Tensors

[These notes taken from Riley,Hobson,Bence: Mathematical Methods because their treatment is superb with omissions, addition, expansions and digressions]

The quantitative description of physical processes cannot depend on the coordinate
system in which they are represented. On the other hand, physical results are
iIndependent of the choice of coordinate system. What does this imply about the nature
of the gquantities involved in the description of physical processes?

(1) Notation

Einstein Summation Convention --> repeated indices are summed over

ax =1 ax =ax +ax, +ax+...
J
a'Jka = ! aHbjk = ailblk + a1'2b2k + a13b3k +.....
J

X5 X X X X

112# ~ I 112# ~ 112# N 112# N 112# .

o X XX XX XX XX

Subscripts that are summed over are called dummy subscripts and others are called
free subscripts.



Defining the Kronecker Delta

[1 =]
10 ohewise
we then have a;! = =
b! , =b,

aijbjk! i — &0 = akjbjk
(2) Change of Basis

Avector A with components (A, A, Aid written as
A=A8

with respect to the basis vectors & ,&,,&,. We introduce a new basis €,,6,,6,
related to the old basis by the relations

é'j :Sjé

The coefficient § isthei " component of the vector é'j with respect to the
original basis. We then have

A=A &

or



A=A 8 =A Sé=Aé
A =SA

j
(S SAT = (S ) A
(S'S) A =(1); A} = (Sll)ij A
A= (S 1)ij Aj

where we have denoted the matrix with elements Sj by S.

In the special case where the transformation is a rotation of the coordinate axes, the
transformation matrix S is orthogonal (see later example) and we have
N I —

A =(S)A =SA o
Scalars, for example, the scalar or "dot" product of two vectors ~ A- B(just a number),
behave differently under transformations since they remain unchanged under any
coordinate transformation. The behavior of linear operators is also different. If a linear
operator A is represented by some matrix A in a given coordinate system, then in a
new (primed) coordinate system it is represented by the new matrix

A'=S'AS

We will now develop a formalism to describe all of these different types of objects and
their transformation properties. The generic name tensor will be introduced and scalars,
vectors and linear operators will become tensors of zeroth, first and second order (the
order or rank corresponding to the number of subscripts  needed to specify a
particular element of the tensor).



(3) Cartesian Tensors

We first confine our attention to rotations of Cartesian coordinate systems. We assume
that the origin remains fixed and we define the transformation in terms of the components
of the position vector inthe old  (€,€,8,) and new (@'1,@'2,9}@)15%. We have

X, = Ll.jxj

In this case, the transformation matrix L is orthogonal so that

L! 1 — LT

o UL =L"L=LL
L Ly =" = LgLy

This allows us to write _ .
X =L;X,

since X = Xjéj — x'j é'j
X' é'j!é'i = xjé)'i!éJ
X' " =(0:1€)X
X' =(6;!@)x

We then have the result

L =¢@.-@

J L]



We note that the product of two rotations is also a rotation. For example, suppose
X' = LX and X" = M;; X"
X" =ML, X% = (ML), X,

which implies that the product ML Is also a rotation.

!

Example: Let us consider a rotation of the coordinate axes through an angle about

the &! axis (or x;! axjss shown in the figure below.

Let the vectorbe X . Looking at the dotted lines we have
X', = X, cos! +x,9n!/
', ="x9n! +x,cos/

X
X3 = X3



Thus, we have (using X' = L; X)
#cos! dgn! 0&
L = 3/0 sn/ cos! Of
/0 (
$ O o 1
The corresponding inverse relations are
X, = Xx',cos! " x',9n!
X, = X';9n! +x', cos!
Xy = X,

(4) First- and Zero-Order Cartesian Tensors

We now assume that any set of (three) quantities \/I , which are explicitly or implicitly
functions of the coordinates X that transform according to

V', = Lijvj

form the components of a vector  or first-rank Cartesian tensor . Clearly, the
position coordinates are components of a first-rank tensor. Since the transformation is
orthogonal, the components of a first-rank tensor also satisfy

V. = LV,



Examples: Which of the following pairs of quantities are components of a first-rank
Cartesian tensor in two dimensions?

(i) Suppose (Vi,V,) = (X,,! X,)are the components relative to the old axes.

We then have - — : " _ ]

v, =L, +L,v,=cos! (x,)+san!("x)=x",

v, =Lwv,+L,v,="9n!(x,)+cos!("x,)="x"
Thus, (V,V,)=(X,,! X,)is a first-rank tensor.
(i) Suppose (V;,V,) = (X,, X, )are the components relative to the old axes.

We then h - | "X
SHENE vy =L v, + LV, = cos! (x,)+sin! (x,)" X,

v, =L,v, +L,v, =#39n!/ (x,)+cos!/ (x,)" X',
Thus, (V;,V,)=(X,,X,)is not a first-rank tensor.
(i) Suppose (V,,V,) = (X, X are the components relative to the old axes.
Wethenhave » =| v +L,v, =cos! (x?)+sn/ ()" x2 =(cos! (x)+sin! (x,))’

V', = LV, + LoV, = #8in! (x2) +cos! (63) " x'2 = (#sin! (x) + cos! (x,))’

Thus, (V,,V,)=(X,X:)s not a first-rank tensor.



Examples of first-rank tensors (vectors) are position, velocity, momentum, acceleration
and force.

We now consider quantities that are unchanged by a rotation of the axes. They are called
scalars or tensors or rank zero . They contain only one element. An example is the
sguare of the distance of a point from the origin

2= +x +x;
Under a transformation we get
r.|2 — X|]2-+X|§+X|:2)) — r2

so the itis an invariant . We note that  r*> is a scalar product, i.e., r*=X!%tis

easy to show that any scalar product Al B is invariant under the transformation and
IS a tensor of rank zero.

AlB'=A'B =L AL,B = L} LA B, = (L' L), AB =" AB =AB, = A!B

We can use a scalar to generate a tensor of rank one. Consider the new object (the

gradient ) I !
\/i — I_ # V — $ n
;X
where ! isascalar guantity. Under a rotation we get
#!”& !”I !" !XJ !" !H

V. = — = — =]l. —=L.V
! m( I, Ix X TX ”!xj 7

so we have constructed a first-rank tensor.




Now let us consider the quantity (the divergence )

|
s=1"v=
where V s a first-rank tensor.

Under a rotation we get

S|_"!Vi(%)_'lvli — IXJ !V'i —_ IXJ !(Likvk)_L L IVk
B VIV . : — : — Mk o,
& IX, I I IX X !'X
v Iv lv, v
:L;Likl_xk:(LTL)jkﬁ:(jkﬁ:i:S
"7 " "7 "

SO It IS an invariant or zero rank tensor or scalar.

(5) Second- and Higher-Order Cartesian Tensors

We now define a second-rank Cartesian tensor  as follows: the elements T; form the
components of a second rank Cartesian tensor if

T 'ij — Lik LjITkI and -I-ij — Lki Lle 'kl (Note order of indices)

t

Generalizing, we say that the elements Tl]k form the components of an n " rank

Cartesian tensor (where n = the number of indices) if

T =Lilig b Togr  @d Ty o=Lylg.. LT

pg....r



In 3 dimensions, an n" rank Cartesian tensor has 3" components.

Since a second-rank tensor has two indices, it is natural to display its components in
matrix form. The notation *T;& is used, as well as T, to denote the matrix having

T,-J- as the element in the i ™ row and j™ column. We also denote the column matrix
containing the elements V. of a vector by [V.]

We can think of a second rank tensor T as some geometrical entity and the matrix
containing its components as a representation of the tensor with respect to a particular
coordinate system.

Let us look more closely at the transformation rule for second rank tensors using its
matrix representation. We have

T5 =L L Ty = L Tyl = LikaI(LT )Ij
T'=LTL' =LTL™"

T =LLT 'y =LT L = (LT)ijT'kl L,
T=L"T'L=L'T'L

Thus, the matrix representing a second rank tensor behaves in the same way under
orthogonal transformations as the matrix representation of a linear operator.

