lim
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If V(x) has Þnite discontinuity (jump) at x = x0, i.e., lim
! ! 0

[V (x0 + ! ) ! V (x0 ! ! )] = f inite then 
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Finally, if V(x) has an inÞnite  jump at x = x0, then we have two choices 

(1) #if potential is inÞnite over an extended region of x, then we must force "E(x) = 0 in that 
region and use only the continuity of " E(x) as boundary condition at the edge of region. 



(2) #if potential is inÞnite at single point, i.e., V(x) = *(x ' x 0), then would have 

and thus d" E(x)/dx is discontinuous.
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Last thing we must worry about is the validity of probability interpretation of " E(x), i.e., " E(x) = 
!x"" E# = probability amplitude for particle in state "" E# to be found at x Ñ> must also have 

! ! E | ! E " =

!!

"!

|! E (x)|2 dx < #

This means that we must be able to normalize the wave functions and make total probability 
that particle is somewhere on x'axis equal to one. 

A wide range of interesting physical systems can be studied using 1-dimensional potential 
energy functions. 

Quantized Energy Levels in the InÞnite Square Well Potential 

Now consider potential energy function V (x) =

!
0 ! a/ 2 " x " a/ 2
# |x| $ a/ 2



This is the so-called inÞnite square well shown in the Þgure. 

Ñ> example of potential that is inÞnite in an extended region.  

We consider the three regions labeled I, II, III.

! I (x) = 0 , ! III (x) = 0

Digression: Solving Second-Order ODEs 

The solution technique use in most cases is called exponential substitution . 

Exponential Substitution = Method applicable to all ordinary differential equations of form 

A
d2y
dt2 + B

dy
dt

+ Cy = 0 where A, B and C are constants. 

DeÞnitions: 2nd-order = order of highest derivative
linear = no squares or worse
homogeneous = right-hand side = 0

constant coe! cients = A, B, C

Therefore this equation is a 2nd-order, homogeneous, linear differential equation with constant 
coefÞcients. 

Therefore, must require that wave function "(x) = 0 in these regions or the Schrodinger 
equation makes no sense mathematically. In this case have 



Method:  Consider a typical equation of form 
d2y
dt2 + 3

dy
dt

+ 2y = 0

Make the exponential substitution 

y = e! t

into ODE. This will convert diffEQ into an algebraic equation for %. We thus have 

d2y
dt2 =

d2e! t

dt2 = ! 2e! t dy
dt

=
de! t

dt
= ! e! t

which gives result 

!
! 2 + 3 ! + 2

"
e! t = 0 ! ! 2 + 3 ! + 2 = 0 since e%t  +  0.

Solutions of algebraic equation tell us allowed values of % that give valid solutions to ODE. 

In particular, in this case we get

! = ! 1, ! 2

as solutions to quadratic equation. 

This result means that y = e't  and y = e'2t  satisfy the original ODE as can be seen by direct 
substitution. 



If there is more than one allowed value of (as in this case), then the most general solution will 
be a linear combination of all possible solutions(because this is a linear diffEQ). 

Since, in this case, allowed values of % are % = '1, '2, the most general solution of ODE is 

y(t) = ae! t + be! 2t

where a and b are constants to be determined by the initial conditions. 

Number of arbitrary constants that need to be determined by initial conditions is equal to 
order(highest derivative !  2 in this case) of this ODE. 

Suppose the initial conditions are 

y = 0 ,
dy
dt

= 1 at t = 0.

Then have 

y(t) = ae! t + be! 2t y(0) = 0 = a + b

dy
dt

= ! ae! t ! 2be! 2t
dy
dt

(0) = ! a ! 2b = 1

which gives a = 'b = 1 and thus the solution is 

y(t) = e! t ! e! 2t

One can easily substitute this solution into original equation and see that it works and has the 
correct initial conditions!! 



Although the exponential substitution method is very powerful as described, we can make it 
even  more powerful by using a mathematical quantity called the complex exponential.  

The change allows us to use this method for the SHM case. 

