
Group Theory and Elementary Particles

Introduction to Group Theory

The theory of finite groups and continuous groups is a very useful tool for studying 
symmetry and invariance. In order to use group theory we need to introduce some 
definitions and concepts.

A group  G is defined as a set of objects or operations (called elements ) that may be 
combined or multiplied  to form a well-defined product and that satisfy the following 
four conditions. If we label the elements a, b, c, .......... , then the conditions are:

  (1) If a and b are any two elements, then the 
        product ab is an element.

  (2) The defined multiplication is associative, 
        (ab)c = (a(bc)

  (3) There is a unit element I, with Ia = aI = a
        for all elements a.

  (4) Each element has an inverse b = a-1, with 
          aa-1 = a-1a = I for all elements a.
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In physics, these abstract conditions will take on direct physical meaning in terms of 
transformations of vectors and tensors.

As a very simple, but not trivial, example of a group, consider the set {I,a,b,c} that 
combine according to the group multiplication table:

I a b c

I

a

b

c

   I   a   b    c

   a    b    c    I

   b    c   I    a

   c   I    a    b

Clearly, the four conditions of the definition of group are satisfied. The elements 
{I,a,b,c} are abstract mathematical entities, completely unrestricted except for the 
above multiplication table.

A representation  of the group is a set of particular objects {I,a,b,c} that satisfy the 
multiplication table.

Some examples are:  {I=1, a=i, b=-1, c=-i}  where the combination rule is ordinary 
multiplication. This group representation is labelled C4. Since multiplication of the group 
elements is “commutative”, i.e., ab = ba for any pair of elements, the group is labelled 
“commutative or abelian”. This group is also a “cyclic” group, since all of the elements 
can be written as successive powers of one element. In this case,  {I=i4, a=i, b=i2, c=i3}
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Another representation is given by the successive         rotations in a plane. Remember 
the matrix that represents a rotation through angle       in 2-dimensions is given by

R =
cosφ −sinφ
sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟

! = 0," / 2," ,3" / 2with                                     , we have

I =
1 0
0 1

!

"#
$

%&
, a =

0 ' 1
1 0

!

"#
$

%&
, b =

' 1 0
0 ' 1

!

"#
$

%&
, c =

0 1
' 1 0

!

"#
$

%&

Thus, we have seen two explicit representations. One with numbers(complex) using 
ordinary multiplication and the other with matrices using matrix multiplication.

There maybe a correspondence between the elements of two groups. The correspondence 
can be one-to-one , two-to-one or, many-to-one. If the correspondence satisfies the same 
group multiplication table, then it is said to be homomorphic . If it is also one-to-one, 
then it is said to be “isomorphic”. The two representations of  that we discussed above 
are one-to-one and preserve the multiplication table and hence, are isomorphic .

The representation of group elements by matrices is a very powerful technique and has 
been almost universally adopted among physicists. It can be proven that all the elements 
of finite groups and continuous groups of the type important in physics can be represented 
by unitary matrices. For unitary matrices we have

A+ = A−1

or, in words, the complex conjugate/transposed  is equal to the inverse .
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If there exists a transformation that will transform our original representation matrices 
into diagonal or block-diagonal  form, for example,

A11 A12 A13 A14

A21 A22 A23 A24

A31 A23 A33 A34

A41 A24 A34 A44

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

P11 P12 0 0

P21 P22 0 0

0 0 Q11 Q12

0 0 Q21 Q22

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

such that the smaller portions or submatrices are no longer coupled together, then the 
original representation is said to be reducible .

Equivalently, we have SAS! 1 =
P 0
0 Q

"

#$
%

&'
which is a "similarity" transformation.

We then write
R = P ! Q

and say that R has been decomposed  into the representations P and Q. The 
irreducible  representations play a role in group theory that is roughly analogous to 
the unit vectors of vector analysis. They are the simplest representations -- all others 
may be built up from them.

gi

If a group element x is transformed into another group element y by means of a similarity 
transformation involving a third group element 

gixgi
−1 = y

then y is said to be conjugate  to x. A class  is a set of mutually conjugate group 
elements. A class is generally not a group.
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The trace  of each group element (each matrix of our representation) is invariant under 
unitary transformations. We define

tr (A) = Aii
i =1

n

! = trace(A)

Then we have

tr (SAS! 1) = (SAS! 1)ii
i =1

n

" = sik
k=1

n

"
j =1

n

"
i =1

n

" akj sji
! 1 = akj

k=1

n

"
j =1

n

" sji
! 1sik

i =1

n

"

              = akj
k=1

n

"
j =1

n

" (S! 1S) jk = akj
k=1

n

"
j =1

n

" (I ) jk = akj
k=1

n

"
j =1

n

" #jk

              = ajj
j =1

n

" = tr(A)

We now relabel the trace as the character . Then we have that all members of a given 
class(in a given representation) have the same character. This follows directly from the 
invariance of the trace under similarity or unitary transformations.

If a subset of the group elements(including identity element I) satisfies the four group 
requirements (means that subset is a group also), then we call the subset a subgroup .
Every group has two trivial subgroups: the identity element alone and the group itself. 
The group C4 we discussed earlier has a nontrivial subgroup comprised of the elements 
{I, b}.

The order  of a group is equal to the number of group elements.
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In physics, groups usually appear as a set of operations that leave a system unchanged 
or invariant.  This is an expression of symmetry. A symmetry is usually defined as the 
invariance of the Hamiltonian of a system under a group of transformations. We now 
investigate the symmetry properties of sets of objects such as the atoms in a molecule 
or a crystal.

Two Objects - Twofold Symmetry Axis

Consider first the two-dimensional system of two identical atoms in the xy-plane at 
(1,0) and (-1,0) as shown below.