Not all linear operators, however, are second rank tensors.

10



Examples

() The outer product of two vectors. Let U and Vi ,1=1,2,3 bethe
components of two vectors (first rank tensors) U and Vv and consider the set of
guantities T. defined by

i
Ty =Wy,
The set T are called the components of the outer productof ~ # ad vUnder
rotations the components of 'I'-j become

Tlij = U V'j = LikuijIVI = LiijIukVI = LiijlTkl

which shows that they do transform as the components of a second rank tensor.

We denote the outer product, without reference to a coordinate system, by the symbol
T=ulv
This tells us the basis to which the components T; of the second rank tensor refer. Using
U=ué® ad v=vé

we have = 3 L L
T=u®e! ve=uve!' e=16! e

Clearly, the quantities T 'ij are the components of the same tensor T but referred to a
different coordinate system, I.e.,

T=T,6! 6=T",6! 6

J
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(i) The gradient of a vector. Suppose that V. represents the components of a vector.
We consider the quantities generated by forming the derivatives of each V;, i=1,2,3,
with respect to each X, ,j=1,2,3, i.e,

I'v
—_ |
T=
"
We then have
oD L) T L Iy, Ixz_ IVkL — 1 LT
ij ,._ | ,-_k, I x _zkl ik ji* ki
PX PX PX PX PX X,
which says that we have a second rank tensor T =1 v. (not funny symbol)

A test of whether any given set of quantities forms the components of a second rank
tensor can always be made by direct substitution of the X, interms of the X

l

and then compared with the transformation rule(see example).

Example: Show that the elements T. given by

_!TJ§ (

are the components of a second rank tensor. Let us consider a rotation by !/ about the
€ ! axs. The direct substitution using

= x,cos! +x,9n!
X', =" x,9n! + X, cos/

2

X2 0/0(1)(2)
oxx, X2 ¥

X3=X5

12



gives (using C=cos! and S=sm!/
T',=x2=(sx+¢CX,)> =X’ 2sCX,X, + C°X>
T',=1x' X, =1 (X +)(! X, +0X,) =scx” +(S°! ¢?)xX, ! sox
T, =1x', X', =1 (X, +%)(! X, +cX,) =scx +(S°! ¢?)xx, ! sox;
T '22 - X|]2. — (Cxl + SX2)2 — szf + ZSCX].XZ + SZX§

The transformation equations using

#cos/! 3gn! 0&
L :fég an/ cos/ Og
$ O o 1
give
T =Ly Ty = CCX§ +cs(! X, X;) + (! X x;) + SSX12
T', =Lyl Ty = (! 8)%; +cc(! x%,) + (! s)(! x,X,) + sox;
T '21 = L2kL1ITkI - (! S)CX§ T (! S)S(! X1X2) + CC(! X1X2) T CSX12

T's = LyLa Ty = (1)1 9)%; + (! s)e(! x,x,) + (! S)(! x,%,) + cox;

which are the same. Thus, we have a second rank tensor.

13



The same result can be proved more easily by realizing that the T are, in fact, the
components of the outer product of the vector V = (X,,! X,(we proved earlier that this is
a vector or first rank tensor) with itself, i.e.,

VI V=vvé! =T ! é

i — ViV
T — — 2 — N ] |

11 ~ Vlvl — X2 T12 — V1V2 — X1X2
- _ o _ _ 2

21 V2Vl _ X1X2 T22 . V2V2 _ Xl

Another example of the transformation of tensors:

Consider a rotation through 495j. The transformation array is given by

(o] = cos45°  §n45] (21 1
| -sn45° cos45| 2 |-1 1

Assume that we have a vector (tensor of rank 1)
11$
VI=
V1= ¢

then [V'] — [a] [V] L Vi =aV,

or



, J2
\Y 1= a11V1 T a12V2 =3—

V2:a21Vl+a22 2:

2
1 N213%
V]=—#
2 g
For vectors (rank 1 tensors) this is the same rule as for matrix multiplication , l.e.,

Vi$ V211 1311$ 213%
thy & o 1 1§h& o thE

Now consider the transformation of the rank 2 tensor

1=, f?
We have
[T =[a]la][T]t T =aaT,

This is NOT matrix multiplication (look at indices)! We can, however, cast the equation as a
matrix multiplication by a rearrangement

a1rajs rs aIrTrsaJs_ A, rS(a'sj) —a, rs(aq)
= (afTlal"

15



This IS matrix multiplication!

We have T', = Taa, + Tpaa, tTaua, +Tya,e, =7
T I12 — “11a11a21 + T12a11a22 + T21a12a21 + T22a12a22 — O
21 — “11a21a11 + T12a21a12 + T21a22a11 + T22a22a12 — I 3

o = T8y, T 1,858, + 1,858, + 1,,8,,8,, =! 2

or
0 ¥

T1=g, )

3 12%
The matrix multiplication relation works also (but is not very useful), I.e.,

J2"1 104 6%/§ "1 1%

T=[almlle =781 1% 1.8 1%

1" 1 10510 2 % 1"14 O % " /7 0y

"281 1584 125 206 14y B3 12

as expected.

16



(6) The Algebra of Tensors
Addition and Subtraction

If two tensors have the same rank, then they can be added and subtracted using their

components B
Sj....k - Vij....k +Wj....k

Dy « = Vi W i

J
The new objects are tensors of the same rank.

Switching Indices

If a pair of indices are switched the new object is a tensor of the same rank,i.e., if V_,
represents a tensor, then V.. represents a tensor of the same rank.

If V.« =V_x for all components, then V; _is said to be symmetric  with respect
to that pair of indices (or simply symmetric for second rank tensors). If ik ="Vij..x
for all components, then V, , issaidtobe antisymmetric with respect to that pair

of indices (or simply antisymmetric for second rank tensors).

An arbitrary tensor is neither symmetric nor antisymmetric, but can always be written as
the sum of a symmetric tensor Si..x and an antisymmetric tensor Ak i.e.,

1 1
T« = _(Tij....k T Tji....k) t _(Tij....k ! Tji....k)
2 2
=S« T A L«

17



The outer product discussed earlier is an example of a kind of "multiplication"  of two
tensors producing a tensor of higher rank. Our illustration had two first rank tensors

producing a second rank tensor. In general, the outer product of an n " rank tensor with
an m™ rank tensor produces an (n+m) " rank tensor.

We can produce a tensor of smaller rank from a tensor of larger rank using the
contraction operation. The contraction operation consists of making two indices equal

(and thus summing over that index). This reduces the number of indices (and hence the
rank of the tensor) by two.

Example: Let 'I'ij | be the components of an n ™ rank tensor. This implies that

m..k

T 'ij-.l..m..k = l—ip#j#'##-ir"# lﬂm#%n qu----r---S---n

n factors

If we contract on the indices | and m (set them both equal to |) we get

L l—ip#j#-#n '#"%Is#'#kn Togrson

n factors

(n" 2) factors

18



which says that the T,-j,_,,_l_,k are the components of a different Cartesian tensor of
rank (n-2).

For a second rank tensor, the process of contraction is the same as taking the trace of
the corresponding matrix. Therefore, the trace Tii IS a zero rank tensor (or scalar)
and is invariant under rotations.

The scalar product or two vectors can be recast in tensor language as forming the outer
product of two vectors (first rank tensors) Tij = U;V; and then contracting T.=uV,
to form the scalar which is invariant under rotation as we found earlier.

