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Probability and Statistics

Introduction:

Understanding of many physical phenomena depend on statistical and probabilistic 
concepts. 

Statistical mechanics  is the physics of systems composed of many parts - gases, 
liquids, solids, etc. 1 mole of anything contains                 particles(Avogadro's number). 
It is impossible to keep track of all                  particles even with the fastest computer 
imaginable. Therefore, we must resort to learning about groups or clusters of particles. 
Probabilistic ideas dominate the theory.
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Quantum mechanics  is the physics of atoms and all other micro-physical phenomena. 
Quantum phenomena are inherently probabilistic.

The understanding/interpretation of experimental data  depends on statistical and 
probabilistic concepts to answer these questions

 How do we extract the best value of a quantity from a set of measurements?
 How do we decide if our experiment is consistent/inconsistent with a given theory?
 How do we decide if our experiment is internally consistent?
 How do we decide if our experiment is consistent with other experiments?
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Definition of Probability

Suppose we have N trials and a specified event E occurs r times. For example, rolling a 
dice and the event could be rolling a 6.

We define the probability P of an event E occurring as:  P(E) = r/N when N ! !

Examples:
  (1) six side dice: P(6) = 1/6
  (2) coin toss: P(heads) = 0.5

We note our expectation that P(heads) should approach 0.5 the more times you toss the 
coin and that for a single coin toss we never get P(heads) = 0.5 - we have P(heads) = 1 
if we get heads and P(heads) = 0 if we get tails; that is all that can happen in a single toss.

By definition probability is a non-negative number bounded by  0 " P " 1

Some properties:
 (1) If P = 0, then the event never  occurs.
 (2) If P = 1, then the event always  occurs.
 (3) The sum (or integral) of all probabilities of mutually  exclusive  (see (5) below) 
           events = 1.

 (4) Events are independent  if  P(A! B)=P(A)P(B)   !  = intersection, "  = union

 (5) Events are mutually exclusive  (disjoint) if  P(A " B) = 0 or P(A" B) = P(A) + P(B)
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Probability can be a discrete or a continuous variable. 

Discrete probability:  P can have certain values only.

Examples:
(1) Tossing a 6-sided dice: P(xi)=Pi where xi = 1,2,3,4,5,6 and P i = 1/6 for all x i.
(2) Tossing a coin: P(xi)=Pi where xi = heads or tails and Pi = 1/2 for all x i.

For both of the above discrete examples (and in general) when we sum over all mutually 
exclusive possibilities we have

Pi
i

! = 1

Continuous probability:  P can be any number between 0 and 1.

We define a "probability density function", pdf , f(x) such that

f (x)dx = dP(x ! " ! x + dx)

with !  a continuous variable. Then the probability for x to be in the range a " x " b is 
given by

P(a ! x ! b) = f (x)dx
a

b

"
Just like the discrete case, the sum of all probabilities satisfy

P(! " # x # +" ) = f (x)dx
! "

+"

$ = 1

that is, f(x) is normalized  to 1.
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We note that the probability for x to be exactly some number is zero since:

P(a ! x ! a) = P(x = a) = f (x)dx
a

a

" = 0

Examples of some common P(x)'s and f(x)'s:

  Discrete = P(x)    Continuous = f(x)
  binomial        uniform, i.e., constant
  Poisson        Gaussian
                exponential
                chi square

Formal Theory

Probability Concepts

We will be interested in understanding the quantity

 P(A|B) = probability of event A given that event B is true

In essence, event B sets up the conditions or an environment and then we ask about the 
(conditional) probability of event A given that those conditions exist. All probabilities are 
conditional in this sense.
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In other words, we set up an experimental apparatus, which is expressed by properties 
B and do a measurement with that apparatus, which is expressed by properties A. We 
generate numbers (measurements) which we use to give a value to the quantity P(A|B).

We start with a mathematical formalism based on axioms. We define these events
A = occurrence of   A

~ A = NOT  A = nonoccurrence of   A

A! B = A  AND  B = occurrence of   both A  and  B

A" B = A  OR  B = occurrence of   at least one of the events  A  and  B

and set up a theory of probability with these axioms:

(1) P(A|A) = 1

This is the probability of the occurrence A given the occurrence of A. This represents a 
certainty  and, thus, the probability must = 1. This is clearly an obvious assumption that 
we must make if our probability ideas are to make any sense at all.

In other words, if I set the experimental apparatus such that the meter reads A, then it 
reads A with probability = 1.

(2) 0 " P(A|B) " P(B|B) = 1

This just expresses the sensible idea that no probability is greater than the probability of 
a certainty and it make no sense to have the probability be less than 0 .
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(3) P(A|B) + P(~A|B) = 1 or P(~A|B) = 1 - P(A|B)

This just expresses the fact that the probability of something (anything) happening 
(A or ~A)  given  B  is a certainty (=1),  that is, since the set A or ~A includes 
everything that can happen, the total probability that one or the other occurs must  be 
the probability of a certainty and be  equal to one.

(4) P(A! B|C) = P(A|C)P(B|A! C)

This says that the probability that 2 events A, B both occur given that C occurs equals 
the probability of A given C multiplied by the probability of B given (A ! C), which makes 
sense which makes sense if you think of them happening in sequence . 

All other probability relationships can be derived from these axioms. 

The nonoccurrence of  A  given that  A  occurs must have probability = 0. This is 
expressed by
                           P(~A|A) = 0

This result clearly follows from the axioms since

P(A |B) + P(~ A |B) = 1   

P(A |A) + P(~ A |A) = 1

P(~ A |A) = 1! P(A |A) = 1! 1= 0
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P(X ! Y |C) + P(X! ~ Y |C)
A = X  ,  B =Y   and   C = C

A = X , B =  ~ Y  and  C = C

Example:   Let us evaluate                                        . 
We use axiom (4) in the 1st term with                                         and in the 2nd 
term with                                            to get

P(X ! Y |C) + P(X! ~ Y |C) = P(X |C)P(Y | X ! C) + P(X |C)P(~ Y | X ! C)

              = P(X |C) P(Y | X ! C) + P(~ Y | X ! C)[ ] = P(X |C) 1[ ]        using axiom (3)

and finally P(X ! Y |C) + P(X! ~ Y |C) = P(X |C)
X= ~A ,  Y= ~BNow let us use this result with                                 . This gives

P(~ A! ~ B |C) = P(~ A |C) " P(~ A! B |C) = 1" P(A |C) " P(~ A! B |C)

X= B ,  Y= AExpanding the last term using                      we then have

P(B! ~ A |C) + P(B! A |C) = P(B |C)

or
P(~ A∩ B |C) = P(B |C) − P(B∩ A |C)

which gives
P(~ A! ~ B |C) =1 " P(A |C) " P(B |C)+ P(A! B |C)

Now
P(A∪ B) = 1− P(~ (A∪ B) |C) = 1− P(~ A∩ ~ B) |C)

and since
(~ (A ! B)) = (~ A" ~ B)
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i.e., A B (~ (A ! B)) (~ A" ~ B)

1 1 0 0

1 0 0 0

0 1 0 0

0 0 1 1

which is called a "truth table" and clearly shows the equality, we finally get

P(A ! B) = P(A |C) + P(B |C) " P(A # B |C)
This is a very important and useful result.

P(A ! B |C) = 0If we have                              , then events A and B are said to be mutually  exclusive  
given that C is true and the relation then reduces to

P(A ! B) = P(A |C) + P(B |C)

This is the rule of addition  of  probabilities  for  exclusive  events .

Some other important results are:

If    A ! B = B! A  ,  then  P(A|C)P(B|A ! C)=P(B|C)P(A|B ! C)

If   P(A |C) " 0 ,   then   P(B | A ! C) = P(A | B ! C)
P(B |C)
P(A |C)
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prob(A | B ! C) prob(B | A! C)
which is BayeÕs theorem . It relates the probability of B given A to the probability of A 
given B. This rule, which relates                         to                         , allows us to turn 
things around with respect to the conditioning symbol, which leads to a reorientation of 
our thinking about probability.

The fundamental importance of this property to data analysis becomes apparent if we 
replace A and B by hypothesis  and data :

prob(A | B! C) " prob(B | A! C) # prob(A |C)
prob(hypothesis | data ! I ) " prob(data | hypothesis! I ) # prob(hypothesis | I )

prob(data | I )
Note that the equality has been replaced with a proportionality because the term  
                        = evidence  has been omitted. The proportionality constant can be 
found from the normalization requirement that the sum of the probabilities for something 
happening must equal 1.

The power of Bayes' theorem lies in the fact that it relates the quantity of interest, the 
probability that the hypothesis is true given the data, to the term that we have a better 
chance of being able to assign, the probability that we would have obtained the measured 
data if the hypothesis was true.

prob(hypothesis | I )The various terms in Bayes' theorem have formal names. The term                             
= prior  probability represents our state of knowledge(or ignorance) about the truth of 
the hypothesis before we have analyzed the current data.

prob(data |hypothesis& I )
This is modified by the experimental measurements through the term   
                                            = likelihood  function.
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prob(hypothesis | data& I )This product gives                                             = posterior  probability representing 
our state of knowledge about the truth of the hypothesis in the light of the data(after 
measurements).

In some sense, Bayes' theorem encapsulates the process of learning.

When we say that B is independent  of A, we will mean
P(B | A ! C) = P(B |C)

P(A! B |C) = P(A |C)P(B |C)

or the occurrence of A has NO influence  on the probability of B  given C. Using axiom (4) 
we then have the result:

          if A and B are independent given C, then 

Ai    ,   i=1,2,....,n{ }
This is called statistical  or stochastic  independence. The result generalizes to a set of 
events                           . All these events are independent if and only if

P(A1 ! A2 ! ....! Am |C) = P(A1 |C)P(A2 |C)..........P(Am |C)

for all m " n. 

How do we describe a probability distribution?

The main variable are the mean, mode, median and the variance.

For a continuous distribution , these quantities are defined by:
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µ = xf (x)dx
! "

"

#
∂f (x)
∂x x=a

= 0

0.5= xf (x)dx
! "

a

#
! 2 = f (x)(x " µ)2dx

" #

#

$

mean = average =
 
mode = most probable =
 
median = 50% point =
 
variance = width of distribution = 

For a discrete distribution the mean and variance are defined by:

µ =
1
n

xi
i =1

n

!

! 2 =
1
n

(xi " µ)2

i =1

n

#

mean = 

variance = 

Some continuous pdf :

symmetric distribution (gaussian):  in this case the mean, mode and median are 
all at the same x.
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asymmetric distribution:  in this (and most) cases the mean, mode and median 
are at different x-values.