What rotations can be carried out(keeping both atoms in the xy-plane) that will leave the 
system invariant? The only ones are I (always works) and a rotation by π about the z-axis. 
So we have a rather uninteresting group of two elements. The z-axis is labelled a twofold  
symmetry axis, corresponding to the two rotation angles 0 and π that leave the system 
invariant.
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±a ±b
±c

Our system becomes more interesting in 3-dimensions. Now imagine a molecule (or part 
of a crystal) with atoms of element X at          on the x-axis, atoms of element Y at         
on the y-axis, and atoms of element Z at          on the z-axis as shown below:

Clearly, each axis is now a twofold symmetry axis. The matrix representation of the 
corresponding rotations are:

Rx(π ) =
1 0 0

0 −1 0

0 0 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ , Ry(π ) =

−1 0 0

0 1 0

0 0 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ , Rz(π ) =

−1 0 0

0 −1 0

0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ , I =

1 0 0

0 1 0

0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

I ,Rx(! ),Ry(! ),Rz(! ){ }These four elements                                       form an abelian group with a group 
multiplication table:
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I Rx Ry Rz

I

Rx

Ry

Rz

I Rx Ry Rz

Rx I Rz Ry

Ry Rz I Rx

Rz Ry Rx I

The products in this table can be obtained in either of two distinct ways:

(1) We may analyze the operations themselves -- a rotation of !  about the x-axis followed 
by a rotation of !  about the y-axis is equivalent to a rotation of !  about the z-axis

Ry(! )Rx(! ) = Rz(! )

and so on.

(2) Alternatively, once the matrix representation is established, we can obtain the products 
by direct matrix multiplication. This latter method is especially important when the system 
is too complex for direct physical interpretation. This symmetry group is often labelled 
D2, where the D signifies a dihedral  group and the subscript 2 signifies a twofold 
symmetry axis (and that no higher symmetry axis exists).

Three Objects -- Threefold Symmetry Axis

Consider now three identical atoms at the vertices of an equilateral triangle as shown 
below:
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2! / 3 4π / 3Rotations (in this case we assume counterclockwise) of the triangle of 0,        , and  
leave the triangle invariant. In matrix form, we have

I =
1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

A = Rz (2π / 3) =
cos2π / 3 −sin2π / 3

sin2π / 3 cos2π / 3
⎛
⎝⎜

⎞
⎠⎟
=

−1/ 2 − 3 / 2

3 / 2 −1/ 2

⎛

⎝
⎜

⎞

⎠
⎟

B = Rz (4π / 3) =
−1/ 2 3 / 2

− 3 / 2 −1/ 2

⎛

⎝
⎜

⎞

⎠
⎟
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The z-axis is a threefold symmetry axis. {I, A, B} form a cyclic group, which is a 
subgroup of the complete -element group that we now discuss.

In the x-y plane there are three additional axes of symmetry -- each atom (vertex) and 
the origin define the twofold symmetry axes C, D, and E. We note that twofold rotation 
axes can also be described via reflections through a plane containing the twofold axis.

In this case, we have for rotation of       about the C-axis.

C = RC(! ) =
" 1 0
0 1

#

$%
&

'(

! 4! / 3
(x→ −x)

The rotation of         about the D-axis can be replaced by a rotation of              about the 
z-axis followed by a reflection in the y-z plane                  or

D = RD (! ) = CB=
" 1 0
0 1

#

$%
&

'(
" 1 / 2 3 / 2

" 3 / 2 " 1 / 2

#

$
%

&

'
( =

1 / 2 " 3 / 2

" 3 / 2 " 1 / 2

#

$
%

&

'
(

π 2! / 3
(x→ −x)

Similarly the rotation of          about the E-axis can be replaced by a rotation of                 
about the z-axis followed by a reflection in the y-z plane                      or

E = RE(! ) = CA=
" 1 0

0 1
#

$%
&

'(
" 1/ 2 " 3 / 2

3 / 2 " 1/ 2

#

$
%

&

'
( =

1/ 2 3 / 2

3 / 2 " 1/ 2

#

$
%

&

'
(

The complete group multiplication table is:
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I A B C D E

I

A

B

C

D

E

  I   A   B  C   D   E

  A   B  I   D   E   C

  B   I   A  E   C  D

  C   E   D  I   B   A

  D   C   E   A   I   B

  E   D   C   B   A   I

I ,R,R2,R3,R4,R5{ }

Notice that each element of the group appears only once in each row and in each column.

It is clear from the multiplication table that the group is not abelian. We have explicitly 
constructed a 6-element group and a 2 x 2 irreducible matrix representation of it. The 
only other distinct 6-element group is the cyclic group                             with

R=
cosπ / 3 −sinπ / 3

sinπ / 3 cosπ / 3
⎛
⎝⎜

⎞
⎠⎟
=

1/ 2 − 3 / 2

3 / 2 1/ 2

⎛

⎝
⎜

⎞

⎠
⎟

The group {I,A,B,C,D,E} is labeled D3 in crystallography, the dihedral group with a 
threefold axis of symmetry. The three axes (C,D,E) in the x-y plane are twofold symmetry 
axes and, as a result, (I,C), (I,D), and (I,E) all form two-element subgroups. None of 
these two-element subgroups are invariant.

There are two other irreducible representations of the symmetry group of the equilateral 
triangle. They are
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(1) the trivial {1,1,1,1,1,1}

(2) the almost as trivial {1,1,1,-1,-1,1}

Both of these representations are homomorphic to D3.

A general and most important result for finite  groups of h elements is that

ni
2

i
! = h

niwhere           is the dimension of the matrices of the ith irreducible representation. This 
equality is called the dimensionality theorem  and is very useful in establishing the 
irreducible representation of a group. Here for D3 we have

12 +12 + 22 = 6

for our three representations. This means that no other representations of the 
symmetry group of three objects exists.

We note from the examples above that for the transformations involving rotations and 
reflections, the transformations involving only pure rotations have determinant = 1 and 
the those involving a rotation and a reflection have determinant = -1.
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Continuous Groups

The groups that we have been discussing all have a finite number of elements. If we 
have a group element that contain one or more parameters that vary continuously over 
some range, then variation of the parameter will produce a continuum of group elements 
(an infinite number). These groups are called continuous groups.

If continuous group has a  rule for determining combination of elements or the 
transformation of an element or elements into a different element which is an analytic 
function of the parameters, where analytic means having derivatives of all orders, then 
it is called a Lie  group.  For example, suppose we have the transformation rule

x'i = fi (x1,x2,x3,! )

fi
!

then for this transformation group to be a Lie group the functions          must be analytic 
functions of the parameter        .