Now Simple Harmonic Motion . The equation(spring) of motion has the form

M
dv
dt

= ! kx " M
d
dt

!
dx
dt

"
= ! kx " M

d2x
dt2 + kx = 0

so that A=M, C=k and B=0

Complex Exponentials - Alternative Very Powerful Method 

Earlier found
e± i ! t = cos ! t ± i sin ! t or sin ! t =

ei ! t ! e! i ! t

2i
, cos! t =

ei ! t + e! i ! t

2
Can use these results to solve SHM equation 

M
d2y
dt2 + ky = 0 !

d2y
dt2 + ! 2y = 0 , ! 2 =

k
M

Substituting y = e%t get algebraic equation

! 2 + " 2 = 0

Ñ> solutions (allowed values of %) % = ±i, Ñ> most general solution 

y(t) = Aei ! t + Be! i ! t



Suppose initial conditions are y = y0 ,
dy
dt

= 0 at t = 0.

y(0) = y0 = A + B A = B =
y0

2
y(t) = y0

ei ! t + e! i ! t

2
= y0 cos! t

Then have 

Returning to inÞnite square well Schrodinger equation: 

Now in region II, Schrodinger equation becomes 
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which has general solution(using above method) given by 
! II (x) = Aeikx + Be! ikx

where k is some parameter to be determined. 

Continuity of wavefunction at x = ±a/2 says Ñ> 
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which imply that 

B
A

= ! e! ika = ! eika Ñ> equation for allowed values (values corresponding to a 
valid solution) of parameter k. 

Equation is e2ika = 1 Ñ> allowed values of k form a discrete spectrum of 
energy eigenvalues (quantized  energies) given by 
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The corresponding wave functions are 

! (n )
II (x) = An (eik n x ! e! ik n ae! ik n x ) = An e! i k n a

2

!
eik n (x + a

2 ) ! e! ik n (x + a
2 )

"

= ÷An sinkn

!
x +

a
2

"

We have mathematically solved ODE problem. Now what is the physical meaning of results? 

We Þnd a discrete spectrum of allowed energies corresponding to bound states of Hamiltonian. 
Energy is quantized . Bound states designate states localized in space, i.e., probability large 
only over restricted regions of space and goes to zero far from potential region. 

and so onÉ..

Lowest energy value or lowest energy level or ground state energy is E1 =
! 2! 2

2ma2 > 0

with 
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This minimum energy is not zero because of the Heisenberg uncertainty principle(next lecture). 
Since particle has nonzero amplitude for being in well, we say that it is localized such that      
-x . a and thus 

! p !
!
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This says kinetic energy (or energy in this case because potential energy equals zero in region 
II) must have minimum  value given approximately by
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The solutions also have the property

! (! x) = ! (x) n odd  (�x) = � (x) n even

A discrete transformation of wave function corresponds to parity operator         where we have ö!

ö!" (x) = " (! x) = " (x) " even parity ö!" (x) = " (! x) = ! " (x) " odd parity

Now look more generally at the parity operation. 

Suppose that the potential energy function obeys the rule  V(x!) = V(' x!) and let "( x!) be solution 
of Schrodinger equation with energy E. Then 
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! 2
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Now let x! !  x! to get the equation 
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Ñ> that, if "( x!) is solution of Schrodinger equation with energy E, then "(' x!) is also solution of 

same Schrodinger equation and hence with same energy E Ñ> "( x!) ± "(' x!) are also solutions 
of same Schrodinger equation with same energy E (by linearity). 

Now
! ("x) + ! (! "x) " even parity solution ! ("x) ! ! (! "x) " odd parity solution

This says that if V (x!) = V (' x!), then we can always choose solutions that have deÞnite 
parity (even or odd). 



Formally, we deÞne the parity operator by the relation 

! !x| ö" |# " = !# !x | # "
Since 

! !x| ö" 2 |# " = !# !x| ö" |# " = !!x | # "

Ñ> must have                , which means eigenvalues of          are ±1 as indicated earlier.ö! 2 = öI ö!

Now can show 
!
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= 0 for symmetric potentials, i.e.,  
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since "E# is an arbitrary state. 

This commutator relationship says that      and      share a common set of eigenfunctions 
and that 

ö!öH

öH ö! = ö! öH
ö! öH ö! = ö! 2 öH = öH
ö! ! 1 öH ö! = öH

where we have used                 in the derivation. It also says that ö! 2 = öI

öH ( ö! |E ! ) = ö!
!

öH |E !
"

= E ( ö! |E ! )

This means that           is invariant under           transformation.öH ö!



or      "E# is an eigenstate of           with energy E as we stated. 

The concept of parity invariance and the fact that         and         share a common set of 
eigenfunctions can greatly simplify the solution of the Schrodinger equation in many cases. 
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