Calculation of mean and variance:

Example: A discrete data set consisting of the three numbers xi = 1,2,3{ }

The average µ is
µ =

1
n

xi
i =1

n

! =
1+ 2 + 3

3
= 2

A complication arises if some measurements are more precise than others, that is, if 
each measurement xi has a weight wi associated with it then we calculate the average 
using

µ =
1

wi
i =1

n

!
wi xi

i =1

n

!

which is called a "weighted average".
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So if the three data points are such that the value 3 is 10 times more precise than the 
values 1 and 2 we have wi = 1,1,10{ }
and

µ =
1

12
(1+ 2 + 30) =

33
12

= 2.75

The variance #2 (# = standard deviation) or squared average deviation from the mean is

! 2 =
1
n

(xi " µ)2

i=1

n

#

It describes the width of the pdf .

Expanding the summations we can rewrite this expression in a more useful form:

! 2 =
1
n

xi
2 " 2µxi + µ2#$ %&=

i =1

n

' 1
n

xi
2

i =1

n

' " 2µ
1
n

xi +
i =1

n

' µ2 1
i =1

n

'

    = xi
2( )

average
" 2µ xi( )average

+
1
n

µ2 n( )

    = x2 " 2µ(µ) + µ2 = x2 " µ2

    = x2 " x 2

...where          = average.
For our sample data set we have

! 2 =
1
3
(1+ 4 + 9) " (2)2 = 4.67 " 4 = 0.67
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and in the case of different weights for the data values we have

! 2 =
1

wi
i =1

n

"
wi (xi # µ)2

i =1

n

" =
1

wi
i =1

n

"
wi xi

2

i =1

n

" # µ2

    =
95
12

# (2.75)2 = 7.92# 7.56= 0.36

Example: a continuous probability distribution

f (x) = sin2 x , 0 ! x ! 2"

This distribution has two modes. The mean and median are equal, but different from the 
mode as shown below
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First, we note that f(x) is not properly normalized, i.e.,

f (x)dx
0

2!

" = sin2 xdx
0

2!

" = ! # 1

Therefore, the normalized pdf is given by

f (x) =
sin2 x

f (x)dx
0

2!

"
=

1
!

sin2 x

The actual values for this distribution are

µ =
1
!

xsin2 xdx
0

2!

" = !

!
! x

sin2 x = 0 " # / 2,3# / 2 = modes

1
!

xsin2 xdx
0

"

# = 0.5 $ " = ! = median

Another continuous distribution example: 
a Gaussian: we have

where

f (x) =
1

! 2
e

"
(x" µ )2

2! 2
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# = standard deviation and x = mean = mode = median = " . We note that 68% of the 
area under the curve lies within ±#.

Accuracy and Precision

The accuracy  of an experiment refers to how close the experimental measurement is to 
the "true" value of the quantity being measured.

The precision  refers to how well the experimental result has been determined, without 
regard to the true value of the quantity being measured.

Remember, just because an experiment is precise, it does not mean it is accurate!

Measurement Errors (Uncertainties)

The most common quality indicator is the relative precision  defined by:

  relative precision = [uncertainty in measurement]/measurement

where the [uncertainty in measurement] is the square root of the variance or the the 
standard deviation #. This is usually calculated using "propagation of errors".

Statistics and Systematic Errors

Results from experiment are often presented as: N ± XX ± YY ,   where
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   N = value of quantity measured (or determined) by experiment

   XX = statistical error (usually assumed to be from a Gaussian distribution).
        
           With the assumption of Gaussian statistics we can say (calculate) something 
           about how well our experiment agrees with other experiments and/or theories. 
           We are saying that we expect a 68% chance that the true value is between 
           N - XX and N + XX.

   YY = systematic error; very hard to estimate since the distribution of such errors is 
           generally not know.

What is the difference between statistical and systematic errors?

Statistical errors are "random" in the sense that if we repeat the measurement enough 
times XX !  0 in the sense described earlier.

Systematic errors do not !  0 with repetition. An example of a systematic error might be 
a poorly calibrated voltmeter.

Because of systematic errors an experiment can be precise, but not accurate!

How do we combine systematic and statistical errors to get one estimate of precision? 
This is always a big problem. We have two choices:
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! total = XX +YY

! total = (XX2 +YY2)1/2

                                  add them linearly
or
                                  add them in quadrature.

Let us now look in more detail at some discrete probability distributions.

Binomial Probability Distribution

Consider a situation where there are only two possible outcomes (a bernoulli trial), for 
example, flipping a coin (head or tail) or rolling a dice (6 or not 6).

Label the possible outcomes by the variable k; we want to determine the probability P(k) 
for event k to occur.

Since k can take on only 2 values we define those values as

   k = 0 or k = 1

Let P(k=0) = q (remember 0"q"1). Now something must happen (one of our postulates) 
so that we must have

   P(k=0) + P(k=1) = 1
   P(k=1) = p = 1 - P(k=0) = 1 - q

We can write the probability distribution P(k) as
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   P(k) = p kq1-k    (Bernoulli distribution)

For the coin toss case, if we define the probability for a head as P(1), then

   P(1) = P(0) = 0.5

For the dice roll case, if we define the probability for a 6 to be rolled as P(1), then

   P(1) = 1/6
   P(0) = 5/6 = P(not a 6) = P(1,2,3,4,5)

What is the mean(µ) of P(k)?

µ =
kP(k)

k=0

1

!

P(k)
k=0

1

!
=

0xq +1xp
q + p

=
p
1

= p

! 2What is the variance         of P(k)?

! 2 = k2 " k 2 =
k2P(k)

k=0

1

#

P(k)
k=0

1

#
" µ2 =

0xq +1xp
q + p

" p2 = p " p2 = p(1" p) = pq
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Suppose we have N trials (e.g. we flip a coin N times). What is the probability of m 
successes(= heads). Clearly m " N.

Consider tossing the coin twice. The possible outcomes are

 no heads : P(m=0) = q 2

 one head : P(m=1) = qp + pq = 2pq (tail/head + head/tail)
     two heads: P(m=2) = p 2

Therefore, P(0)+P(1)+P(2) = q 2 + 2pq + p 2 = (q+p) 2=1 as expected.

We want the probability distribution function P(m,N,p) where

 m = number of successes (number of heads)
 N = number of trials (number of coin tosses)
 p = probability of success (0.5 for head)

If we look at these three choices for the coin flip example, each term is of the form:

CmpmqN! m

with m = 0,1,...,N. N = 2 for our example and q = 1 - p always.

CmThe coefficient               takes into account the number of ways an outcome can occur 
regardless of order.
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C0 = C2 = 1
For m = 0 or m = 2, there is only one way for the outcome (both tosses give heads or 
tails) so that                    .

C1 = 2For m = 1 (one head in two tosses) there are two ways that this can occur so that            .

The so-called Binomial coefficients (introduced in week #1) tell us the number of ways of 
taking N things m at a time, that is,

CN,m =
N

m
!

"#
$

%&
=

N!
m!(N ' m)!

Note that we are assuming that order of things is not important so that head followed 
by tail counts the same as tail followed by head.

Unordered groups such as this example are called combinations .

Ordered arrangements are called permutations .

For N distinguishable objects, if we want to group them m at a time, the number of 
permutations is

PN,m =
N!

(N ! m)!

Examples:

(1) If we tossed a coin twice (N=2), there are two ways to get one head (m=1).
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(2) Suppose we have 3 balls, one white, one red and one blue. The number of possible 
      pairs we could have(keeping track of the order) is 6 (rw, wr, rb, br, wb, bw) and

P3,2 =
3!

(3! 2)!
= 6

If order is not important (rw = wr), then the binomial formula gives

C3,2 =
3

2
!

"#
$

%&
=

3!
2!(3' 2)!

= 3

    namely, (wr, bw, rb).

The binomial distribution in general: the probability of m successes out of N trials is

P(m,N, p) = CN,mpmqN! m =
N

m
"

#$
%

&'
pmqN! m =

N!
m!(N ! m)!

pmqN! m

Now consider a game where a player bats 4 times and 
  p = probability of a hit = 1/3
  q = 1 - p = probability of not hit = 2/3
We then have (for hits) probability of 0 / 4 = [4!/ (4!0!)](1/ 3)0(2 / 3)4 = 19.75%

probability of 1/ 4 = [4!/ (1!3!)](1/ 3)1(2 / 3)3 = 39.51%

probability of 2 / 4 = [4!/ (2!2!)](1/ 3)2(2 / 3)2 = 29.63%

probability of 3/ 4 = [4!/ (3!1!)](1/ 3)3(2 / 3)1 = 9.88%

probability of 4 / 4 = [4!/ (4!0!)](1/ 3)4(2 / 3)0 = 1.23%
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Clearly the probability of getting at least one hit is  1 - p(0) = 80.25% . Now in general

n = average  or  expectation value( for hits)

      = sum over [possible values times probability of that value]

      = mP(n
m=0

N

! = m) = m
m=0

N

! N!
m!(N " m)!

pmqN" m

We now use a clever mathematical trick to evaluate this sum. For the moment consider p 
and q to be two arbitrary independent variables. At the end of the calculation we will let 
q = 1 - p as is appropriate for a real physical system.

From the Binomial expansion formula, we have, in general,

N!
m!(N ! m)!

pmqN! m

m=0

N

" = (p + q)N

Since p+q=1, this says the distribution is normalized. We then have

p
!

! p
N!

m!(N " m)!
pmqN" m

m=0

N

# = p
!

! p
(p + q)N

or   m
N!

m!(N " m)!
pmqN" m

m=0

N

# = Np(p + q)N" 1

or
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mP(n = m)
m=0

N

! = Np(p + q)N" 1

or     n = Np(p + q)N" 1

In a real physical system, we must have p + q =1, so that we end up with the result

n = Np
Some results for N = 7 and N = 50 are shown below.
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MATLAB code

figure
x=0:7;
y=binopdf(x,7,1/3);
plot(x,y,'ko','MarkerEdgeColor','k','MarkerFaceColor','
g')
xlabel('k');ylabel('P(k,7,1/3)')
axis([0 10 0 0.40])
title({'Expectation Value';'\mu=np=7*1/3=2.333...'})
figure
x=0:50;
y=binopdf(x,50,1/3);
plot(x,y,'ko','MarkerEdgeColor','k','MarkerFaceColor','
g')
xlabel('k');ylabel('P(k,50,1/3)')
axis([0 30 0 0.14])
title({'Expectation Value';'\mu=np=50*1/3=16.666...'})

The variance of the binomial distribution (evaluated using similar tricks) is

σ 2=
(m− µ)2 P(m,N, p)

m=0

N

∑

P(m,N, p)
m=0

N

∑
= Npq

Example : Suppose you observed m special events (success) in a sample of N events. 
The measured probability for a special event to occur is then

! =
m
N

The error of the probability is

! " =
! m

N
=

Npq

N
=

N" (1# " )
N

=
" (1# " )

N
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which implies that the sample (N) should be as large as possible to reduce the uncertainty 
in the probability.