Another familiar operation that is a special case of the contraction operation is the
multiplication of a column vector [u,| by amatrix B, #o produce another column
vector [v] ,ie,

B,u, =V
We can think of this as the contraction  Tj; of the third rank tensor Tix formed
from the outer product of B; and u,

(7) The Quotient Law

Ifwe knowthat B and Care tensors and also that

A Bk ..... n =

pg...K...m™=j

does this imply that the qu.__k_”m also form components of a tensor A

19



Here A B and Care respectivelyof  m", n" and (m+n! 296k The .
subscript k that has been contracted can be any of the subscriptsin A and B
iIndependently.

The quotient law states that if the above component relation holds in all rotated
coordinate systems, then the qu___kmmdo form the components of a tensor.

We will prove it for m = n = 2 only, but it should be clear that the principle of the proof
holds for arbitrary m and n (just the algebra gets worse).

Suppose we start with A B, = Cpi

where B, ad C, are arbitrary second rank tensors. Under a rotation the set Ay
(whether they are a tensor or not) transformsto anewset A’ as follows

A BYW=C
= LogliCq = Lol A By
= LpgLijAuln LB = Logby Lo Lot Ay B i
= Lo imbn A B
=L, LaAyBn
This can be rewritten (changing dummy index labels) as
(A0 L LA,)BY =0

20



Since B, and hence B'ik is an arbitrary tensor, we must have
=L LuAy

which says that the Apk are the components of a second rank tensor. The same result

holds if we start with A,B; =C,

Using the quotient law to test whether a given set of guantities is a tensor is generally
much more convenient than the direct substitution method we used earlier. A particular
way in which it is applied is by contracting the given set of quantities, having n subscripts,

with some arbitrary n™ rank tensor and determining whether the result is a scalar.

Let us go back to an earlier example namely,
- X %)
TJ § ( 0 2 ;\l'
/o<1x2 X:

The outer product X X; is a second rank tensor. Contracting it with the I;we get

Tinin - X§X12 | X X5 X %o ! X X Xo Xy F )(12)(2 =0

which is clearly invariant. Thus, by the quotient theorem T; must also be a tensor. Very
powerful!

(8) The Tensors ! and Dk

Since

=LL/y =Ly =1y d; is a second rank tensor.

21



Now consider the three-subscript Levi-Civita symbol '« where we have

#+1 1f 1,k 1s an even permutation of 1,2,3

0
Vi = ${Q 1 1if 1)k 1san odd permutation of 1,2,3
%00 other wise

We then have .
D = LIiLmj Lnk!ijk

Before proceeding, we note that for a 3x3 matrix A, the determinant |Al satisfies
‘A‘ L = A A A ik
Example: Evaluate the determinant of the matrix
"2 1 3%
A= %3 4 0.
#1 12 1&

Settingl =1, m =2, and n = 3 we get
AL, = A= AA A
= A11A22A33!123 T A11A23A32!132 T A‘]ZA21A33!213 + A‘J3A21A32!312 T AI2A23A31!231 + AI3A22A31!321
=(2)@MD ™ 2)0)("2)" M)+ (" 3)(3)("2) +(DHO)(D) ™ ("3)(4)(1) =35
Now, using the above relation, we get
r.=L.L.L.! :\L\!

li =mj —nk" ijk Imn

22



Since L is orthogonal, its determinant is 1 and thus we have

/' il |
" .I

Imn mn

Thus, we have a third rank tensor.

These two tensors also have exactly the same components In every coordinate
system.

Many of the familiar expressions of vector calculus can be written as contracted tensors
involving /. and Eijk .

Examples:
() a=b!c” a = #,b,c, so that the cross-product produces a vector.
() alb=ab =",ab,
(i) you_ # g A
K AKX ( 2
V) (), =4, 2k V] =g, Y Bl L, W
( V)' d $XJ$#V | (V;Zz [ ( V)]| ijk $Xj & Kim $X| ) Ijk""Kim $XJ$X1
"y #PR Y R
VL S O (A1 D) E=" 0. = £,cah

23



An important identity betweenthe | and | tensorsis
I“ I —_ II. n # n (4}

*ijk* Kim il jm im jl

This says that the two fourth rank tensors have identical components.

This allows us to find an alternative expression for

) $2 $2Vm
1] = A o (%lo/?m&%%’l)$xj$xl
2 2
$v, $v =[1 (t 'v)] &! %y,

= &
$x.$x;  $x, $x
b=t e

That would be very cumbersome to prove using standard methods!

I [1) n
ip iq ir
I I ) 11} 14}

“ijk* pgr T | jp jq jr

We can also show that

[1) 1] 1)
kp kq kr

The identity above is then a special case where (p, g, r) = (k, |, m). If we contract the
identity by setting j = | and using !..=3we get

! Ijk ijm 3” # ”km = 2”km
and contracting once more by setting k = m we get

!ijk!ijk:2 « =0

24



(9) Physical Applications of Tensors
Mechanics Example

Consider a system of N rigidly connected point particles each characterized by a

mass M and a position vector I, with respect to an origin O. We suppose that the

system is rotating about an axis through O with angular velocity [

The angular momentum J  about O of the system is given by
L
‘J - I rl " pi
1=1
where : : : P
p=my ad Vv=I"r
Substitution gives N N
‘]I = I m ImnXimVin = I m ImnXim npq# pXiq
=1 =1
N N

- .!_1 M "npqximxiq# p !_1 m ($'p$mq (y0$'q$mp)ximxiq# P
N N

-, m (Ximxim$lp %Xipxil)#p = | m ((ri2)$'p %Xipx”)#p

=1 =1
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where iy is a symmetric second rank tensor(by the quotient rule since J and lare
vectors) which depends only on the distribution of the masses in the system and not on
any properties of ! Itis called the inertia tensor of the system with respect to O.

For a continuous distribution of mass this becomes

(&Y’ +2)uvV ' &V ' Qzotlv  *
=L E=T 0 &yulv &7 X))V Qo -
) Qeuv QA X +y?) %IV

where ! (X,Y,2) is the mass density function and dV = dxdydz. The diagonal elements

are called the moments of inertia  and the off-diagonal elements without the minus signs

are called the products of inertia
Similar algebra gives us an expression for the kinetic energy of the system.

1 N N 1 N
T= E !_1 MV\Vi, = !_1 m ”njk#jxik”npq# pXiq = E !_1 m ”njk ”npqxikxiq#j# D
) i= i= . i=
=1 My 78S x# #p =51 M (X85 %%, %; )# 7,
N
= I m ((ri2)$jp %Xipxij)#j#p = % | jp#j#p = %‘Jp#p
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This shows that the kinetic energy of the rotating body can be expressed as a scalar
obtained by twice contracting [  with the inertia tensor.

Since | is a real, symmetric second rank tensor representable by a real, symmetric 3x3
matrix(means it is always possible to diagonalize it), it possesses three mutually
perpendicular eigenvectors (or principal axes ) with respect to which the inertia tensor

IS diagonal, with diagonal entries equal to the eigenvalues of the matrix (you will study
these tensors in Physics 111).

27



(10) Curvilinear Coordinates

First we mention cartesian coordinate systems.VVe have

bassvectors=€@ , E1,2,3

These systems have intuitive appeal since they

(1) make use of straight lines

(2) make use of perpendicular(orthogonal) directions of flat space
(3) vector differential/integral operators take their simplest forms

However, many physical systems are not naturally rectangular, i.e., the surface of a sphere. In this
case the rectangular coordinates of a point on its surface are changing from point to point, but in
spherical polar coordinates the surface is specified simply as a surface of constant radius r.Thus,
the choice of coordinate systems can be important in the description of a physical system.A
good choice may lead to greater simplification and insight in the description of the physical
system. There is, of course, a price to pay for this improvement. Coordinate systems other than
rectangular are less intuitive and harder to visualize. Integral and differential operators have more
complicated forms.VWe now show that the task is quite tractable, perhaps even enjoyable, when
approached from the right point of view. It turns out to just be a matter of changing directions
and changing scales as we shall now see.