This analytic property will allow us to define infinitesimal transformations thereby 
reducing the study of the whole group to a study of the group elements when they are 
only slightly different than the identity element I.

Orthogonal Groups

We begin our study by looking at the orthogonal group O3. In particular, we consider 
the set of n x n real, orthogonal matrices with determinant = +1 (no reflections). The 
defining property of a real orthogonal matrix is
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AT = A! 1

where T represents the transpose  operation. In terms of matrix elements this gives

(AT ) ji
i

! Aik = (A" 1) ji
i

! Aik = I jk = #jk = Aij
i

! Aik

The ordinary rotation matrices are an example of real 3 x 3 orthogonal matrices:

Rx(! ) =

1 0 0
0 cos! sin!

0 " sin! cos!

#

$

%
%

&

'

(
(
, Ry() ) =

cos) 0 " sin)

0 1 0
sin) 0 cos)

#

$

%
%

&

'

(
(
, Rz(* ) =

cos* sin* 0
" sin* cos* 0
0 0 1

#

$

%
%

&

'

(
(

n(n ! 1) / 2

(2(2 ! 1) / 2 = 1)

(3(3! 1) / 2 = 3)

These matrices follow the convention that the rotation is a counterclockwise rotation of 
the coordinate system to a new orientation.

Each n x n real orthogonal matrix with determinant = +1 has                     independent 
parameters. For example, 2-dimensional rotations are described by 2 x 2 real orthogonal 
matrices and they need only one independent parameter                          , namely the 
rotation angle. On the other hand, 3-dimensional rotations require three independent 
angles                             .

Let us see this explicitly for the 2 x 2 case: Suppose we have the general 2 x 2 matrix

a b
c d

!

"#
$

%&

where all the elements are real. Imposing the condition determinant = +1 gives

ad ! bc= 1
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Imposing the condition that the transpose is the inverse gives

a b

c d
!

"#
$

%&
a c

b d
!

"#
$

%&
=

a2 + b2 ac+ bd

ac+ bd c2 + d2

!

"#
$

%&
= I =

1 0

0 1
!

"#
$

%&

These equations imply the solution

a 1! a2

! 1! a2 a

"

#
$
$

%

&
'
'

which shows that there is only one independent parameter.

Special Unitary Groups, SU(2)

The set of complex n x n unitary matrices also forms a group. This group is labeled  U(n). 
If we impose an additional restriction that the determinant of the matrices be +1, then 
we get the special unitary group, labeled SU(n). The defining relation for complex unitary 
matrices is A+ = A! 1

n2 −1

where + represents the complex conjugate  operation.

In this case we have                 independent parameters. This can be seen explicitly below.

Suppose we have the general 2 x 2 matrix representing the transformation U
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a b
c d

!

"#
$

%&

where all the elements are complex. Imposing the condition determinant = +1 gives

ad− bc= 1
Imposing the condition that the transpose is the inverse gives

a b

c d
!

"#
$

%&
a* c*

b* d*

!

"#
$

%&
=

a 2 + b 2 ac* + bd*

a*c + b*d c 2 + d 2

!

"
#

$

%
&= I =

1 0

0 1
!

"#
$

%&

These equations imply the solution
a b

! b* a*

"

#$
%

&'

where
a 2 + b 2 = aa* + bb* = 1

(22 ! 1) (32 ! 1)
Since each complex number has two independent components, this shows that there are 
three                 independent parameters. For n = 3, there will be eight           
independent parameters. This will become the famous eightfold way of elementary 
particle physics.
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Generators

In all cases, rotations about a common axis  combine as
Rz(! 2)Rz(! 1) = Rz(! 1 + ! 2)

that is, multiplication of these matrices is equivalent to addition of the arguments. This 
suggests that we look for an exponential  representation of the rotations, i.e.,

exp(! 2)exp(! 1) = exp(! 1 + ! 2)

Suppose we define the exponential function of a matrix by the following relation:

U = eiaH = I + iaH +
(iaH)2

2!
+ ........

!

where a is a real parameter independent of matrix(operator) H. It is easy to prove that 
if H is Hermitian, then U is unitary and if U is unitary, the H is Hermitian.

In group theory, H is labeled a generator , the generator of U.

The following matrix describes a finite rotation of the coordinates through an angle  
counterclockwise about the z-axis:

Rz (! ) =

cos! sin! 0
" sin! cos! 0
0 0 1

#

$

%
%

&

'

(
(
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Rz δϕNow let              be an infinitesimal  rotation through an angle          . We can then write

Rz (! " ) = I + i! " Mz

where

M z =

0 ! i 0
i 0 0
0 0 0

"

#

$
$

%

&

'
'

Similarly, we find

M x =

0 0 0

0 0 ! i

0 i 0

"

#

$
$

%

&

'
'

, M y =

0 0 i

0 0 0

! i 0 0

"

#

$
$

%

&

'
'

ϕ ! "A finite rotation         can be compounded out of successive infinitesimal rotations         .

Rz(! " 2 + ! " 1) = (I + i! " 2M z)(I + i! " 1M z)

! " = " / N N ! "Letting                       for N rotations, with                , we get

Rz (! ) = lim
N " #

I + i! / N )Mz( )( )N = exp(i! Mz )

M z Rz(! ) O3This implies that            is the generator of the group          , a subgroup of         . Before 
proving this result, we note:

M z Rz (! )
tr (M z) = 0 det(Rz(! )) = +1

! ! (a)           is Hermitian and thus,          is unitary
  (b)                       and  
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M z M x Rx

M y Ry

In direct analogy with         ,             may be identified as the generator of            , the 
subgroup of rotations about the x-axis, and          as the generator of           .
Proof:

Rz(! ) = exp(i! M z) = I + i! M z +
(i! M z)

2

2!
+

(i! M z)
3

3!
+ ......

        =

0 0 0

0 0 0

0 0 1

"

#

$
$

%

&

'
'

+

1 0 0

0 1 0

0 0 0

"

#

$
$

%

&

'
'

+ i! M z +
(i! )2

2!

1 0 0

0 1 0

0 0 0

"

#

$
$

%

&

'
'

+
(i! )3

3!
M z + ......