Example : Suppose a baseball player's batting average is 1/3 (1 for 3 on average). 
Consider the case where the player either gets a hit or makes an out (forget about walks 
here!). Then
                 probability for a hit = p = 1/3
                 probability for "no hit" = q = 1 - p = 2/3

On average how many hits does the player get in 100 at bats?

µ = Np= 100(1/ 3) = 33.33

What is the standard deviation for the number of hits in 100 at bats?

! = (Npq)1/2 = (200/ 9)1/2 = 4.71

therefore, we expect 33 ± 5 hits in 100 at bats.

The Poisson Probability Distribution

This is a very widely used discrete probability distribution. 

Consider the following conditions:

 (1) p is very small and approaches 0
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!

  example : a 100 sided dice instead of a 6 sided dice
     p = 1/100 instead of 1/6

  example : a 1000 side dice with p = 1/1000

 (2) N is very large and approaches 

  example: throwing 100 or 1000 dice instead of 2 dice

 (3) the product Np is finite

N ! 1020

Example: radioactive decay

Suppose we have 25 mg of an element; this corresponds to a very large number of 
atoms,              . Suppose the lifetime of this element is 

! = 1012 years " 5 #1019 seconds

These numbers imply that the probability of a given nucleus to decay in one second is 
very small p = 1/ ! = 2 " 10#20 sec#1

Np= 2 sec! 1Note that                       which clearly is finite!
It then turns out that the number of counts in a time interval is a Poisson process  
(governed by the Poisson probability distribution).
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The Poisson distribution can be derived by taking the appropriate limits of the binomial 
distribution

P(m,N, p) =
N!

m!(N ! m)!
pmqN! m

We have these limits N!
(N − m)!

=
N(N −1)....(N − m+1)(N − m)!

(N − m)!
≈ Nm

and
qN! m = (1! p)N! m = 1! p(N ! m) +

p2(N ! m)(N ! m! 1)
2!

+ .....

        " 1! pN +
(pN)2

2!
+ ......" e! pN

so that
P(m,N, p) =

Nm

m!
pme! pN

µ = NpNow let              and we have

P(m,µ) =
e! µµm

m!
This is properly normalized since we have

P(m,µ) =
m=0

m=!

" e#µµm

m!
=

m=0

m=!

" e#µ µm

m!
=

m=0

m=!

" e#µe+µ = 1

µWe note that m is always an integer $ 0, but         does not have to be an integer.

28



It is straightforward to show that
µ = Np

! 2 = Np= µ
    = mean of Poisson distribution
    = variance of the Poisson distribution

The mean and variance are the same!

µ = Np= 2 decays / secReturning to the radioactivity example we have                                       . What is 
the probability of zero decays in one second?

P(0,2) =
e! 220

0!
= 0.135" 13.5%

What is the probability of more than one decay in one second?

P(>1,2) = 1− p(0,2) − p(1,2) = 1−
e−220

0!
−

e−221

1!
= 0.594→ 59.4%

Another example :

The number of false fire alarms in a suburb of Houston averages 2.1 per day. Assuming 
a Poisson distribution is appropriate, the probability that 4 false alarms will occur on a 
given day is given by

P(4,2.1)
e! 2.12.14

4!
= 0.0992" 9.92%

Some other processes governed by a Poisson distribution are

 (1) The number of phone calls received by a telephone operator in a 10-minute period.
 (2) The number of flaws in a bolt of fabric.
 (3) The number of typos per page made by a secretary.

29



Probability Interpretation

As we have said, in the standard way of thinking about probability in relation to 
experiments, measured results are related to probabilities using the concept of a limit  
frequency .  The limit frequency is linked to probability by this definition:

If  C  can lead to either A or ~A and if in n repetitions, A occurs m times, then

P(A |C) =
n! "
lim

m
n

#
$%

&
'(

We must now connect the mathematical formalism with this limit frequency concept so 
that we can use the formalism to make predictions for experiments in real physical 
systems.
   
This approach depends on whether we can prove that the limit makes sense for real 
physical systems. Let us see how we can understand the real meaning of the above 
interpretation of probability and thus learn how to use it in quantum mechanics, where 
probability will be the dominant property. 

Suppose that we have an experimental measurement, M, that can yield either A or ~A 
as results, with a probability for result A given by

P(A | M ) = p
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M n nA 0 ! nA ! n
In general, we let any sequence of n independent measurements be labeled as event  
         and we define         as the number of times A occurs, where                   . We 
repeat the earlier, but so very important derivation.

Now imagine we carry out a sequence of n independent measurements and we find that 
A occurs r times. The probability for a sequence of results that includes result A r times 
and ~A (n-r) times (independent of their order in the sequence) is given by

prqn! r

where
q = P(~ A | M ) = 1! P(A | M ) = 1! p

The different sequence orderings are mutually exclusive events and thus we have

P(nA = r | M n) = pr

all  possible
orderings

! qn" r

The sum

all  possible
orderings

∑

prqn! r
just counts the number of ways to distribute r A's and (n-r) ~A's, where all the terms 
contain the common factor           . This result is given by the Binomial probability 
distribution (more about this later) as n!

r !(n ! r )!
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so that
P(nA = r | M n) =

n!
r !(n ! r )!

prqn! r

M nNow to get to the heart of the problem. The frequency of A in          is given by

fn =
nA

n
This is not  necessarily  = p in any set of measurements.

What is the relationship between them? Consider the following:

nA = average  or  expectation value

      = sum over [possible values times probability of that value]

      = rP(nA
r =0

n

! = r | M n) = r
r =0

n

! n!
r !(n " r )!

prqn" r

We now use a clever mathematical trick to evaluate this sum. For the moment consider p 
and q to be two arbitrary independent variables. At the end of the calculation we will let 
q = 1 - p as is appropriate for a real physical system.

From the Binomial expansion formula, we have, in general,

n!
r !(n ! r )!

prqn! r

r =0

n

" = (p + q)n
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We then have

p
!

! p
n!

r !(n " r )!
prqn" r

r =0

n

# = p
!

! p
(p + q)n

or   r
n!

r !(n " r )!
prqn" r

r =0

n

# = np(p + q)n" 1

or

rP(nA = r | M n)
r =0

n

! = np(p + q)n" 1

or     nA = np(p + q)n" 1

In a real physical system, we must have p + q =1, so that we end up with the result

nA = np
and

fn =
nA

n
= p

fn

This says that p = the average frequency. 

This does  not  say, however, that         is close to p.

Now consider a more general experiment where the outcome of a measurement is the 
value of some continuous variable Q, with probability density (for its continuous 
spectrum) given by
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P(q < Q < q + dq| M ) = h(q)dq

! > 0
We can now derive the following useful result. If Q is a nonnegative variable, which 
means that h(q) = 0 for q < 0, then for any 

Q = h(q)qdq!
0

"

# h(q)qdq
$

"

# ! $ h(q)dq
$

"

# = $P(Q ! $ | M )

This implies that
P(Q ! " |M ) #

Q

"

Q ! c " ! > 0Now we apply this result to the nonnegative variable               where                 and 
c = number, to obtain

P(Q ! c " # |M ) = P(Q ! c $ " #$ |M )%
Q ! c $

#$

which is called ChebyshevÕs inequality .

In the special case where

α = 2   ,    c = Q = mean of  distribution

Q− c 2 = Q− Q
2 = Q2 − Q 2 = σ 2 = var iance  ,    ε=kσ

we have
P(Q ! Q " k# |M ) $

1
k2
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1/ k2
or, the probability of Q being k or more standard deviations from the mean is no greater 
than            ( independent  of the form of the probability distribution).

It can also be shown that
P( fn ! p " # | M ) $

1
n#2

fn

! n ! "
which implies that the probability of        (the relative frequency of A in n independent 
repetitions of M) being more than        away from p converges to 0 as              . 
    
This is an example of the law of large numbers  in action.

fn = p fn n ! "This DOES NOT say             at any time or that           remains close to p as             .

fn

n ! "
It DOES say that the deviation of        from p becomes more and more improbable or 
that the probability of any deviation approaches 0 as               .

It is in this sense that one uses the limit frequency from experiment to compare with theoretical probability predictions in physics.

From probability theory one derives only statements of probability, not of necessity.

First hints of "subversive" or "Bayesian" thinking.....

How do we reason in situations where it is not possible to argue with certainty? In other 
words, is there a way to use techniques of deductive logic to study the inference problem 
arising when using inductive logic? No matter what scientists say, this is what they are 
actually doing most of the time.
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The answer to this last question resides in the Bayes' rule.

To Bayes(along with Bernoulli and Laplace), a probability represented a "degree-of-belief" 
or "plausibility", that is, how much one thinks that something is true,  based  on the 
evidence on hand .

The developers of standard probability theory(Fisher, Neyman and Pearson) thought this 
seemed too vague and subjective a set of ideas to be the basis of a "rigorous" 
mathematical theory. Therefore, they defined  probability as the long-run relative 
frequency with which an event occurred, given infinitely many repeated  experimental 
trials. Since such probabilities can be measured, probability was then thought to be an 
objective tool for dealing with random phenomena.

This frequency definition certainly seems  to be more objective, but it turns out that its 
range of validity  is far more limited.

In this view, probability represents a state of knowledge .  The conditional probabilities 
represent logical  connections rather than causal  ones.

Example:  

Consider an urn that contains 5 red balls and 7 green balls. 

If a ball is selected at "random", then we would all agree that the probability of picking a 
red ball would be 5/12 and of picking a green ball would be 7/12.
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If the ball is not returned to the urn, then it seems reasonable that the probability of 
picking a red or green ball must depend on the outcome of the first pick (because there 
will be one less red or green ball in the urn). 

Now suppose that we are not told the outcome of the first pick, but are given the result 
of the second pick. 

Does the probability of the first pick being red or green change with the knowledge of the 
second pick? 

Initially, many observers would probably say "no", that is, at the time of the first draw, 
there were still 5 red balls and 7 green balls in the urn, so the probabilities for picking 
red and green should still be 5/12 and 7/12 independent of the outcome of the second 
pick.