Generalized Coordinates

We begin by noting that any 3 independent variables (U,,U,,U;) can be used to form a coordinate
system if they uniquely specify the position of a point in space. For convenience we start with
the familiar rectangular coordinates (X,Y,2) = (X, X,,X;) and specify the new generalized coordinates
by the relations u, = u,(x, Yy, 2). For the transformation between these two coordinate systems to be

28



well-dePned and unique it is necessary that the inverse relations x =x (u,,u,,u,) also
exist, and that all of these relations are single-valued functions

Example: spherical polar coordinates (r,,")

Here we have the relations

Fid

r = (x2 —+ y2 + 22)1/2
# 2+ 21/2&

g T -t
go Z %

and the inverse relations
X=rsn! cos",y=rsin! sn",z=rcos/ ¢

L

— 7 —

/ — rzinfd 7

A coordinate axis now becomes a coordinate curve  along which only one of the

coordinates is changing (same as in the cartesian case). The coordinate curves in spherical polar
coordinates are:

T D radii (only r varies,! ,” = constant)
l I I longitudes  (only! varies,r,” = constant)
11 Jatitudes (only " varies,r,! = constant)

It is easy to find explicit algebraic expressions describing these coordinate curves because by
definition only one of the coordinates changes along such a curve, while the others remain
unchanged.

For example, if = r@ = re(r) represents a coordinate curve, then the equations

29



lr . lyr 18 lyr 18
@r J = r - y T =T -
’r " " I # I #

describe the vectorial changes along this coordinate curve.

We state a rule:

Each of these derivatives is a vector in space; it has a length h and a direction € ,where
i=nr! or"”. We can readily obtain their explicit forms with the help of rectangular
coordinates, where the basis vectors are constants:

g; = ;r (X€ +Y§ + 728) = SN0 COsPE, +SNOsiNPE, + cosfe = h €
(O;;: i (X€ +Y§ + 78) = r cOSH cosPE, + I cOSHSINPE, —r SiN6E, = h,e),
o

2 8¢(x@+y@y+z@)_—rsn69n¢ex+rsm@cosq)@l h,@

We then have (taking scalar products)

N’ =sin’/ cos® " +sin’/ sin® " +cos’! =1# h =1

N, =r*(cos’! cos® " +cos’!sin® " +sin®!)=r*# h =t

N =r°(sin®! sin® " +sin*/ cos” ") =r*sin’! # h. =rsin!/

Now

I
df = %dr + %d9+ %o@ = h édr +h,§d6 + h,§d¢ = dré + rdod, + r snedeé,
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which should look familiar from our earlier discussions.

In the general case (U,,U,,U;) we have

| Ir Ir Ir
dr ——du1 +—du2 +—du
''u,
where : :
I I / I'X ly .
!u._!u !—(Xex"‘yey"'zez)—_ex"' ey+ ez
= Vector (actually the tangent vector)
=h, (r)q(r)
so that KL

h(r)_yﬁfu& ﬁlu& ﬁlu&-

and the displacement vector s
di =1 h(1)&()dy = ()ds

Thus, @(7) defines the coordinate curve  since it gives the unit vector tangent to the curve
at [ . The infinitesimal scalar displacement d$ =N (r)du gives the displacement along this
coordinate curve.The function h(r) is a scale factor . It ensures that the displacement has the
dimensions of length, independent of the dimensions of the U, .

All other geometrical quantities can be calculated readily in terms of these scale factors and unit
tangent vectors.



The infinitesimal scalar displacement ds along a path in space is

A N . . T
(dg)” =dr Idr = “ (hedu)!(h@du;) = ” g;dudu,
" X IJ Ij
where G; = hh,(€@!€) gives the so-called metric coefpcients  of the generalized coordinate
system.

The differential elements of surface and volume can be written down as

l |
! | #p & HoUp & L Lo
A, =d; =g -0 ) g -du (=hi (@) @)dudy, = (@) §)dsds
I j

(Think of the Cartesian case to understand this result.VWhat does the direction mean?) and

dr = dV = dsds,ds,§(€ x é))

where the last factor is the volume of a unit parallelpiped.

Orthonormal Curvilinear Coordinates

If at every point [ ,the three unit tangents €(I') are orthogonal to one another(mutually
orthogonal), that is, if

Q(F)!éj(':‘):”ij
or equivalently, if It Iy
q Y s
'y 'u

then the generalized coordinates U, are said to form an orthogonal curvilinear coordinate
system . In this system, the unit tangents €(i),&(),& (i) form a cartesian coordinate system at
every point I (not the same one at different points). The only complication is that their
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orientation changes from point to point (different than in the case of a cartesian system) in
space. In such orthogonal systems, the metric coefficients

diagond and hz:;%'z +;&;ﬂuz +i%;ﬂuz

g; = hi2! i
and the squared length
(dg)” =ds’=1 W (du)*=! (ds)’

contains NO CROSS TERMS (so things can get worse!).

The differential surface/volume elements are
df i~ dsdsj# "ijkq
K
d$ = dsdsds,

Thus,the dS are very much like the rectangular coordinates dX; . However, the tangent
directions change from point to point, except in the case of rectangular coordinates for which
they are constant unit vectors.

Examples: Spherical polar coordinates (orthogonal)

. . 1A . 1# . 1#
h=1,h =r,h=ran/ , € =———, €6 =——,0 = —
| h # h, # h, #"
sin/ cos"@ +sn/sn"g +cos/€ =€ , cos/ cos"§ +cos/ sn"g $sn/e =€

$sin"g +cos"Q =@
64 =6%-6%=0  §a8-6,686-6 686=¢
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{radiallfrnutward and In add|t|0n,
tangent to r line) | ) ) )
=T \ /tangent to a latitude) dr - hrdrg + hed@% + h¢d¢%
" ds =dr,ds, =rd6,ds, =rsnode

[east alnng and

EI
rsouth along and

tangent to a longitude) .
ds’ = dr® +r°df° +r° sin’ 8d¢’

and

dr . =rdrd"&,=$dr.. ,dr"., =r’sin"d"d#e =$dr,. ,dI', =rsin"drd# =$dr.,

0 =r’sin” !
d%= dgdsds, =r“sin"drd"d# 500 i ork for the cartesian coordinates

. X,V,Z2) ?
The volume element looks like (x.y:2)
rolune, eI (X®+y ry=a LT /r
rdA
Ix % y !z

rsinAdp
| |

X Yy Z | |
Y
dg dx, ds, =dy,ds, = dz" ds2 dx’ +dy2+dz2
d# o = dxdyg $ & =dxdye, , d# = dydz , d# = dzixg,
d%= dxdydz, &g, $ &,) = dxdydz

Clearly it does!

/ / /
h=h=h=1" df :dxéx+dyéy+dzé2:idx+idy+%dz
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Finally, remember that the coordinate [ (t) of a physical event is a function of the time t. It can
be differentiated wrt t to give

| dr 4y dY
yv=— and a= =—
dt dr dt

If cartesian coordinates are used, then their will only be contributions from the time derivatives
of the components and not the unit vectors (since they are constant in time). But for curvilinear
coordinates we get contributions from

d d,6 .
— (components) + — (unitvectors)
dt dt

because the unit vectors are also changing in time.