        =

0 0 0

0 0 0

0 0 1

"

#

$
$

%

&

'
'

+

1 0 0

0 1 0

0 0 0

"

#

$
$

%

&

'
'

(1(
! 2

2!
+ ...)+ i(! (

! 3

3!
+ ...)M z + ......

       =

0 0 0

0 0 0

0 0 1

"

#

$
$

%

&

'
'

+

1 0 0

0 1 0

0 0 0

"

#

$
$

%

&

'
'

cos! + i sin! M z + ......=

cos! sin! 0

( sin! cos! 0

0 0 1

"

#

$
$

%

&

'
'

where we have used the relations

Mz
2 =

1 0 0

0 1 0

0 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ , Mz

3 = Mz , etc

cos!sinϕ
Rz(! )
and we recognized the two series as          and           . Thus, we get the same matrix  
          as earlier.
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Other relations we can write are:

(1) all infinitesimal rotations commute

Ri (! " i ),Rj (! " j )#$ %&= 0

ön(2) an infinitesimal rotation about an axis defined by unit vector         is 

 R(! " ) = I + i! " ön#
!
M

(3) the generators satisfy the commutation rules

Mi ,M j!" #$= i%ijkM k
k
&

This will turn out to be the commutation relations for angular momentum operators in 
quantum mechanics.

(U1,U2 ,U3)In a similar way the elements                     of the two-dimensional unitary group, SU(2), 
may be generated by

exp(aσ1 / 2) , exp(aσ 2 / 2) , exp(aσ 3 / 2)

! 1 , ! 2 , ! 3

! 's
where                          are the Pauli spin matrices and a, b, and c are real parameters. 
We note that the               are Hermitian and have zero trace and thus, the elements of 
SU(2) are unitary and have determinant = +1.
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! 3We also note that the generators in diagonal form such as          will lead to conserved 
quantum numbers.

si = 1
2 ! iFinally, if we define                  then we have

si , s j!" #$= i%ijk sk
k
&

siwhich are the angular momentum commutation rules implying that the         are 
angular momentum operators(SPIN).

qi

SU(3) and the Eightfold Way of Elementary Particles

The basic elements of this group are unitary operators (matrices of determinant = +1 or 
unimodular matrices) that transform the basis vectors          (we switch to Dirac notation 
for convenience) among themselves as

q'i = uji
i =1

n

! qi

We assume  that the observed  elementary particle states or vectors, as linear 
combinations (or composites) of these basis vectors also transform into one another 
under the unitary operations of the group.

It is most convenient to work with infinitesimal unitary transformations where

U = exp
i
2

ε jλ j
j
∑

⎛

⎝⎜
⎞

⎠⎟
= I +

i
2

ε jλ j
j
∑

21



! jwhere the       are infinitesimal. Now

detU = 1= det I +
i
2

! j" j
j

#
$

%&
'

()
= det I +

i
2

! jTr" j
j

# +O(! 2)

Therefore we have, in the general case,

! jTr" j
j

# = 0

! jWe can satisfy this condition by choosing matrices        such that

Tr! j = 0
n2 −1for all j. For n x n matrices, there are                   linearly independent traceless matrices. 

Since these matrices now have all of the properties of the generators of a group as 
discussed in the earlier parts of these notes, we will make that designation.

! j , j = 1,2,3,....,n2 " 1The                                        are the generators of the group.

We need, therefore, only study the commutation relations among the generators in order 
to understand all of the group properties. 

To see how this all works and to connect it to earlier ideas we will now use SU(2)  as an 
illustration. As we stated earlier, the algebra is defined by the commutation relations 
among a certain group of operators(the generators).
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In order to find
     (1) all the operators 
   and 
  (2) the defining commutation relations of the algebra

we start with the simplest physical realization of this algebra.

We assume the existence some entity with 2 states (we end up with the 2-dimensional 
representation) and represent it by a 2-element column vector, i.e.,

a

b
⎛
⎝⎜

⎞
⎠⎟
=

amountof "upness"

amountof "downness"
⎛
⎝⎜

⎞
⎠⎟

(I1, I 2, I 3)
I 3 = I z

The example we will use is a quantity called isospin                      and the “upness” and 
“downness” will refer to the values of               , i.e.,

proton = p =
1

0
!

"#
$

%&
, neutron = n =

0

1
!

"#
$

%&

The operator (2 x 2 matrix) which converts a neutron into a proton (a raising operator) 
is given by

τ + =
0 1

0 0
⎛
⎝⎜

⎞
⎠⎟

where
! + n = p , ! + p = 0
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Similarly, its Hermitian adjoint (a lowering  operator) is

! " = ! +
+ =

0 0

1 0
#

$%
&

'(

where ! " p = n , ! " n = 0

! + ! "Note that             "annihilates" protons and                 "annihilates" neutrons.

Forming their commutator we find that

τ + ,τ−[ ] = τ 3 =
1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

and
! 3 p = p , ! 3 n = " n

We also find that
τ 3 ,τ ±[ ] = ±2τ ±

We then define I = 1
2 ! " (I1, I 2, I 3) = 1

2 (! 1,! 2,! 3)

± 1
2

so that the "upness/downness" values are given by         , i.e.,

I 3 p = 1
2 p , I 3 n = ! 1

2 n (eigenvectors/eigenvalues)

(eigenvectors/eigenvalues)
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Thus,  the proton is the state with the maximum “upness” (minimum “downness” ) and the 
neutron is the state with the maximum “downness” (minimum “upness”).     

! + ,! " ,! 3

That completes the discussion of the 2-dimensional representation. The same commutation 
relations are also used to derive higher order representations.

Note that these three commutators only involve the same three operators. This means that 
these three commutators complete the commutation relations (all further commutators 
can be expressed in terms of these three operators or we have a closed commutator 
algebra ). The three operators                       are the basic set for SU(2). An equivalent 
set is

τ1= i τ− − τ +( ),τ 2 = i τ− + τ +( ),τ 3

n2 −1 = 3This also correlates with the earlier statements that we would have                     
generators for SU(2).

To obtain the other representations of the SU(2) algebra, we must only use these defining 
commutation relations.

! 1 ,! 2 ,! 3

! 3

It is clear from the commutators that only one of the Hermitian operators                    
can be diagonalized (they do not commute) in a given representation of the space(using a 
given set of basis vectors). We will choose a representation in which        is diagonal (this 
was the choice in the 2-dimensional representation above also).