The error in this argument becomes clear if we consider the extreme example of an urn 
containing only 1 red and 1 green ball. 

Although, the second pick cannot affect the first pick in a physical sense, a knowledge of 
the second result does influence what we can infer about the outcome of the first pick, 
that is, if the second ball was green, then the first ball must have been red, and vice versa.

We can calculate the result as shown below:
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Y = pick isGREEN(2nd pick)

X = pick is RED(1st pick)

I = initial number of RED/GREEN balls={n,m}

A Bayesian would say:

prob(X |Y & I ) =
prob(Y | X & I ) ! prob(X | I )

prob(Y | I )

prob(X |Y & {n,m} ) =
prob(Y | X & {n,m} ) !

n
n + m

n
n + m

m
n + m" 1

+
m

n + m
m" 1

n + m" 1

=

m
(n + m" 1)

! n

nm
n + m" 1

+
m(m" 1)
n + m" 1

=
n

n + m" 1

n = m = 1# prob(X |Y & {1,1} ) =
n

(n + m" 1)
= 1

n = 5, m = 7 # prob(X |Y & {5,7} ) =
5
11

= 0.456

Non" Bayesian says:

prob(X | {5,7} ) =
5

12
= 0.417

Clearly, the Bayesian and Non-Bayesian disagree. 

However, the Non-Bayesian is just assuming  that the calculated result 0.417 is correct, 
whereas, the Bayesian is using the rules of probability (Bayes' Rule) to infer the result 
0.456 correctly .
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The concerns about the subjectivity of the Bayesian view of probability are understandable. 
I think that the presumed shortcomings of the Bayesian approach merely reflect a 
confusion between subjectivity and the difficult technical question of how probabilities
(especially prior probabilities) should be assigned.

The popular argument is that if a probability represents a 
degree-of-belief, then it must be subjective, because my belief could be different from 
yours. The Bayesian view is that a probability does indeed represent how much we believe 
that something is true, but that this belief should be based on all the relevant information 
available(all prior probabilities).

While this makes the assignment of probabilities an open-ended question, because the 
information available to me may not be the same as that available to you, it is not the 
same as subjectivity. It simply means that probabilities are always conditional , and this 
conditioning must be stated explicitly .

Objectivity demands only that two people having the same information should 
assign the same probability .

Gaussian Probability Distribution

The Gaussian probability distribution is perhaps the most used distribution in all of science. 
It is sometimes called the "bell-shaped curve" or normal distribution.

Unlike the binomial or Poisson distributions, the Gaussian is a continuous distribution given 
by
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1

! 2"
e

#
(y#µ )2

2! 2

! " # y # "

where
  µ = mean(=mode=median) of distribution
  #2 = variance of the distribution
  y = continuous variable 

The probability of y being in the range [a,b] is given by an integral

P(a < y < b) =
1

! 2"
e

#
(y#µ )2

2! 2

a

b

$ dy

which cannot be evaluated analytically.

The probability distribution is properly normalized to 1 since

P(! " < y < " ) =
1

# 2$
e

!
(y! µ )2

2# 2

! "

"

% dy= 1

µ ! n"

One often hears statements about a measurement being a certain number of standard 
deviations (#) away from the mean (µ) of the Gaussian. 

We can associate a probability for a measurement to be                   from the mean just 
by calculating the area outside  of this region.
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     n#      Prob. of exceeding ±n#

     0.67   0.5
     1    0.32
     2    0.05
     3    0.003
     4    0.00006

which shows that it is very unlikely (< 0.3%) that a measurement taken at random 
from a gaussian pdf will be more than ±3# from the true mean of the distribution.

Relationship between Gaussian and Binomial Distributions

The Gaussian distribution can be derived from the binomial(or Poisson) distribution 
assuming:
              (1) p is finite
              (2) N is very large
              (3) We have a continuous rather than a discrete variable

An example illustrating the small difference between the two distributions (remember 
one is continuous and the other is discrete) under the above conditions is given below.

Consider an experiment of tossing a coin many times where

   p(heads) = 0.5 
   N = 10000
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[Np(1! p)]1/2 = 50

For the binomial distribution :
   mean number of heads = µ = Np = 5000
   standard deviation = # = 

The probability to be within ±# is

P(±σ ) =
104!

(104 − m)!m!m=5000−50

5000+50

∑ 0.5m0.5104 −m = 0.69

For the Gaussian distribution:
P(µ ! " < y < µ + " ) =

1

" 2#
e

!
(y! µ )2

2" 2

µ ! "

µ +"

$ = 0.68

so that both distributions give about the same probability under these conditions.

Central Limit Theorem

The Gaussian distribution is important because of the Central Limit Theorem. A crude 
statement of the Central Limit Theorem is

Things that are the result of the addition of lots of small effects tend to become Gaussian.

A more exact statement goes as follows:

Y1,Y2,....,YnLet                                be an infinite sequence of independent random variables each 
with the same probability distribution (the Y's actually can be from different pdf's).
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Suppose that the mean (µ) and the variance (# 2) of this distribution are both finite.

For any numbers a and b:

lim
n! "

P a <
Y1 +Y2 + ....+Yn # nµ

$ n
< b

%

&'
(

)*
=

1
2+

e# 1
2 y2

a

b

, dy

The CLT tells us that under a wide range of circumstances the probability distribution that 
describes the sum of random variables tends towards a Gaussian distribution as the 
number of terms in the sum ! !.

Alternatively, we have the statement

lim
n! "

P a <
Y # µ

$ / n
< b

%

&
'

(

)
* = lim

n! "
P a <

Y # µ
$ m

< b
%

&
'

(

)
* =

1

2+
e# 1

2 y2

a

b

, dy

! mwhere          is sometimes called the "error in the mean".

For the CLT to be valid: µ and # must be finite and no one term in the sum should 
dominate the sum.

We note that a random variable is not the same as a random number. A random variable 
is a rule which associates a number with each outcome in a set of possible outcomes S.

We note that if y is described by a gaussian pdf with µ=0 and #=1 then the probability 
that a < y < b is given by
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1

2!
e" 1

2 y2

a

b

# dy

which is the RHS of the CLT.

Example:  A watch makes an error of at most ±1/2 minute per day. After one year, what 
is the probability that the watch is accurate to within ±25 minutes?

Assume that the daily errors are uniform in [-1/2,1/2].

1/ 12For each day, the average error is zero and the standard deviation           minute, that is, 
P(y)=1.0, µ=0 so that

! 2 =

(y " µ)2 P(y)dy
" 1/2

1/2

#

P(y)dy
" 1/2

1/2

#
= y2 = dy=

1
12" 1/2

1/2

# $ ! =
1

12

The error over the course of a year is just the addition of the daily error.

Since the daily errors come from a uniform distribution with a well defined mean and 
variance, the CLT is applicable. Thus,

lim
n! "

P a <
Y1 +Y2 + ....+Yn # nµ

$ n
< b

%

&'
(

)*
=

1

2+
e# 1

2 y2

a

b

, dy
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The upper limit corresponds to +25 minutes, i.e.,

b =
Y1 +Y2 + ....+Yn ! nµ

" n
=

+25! (365)(0)

(1/ 12) 365
= 4.5

and the lower limit corresponds to -25 minutes, i.e.,

a =
Y1 +Y2 + ....+Yn ! nµ

" n
=

! 25! (365)(0)

(1/ 12) 365
= ! 4.5

Therefore, the probability to be within ±25 minutes is

P =
1
2!

e" 1
2 y2

" 4.5

4.5

# dy= 0.999997 =1 " 3$10" 6

1/ 12

that is, less than three in a million chance  that the watch will be off by more than 25 
minutes after a year.

Example:  Generate a Gaussian distribution using random numbers.

We have a random number generator which gives numbers distributed uniformly in the 
interval [0,1] so that µ=1/2 and #=              .

Procedure:
 (1) Take n = 12 numbers (r i) from the random number generator
 (2) Add them together
 (3) Subtract nµ = 6 

This should generate a number that looks like it is from a Gaussian pdf, that is,
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P a <
Y1 +Y2 + ....+Yn ! nµ

" n
< b

#

$%
&

'(
= P a <

r1 + r2 + ....+ r12 ! 12(1 / 2)
(1 / 12) 12

< b
#

$
%

&

'
(

             = P ! 6 < (r1 + r2 + ....+ r12 ! 6) < 6[ ] =
1
2)

e! 1
2 y2

! 4.5

4.5

* dy

where the value of a arises from all r i = 0 and the value of b arises from all r i = 1.

MATLAB results

m=10000;k=40;
r1=rand(1,m);
mu=0.5;
sig=1/sqrt(12);
r2=sum(rand(2,m))-1;
r3=sum(rand(3,m))-1.5;
r12=sum(rand(12,m))-6;
subplot(2,2,1)
hist(r1,k);
title('10000 random numbers');
subplot(2,2,2)
hist(r2,k);
title('10000 pairs');
subplot(2,2,3)
hist(r3,k);
title('10000 triplets');
subplot(2,2,4)
hist(r12,k);
title('10000 sets of 12');

Example:  The daily income of a "card shark" has a uniform distribution in the interval 
[-$40,$50]. What is the probability that she wins more than $500 in 60 days?
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Let us use the CLT to estimate this probability

lim
n! "

P a <
Y1 +Y2 + ....+Yn # nµ

$ n
< b

%

&'
(

)*
=

1

2+
e# 1

2 y2

a

b

, dy

The probability distribution of daily income is uniform, P(y) = 1. Thus we have

µ =

yP(y)dy
! 40

50

"

P(y)dy
! 40

50

"
=

1
2 (502 ! 402)
50! (! 40)

= 5

# 2 =

y2P(y)dy
! 40

50

"

P(y)dy
! 40

50

"
! µ2 =

1
3 (503 ! 403)
50! (! 40)

! 25= 675

The lower value a is

a =
Y1 +Y2 + ....+Yn ! nµ

" n
=

500! 60(5)

675 60
=

200
201

= 1

The upper value b is the maximum the shark could win ($50/day for 60 days)

b =
Y1 +Y2 + ....+Yn ! nµ

" n
=

3000! 60(5)

675 60
=

2700
201

= 13.4

Thus,
P =

1

2!
e" 1

2 y2

1

13.4

# dy$
1

2!
e" 1

2 y2

1

%

# dy= 0.16 or a 16% chance to win > $500 
in 60 days.
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Propagation of Errors

Example: we measure the current(I) and the resistance (R) of a resistor. Ohm's law is 
V=IR. If we know the uncertainties (e.g. standard deviations) in I and R, what is the 
uncertainty in V?