Vector Differential Operators in Curvilinear Coordinates

Now, finally, whatdo ! ", I &/, ! $V look like? Now, [ = (u,U,,u,) = position in space and
define a scalar field ! (Uj,U,,U;) and a vector field V(u;,U,,U,;) .The quantity Vé(u,,u,,u,)
describes, at every point [ ,a vector that can be decomposed into components along the local unit
tangents ©(f ), that is

! N A IR
) =# &)1 ) =# &0)(! " ()
If we expand the gradient in rectangular coordinates(we can use any) then we get

(V¢)i_(8x@6+8yé%’+8zg] ar)

From earlier we have | | | |
dr =1 h(8(r)du, =1 &(r)ds
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andthen o1 "(x@ +YyQ +28) "X

n :@(! 1 1
S S S
Therefore, (1) = SH#" #X e #z'W o #
T wyas mas| A
or $n

| ”(ul,uz,us) # @(r)_—# @( )_E

This implies that the U, in ! "(u,,u,,u,) can be treated as if they were rectangular coordinates
if the local tangents  @(r') are used together with local displacements  ds = hdu

Example: %. 1 .1
p | "( #”)_'Q £+ _i + @© : $£
& $r r $# rsn#$”)
In general, 0 0 @(I’)
bu(r)= [)———=
=" a0 =" e 3
which implies that a generalized coordinate curve has a natural curliness  of
$1° |
I " @ =#h! o—\" @(f)
) ) %12 )
Consider ! $é ' - & -
| "V=f! "ghVy=H o "y hV +! (hV )" L/
SRR TR Y
e 1 1 iy
—_ | -
_qEJﬁ! (hv;) h—J_ﬁqjkh—jE(hjvj)q
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This implies that we get the usual cartesian contribution
/
v,
I's.

plus an extra term proportional to V. I'h

arising from the curliness of the coordinate curve.

We can also write

. 1 % .1 % )
BERVAS % i %8 (hjvj)q_mhzhﬁ#jk%(hjvj)hkq

Similarly, we can write

#O & #O & S
() u) =0 u) () et t(tu) = uy)t ()= f%( f%(_ )mqu.

where m must be different from n in every term, which implies that

" () u,) =P # 4 _ & —%"(uz!ul)&!'ﬁ:O:!'QhS

" nh,  hh, hh, h.h,h,
since div(curl()) = 0 always. Generalizing we have
_ . 8h .8 _hhh
hhhy — p 7 h
Therefore, we get
g=1 8 - +#1&

azg ("Q+FI '9) ! "g@=" p.g —("9?‘ p.+81%0p(
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In general, this does not vanish. This implies that the curliness of the coordinate curve
contributes to its divergence. Now we put all the pieces together and get

V=g () =# "+%2”ZV"# R lp’“' (rv)2

i

=1—‘;’-L,+! (p.V. )"—/-#EE( V)

l .

Finally, we h?ve

V=l"# V= ﬂ# | 2" = Ofg—
$s ,p,$s

158 ),
5 (Pgy

Jacobians

For different coordinate systems we have
cartesian dV = dxdydz

cylindrical polar  dV = rdrd! dz
spherical polar  dV = r?sin6drdgd¢

How do we convert between area and volume elements in different coordinate
systems?

The rules are:

if (xy)! (at) ,then dA=|J|dqdt
If (x,y,z)! (q,t,w) ,then dV =|J|dgddw

where | is a determinant of partial derivatives called the Jacobian .

P,_
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and
Examples:
q=r
q=r , t= /

J=J

X

' (xy)$_|'4
TG0 |y

q

L (X,y,2)9$ _
#(q,t,w)éb

t=/" J=

w="# J=

cos! #ran!

sn!  rcos!/

sin!/ cos” rcos!/ cos”

san!/ san” rcos!/ sn”
cos!/ $rsin/

X
W
'y
W
Z
W

dV = dxdydz=r*sin/ drd/ d"

In 2-dimengons

=T

In 3-dimengons

dA = dxdy=rdrd!

0

$rsin!/ sin”
ran/ cos”

=r?sn/



(11) Non-Cartesian Coordinates

The position of an arbitrary point P in space may be expressed in terms of the three

curvilinear coordinates u',u’,u° . If r (u',u?,u’) is the position vector of the
point P, at every such point there exist two sets of basis vectors
LI N .
e=— and € ="U
Iu

where the @ (subscripts) are tangent to the coordinate curves (the axes) and the

e (superscripts) are normal to the coordinate curves. Thus, we can write a vector
In two ways (we change our summation convention so that we now sum over repeated
Indices only if one is up ang the other is down)

a=aé=aé
The @ are called the contravariant components of the vector a andthe & are
called the covariant components of the vector a.

For cartesian coordinate systems there is no difference between these two
sets of basis vectors, which is why we were able to only use lower indices.

The Q are the covariant basis vectors and the @ are the contravariant basis vectors.

In general, the vectors in each set are neither of unit length nor form an orthogonal basis.
The sets & and & are, however, a dual systems of vectors, so that

6! ="

40



We thus have Ly e - .
alé :a]@.!éj =a’", =a

a'é) aéjl@ a"?:a

l ] 1
From the earlier Cartesian discussion we have

élz'—:e>< , élz" (X):éx

If we consider the components of higher rank tensors in non-Cartesian coordinates,
there are even more possibilities. For example, consider a second rank tensor T. Using
the outer product notation we can write T in three different ways

T=T'é! €=T'é! §=T,8! &

where TY,T; and T, are called the contravariant, mixed and covariant components
of T respectlvely These three sets of quantities form the components of the same tensor

T, but refer to different (tensor) bases made up from the basis vectors of the coordinate
system.

In Cartesian coordinates, all three sets are identical.

(12) The Metric Tensor

Any particular curvilinear coordinate system is completely characterized (at each point
INn space) by the nine quantities
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g, =618 ,
Since an infinitesimal vector displacement can be written as dr =du Owe have
these results

(ds)® =dr !df =du'@!du’é =du'du'é!€é = g,du'du

. 2 . | .
Since (dS)” s a scalar and the du are components of a contravariant vector,
the quotient law says thatthe  §; are the covariant components of a tensor g called

the metric tensor

The scalar product can be written in four different ways in terms of the metric tensor

alb=aé!b'é =§18ab’ =g ab
=aé!be =6!€ab =g'ab,
-—a@!b'@ =818ab' ="ab' =ab
-a@!bé =§!€ab ="'ab =ah
These imply that gijbj -b  =d gijbj =h

or that the covariant components of g can be used to lower in index and the
contravariant components of g can be used to raise an index.

In a similar manner we can show that O — gijéJ 1nd @ _ gijé
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Now since é and Qare dual vectors, i.e.,
Q @ = 6ij
we then have T R | A K

gijgjk =1y

In terms of matrix representations this says that
G=lg,# G=tg'# | =1%#& GG=1& G=G'*

or the matrix formed from the covariant components is the inverse of the matrix formed
from the contravariant components.

The above relations also give the result

g =818 ="'# componets are identical

Finally, we have

g = ‘g‘ = dd[gij] = 049G ik = €"(e#e)
dvV =du'§!(du‘é " du’é)=8!(€" é)dudu’du’

and

or

dV =|g|du'du’du’
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(13) General Coordinate Transformations and Tensors

We now discuss the concept of %eneral transformations from one coordinate system

1 2 3 1 3 ) ) )
u-,u”,u” to another u",u'”,uWe can describe the coordinate transformation
using the three equations

uli — u-i(ul’uz,MS)

i
for i = 1,2,3, in which the new coordinates U can be arbitrary functions of the old

ones U' ,rather than just represent linear orthogonal transformations (rotations)
of the coordinate axes. We shall also assume that the transformation can be inverted,
so that we can write the old coordinates in terms of the new ones as

ui — ui(ull’ulz’ul:g)

An example is the transformation from spherical polar to Cartesian coordinates given by

X =r9gn! cos”
y=rsan!/ an”
Z =T cos/

which is clearly not a linear transformation.

The two sets of basis vectors in the new coordinate system  u™,u',u" are given by
I

€, =-— and e ="u"
lu

44



Considering the first set, we have from the chain rule that

| . 1 )
. IrIu" Iy Iu" .
Q = ~ = : -—=——@.
oot 1l iyt 1

so that the basis vectors in the old and new coordinate systems are related by

Now, since we can write any arbitrary vector & in terms of either basis as

| L o hut
a=a"e =a'e@=a —@
I'u
It follows that the contravariant components of a vector must transform as
a =——a
Iy’

In fact, we use this relation as the defining property that a set of quantities a' must
have If they are to form the contravariant components of a vector.