! 3
Remember that these diagonal elements are the eigenvalues of       .   We label the state 
by the eigenvalue m of        , i.e.,

! 3

! 3 m = m m
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Now let us use the commutation relations.

! 3! + m = ! +! 3 + 2! +( ) m = m+ 2( )! + m

This implies that
! + m = c m+ 2

In a similar manner, we can show that

! " m = c ' m " 2
where c and c* are constants.

M
Thus, if we start with any  state in a given representation , we can generate states 
with higher eigenvalues, until we reach the state with maximum  eigenvalue  
(which we assume exists). Since we cannot go any higher, this state must have the 
property that τ + M = 0

! + p = 0This was the case for the 2-dimensional representation where                  .

We now start with this highest weight  state, which it turns out is unique for an 
irreducible representation. We then have

! " M = #1 M " 2

λ1which implies that (assuming         is real)

M ! + = " 1 M # 2 (think matrices)
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m m = 1As usual, we choose to normalize our basis states to 1, i.e.,                and we then obtain

M ! +! " M = M " 2 #1#1 M " 2 = #1
2 M " 2 M " 2 = #1

2

                   = M ( ! +,! "[ ] + ! " ! + ) M = M ! +,! "[ ] M + M ! " ! + M

                   = M ! 3 M = M
where we have used ! + M = 0 , ! + ,! "[ ] = ! 3 , ! 3 M = M M
So we get

! 1
2 = M

We also note that
M ! 2 " ! M = #1 = M " + M ! 2 *

which implies that
! + M " 2 = #1 M

M = a
b

!

"#
$

%&
, M ' 2 = c

d

!

"#
$

%&

M = a* b*( ) , M ' 2 = c* d *( )
( + = 0 1

0 0

!

"#
$

%&
, ( ' = 0 0

1 0

!

"#
$

%&

M ' 2 ( ' M = c* d *( ) 0 0
1 0

!

"#
$

%&
a
b

!

"#
$

%&
= d * a = ) 1

= a* b*( ) 0 1
0 0

!

"#
$

%&
c
d

!

"#
$

%&
*

+
,
,

-

.
/
/

*
= d * a = M ( + M ' 2 *

c* d *( ) 0 0
1 0

!

"#
$

%&
a
b

!

"#
$

%&
= d * a =

PROOF:
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Now consider ! " M " 2 = #2 M " 4

which gives (same algebra as before)

λ2
2 = M − 2 τ +τ− M − 2 = M − 2 ( τ + ,τ−[ ] + τ−τ + ) M − 2

   = M − 2 τ + ,τ−[ ] M − 2 + M τ−τ + M

   = M − 2 τ 3 M − 2 + M λ1
2 M = λ1

2 + M − 2

In general, we can state..... if

! " M " 2(p " 1) = #p M " 2p

we get λp
2 = λp−1

2 + M − 2(p −1)

! 0
2 = 0Now                (definition of maximum eigenvalue and see below). Thus, we have

! 1
2 = ! 0

2 +1(M " 1+1) = M   as before!
! 2

2 = ! 1
2 + M " 2(2 " 1) = ! 1

2 + M " 2 = 2(M " 2 +1)
! 3

2 = ! 2
2 + M " 2(3 " 1) = 3(M " 3 +1)

or generalizing
λp

2 = p(M − p+1)

λp
2 = 0 (p ≠ 0)When                              we reach the minimum eigenvalue. This gives

p = M +1
28



! Mwhich implies that the minimum eigenvalue is             , that is,

! " M " 2(p " 1) = ! " M " 2(M +1" 1) = 0 (#M +1 = 0)

$ ! " " M = 0

The total number of states contained in this set is

p = M +1= multiplicity
Let us represent the states by a linear array

                                                          ! +

" M                                                   #                     M
   . . . . . . ............... . . . . . . . . .

                                                        $

                                                         ! "

states

labels

raising

lowering

τ ±

M
τ ± ! 3

! ±

! 3 ! 3

The operators           represent steps between equally spaced points. There is only one  
state for a given value of m and only one  set of states (an irreducible representation) is 
generated from a given maximum state          . This result implies that there exists one 
independent operator that can be constructed from          and           which commutes 
with          and           (has simultaneous eigenstates with           and thus can 
simultaneously label the states) and which serves to distinguish representations.
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We consider the operator (the square of the isospin)

! =
1
2

" +" + + " #" +( ) +
1
4

" 3
2 =

1
4
(" 1

2 +" 2
2 +" 3

2 ) =
1
4

" 2

We then have
! ," i[ ] = 0

which implies that

Γ m = c m    for all m (labels the representation)

or
m ! m = M ! M = c

Using the commutation relations we have

! =
1
4

" 3
2 +

1
2

" 3 +" #" +

which gives
c = M ! M =

1
4

M 2 +
1
2

M =
1
2

M
1
2

M +1"
#$

%
&'

t = M / 2 c = t(t +1)If we let                    then we have                  . This means that

p = M = 1= 2t +1= multiplicity (familiar?)

2t +1where               is an integer.

We note the connection to Isospin I: I 3 =
1
2

! 3 , I 2 = " =
1
4

! 2
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Now to delineate the representations. First, the 2-dimensional representation (so that 
we can see the general stuff give back the specific case that we started with).  This is 
the smallest or lowest representation.

We choose M = 1 corresponding to

t =
1
2

and p = multiplicity = 2

I 2 I 3

We are most interested in finding the basis states or the simultaneous eigenvectors of  
        and         since these will turn out to represent elementary particles.

We have (as before)

proton = p = 1
0

!

"#
$

%&
, neutron = n = 0

1
!