Given a functional relationship between several variables (x,y,z), say Q=f(x,y,z) we ask:

What is the uncertainty in Q if the uncertainties in x,y, and z are known?

Usually when we talk about uncertainties in a measured variable such as x, we assume:
 
  (1) the value of x represents the mean of a Gaussian distribution
  (2) the uncertainty in x is the standard deviation of the Gaussian distribution

Remember, however, that not all measurements can be represented by Gaussian 
distributions and that can cause difficulties.

Propagation of Error Formula

Suppose Q=f(x,y). To calculate the variance in Q as a function of the variances in x and y 
we use the following:

σQ
2 = σ x

2 ∂Q
∂x

⎛
⎝⎜

⎞
⎠⎟

2

+σ y
2 ∂Q

∂y

⎛
⎝⎜

⎞
⎠⎟

2

+ 2σ xy

∂Q
∂x

⎛
⎝⎜

⎞
⎠⎟

∂Q
∂y

⎛
⎝⎜

⎞
⎠⎟
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! xy = 0If the variables are uncorrelated(            ), the last term is zero.

x1,x2,...,xN
y1,y2,...,yN

Assume that we have several measurements of the quantities x, say  
and y, say,                      . The average of x and y are

µx =
1
N

xi
i =1

N

! , µy =
1
N

yi
i =1

N

!
We define

Qi = f (xi , yi )

Q = f (µx,µy)    evaluated at the average values

QiIf we expand        about the average values (neglecting 2 nd-order or higher terms) we get

Qi ! Q = (xi ! µx )
"Q
"x

#
$%

&
'(

µx

+ (yi ! µy)
"Q
"y

#

$%
&

'(
µy

so that

σQ
2 =

1
N

(Qi −Q)2

i =1

N

∑

    = 1
N

(xi − µx )2

i =1

N

∑ ∂Q
∂x

⎛
⎝⎜

⎞
⎠⎟ µx

2

+
1
N

(yi − µy)2

i =1

N

∑ ∂Q
∂y

⎛
⎝⎜

⎞
⎠⎟ µy

2

+
2
N

(xi − µx )(yi − µy)
i =1

N

∑ ∂Q
∂x

⎛
⎝⎜

⎞
⎠⎟ µx

∂Q
∂y

⎛
⎝⎜

⎞
⎠⎟ µy

    = σ x
2 ∂Q

∂x
⎛
⎝⎜

⎞
⎠⎟ µx

2

+σ y
2 ∂Q

∂y

⎛
⎝⎜

⎞
⎠⎟ µy

2

+ 2 ∂Q
∂x

⎛
⎝⎜

⎞
⎠⎟ µx

∂Q
∂y

⎛
⎝⎜

⎞
⎠⎟ µy

1
N

(xi − µx )(yi − µy)
i =1

N

∑
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If the measurements are uncorrelated (uncorrelated errors)

! Q
2 = ! x

2 "Q
"x

#
$%

&
'(

µx

2

+ ! y
2 "Q

"y

#

$%
&

'(
µy

2

When x and y are correlated, define

! xy =
1
N

(xi " µx)(yi " µy)
i =1

N

#
so that for correlated errors

! Q
2 = ! x

2 "Q
"x

#
$%

&
'(

µx

2

+ ! y
2 "Q

"y

#

$%
&

'(
µy

2

+ 2! xy

"Q
"x

#
$%

&
'(

µx

"Q
"y

#

$%
&

'(
µy

P = I 2R I = 1.0± 0.1amp R= 10±1!
P = 10watts

Example : Power in an electric circuit -           . Let                        and                    so 
that                  .

We calculate the variance in the power using propagation of errors

! P
2 = ! I

2 "P
" I

#
$%

&
'(

I =1

2

+ ! R
2 "P

"R
#
$%

&
'(

R=10

2

= ! I
2(2IR)2 + ! R

2 (I 2)2 = 5 watts2

so that
P =10 ± 2 watts

This means that if the true value of the power was 10 W and we measured it many times 
with an uncertainty # of ±2 W and Gaussian statistics apply, then 68% of the 
measurements would lie in the range [8,12] W.
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Sometimes it is convenient to put the above calculation in terms of relative errors.

! P
2

P2 =
! I

2

P2

"P
" I

#
$%

&
'(

I =1

2

+
! R

2

P2

"P
"R

#
$%

&
'(

R=10

2

=
4! I

2

I 2 +
! R

2

R2 = 4
0.1
1

#
$%

&
'(

2

+
1

10
#
$%

&
'(

2

= 0.05

Clearly, the uncertainty in the current dominates (80%) the uncertainty in the power, 
which mean that current must be measured more precisely to greatly reduce the 
uncertainty in the power.

Example: The error in the average

The average of several measurements each with the same uncertainty (#) is given by

µ =
1
n

(x1 + x2 + .....+ xn)

and the variance of the mean is

! µ
2 = ! x1

2 "µ
"x1

#

$%
&

'(

2

+ ! x2

2 "µ
"x2

#

$%
&

'(

2

+ ....+ ! xn

2 "µ
"xn

#

$%
&

'(

2

= n! 2 1
n

#
$%

&
'(

2

or
! µ =

!

n

is the "error in the mean". Clearly, we can determine the mean better by combining 
measurements and the precision increases (gets better) as the square root of the number 
of measurements.
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! µ
!Do not confuse       with      .        is related to the width of the pdf(e.g. Gaussian) that 

the measurements come from.       does not get smaller as we combine measurements.!
!

(xT )
(x1,x2,.......,xn)

xT

Maximum Likelihood Method

Suppose that we are trying to measure the true value of some quantity       . We make 
repeated measurements of this quantity                             . The standard way to 
estimate             from our measurements is to calculate the mean value:

µx =
1
n

xi
i =1

n

!
xT = µxand then set              .

Does this procedure make sense? To answer this question we investigate the maximum 
likelihood method(MLM), which is a general method for estimating parameters of interest 
from data.

Statement of the Maximum Likelihood Method

(x1,x2,.......,xn)Assume we have made n measurements of x                                     .
Assume we know the probability distribution function that  describes x, namely, f(x, ! ).
Assume that we want to determine the parameter ! .

xiMLM :  pick !  to maximize the probability of getting the measurements (the     's) that 
we did!
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How do we use the MLM?
(1) Let f(x, ! ) be given by a Gaussian distribution
(2) Let !  = µ be the mean of the Gaussian
(3) We want to estimate % from our set of n measurements
(4) Assume that # is the same for each measurement. Thus,

f (xi ,! ) =
1

" 2#
e

$
(xi $! )2

2" 2

(5) The likelihood function for this problem is

L = f (xi ,! )
i =1

n

" =
1

# 2$
e

%
(xi %! )2

2# 2

i =1

n

" =
1

# 2$
&

'(
)

*+

n

e
%

(x1 %! )2

2# 2 ........e
%

(xn %! )2

2# 2

  =
1

# 2$
&

'(
)

*+

n

e
%

(xi %! )2

2# 2
i=1

n

,

(6) Find !  that maximizes the log(likelihood function):

! lnL
! "

=
!

! "
nln

1

# 2$
%
&'

(
)*

+
(xi + " )2

2# 2
i =1

n

,
-

.
/

0

1
2= 0

!
! "

(xi + " )2

2# 2
i =1

n

, = 0 3 (xi + " )
i =1

n

, = 0

xi = n"
i =1

n

, 3 " =
1
n

xi
i =1

n

,
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which is just the average value as expected.

If # is different for each data point, then !  is just the weight average

! =

xi

" i
2

i =1

n

#
1

" i
2

i =1

n

#
Example:
(1) Let f(x, ! ) be given by a Poisson distribution
(2) Let !  = µ be the mean of the Poisson
(3) We want to estimate % from our set of n measurements 
(4) The likelihood function for this problem is

L = f (xi ,! )
i =1

n

" =
e#! ! xi

xi !i =1

n

" =
e#! ! x1

x1!
e#! ! x2

x2 !
........e

#! ! xn

xn!

  =
e#n! !

xi
i=1

n

$

x1!x2 !.......xn!

(5) Find !  that maximizes the log(likelihood function):
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! lnL
! "

=
!

! "
#n" # ln" xi # ln(x1!x2!.......xn!)

i =1

n

$%

&
'

(

)
* = 0

#n +
1
"

xi
i =1

n

$ = 0 + " =
1
n

xi
i =1

n

$

which is just the average value as expected.

General Properties of the MLM
(1) For large data sets (large n) the likelihood function L  approaches a Gaussian.
(2) For large n estimates converge to the true value of the parameters.
(3) MLM estimates are unbiased, efficient, sufficient and has smallest variance. 
     Solution is unique.
(4) BAD NEWS:  we must know the correct probability distribution for the problem 
     under consideration!

Maximum Likelihood Fit of Data to a Function

Suppose we have a set of n measurements:

x1,y1 ± ! 1

x2,y2 ± ! 2

.......

x3,y3 ± ! 3
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Assume each measurement error(#) is a standard deviation from a Gaussian pdf.
Assume that for each measured value y, there is an x which is known exactly.

Suppose we know the functional relationship between the y's and the x's:

y = q(x,α,β,....)

! ," ,....where                        are parameters.  MLM gives us a method to determine                 
from the data.

! ," ,....

Example: Fitting data points to a straight line:

y = q(x,! ," ,....)= ! + " x

L = f (xi ,! ," )
i =1

n

# =
1

$ i 2%i =1

n

# e
&

(yi &q(xi ,! ," ,....))2

2$ i
2

=
1

$ i 2%i =1

n

# e
&

(yi &! &" xi )2

2$ i
2

Find !  and & by maximizing the likelihood function L:

! lnL
! "

=
!

! "
ln

1

# i 2$

%

&'
(

)*
+

(yi + " + , xi )
2

2# i
2

-

.
/
/

0

1
2
2i =1

n

3 = +
(yi + " + , xi )

# i
2

-

.
/

0

1
2

i =1

n

3 = 0

! lnL
! "

=
!