If we consider the second set of basis vectors, & =1 u, we have from the chain rule that
Ty’ Ty ITy"

[

I x _!u' I x

and similarly for /u'//yand !u'/!z.
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So the basis vectors in the old and new coordinate systems are related by

For any arbitrary vector a
|

o ) ' .
a=a @ =a@=a-—§¢
! u 1l
and so the covariant components of a vector must transform as
Iu
a'i — Waj

In a similar way to that used in the contravariant case, we take this result as the defining
property that a set of quantities a must have if they are to form the covariant
components of a vector.

We may compare these two transformation laws with those for a first-order Cartesian
tensor under a rigid rotation of axes. Let us consider a rotatlon of the Cartesian axes X
through an angle ! about the 3-axisto anewset X", i=1,2,3

= x,cos! +x,9n!
X', =" x,9n! + X, cos/
X 3 = X3

and the inverse transformation
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X, =x' cos! " x',9n/
X, =X, 9n! + X', cos/
XS - Xl3
It is then straightforward to show that / XJ’ I X'i
I Iyl Lij as earlier
#cos! sn! 0&

:% 1N/ / (
L %sm. COS! O(

$ O o 1

Thus, the new relations agree with the earlier definitions in this special case of a rigid
rotation of the Cartesian axes.

where the elements L, are given by

We now generalize these two laws for contravariant and covariant components of a
vector to tensors of higher rank. For example, the contravariant, mixed and covariant
components, respectively, of a second-order tensor must transform as follows:

. - Tu" Tu
contravariant components T =—-—T¥
Tu® Iu
| N ITL T
nxed componeits T = —-——T,
Iu® Iu”
. ru“ 1y
®vaiantcomponaits T' =———T,
R ATRATE
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It is Important to remember that these guantities form the components of the same
tensor T but refer to different tensor bases made up from the basis vectors of the
different coordinate systems. For example, in terms of the contravariant components
we may write L - .
T=T"8®! o =T" & ! 28
We can clearly go on to define tensors of higher order, with arbitrary numbers of
covariant (subscript) and contravariant (superscript) indices, by demanding that their
components transform as follows:

Tlij ....... k — !u" !ulj llllII!ulk Iud Iue lIIllI!u Tab ....... C
Tu® fu® o s fut ru™ o Ty e

Using the revised summation convention (matched contravariant and covariant indices
summed over), the algebra of general tensors is completely analogous to that of
Cartesian tensors discussed earlier.

For example, as with Cartesian coordinates, the Kronecker delta is a tensor, provided it is

written as a mixed tensor ! , since
m_oodoonn_ | nm_ o ok nm_
| (T u u | k — — — |
: '_n n j "l _n " |°_n |°_'.
/ u® "u" u® "u" u’

where we have used the chain rule to prove the third equality. Since we showed earlier
that g}=é3!é,:”}

l; can be considered as the mixed components of the metric tensor g.
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In the new (primed) coordinate system, we have

D @A
Using i
. lu" .
§=156
'y
we have LTy 1] I 1K
'y Iu" .. Iu" ., .. . lu” .
— 9, = -0, =", =6,=—§¢
Iy ruc ' 1yt ! ’ Iy"

and similarly for &, . Thus, we can write

ra® rd' L. Tu* 1d
!u|i !Ulj@( Q_!uli !u|j

which shows that the J; are indeed the covariant components of a second-order tensor
(the metric tensor g).

glij - Ou

A similar argument shows that the quantities g” form the contravariant components of
a second-order tensor, such that
oy ru

1 ki
g" = g
Tu“ 1
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Earlier we saw that the components §; and 9" could be used to raise and lower

Indices in contravariant and covariant vectors. This can be extended to tensors of arbitrary

rank. In general, contraction of a tensor with Y9 will convert the contracted index
from being contravariant(superscript) to covariant (subscript), i.e., itis lowered . This
can be repeated for as many indices as required. For example,

T = giijk = gikngTkl
Similarly, contraction with g” raises an index, I.e.,
-I-ij — gik-l-kj — gikgjl-l-kI
That these two relations are mutually consistent, can be shown by using the relation
gikgkj — ,;
(14) Derivatives of basis vectors and Christoffel symbols

In Cartesian coordinates, the basis vectors @  are constant and so their derivatives
with respect to the coordinates vanish. In general coordinate systems, however, the basis
vectors € and @ are functions of the coordinates. In order that we may differentiate
general tensors, we must therefore first consider the derivatives of the basis vectors.

Let us consider the derivative
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Since this is itself a vector, it can be written as a linear combmatlon of the basis

vectors € , k=1,2,3. If we introduce the symbol | to denote the coefficients
In this combination, we have
I@ S | | k
&
The coefficient ! I‘j is simply the k ™ component of the vector / -
Tu
Using the reciprocity relation 6 '@J — ; these 27 numbers are given (at each point in
space) by @
I TG =, S
u’
”q

nuj
Furthermore, we then have

(678) a0,

Iy’ a1
1@ ,,!q_ s
ﬁ = #8 ™ =#%$,0"6, =#$
| & |
% -° =43l &
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| k

The symbol ! iscalled a Christoffel symbol (of the second kind), but despite
appearances to the contrary, these quantities do not form the components of a
third-order tensor.

In a new coordinate system | -k . #é'
N | =@ a0 .
- . u . u” .
Using ¢=—4= and &="10@§
ou" ou
We get n 1k n " | !
ez U g
1] " n lj % u z
nu $ n 2u| Q . nu| né I
u Iulj uuli nuli nuljz
m, 1k n2, .l Wk |l no&
u u "u u .
= n mn n @ #Q T é] n q:
"u" "u" "u" u'
_ nulk 112u| o + nulk nu| num 61 ”Q
- nun nulj nu|| I nun nuli nu|j nulm
~ nulk 112u| N nulk nu| numl )
nul nu|j nu|i nun nuli nulj Im



This result shows that the ! ,‘j do not form the components of a third-order tensor
because of the presence of the first term on the right-hand side.

We note that in Cartesian coordinates it is clear from the relation

= é“'ﬁ
#Uj

that !¢ =0 forallvalues of the indices i, j and k.

In a given coordinate system we can, in principle, calculate the Fij using the relation
=& i
U’

In practice, however, it Is often quicker to use an alternative expression, which we now
derive, for the Christoffel symbol in terms of the metric tensor Y and its derivatives
with respect to the coordinates.

k
First, we note that the Christoffel symbol | ij IS symmetric with respect to the
Interchange of its two subscrlpts | and . ThIS IS easily shown, since

IQ Ir Ir ’@

al Tdiry !u!u’_'u

which gives 18 s _wkg '8
ij@(_ jiq_lui
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To obtain an expression for ! wethenuse ; =& !€and consider the derivative

'g, 16 . e N
TS T 98T =HeTe + Qe
= #Ikgu #Ijkgil

By cyclically permuting the free indices i,j,k in this relation we obtain two further equivalent
relations / O

Iy = 5%t w9
/ 0.
) ki — n | n |
/ ujl Kj gli T ij gkl
where we have used the symmetry properties of both I ; and 9i . Contracting both

sides with 9 ﬁeads to the required expression for the Christoffel symbol in terms of the
metric tensor and its derivatives, namely

| M — lgmk$”gjk gk| gij |
"] 2 %nul uj nukz
Example: cylindrical polar coordinates