"#
$

%&

I =
1
2

I 3 p =
1
2

p , I 3 n = '
1
2

n

I 2 p =
1
2
1
2

+1!
"#

$
%&

p =
3
4

p , I 2 n =
1
2
1
2

+1!
"#

$
%&

n =
3
4

n

I + n = p , I ' p = n
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where we have used

I 3 =
1 / 2 0
0 ! 1 / 2

"

#$
%

&'
, I + =

0 1
0 0

"

#$
%

&'
, I ! =

0 0
1 0

"

#$
%

&'

1
2

Therefore the state diagram for the    - representation (representations are labeled by I 
value) is given by

where
M = 2I 3(maximum) = 1 , p = multiplicity = M +1= 2

We now define a weight diagram  for SU(2) by the following symbol:

Generating the 1-representation is just as easy and leads to a general graphical method 
for generating higher representations via the weight diagrams. We learn the analytic 
method in Physics 113.
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(! I 3 = constant)

1
2

Generalizing, the I-representation (M=2I) has a multiplicity 2I+1 or it has 2I+1 equally 
spaced points                               representing states in the representation.

We now consider the higher representation generated by combining two   -representations. 
The formal name for this product is a direct product  and it is written

1
2
⊗

1
2

The rules  for using the weight diagrams are as follows:

 (1) draw  the first weight diagram

 (2) superpose  a set of weight diagrams centered  at the arrow tips of the first 
         weight diagram

 (3) allowed  states are at the final  arrow tips
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For the case we are considering this looks like:

We observe that
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1
2

In words we say, the direct product of two    -representations is equal to the sum of a 
0- and a 1-representation.

In a similar manner we can generate the representations for
1
2

!
1
2

!
1
2

The superposed weight diagram picture looks like:
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I 3

Note how multiple arrow tips require multiple weight diagrams in the next stage and 
multiple arrow tips at the end imply multiple states with that value of       . Rearranging 
we have

which gives the result 1
2

!
1
2

!
1
2

=
1
2

"
1
2

"
3
2

Another way to think about it is to write 1
2

!
1
2

!
1
2

= 0 " 1( ) !
1
2

= 0 !
1
2

+1 !
1
2

0 !
1
2

=
1
2

, 1 !
1
2

=
1
2

"
3
2

1
2

!
1
2

!
1
2

=
1
2

"
1
2

"
3
2
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where we have used the fact that the 0-representation represents no additional states

0 !
1
2

=
1
2

and
1!

1
2

=
1
2

"
3
2

as can be seen from the weight diagrams below:

This will all be reappear in Physics 113 because it is exactly the same as the angular 
momentum coupling rule.
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We have the general rule: I1 ⊗ I2 = I1 − I2 ⊕ I1 − v2 +1⊕ .........⊕ I1 + I2

1
2

p n

Now if SU(2) were the correct(fundamental) group for describing the real world, then 
all possible states (all known particles) should be generated from the     -representation 
(most fundamental building block), i.e., from        and         as the fundamental building 
blocks.

We know this is not possible, however, because:

 (1) we have not included any anti-baryons, which implies that  we cannot have any 
          states (particles) with baryon number B=0.

 (2) we have not introduced strangeness (or hypercharge) so our states cannot 
          represent the real  world

1
2

Let us correct (1) first, within the context of SU(2), and then attack (2), which will 
require that we look at  SU(3). Let us now add particle labels to our weight diagrams. 
The weight diagram for the     -representation or as we now rename it, the pn 
weight diagram is given by
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1
2

*
where we assumed Baryon number = B = 1 for each particle. We also assumed that 
Baryon number is additive. We then define the      -representation by the weight diagram

where we assumed Baryon number = B = -1 for each antiparticle. Now let us see the 
effect of this assumption on higher representations.

Remember 1
2

!
1
2

= 0 " 1

Now we would have

(NOTE: B=2!!!!)
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Now consider

The isospin structure is the same as
1
2
⊗

1
2

(π + ,π 0,π − ) ! 0
but now B = 0 (these could be mesons!). The original identifications were a “triplet” of 
mesons                        and a “singlet” meson  

The mesons would somehow be bound states made from the baryon pairs! It was the 
correct idea but the wrong baryons! So problem (1) will be solved once we figure out the 
correct (fundamental) Baryon building blocks.

In order to include hypercharge Y or strangeness S into our structure, we must start with 
three  basic states (no identification with any known particles will be attempted at this 
point). The new state is required to add hypercharge Y or strangeness S.
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We choose:
q1 =

1

0

0

!

"

#
#

$

%

&
&

, q2 =

0

1

0

!

"

#
#

$

%

&
&

, q3 =

0

0

1

!

"

#
#

$

%

&
&

32 −1 = 8
Since we will be working with vectors containing three elements and our operators will 
be 3 x 3 matrices, there will be                     independent matrices representing the 
generators of the transformations (this is the group SU(3)). These 8 operators will :

I 3
Y

I 3,Y[ ] = 0

  (1) represent 
  (2) represent 

where we will want                       so that our states can be simultaneous eigenstates of 
both operators and hence our particles can be characterized by values of both quantum 
numbers.

q1 ! q2

q1 → q3
q2 → q1

q2 ! q3

q3 ! q1

q3 ! q2

  (3) represent 
  (4) represent 
  (5) represent 
  (6) represent 
  (7) represent 
  (8) represent 

which correspond to our earlier raising and lowering operators.

I will now write down(just straightforward algebra) the shift operators, the isospin and 
hypercharge operators and a whole mess of commutators and state equations. After that 
we will discuss their meanings.
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Shift Operators

E1 =
1

6

0 1 0
0 0 0
0 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ = E−1

+ E2 =
1

6

0 0 1
0 0 0
0 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ = E−2

+ E3 =
1

6

0 0 0
0 0 1
0 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ = E−3

+

where
E1 q2 = q1 , E2 q3 = q1 , E3 q3 = q2

E! 1 q1 = q2 , E! 2 q1 = q3 , E! 3 q2 = q3

Commutation Relations

E1,E2[ ] = E1,E! 3[ ] = E2,E3[ ] = E! 1,E! 2[ ] = E! 1,E! 3[ ] = E! 2,E! 3[ ] = 0

E1,E! 2[ ] = !
1

6
E! 3 , E1,E3[ ] =

1

6
E2 , E2,E! 3[ ] =

1

6
E1

E! 1,E2[ ] =
1

6
E3 , E! 1,E! 3[ ] = !

1

6
E! 2 , E! 2,E3[ ] = !

1

6
E! 1

and
E1,E! 1[ ] =

1

3
H1 , E2,E! 2[ ] =

1

2 3
H1 +

1
2
H2

E3,E! 3[ ] = !
1

2 3
H1 +

1
2
H2
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where

H1 =
1

2 3

1 0 0

0 −1 0

0 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ , H2 =

1
6

1 0 0

0 1 0

0 0 −2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

and finally

H1,E1[ ] =
1
3

E1 , H1,E2[ ] =
1
2 3

E2 , H1,E3[ ] = !
1
2 3

E3

H2 ,E1[ ] = 0 , H2 ,E2[ ] =
1
2

E2 , H2 ,E3[ ] =
1
2

E3 , H1,H2[ ] = 0

It is clear from the commutators that we have a closed algebra, i.e., all of the commutators 
among the 8 operators only involve the same 8 operators.

q1 , q2 , q3 H1 H2

H1 H2 I 3 Y
We note that                           are eigenstates of both          and            simultaneously, 
which suggests that we will be able to use          and          to represent         and          .