! "
ln

1

# i 2$

%

&'
(

)*
+

(yi + , + " xi ))
2

2# i
2

-

.
/
/

0

1
2
2i =1

n

3 =
(yi + , + " xi )xi

# i
2

-

.
/

0

1
2

i =1

n

3 = 0

which is two linear equations with two unknowns. Assuming all of the #'s are the same for 
simplicity:
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yi −
i =1

n

∑ α −
i =1

n

∑ βxi = 0
i =1

n

∑ = yi −
i =1

n

∑ nα − β xi
i =1

n

∑

xi yi −
i =1

n

∑ αxi −
i =1

n

∑ βxi
2 = 0

i =1

n

∑ = xi yi −
i =1

n

∑ α xi −
i =1

n

∑ β xi
2

i =1

n

∑
The solutions are

α =
yi

i=1

n

∑ xi
2

i=1

n

∑ − xiyi xi
i=1

n

∑
i=1

n

∑

n xi
2

i=1

n

∑ − xi
i=1

n

∑⎛⎝⎜
⎞
⎠⎟

2 , β =
n xiyi −
i=1

n

∑ yi xi
i=1

n

∑
i=1

n

∑

n xi
2

i=1

n

∑ − xi
i=1

n

∑⎛⎝⎜
⎞
⎠⎟

2

We will see these results again when we talk about "least squares" or "chi-square" fitting 
later.
  The fitted line best represents the data. Not all the data points will be on the line.
  The line minimizes the sum of squares of the deviations between the line and the data

! = datai " predictioni[ ]2

i =1

n

# = yi " $ " %xi[ ]2

i =1

n

#

Xi{ }

And now for something completely different......

Testable Information: The Principle of Maximum Entropy

Let us move on to a situation where we do not have total ignorance. Suppose that a die, 
with the usual six faces, was rolled a very large number of times and we are only told that 
the average result was 4.5. What probability should we assign for the various outcomes  
       that the face on top had i dots?
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The information or conditions I provided by the experiment is written as a simple 
constraint equation

i prob(Xi | I ) = 4.5
i =1

6

!

If we had assumed a uniform pdf, then we would have predicted a different average

i prob(Xi | I ) =
1
6

i =
1
6

(21) = 3.5
i =1

6

!
i =1

6

!

which means the uniform pdf is not a valid assignment.

There are many pdfs that are consistent with the experimental results. Which one is the 
best?

The constraint equation above is called testable information . With such a condition, 
we can either accept or reject any proposed pdf. Jaynes proposed that, in this situation, 
we should make the assignment by using the principle of maximum entropy (MaxEnt), 
that is, we should choose that pdf which has the most entropy S while satisfying the 
available constraints. 

Explicitly, for case if the die experiment above, we need to maximize

S= ! pi
i =1

6

" loge(pi )

pi = prob(Xi | I )where                                subject to the conditions
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(1) normalization constraint
pi

i=1

6

! = 1

and (2) testable information constraint

i pi
i=1

6

! = 4.5

Such a constrained optimization is done using the method of Lagrange multipliers  as 
shown below:

Define the functions
f (pi ) = pi

i =1

6

! " 1= 0 #
$ f
$pj

%0

g(pi ) = i pi
i =1

6

! " 4.5= 0 #
$g
$pj

%0

The maximization problem can then be written

! S
! pj

+ " f

! f
! pj

+ " g

! g
! pj

= 0 j = 1,2,3,4,5,6

! f ,! gwhere the constants                 are called undetermined multipliers.  We get the equations

! loge(pj ) ! 1+ " f + j" g = 0 j = 1,2,3,4,5,6
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We then obtain

and

Therefore,

or

! loge(pj +1) ! 1+ " f + ( j +1)" g = ! loge(pj ) ! 1+ " f + j" g

# loge

pj +1

pj

= " g #
pj +1

pj

= $ = constant

! loge(p1) ! 1+ " f + loge(#) = 0

" f = 1+ loge

p1

#

pi
i =1

6

! = 1= p1(1+ " + " 2 + " 3 + " 4 + " 5)

i pi
i =1

6

! = 4.5= p1(1+ 2" + 3" 2 + 4" 3 + 5" 4 + 6" 5)

1+ 2! + 3! 2 + 4! 3 + 5! 4 + 6! 5

1+ ! + ! 2 + ! 3 + ! 4 + ! 5 = 4.5

1.5! 5 + 0.5! 4 " 0.5! 3 " 1.5! 2 " 2.5! " 3.5= 0

Solving for & we get 1.449255 so that
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p1 =
1

1+ ! + ! 2 + ! 3 + ! 4 + ! 5 = 0.05435

p2 = ! p1 = 0.07877

p3 = ! p2 = 0.11416

p4 = ! p3 = 0.16545

p5 = ! p4 = 0.23977

p6 = ! p5 = 0.34749

is the MaxEnt assignment for the pdf for the outcomes of the die 
roll, given only that it has the usual six faces and yields an 
average result of 4.5.

Why should the entropy function
S= ! pi

i =1

6

" loge(pi )

specified above be the choice for a selection criterion? 

Let us look at two examples that suggest this criterion is highly desirable and probably 
correct.

Kangaroo Problem(Gull and Skilling)

The kangaroo problem is as follows:
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p1, p2 , p3, p4

Information:  1/3 of all kangeroos have blue eyes and 1/3 of all kangaroos are left-handed

Question:  On the basis of this information alone, what proportion of kangaroos are both 
blue-eyed and left-handed?

For any particular kangaroo, there are four distinct possibilities, namely, that it is

 (1) blue-eyed and left-handed
 (2) blue-eyed and right-handed
 (3) not blue-eyed but left-handed
 (4) not blue-eyed but right-handed

Bernoulli's law of large numbers says that the expected values of the fraction of kangaroos 
with characteristics (1)-(4) will be equal to the probabilities (                  ) we assign to 
each of these propositions.

This is represented by a 2 x 2 truth or contingency table as shown below:
Left-Handed

True

Left-handed

False

Blue-Eyed

True

Blue-Eyed

False

           p1            p2

           p3            p4

Although there are four possible combinations of eye-color and handedness to be 
considered, the related probabilities are not completely independent of each other. We 
have the standard normalization requirement
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pi
i =1
! = 1

In addition, we also have two conditions on the so-called marginal  probabilities

p1 + p2 = prob(blue& left | I ) + prob(blue& right) = prob(blue| I ) = 1/ 3

p1 + p3 = prob(blue& left | I ) + prob(not ! blue& left) = prob(left | I ) = 1/ 3

pi ! 0 0 ! p1 ! 1/ 3
x = p1

Since any            , these imply that                             . Using this result we can 
characterize the contingency table by a single variable              as in the table below:

Left-Handed

True

Left-handed

False

Blue-Eyed

True

Blue-Eyed

False

    0 ! x ! 1/3       1/3 - x

       1/3 - x      2/3 + x

where we have used
x = p1

p1 + p2 =
1
3

! p2 =
1
3

" x

p1 + p3 =
1
3

! p3 =
1
3

" x , p1 + p2 + p3 + p4 = 1! p4 =
2
3

+ x

0 ! x ! 1/ 3All such solutions, where                         , satisfy the constraints of the testable 
information that is available. Which one is best?
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Common sense leads us towards the assignment based on independence of these two 
traits, that is, any other assignment would indicate a knowledge of kangaroo eye-color 
told us something about its handedness. Since we have no information to determine 
even the sign of any potential correlation, let alone its magnitude, any choice other than 
independence is not justified.

The independence choice says that

x = p1 = prob(blue& left | I ) = prob(blue| I )prob(left | I ) =
1
9

pi{ }

In this particular example it was straightforward to decide the most sensible pdf 
assignment in the face of the inadequate information.

We now ask whether there is some function of the            which, when maximized subject 
to the known constraints, yields the "independence" solution. The importance of finding an 
answer to this question is that it would become a good candidate for a general 
variational principle  that could be used in situations that were too complicated for 
our common sense.

x = 1/ 9Skilling has shown that the only function which gives                   is the entropy S as 
specified above or

S= ! pi
i =1

4

" loge(pi ) = ! xloge(x) ! 2
1
3

! x#
$%

&
'(

loge

1
3

! x#
$%

&
'(

!
1
3

+ x#
$%

&
'(

loge

1
3

+ x#
$%

&
'(

The results of Skilling's investigations, including three proposed alternatives,
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S1= ! pi
i =1

4

" loge(pi ) # MaxEnt

S2 = ! pi
2

i =1

4

"

S3 = ! loge(pi )
i =1

4

"

S4 = ! pi
i =1

4

"
is shown in the table below:

Function Optimal x Implied Correlation

S1 0.1111 None

S2 0.0833 Negative

S3 0.1301 Positive

S4 0.1218 Positive

Clearly, only the MaxEnt assumption leads to an optimal value with no correlations as 
expected.

Let us look at another example that lends further support to the MaxEnt principle.
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Xi{ }
prob(Xi | I ) = pi( )

The Team of Monkeys

Suppose there are M distinct possibilities                to be considered. How can we assign 
truth tables                           to these possibilities given some testable information I 
(experimental results).

Xi{ }

What is the most honest and fair procedure?

Imagine playing the following game. The various propositions are represented by different 
boxes all of the same size into which pennies are thrown at random. The tossing job is 
often assigned to a team of monkeys under the assumption that this will not introduce 
any underlying bias into the process.

After a very large number of coins have been distributed into the boxes, the fraction 
found in each of the boxes gives a possible assignment of the probability for the 
corresponding            .

prob( Xi{ } | I )

The resulting pdf may not be consistent with the constraints of I, of course, in which case
 it must be rejected as a potential candidate. If it is in agreement, then it is a viable option.

The process is then repeated by the monkeys many times. After many such trials, some 
distributions will be found to come up more often than others. The one that occurs most 
frequently (and satisfies I) would be a sensible choice for                          .
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This is so because the team of monkeys has no axe to grind (no underlying bias) and 
thus the most frequent solution can be regarded as the one that best represents our 
state of knowledge. It agrees with all the testable information available while being as 
indifferent as possible to everything else.

Does this correspond to the pdf with the greatest value of

S= ! pi loge(pi )"
n1

n2

After the monkeys have tossed all the pennies given to them, suppose that we find      
in the first box,        in the second box, and so on. We then have

N = ni
i =1

M

!  = total number of coins

pi{ } Xi{ }

which will be assumed to be very large and also much greater than the number of 
boxes M.

This distribution gives rise to the candidate pdf          for the possibilities             :

pi =
ni

M
, i =1,2,.....,M

M N

ni{ }
pi{ }

Since every penny can land in any of the boxes there are           number of different ways 
of tossing the coins among the boxes. Each way, by assumption of randomness and no 
underlying bias by the monkeys, is equally likely to occur. All of the basic sequences, 
however, are not distinct, since many yield the same distribution            . The expected 
frequency F with which a set             will arise, is given by
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F( pi{ } ) =
number of ways of obtaining ni{ }

M N

ni{ }The numerator is just the number of  ways to distribute N coins in a distribution          
which is given by

number of ways of obtaining ni{ } =
N!

n1!n2!.......nM !