(u,u*,u)=(!,",2)
ds’ =d!/?+/%d"? +dZ = g,du'du

# g,=1,0,,=!%,0,,=1,all others=0
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This implies that the only non-zero Christoffel symbols are ! 2, =! 2 and

are glven by | , ) . 922 Hg22 B 1 ”922 ~ 1 11#2 1
oA oyt 20,, "# 28 "# #

11 o 1 " 1 #2
! ]2-2 - $ g ng212 = $ ng22 = " = $#
2 "t T2g, "# 2 "#

Alternatively, we can use
& =8 =cos"® +9n"O
& =& =#3n"& +cos"e

4=8
$& 1 1
J=low M olyger=t=tog
ol $u® u ut !
—#’é)%i@—#ué{%&;—#u =#!
U

as expected.

| >, These
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(15) Covariant differentiation

For Cartesian tensors, we noted that the derivative of a scalar is a (covariant) vector.
This Is also true for general tensors, as may be shown by considering the differential of
a scalar mp

dl =——du'

1)) l

Since the du' are the components of a contravariant vector, and ! is a scalar, we
have by the quotient rule that the quantities

AY;

I

form the components of a second-order tensor. In general coordinates, however, this
IS not the case. We may show this directly by considering

AV R AVARNE VAR A VAR AT LN B N VRN
—_— = - = , = . Vi
Bruig  rut rutruk T rut ruRId &
Tu“ ru" IV 1 raut
= . + . V

fu’ 1d' rd* o rut rdfrd
The presence of the second term on the right-hand side shows that the

Iy

Iy’
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do not form the components of a second-order tensor. This term arises because the
"transformation matrix" i/ u"/!u’§changes with position in space. This is not true
In Cartesian coordinates, for which the second term vanishes, and

Iy

Iy’

IS a second-order tensor.

We can, however, use the Christoffel symbols to define a new covariant derivative of
the components of a tensor, which does result in the components of another tensor.

Let us first consider the derivative of a vector V with respect to the coordinates.
Writing the vector in terms of its contravariant components v =v @ , we find

| .
I'v IV . !
AP |

AL ATL Iy’

where the second term arises because, in general, the basis vectors €@ are not constant
(this term vanishes in Cartesian coordinates). Using the definition of the Christoffel symbol
we can write _ |

N oV

FTRETARAL

Since | and k are dummy indices in the last term on the right-hand side, we may
. . | ) .
interchange them to obtain Iy IV . H#IV &,

m_luja Y ’Q_%qu V(S
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The reason for interchanging the dummy indices is that we may then factor out e
The quantity in the bracket is called the covariant derivative , for which the standard
notation Is i

where the semicolon denotes covariant differentiation; a similar short-hand notation also
exists for the simple partial derivative, in which a comma is used instead of a semicolon.
For example v N
g 3Uj
so that _ _ _ 2, . |
\/'Ij :Vlj + | |kjvk 1 E :V-IJQ :$V

i
Using the quotient rule, it is then clear that the V.jare the (mixed) components of
a second-order tensor.

In Cartesian coordinates, all the | .k are zero, and so the covariant derivative reduces to

the simple partial derivative Loy

Iy’

Example: cylindrical polar coordinates

Contracting the definition of the covariant derivative we have

n, ,l
ok V

| I K
Vi =Vt v =—+1 v

u
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Using the Christoffel symbols we worked out earlier we find

| =1 412 3 =1L
" i '11+ 12+'13 "

I — 1 2 3
=1l 412 412 =0

21 21 22
I — 1 2 —_—
!3i_!31+!32+'33_0
and \ .
AV A AV O AV R A (G VA T A VA AV
V. = + + +—Vv = + +
! " l# Iz " o l# 1z

which is the standard expression for the divergence of a vector field in cylindrical polar
coordinates.

So far we have considered only the covariant derivative of the contravariant components
of a vector. The corresponding result for the covariant components V; may be found in
a similar way, by considering the derivative of V = Vé . We obtain

Following a similar procedure we can obtain expressions for the covariant derivatives of
higher-order tensors.

Expressing T in terms of its contravariant components we have
'T 1
T

(e a)=Ter g em 9 g /2

k u J Iuk
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Using the definition of the Christoffel symbols we can write

!T !Tij’\u A I A A A A
Iuk - Iuk q ej +TJ#:kq ej +qu #Ijkq

Interchanging dummy indices i and | in the second term and | and | in the third term on
the right-hand side this becomes

T O #1TV &
g T T (8) @

where the expression in brackets is the required covariant derivative
JaT’
U

In a similar way we can write the covariant derivative of the mixed and covariant
components. Summarizing we have

ij — ij | ] lj | j il
]—:k T',k + lkT + lkT
I — ] I ] [ n ' [ ]
Tj;k - Tj,k +. lij y jle
"o [
" jkY—;l

— n [

Tij;k - Tij,k | ilej
We note that the quantities T,j , Tji;k and T, are the components of the  same
third-rank tensor | T with respect to different tensor bases, i.e.,

VIi=T)6®6R&=T 600 ®€=T,608 ®¢

T =—+I[, T+, 7" =T+, T +T,T"
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We conclude by considering the covariant derivative of a scalar. The covariant derivative
differs from the simple partial derivative with respect to the coordinates only because
the basis vectors of the coordinate system change with position in space (hence for
Cartesian coordinates there is no difference). However, a scalar function ! does not
depend on the basis vectors at all, so its covariant derivative must be the same as its

partial derivative, I.e., "
| =

N "

=1
)

u
(16) Vector Operators in tensor form

We now use tensor methods to obtain expressions for the grad, div, curl and Laplacian
that or valid in all coordinate systems.

Gradient. The gradient of a scalar ! is simply given by
| =" @="_§&
’ #U
since the covariant derivative of a scalar is the same as its partial derivative.

Divergence. The divergence of a vector field vV in a general coordinate system is given
by I . nVi .
lv=V, =—+#
i nul ki

U . n n " 1 n
o 180G, "0, "% _ 1 "G

=59 =59

kl I 14} 1 1
2 u“ u' u Z 2 u“
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The last two terms cancel because
| I?ﬁ _g gk| _g gk|

g

where In the first equality we have interchanged the dummy indices i and |, and in the
second equality we have used the symmetry of the metric tensor.

We need one further result before we can simplify the divergence expression.

Suppose A=[a], B=[b"landthat B=Alet a=|A|l=deifwe denote the
cofactor of the element a,by 1", then the elements of the inverse matrix are given
by 1
le — _| JU
a
In which we have fixed | and explicitly written the sum over j for clarity. Partially
differentiating both side with respectto &; we then obtain

EZAU
Ja,

since @; does not occur in any of the cofactors A,

Now, If we suppose that the &; are functions of the coordinates, then so also will the
determinant a , and by the chain rule we have
-’a_!a!aij_..ij!aij_ ji!aij
kK — kK — .k ab S
'w® la, Tu Tu T'u
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Applying this result to the determinant g of the metric tensor and using g'g, =/,and
the fact that ¢" Is symmetric we obtain

/ Iq
29 gt
ue 99 gk
| 1gil et _ 1 79 _ 1 "\/6
027 ¢ 2gtuf (Jg Ut

which gives the result | \/,

A 1

lv=v, =—+ gv“: (@VK)
’ "u \/6 ”u \/5 "u

Finally, we get

Laplacian. If we replace v by 1 " inthe above divergence result we obtain the
Laplacian ! ** . Now
v=!"=ve=—+609% Vv, =—— = covaiant componets
#U #U

However, we need the contravariant components V' . These can be obtained by raising

the index using the metric tensor, to give

. . ot
v = g*v = gk
9 VW=9 0

We then obtain

e 1 HE G #
| B g#ujég/agJ #ukz
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For an orthogonal coordinate system (g diagonal since ¢ 'e; ="}), we have

'h2 0 0%
g="0 h 0¢
#0 0 hgé

so that o v
ds’ =) Wdu'du’ and vi=-t (nosimon

i

j — 1
Therefore, /g =hhh,and g’ = -7 /and we get
Vg = 1L 9 hlhzzh?’ % as expected.
hhh, ou’{ h™ Ju

Curl. The special vector form of the curl of a vector field exists only in three dimensions.
We therefore consider its more general form, which is also valid in higher-dimensional
spaces. In a general space the operation curlV is defined by

(curlv), =v. ! v,

which is an antisymmetric covariant tensor.