Now we have
H1 q1 =

1

2 3
q1 ,H1 q2 = −

1

2 3
q2 , H1 q3 = 0

H2 q1 =
1
6
q1 ,H2 q2 =

1
6
q2 , H2 q3 = −

1
3
q3

I3 = 3H1 , Y = 2H2Thus, if we define                                           we get
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I3 Y

q1

q2

q3

   1/2    1/3

  -1/2    1/3

0   -2/3

m1,m2

Construction of Representations

We define eigenstates                   where we assume

H1 m1,m2 = m1 m1,m2 , H2 m1,m2 = m2 m1,m2

6E1 , 6E−1 , 2 3H1 ! + ,! " ,! 3Now                                   obey the same commutation relations as                -- in fact, 
they form a sub-algebra of the closed algebra of the 8 operators. Therefore, we construct 
the operator

I 2 = 3(E1E! 1 + E! 1E1) + 3H1
2

in analogy to
Γ =

1
2
τ +τ + + τ−τ +( ) + 1

4
τ 3

2

I 2 ,H1⎡⎣ ⎤⎦ = I 2 ,H2⎡⎣ ⎤⎦ = 0 m1,m2 I 2Since                               the states               are also eigenstates of           or

I 2 m1,m2,i = i(i +1) m1,m2,i
We note that 

I 2,E±1!" #$= 0
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but
I 2,E±2!" #$%0 , I 2,E±3!" #$%0

I 2Which implies that          is not  an invariant  operator or that it can change  within a 
representation.

This suggests the following possible picture:

I 2
where each line is the same as in our earlier discussion (         = constant), but there are 
many different lines (values of          ) in the representation. It is not difficult to deduce 
the following table:

I 2

operator/effect !m 1 !m 2

E1

E-1

E2

E-2

E3

E-3

    1/√3 0

  -1/√3 0

   1/2√3    1/2

 -1/2√3   -1/2

 -1/2√3    1/2

  1/2√3   -1/2
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This table implies relation like:

H1E1 m1,m2 = E1 H1 +
1
3

!
"#

$
%&

m1,m2 = m1 +
1
3

!
"#

$
%&

E1 m1,m2

or
E1 m1,m2 = constant m1 +

1

3
,m2

Graphically, this table is represented by the diagram:
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Y ! I3
Let us now represent our states on a               diagram and indicate the effect of the 
operators

I± = E±1 ΔI3 = ±1,ΔY = 0( )
V± = E±2 ΔI3 = ±1 / 2,ΔY = ±1( )
U± = E±3 ΔI3 = ±1 / 2,ΔY = ±1( )

I 3 = 3H1 Y = 2H2Remember that                  and                 .

This gives the simplest representation of SU(3):
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and suggests a weight diagram as shown below:

We have other related quantum numbers:
Q(charge) = I 3 +

Y
2

, Y = B + S
This leads to the table below:

Quark I I3 Y Q B S

u

d

s

1/2 1/2 1/3 2/3 1/3 0

1/2 -1/2 1/3 -1/3 1/3 0

0 0 -2/3 -1/3 1/3 -1

The baryon number of each of these states or particles is B = 1/3 and they represent the 
original three quarks.....up , down  and strange .

48



Another way of visualizing the shifts (shift operators) is the diagram below:

These shift operator transform quarks into each other. They will turn out to represent 
gluons later on.

It turns out that there exists an equivalent simple representation. It is shown below:
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It corresponds to the weight diagram below:
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3*It is the        representation and the particles or states are the anti-quarks. The 

corresponding table looks like:

Quark I I3 Y Q B S

anti-u="

anti-d=#

anti-s=$

1/2 -1/2 -1/3 -2/3 -1/3 0

1/2 1/2 -1/3 1/3 -1/3 0

0 0 2/3 1/3 -1/3 1

 !3! !3*

 !3 ! !3 ! !3

We now use these simplest representations or simplest weight diagrams to build higher 
representations. We note that                will have B = 0 (quark + anti-quark) and should 
represent mesons  and                     will have B = 1 and should represent baryons .

 !3! !3*So we now consider                    using the weight diagrams as shown below:
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where the black dots represent the final states of the new (higher) representations. 
Looking only the states we have

The I-values associated with a line are determined by the multiplicity of a line (remember 
each line is a different I-value). Note that there were three(3) final states at the same 
point. Symbolically we have

 
!3! !3* = !8 " !1= octet + singlet

We now look more carefully at the OCTET representation. If we label the states as
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We get the table
# quarks I I3 Y Q B S meson

1 dŝ 1/2 -1/2 1 0 0 1 K0

2 uŝ 1/2 1/2 1 1 0 1 K+

3 dū 1 -1 0 -1 0 0 π-

4 d#-uū 1 0 0 0 0 0 π0

5 d#+uū-2sŝ 0 0 0 0 0 0 η0

6 -u# 1 1 0 1 0 0 π+

7 sū 1/2 -1/2 -1 -1 0 -1 K-

8 s# 1/2 1/2 -1 0 0 -1 K0-bar
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 !3! !3! !3

The SU(3) scheme has produced the known mesons (including the strange particles) as 
linear combination of quarks and anti-quarks.