Putting everything together we have

F( pi{ } ) =
number of ways of obtaining ni{ }

M N

F( pi{ } ) =

N!
n1!n2!.......nM !

M N

log(F) = ! N log(M ) + log(N!) ! log(ni !
i =1

M

" )

log(n!) ! nlog(n) " nUsing Stirling's approximation                                        for large n, we find

log(F) = ! N log(M ) + N log(N) ! ni log(ni
i =1

M

" ) ! N + ni
i =1

M

"

          = ! N log(M ) + N log(N) ! ni log(ni
i =1

M

" )

and thus

68



log(F) = ! N log(M ) + N log(N) ! pi N log(pi
i =1

M

" N)

          = ! N log(M ) + N log(N) ! pi N(log(pi ) + log(N))
i =1

M

"

          = ! N log(M ) + N log(N) ! N pi log(pi ) +
i =1

M

" N log(N) pi
i =1

M

"

          = ! N log(M ) + N log(N) ! N pi log(pi ) +
i =1

M

" N log(N)

          = ! N log(M ) ! N pi log(pi )
i =1

M

"

pi{ }
prob( Xi{ } | I )

Maximizing the log(F) is equivalent to maximizing F, which is the expected frequency with 
which the monkeys will come up with the candidate pdf          , that is, maximizing log(F) 
will give us the assignment                             which best represents our state of 
knowledge consistent with the testable information I. Since M and N are constants, this 
is equivalent to the constrained maximization of the entropy function

S= − pi loge(pi )∑
and so we recover the MaxEnt procedure once again.
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 !
2Chi Square Distribution (       ) and Least Squares Fitting

Chi Square Distribution

x1,x2,........,xn{ }

xi

xt1,xt 2,........,xtn{ }

x1,x2,........,xn{ }
xt1, xt2 ,........, xtn{ }

Suppose:
 (1) We have a set of measurements                                .
 (2) We know the true value of each                                 .
      We would like some way to measure how good these measurements really are.
 (3) Obviously, the closer the                         's are to the                        's, the better              
         (or more accurate) the measurements.
 Can we be more specific?

σ1,σ 2,........,σ n{ }

Assume:
 (1) The measurements are independent of each other.
 (2) The measurements come from a Gaussian distribution.
 (3)                          are the standard deviations for each measurement.

Now consider the following two possible measures of the quality of the data:

R=
xi ! xti

" ii =1

n

# , $2 =
(xi ! xti )

2

" i
2

i =1

n

#

! 2

n ! "

Which of the above gives more information on the quality of the data?
 (1) Both R and         are zero if the measurements agree with the true values.
 (2) R looks good because via the CLT as                  the sum !  a Gaussian.
 (3) However,            is better!! 2
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! 2One can show that the probability distribution for           is exactly

P(! 2,n) =
1

2n/2" (n / 2)
! 2#$ %&

n/2' 1
e' ! 2 /2 , 0 ( ! 2 ( )

! 2which is called the "Chi Square" (     ) distribution. Remember that

! (x) = Gamma function= e" t

0

#

$ t x" 1dt , x > 0

! (n +1) = ! (n) , ! (1 / 2) = %

χ 2

This is a continuous distribution that is a function of two variables       and n, where 
 n = # data points - # parameters calculated from data points 
      = # of degrees of freedom(dof)

Example: we collected N events in an experiment.

We histogram the data in k bins before performing a fit to the data points. This says that 
we have k data points!

Example: we count cosmic ray events in 15 second intervals and sort the data into 5 bins:

! 2

Number of counts in 15 
second intervals

Number of intervals

0 1 2 3 4

2 7 6 3 2

We have a total of 36 cosmic ray events in 20 15-second intervals. We have only 5 data 
points.
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Suppose we want to compare our data with the expectations of a Poisson distribution:

N = N0

e! µµm

m!

N0 = 20Since we set                in order to make the comparison, we lose one degree of freedom 
so that n = 5 - 1 = 4.

If we calculate the mean of the Poisson from the data, we lose another degree of 
freedom and n = 5 - 2 = 3.

Example: we have 10 data points. Let µ and # be the mean and standard deviation of 
the data. 

If we calculate µ and # from the 10 data points, then n = 8.
If we know µ and calculate #, then n = 9.
If we know # and calculate µ, then n = 9.
If we know µ and #, then n = 10.

Like the gaussian probability distribution, the Chi-square probability integrals cannot be 
done in closed form, i.e.,

P(! 2 > a) = P(! 2,n)
a

"

# d! 2 =
1

2n/2$(n / 2)
! 2%& '(

n/2) 1
e) ! 2 /2

a

"

# d! 2

so that numerical tables must be used (or numerical integration on a computer).
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x=0:0.01:25;
for n=[3,4,5,7,10,15,20]
 y=chi2pdf(x,n);
 plot(x,y,'-k');
 if (n == 3)
   hold on;
 end
end
xlabel('\chi^2');ylabel('P(\chi^2,n)')
text(2.8,0.2,'n=3');
text(3.8,0.165,'n=4');
text(5,0.135,'n=5');
text(7.1,0.11,'n=7');
text(10.7,0.090,'n=10');
text(15.25,0.075,'n=15');
text(21,0.065,'n=20');
hold off

χ 2Example: What is the probability to have          > 10 with the number of degrees of 
freedom n = 4?  We have

! = 1" P(#2 > a) = 1" P(#2,n)
a

$

% d#2

   = P(#2,n)
0

a

% d#2 =
1

2n/2&(n / 2)
#2'( )*

n/2" 1
e" #2 /2

0

a

% d#2
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This is given in MATLAB by the command

   chi2pdf(a,n)

so that the answer will be given by 1 - chi2pdf(a,n).

A plot of this quantity (for different n) versus a looks like  

n=4;
a=1:17;
csgta=1-chi2cdf(a,n);
plot(a,csgta,'-k');
xlabel('a');ylabel('P(\chi^2>a,n=num2str(N)');
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! 2or the probability to have     > 10 with the number of degrees of freedom n = 4 is about 
0.04 or about 4%.

A plot of all aspects of this function (from Taylor) looks like:

K.K. Gan L6: Chi Square Distribution 4

!  Example: WhatÕs the probability to have ! 2 >10 with the number of degrees of freedom n = 4?
" Using Table D of Taylor we find P(! 2  > 10, n = 4) = 0.04.
#  We say that the probability of getting a ! 2  > 10 with 4 degrees of freedom by chance is 4%.

! Some not so nice things about the ! 2 distribution:
"  Given a set of data points two different functions can have the same value of ! 2.

#  Does not produce a unique form of solution or function.
"  Does not look at the order of the data points.

#  Ignores trends in the data points.
" Ignores the sign of differences between the data points and ÒtrueÓ values.

#  Use only the square of the differences.
$  There are other distributions/statistical test that do use the order of the points:

Òrun testsÓ and ÒKolmogorov testÓ
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! 2

Some not so nice things about the Chi square distribution:

Given a set of data points, two different functions can have the same value of       , that is, 
it does not produce a unique form of solution or function.

Since it does not look at the order of the data points, it ignores trends in the data.

It ignores the sign of differences between the data points and "true" values, that is, it 
uses only the squares of the differences. 

There are other distributions/statistical tests that do use the order of the points, namely, 
"run test" and "Kolmogorov test".

(xi , yi ,! i )

Least Squares Fitting

Suppose we have n data points                   . 

Assume that we know a functional relationship between the points 

    y = f(x,a,b,...) 

Assume that we for each yi we know x i exactly.

The parameters a,b,..... are constants that we wish to determine from the data points.
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! 2A procedure to obtain a,b,.... is the minimize the following         with respect to a,b,....

! 2 =
yi " f (xi ,a,b,....[ ]2

# i
2

i =1

n

$

! 2

This is very similar to the MLM. For the Gaussian case MLM and LS are identical.

Technically this is a         distribution only if the y's are from a Gaussian distribution.

Since most of the time the y's are not from a Gaussian we call it "least squares" rather 
than        .

! 2

Example: we have a function with one unknown parameter:

     f(x,b) = 1 + bx

Find b using the least squares technique.

We need to minimize the following:

! 2 =
yi " f (xi ,a,b,....[ ]2

# i
2

i =1

n

$ =
yi " 1" bxi[ ]2

# i
2

i =1

n

$

To find the b that minimizes the above function, we do the following:
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! " 2

! b
=

!
! b

yi #1# bxi[ ]2

$ i
2

i =1

n

% =
#2xi yi #1# bxi[ ]

$ i
2

i =1

n

% = 0

xi yi

! i
2

i =1

n

" #
xi

! i
2

i =1

n

" #
bxi

2

! i
2 = 0

i =1

n

"

b =

xiyi
! i
2

i=1

n

" #
xi
! i
2

i=1

n

"
xi
2

! i
2

i=1

n

"
yi ! iEach measured data point       is allowed to have a different standard deviation(     ).

The LS technique can easily be generalized to two or more parameters for simple and 
complicated (e.g. non-linear) functions.

Example: Given the following data x 1.0 2.0 3.0 4.0

y 2.2 2.9 4.3 5.2

" 0.2 0.4 0.3 0.1

perform a least squares fit to find the value of b in 

    f(x,b) = 1 + bx

Using the formula for b above we get b = 1.05. A plot of the data points, error bars and 
least square line is given below:

78



x=1:4;
y=[2.2,2.9,4.3,5.2];
sig=[0.2,0.4,0.3,0.1];
errorbar(x,y,sig,'ok');
hold on
b=1.05;
f=1+b*x;
plot(x,f,'-r')
grid;
xlabel('x');ylabel('y');
hold off;

! 2If we assume that the data points are from a Gaussian distribution, we can calculate a  
and the probability associated with the fit.

! 2 ==
yi " 1" 1.05xi[ ]2

# i
2

i =1

n

$ = 1.04

! 2From the table above we have the probability to get       > 1.04 for 3 degrees of freedom is 
about 80%. We call this a "good" fit because the probability is close to 100%.

If, however,         was large (say 15), the probability would be small (about 0.2% for 3 dof) 
and we would say this was a "bad" fit.

! 2
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Hypothesis Testing

The goal of hypothesis testing is to set up a procedure(s) to allow us to decide if a 
mathematical model ("theory") is acceptable in light of our experimental observations.

Examples: 

Sometimes it is easy to tell if the observations agree or disagree with the theory.
 (1) A certain theory says that Swarthmore will be destroyed by and earthquake in 
         May 1992.
 (2) A certain theory says that the sun goes around the earth.
 (3) A certain theory says that anti-particles(e.g. positron) should exist.