The difference of derivatives can be simplified since

I 1)) 11 144

v. l v’ l V. V'

V. ! V.= ! #ij"z ! / #ﬁvl =—=1 - Jl
! ! 1’ u’ U

I

noi
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using the symmetry properties of the Christoffel symbols. Thus,
AV A
(curlv), = TR, =V, "V

(17) Absolute derivatives along curves

We now consider the problem of calculating the derivative of a tensor along a curve i'f(t)
parameterized by some variable t.

Let us begin by considering the derivative of a vector V along the curve. If we
Introduce an arbltrary coordinate system U' with basis vectors @ 1=1, 2,3, then we
can write V=V @ and we have

dv_dvQ 46 _ dv9+-'édw
dt dt dt Tu® dt

where we have used the chain rule to rewrite the last term on the right-hand side.

Now, using the definition of the Christoffel symbols we obtain

v _dv, o du
— =0+ |Jk —€
dt dt dt '
Interchanging the dummy indices i and j in the last term we get
|
dv_"dv i dut%,
gt Far ¥ ara
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The expressmn In the brackets is called the absolute (or intrinsic ) derivative of the
components Vv along the curve r(t)andis usually denoted by

oV _dv _ du¢ (v )duf du”
= +IV —=| —+1,V — =V, —
ot dt dt ou” dt ©odt
so that v SV, du
= =V, —
dt ot ¢ @

Similarly, we can show that the absolute derlvatlve of the covariant components V. of a
vector is given by Iy du®
—" Vv

T

and the absolute derivatives of the contravariant, mixed and covariant components of a
second-order tensor T are ;T duf
- 1n I

T
.’T-i . duk
Tt
g df
/'t PR dt

The derivative of T along the curve I (t) may then be written in terms of, for example,
Its contravariant components as

Mg g-11 % 4
dt /It ‘
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(18) Geodesics

As an example of the use of the absolute derivative, we conclude our discussion of
tensors with a short discussion of geodesics.

A geodesic in real three-dimensional space is a straight line, which has two equivalent
defining properties. First, it is the curve of shortest length between two points and,
second, its tangent vector always points along the same direction (along the line).

Although we have explicitly considered only the familiar three dimensional space in our
discussions, much of the mathematical formalism developed can easily be generalized

to more abstract spaces of higher dimensionality in which the familiar ideas of Euclidean
geometry are no longer valid. It is often of interest to find geodesic curves in such

spaces by using the properties of straight lines in Euclidean space that define a geodesic.

Consideration of these more complicated space is left for a future seminar in general
relativity. Instead, we will derive the equation that a geodesic in Euclidean three
dimensional space(i.e., a straight line) must satisfy, in a sufficiently general way that it
may be applied with little modification, to find the equations satisfied by geodesics In
more abstract spaces.

Let us consider a curve r(s), parameterized by the arc length s from some point on
the curve, and choose as our defining property for a geodesic that its tangent vector

S
t = —
ds
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always points in the same direction everywhere on the curve, i.e.,

dt
ds

=0

This is called parallel transport  of the tangent vector, i.e., the vector is always moved

parallel to itself along the curve, which is the same as its direction not changing for a

straight line.

If we now introduce an arbltrary coordinate system
then we can write t =t'@ and we have

dt Cdu*

Writing out the covariant derivative, we obtain

(d—t‘Frl t] dl/l ]Q:O

ds ds
But since du
th =—
ds
we find that the equation satisfied by a geodesic is
du’ ., du du* _

— +1 ” =
ds’ " ds ds

uiwith basis vectors

§i=123
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Example: cartesian coordinates

All Christoffel symbols are zero. Therefore, the equations of a geodesic are

d°x d2y d*z
=0 , =0 , =0
ds? dg ds
which correspond to a straight line.
Example: cylindrical polar coordinates
The only non-zero Christoffel symbols are
|l o= 12 =172 _1
1, ="# and TR
The geodesic equations are then
d*u' du® du’ d’*# d9
PRI I P L R
ds’ ds ds ds’ ds
d*u’ , du' du” d2% 2 d#d%_
+21 7 =0
ds’ ds ds ds2 # ds ds
d*u’ d*z
=0 " —=0
ds’ ds’
On the surface of a cylinder given by ! =constantwe have
d’p d*¢ d*z
=0 , —=0 , —=0
ds’ ds’ ds’

which also corresponds to a straight line. Think if unrolling the cylinder. It is then just a
plane!
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Example: spherical polar coordinates

The metric tensor Is #1 O 0O &

9_4000 I r? 0o

$0 0 !r®dn’ 3
The non-zero Christoffel symbols are

12 ="r , L ="rdn’# , %, ="dn#cos#
1 1
| 5, = 31_? , ! fs_! gl_F , ! 23:! 22200’[#
The corresponding geodesic equations on the surface of the sphere r = congant are
d’r
- = O
ds’
ﬂ sin/ cos!/ $d# =0
ds’ %sz
2# |
d— + 2 cot! %‘d— =0
ds’ ds ds

which correspond to the equations of a great circle!
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Parallel Transport and the Riemann Tensor

If a vector is parallel transported along a curve, the geodesic equations tells us how the
vector components change during the transport.

d°u' o du’ du* 0o
d¢ ' ds ds

It also can be shown that for a covariant vector field A we have this result

— p$
A!;u;” #A!;”;u o R!u”A$

that is, in a general curved spacetime the covariant derivatives do not commute (order
IS Important). In a Cart#esian or flat space the difference would be zero. Thus the
fourth-rank tensor R/ | which is called the Riemann curvature tensor is a measure of

the curvature of spacetime. It is given by

If a vector field is parallel transported around a closed path in a curved spacetime, the
vector components do not return to the same values at the end (as they would do in flat
space). In fact, parallel transport around a parallelogram gives the result

A" =R, ,A"d%d%8

where the d!" represent the sides of the parallelogram. Thus, once again the Riemann
tensor serves as a measure of the curvature of spacetime.
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The second-rank Ricci tensor is defined by a contraction over the first and last
Indices of the Riemann tensor

R.’/J = R!u”
In addition we define the curvature scalar R by
_ pB _ poB
R=R{ =R}

Einstein Field Equation for Metric Coefficients

The gravitational field equations developed by Einstein are
, 8#G_|_

ot M

RIJ! " %gu!R:'

where the inclusion of the Riemann scalar term is necessary for energy-momentum
conservation and where T, Is a second-rank tensor that gives the energy-momentum
content of spacetime. It represent 16 coupled differential equations for the metric
coefficients Oy

An alternative form of these field equations originally proposed by Einstein but later

discarded by him as his worst mistake, is now coming back into favor. It contains the

so-called cosmological constant |

8$G
RIII %gy!R+#gH!:'l $ TI

! 4 !
u c u

It predicts the existence of a repulsive gravitational force on a cosmological scale and is
of interest now that data seems to indicated that the universal expansion is accelerating.
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Schwarzschild Solution

For a spherically symmetric point mass at the origin, the filed equations are given by

(for r > 0) .
R,"59,R=0

Schwarzschild solved these equations in 1915. His solution written as the square of the
spacetime interval looks like

" 2GM /02 N G
Cdt” | g (A s’ (d)7)

ﬁl!r&

where M is the central mass.

This solution accounts for bending of light around the sun, the advance of the perihelion
of mercury, gravitational redshift, radar time delays from signals bounced off of planets,

precession of spinning satellites in earth orbit and black holes, where the radius r=2GM
IS the radius of the event horizon or the boundary where nothing can escape the mass,

even light.
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