Let us push it even further and consider the baryon states. This means we look at the       
                   representation. Using weight diagrams we get
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These states separate as follows:
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or symbolically we have
 
3! 3! 3= 10

~

" 8" 8" 1

that is, we end up with a decuplet, two octets(turns out to be two ways of representing 
the same one) and a singlet. The particle identifications are given in the table below:

# States I I3 Y Q B S Particle

1 ddd 3/2 -3/2 1 -1 1 0 Δ-

2 udd+dud+ddu 3/2 -1/2 1 0 1 0 Δ0

3 duu+udu+uud 3/2 1/2 1 1 1 0 Δ+

4 uuu 3/2 3/2 1 2 1 0 Δ++

5 sdd+dsd+dds 1 -1 0 -1 1 -1 Σ*-

6 sdu+dsu+dus     
+sud+usd+uds

1 0 0 0 1 -1 Σ*0

7 suu+usu+uus 1 1 0 1 1 -1 Σ*+

8 dss_sds+ssd 1/2 -1/2 -1 -1 1 -2 Ξ*-

9 uss+sus+ssu 1/2 1/2 -1 0 1 -2 Ξ*0

10 sss 0 0 -2 -1 1 -3 Ω-

11 d[ud]   ----   ----   ----   ----   ----   ----      ----

12 u[ud]   ----   ----   ----   ----   ----   ----      ----

13 d[ds]   ----   ----   ----   ----   ----   ----      ----

14 u[ds]+d[su]-2s[ud]   ----   ----   ----   ----   ----   ----      ----

15 u[ds]-d[su]   ----   ----   ----   ----   ----   ----      ----

16 u[su]   ----   ----   ----   ----   ----   ----      ----

17 s[ds]   ----   ----   ----   ----   ----   ----      ----

18 s[su]   ----   ----   ----   ----   ----   ----      ----

19      ----   ----   ----   ----   ----   ----   ----      ----

20 uud+udu-2duu   ----   ----   ----   ----   ----   ----      ----

----      ----   ----   ----   ----   ----   ----   ----      ----

27 u[ds]+d[su]+s[ud]   ----   ----   ----   ----   ----   ----      ----

where [ab] = ab=ba
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! "
Consider the DECUPLET representation.  All of the particles had been previously observed 
except for the           , which we will discuss further later. We end up with two OCTET 
representations.  The first is antisymmetric in the second and third quarks and the second 
is symmetric in the second and third quarks. They are completely equivalent representations
within SU(3) and represent the same physical particles.

The Mass Formula

We will simply state and discuss the mass formula here. The most general form for the 
mass formula from the theory is given by:

M = A + BY + C I (I +1) !
1
4

Y2"
#$

%
&'

+ DI 3

where the A, B, and C terms represent the average mass (within a row) and the D term 
represents electromagnetic splittings.  Some OCTET experimental data implies that:

M 8 =1109.80 ! 189.83Y + 41.49 I (I +1) ! 1
4

Y2"
#$

%
&'

! 2.45I 3

which gives the following tables:
particle experiment formula

n 939.5 943.2

p 938.2 938.3

Λ0 1115.4 1109.8

Σ- 1189.4 1190.3

Σ0 1193.2 1192.8

Σ+ 1197.6 1195.2

Ξ- 1316 1317.9

Ξ0 1321 1322.8

57



! "
This is an average error of only 0.19%. The experimental data in the table below was also 
available. As we said above, the                particle had not yet been discovered.

particle experiment

Δ 1238

Σ* 1385

Ξ* 1530

This data gives the DECUPLET mass formula below:

M10 =1501.8 ! 58.5Y ! 58.4 I (I +1) ! 1
4

Y2"
#$

%
&'

! "

M
Ω− = 1677

The mass formula then allows us to predict the mass of the          particle (SU(3) also 
predicts all of the other quantum numbers).

The prediction is                        (1685 was observed or about a 0.5% error).

! "

Introduction of Color

A basic problem with the quark model of hadrons is with the wave function antisymmetry. 
Consider the            state. It is a strangeness S = -3 baryon with isospin I=3/2. In the 
quark model

! " = s s s
Each of these quarks has the following states

s = 1
2 , 1

2 spin
1
2 , 1

2 isospin
B = 1

3 ,S = ! 1
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and, thus, the final state is symmetric  in all of its quantum numbers (the orbital angular 
momentum states are also symmetric when one solves the bound state problems), which 
violates the Pauli Principle for fermions. 

The solution to the problem is to generalize the definition of the quarks such that each 
quarks can have one of three colors (r=red, b=blue, g=green)  or

u

d

s

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

ur ub ug

dr db dg

sr sb sg

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

The quark labels, u, d, s, etc are called flavor . Quarks were thought originally to come 
in three flavors. Now they have another proper called color, namely, red, blue and green.

! "The problem with the             state is fixed by assuming that it is completely antisymmetric 
in the color space or we write it as

! " = sr sb sg " sr sg sb " sb sr sg

           + sb sg sr + sg sr sb " sg sb sr

It is equal parts red, green and blue!

59



Another type of problem was that certain reactions were not occurring when SU(3) said 
they were allowed. This usually signals that an extra (new) quantum number is needed 
to prevent the reaction. The new quantum number would have a new conservation law 
that would be violated if the reaction occurred and hence it is disallowed.

The new quantum number (flavor) introduced was charm . In the quark model this is 
treated as the appearance of a new quark . I will delineate the starting point of this 
discussion below. It leads to the formalism of SU(4) if we carried out the same steps as we did with SU(3).

Quark states:

u =

1

0

0

0

!

"

#
#
#
#

$

%

&
&
&
&

, d =

0

1

0

0

!

"

#
#
#
#

$

%

&
&
&
&

, s =

0

0

1

0

!

"

#
#
#
#

$

%

&
&
&
&

, c =

0

0

0

1

!

"

#
#
#
#

$

%

&
&
&
&

We now have
Q = I 3 +

B + S+ C
2

, C = charm

The four quarks then have quantum numbers
Quark Y Q B S C

u

d

s

c

1/3 2/3 1/3 0 0

1/3 -1/3 1/3 0 0

-2/3 -1/3 1/3 -1 0

1/3 2/3 1/3 0 1
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The charm quark is the same as the up quark except for the charm value.

The corresponding lowest representation weight diagram is

 !4This is the          representation.

That concludes this discussion of the Eightfold Way .........
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