Often it is not obvious if the outcome of an experiment agrees or disagrees with 
expectations.

1.67! 10" 27kg

1.65! 10" 27kg
 (1) A theory predicts that a proton should have a mass of                       ; 
         you measure                        .
 (2) A theory predicts that a material should become a superconductor at 300K; 
         you measure 280K.

Often we want to compare the outcomes of two experiments to check if they are 
consistent. Experiment 1 measure the proton mass to be 1.67 x 10-27 kg, experiment 2 
measures 1.62 x 10-27 kg.
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Types of Tests

Parametric Tests : compare the values of parameters.
Example:  Does the proton mass = the electron mass?

Non-Parametric Tests:  compare the "shapes" of distributions.
Example:  Consider the decay of a neutron. Suppose we have two theories that predict 
the energy spectrum of the electron emitted in the decay of the neutron (beta decay).

K.K. Gan L8: Hypothesis Testing 2

Theory 1 Theory 2

Energy (MeV) Energy (MeV)

E
le

ct
ro

ns
/M

eV
E

le
ct

ro
ns

/M
eV

!  Both theories might predict the same average energy for the electron.
" A parametric test might not be sufficient to distinguish between the two theories.

!  The shapes of their energy spectrums are quite different:
# Theory 1: the spectrum for a neutron decaying into two particles (e.g. p + e).
# Theory 2: the spectrum for a neutron decaying into three particles (p + e + ! ).

"  We would like a test that uses our data to differentiate between these two theories.
$ We can calculate the " 2 of the distribution to see if our data was described by a certain theory:

!  (yi ± #i, xi) are the data points (n of them)
!  f(xi, a, bÉ  ) is a function that relates x and y
"  accept or reject the theory based on the probability of observing a " 2 larger than the above

calculated " 2 for the number of degrees of freedom.
!  Example: We measure a bunch of data points (yi ± #i, xi) and we believe there is a

linear relationship between x and y.
y = a + bx

: n $  p + e + !: n $  p + e

!  

" 2 =
(yi # f (xi ,a,b...))2

$ i
2

i=1

n
%

! : neutrino

Both theories might predict the same average energy for the electron so therefore a 
parametric test might not be sufficient to distinguish between the two theories.

The shapes of the energy spectrums are quite different:

 Theory 1: the spectrum for a neutron decaying into two particles, n !  p + e.
 Theory 2: the spectrum for a neutron decaying into three particles, n !  p + e + '.
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! 2

We would like a test that uses our data to differentiate between these two theories.

We can calculate the          of the distribution to see if our data was described by a certain 
theory:

! 2 =
yi " f (xi ,a,b,....[ ]2

# i
2

i =1

n

$

! 2

where we accept or reject the theory based on the probability of observing a        larger 
than that calculated for the given number of degrees of freedom.

Example:  we measure a bunch of data points and we believe there is a linear relationship 
between x and y, y = a + bx.

If the y's are described by a Gaussian pdf, then minimizing the         function (or using 
LSQ or MLM methods) gives an estimate for a and b.

! 2

As an illustration, assume that we have 6 data points and since we extracted a and b 
from the data, we have 6 - 2 = 4 dof. We further assume

! 2 =
yi " a " bxi[ ]2

# i
2 = 15

i =1

n

$

! 2

What can we say about our hypothesis that the data are described by a straight line?

Look up the probability of getting           $ 15 by "chance". We get

82



χ 2                                      P(        $ 15) =0.006

which says that in only 6 out of 1000 experiments would we expect to get this result 
(       $ 15) by "chance".! 2

Since this is such a small probability, we could reject the above hypothesis or we could 
accept the hypothesis and rationalize it by saying that we were "unlucky".

It is up to you (prodded by the standards of your discipline) to decide at what probability 
level you will accept/reject the hypothesis.

Confidence Levels

An informal definition of a confidence level (CL):

 CL = 100 x (probability of event happening by chance)

The 100 in this definition allows CL's to be expressed as a percent.

We can formally write for a continuous probability distribution P:

CL = 100! prob(x1 " X " x2) = 100! P(x)dx
x1

x2

#
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Example: Suppose we measure some quantity (X) and we know that X is described by 
a gaussian distribution with mean µ = 0 and standard deviation # = 1. What is the CL 
for measuring X $ 2 (2 # from the mean)?

CL = 100! prob(X " 2) = 100!
1

# 2$
e

%
(x%µ )2

2# 2 dx
2

&

' =
100

2$
e

%
x2

2 dx
2

&

' = 2.5%

To do this calculation we needed to know the underlying probability distribution P. If the 
probability distribution were not Gaussian (e.g. binomial) we could have a very 
different CL. If we do not know P, we are out of luck!

The interpretation of the CL can be easily abused.

Example: We have a scale of known accuracy (Gaussian with #=10g). We weigh 
something to be 20g. Is there really a 2.5% chance that out object really weighs " 0g? 
Clearly, the answer is no since the probability distribution must be defined in the region 
where we are trying to extract information and it is not in this case.

Confidence Intervals (CI)

For a given confidence level, confidence intervals are the range [x1,x2] that gives the 
confidence level. Confidence intervals are not always uniquely defined. One usually 
seeks the minimum or symmetric interval.
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Example: Suppose we have a Gaussian distribution with µ = 3 and # = 1. What is 
the 68% CI for an observation?

We need to find the limits of the integral [x 1,x2] that satisfy:

0.68 = P(x)dx
x1

x2

!

For a Gaussian distribution the area enclosed by ± # is 0.68. Therefore,

x1 = µ ! " = 2 , x2 = µ + " = 4
and the CI is [2,4].

Upper/Lower Limits

Example: Suppose an experiment observed no event. What is the 90% CL upper limit 
on the expected number of events?

CL = 0.95=
e! " " n

n!n=2

#

$

1! CL = 0.05= 1! e! " " n

n!
=

n=2

#

$ 1! e! " (e" ! 1! " ) = e! " (1+ " )

" = 4.74
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Procedure for Hypothesis Testing

(a) Measure something.
(b) Get a hypothesis (sometimes a theory) to test against your measurement.
(c) Calculate the CL that the measurement is from the theory.
(d) Accept or reject the hypothesis (or measurement) depending on some minimum 
     acceptable CL.

Problem:  how do we decide what is an acceptable CL?
Example:  What is an acceptable definition that the space shuttle is safe?
              One explosion per 10 launches or per 1000 launches or...

Hypothesis Testing for Gaussian Variables

µ0

If we want to test whether the mean of some quantity we have measured (x = average 
from n measurements) is consistent with a known mean(      ) we have the following two 
tests:

Test Condition Test Statistic Test Distribution

# = #0 " 2  known (x-#0)/("/$n) Gaussian  #=0, "=1

# = #0 " 2  unknown (x-#0)/(s/$n) t(n-1)

where 
  s: standard deviation extraction from n measurements
  t(n-1): Student's "t-distribution" with n-1 dof
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Example:  Do quarks exist? Quarks are nature's fundamental building blocks and are 
thought to have electric charge(q) of either (1/3)e or (2/3)e (e = electron charge). 
Suppose we do an experiment to look for q = 1/3 quarks.

(1) Measure:  q = 0.90 ± 0.2 = µ ± #
(2) Quark theory:   q = 0.33 = µ 0
(3) Test the hypothesis µ = µ 0 when # is known.

  Use the first line in the table:

z =
x ! µ0

" / n
=

0.9! 0.33

0.2/ 1
= 2.85

Assuming a gaussian distribution, the probability for getting z $ 2.85,

prob(z ! 2.85) = P(µ," ,x)dx
2.85

#

$ = P(0,1,x)dx
2.85

#

$ =
1

2%
e&x2 /2dx

2.85

#

$ = 0.002

If we repeated our experiment 1000 times, two experiments would measure a value 
q $ 0.9 if the true mean was q = 1/3.

 This is not strong evidence for q = 1/3 quarks!
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(4) If instead of q = 1/3 quarks we tested for q = 2/3 quarks, what would we get for the CL?

 Now µ = 0.9 and # = 0.2 as before, but now µ0 = 2/3.

 We have z = 1.1 and prob(z $ 1.17) = 0.13 and CL = 13%

 Quarks are starting to be believable!

Now consider another variation of the q = 1/3 problem. Suppose we have 3 measurements 
of the charge q.

q1 = 1.1, q2 = 0.7, q3 = 0.9

! We do not know the variance beforehand so we must determine the variance from our 
    data. 

 We use the second test in the table.

µ = 1
3 (q1 + q2 + q3) = 0.9

s2 =
(qi − µ)2

i =1

n

∑
n−1

= 0.04

z=
x − µ0

s / n
= 4.94
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 Tables of values give prob(z $ 4.94) = 0.02 for n - 1 = 2.

 This is 10X greater than the first part of this example where  we knew the variance    
    ahead of time.

Now consider the situation where we have several independent experiments that measure 
the same quantity.

 We do not know the true value of the quantity being measured.

 We wish to know if the experiments are consistent with each  other.

Test Conditions Test Statistic Test Distribution

#1 - #2 = 0 " 1
2  and  " 2

2

     known

(x1-x2)/$(" 1
2/n+ " 2/m) Gaussian

# = 0, " = 1

#1 - #2 = 0 " 1
2  =  " 2

2 =  " 2

     unknown

(x1-x2)/Q $(1/n+1/m) t(n+m-2)

#1 - #2 = 0 " 1
2  %  " 2

2

  unknown

(x1-x2)/$((s1
2/n+ s2/m)) approx. Gaussian

# = 0, " = 1

where

Q2 !
(n " 1)s1

2 + (m" 1)s2
2

n + m" 2
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Example:  we compare results of two independent experiments to see if they agree with 
each other.

 Experiment 1 : 1.00 ± 0.01
 Experiment 2 : 1.04 ± 0.02

Use the first line of the table and set n = m = 1.

z =
x1 ! x2

" 1
2 / n + " 2

2 / m
=

1.04! 1.00

(0.01)2 + (0.02)2
= 1.79

z is distributed according to a Gaussian with µ=0, #=1.

Probability for the two experiments to disagree by $ 0.04:

prob( z ! 1.79) =1 " P(µ,# ,x)dx
" 1.79

1.79

$ =1 " P(0,1,x)dx
" 1.79

1.79

$ =1 "
1
2%

e" x2 /2dx
" 1.79

1.79

$ = 0.07

We do not care which experiment has the larger result so we use ±z. 

Thus, 7% of the time we should expect the experiments to disagree at this level. Is this 
acceptable?
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