
Tensors  
    [These notes taken from Riley,Hobson,Bence: Mathematical Methods  because their treatment is superb with omissions, addition, expansions and digressions]

The quantitative description of physical processes cannot depend on the coordinate 
system in which they are represented. On the other hand, physical results are 
independent of the choice of coordinate system. What does this imply about the nature 
of the quantities involved in the description of physical processes? 

(1) Notation

Einstein Summation Convention --> repeated indices  are summed over

ai xi = aj xj
j

! = a1x1 + a2x2 + a3x3 + .....

aijbjk = aijbjk
j

! = ai1b1k + ai 2b2k + ai 3b3k + .....

" vi

" xi

=
" vj

" xjj
! =

" v1

" x1

+
" v2

" x2

+
" v3

" x3

+ ......

" 2#
" xi" xi

=
" 2#

" xj" xjj
! =

" 2#
" x1" x1

+
" 2#

" x2" x2

+
" 2#

" x3" x3

+ ......

Subscripts that are summed over are called dummy  subscripts and others are called 
free  subscripts.
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Defining the Kronecker Delta

δ ij =
1      if  i = j  

0      otherwise
⎧
⎨
⎩

we then have aij! jk = aij! kj = aik

bj! jk = bk

aijbjk! ki = aijbji = akjbjk

 
!
A (A1,A2,A3)

(2) Change of Basis

A vector          with components                  is written as

 
!
A = Ai öei

ê1, ê2 , ê3 öe'1, öe'2, öe'3with respect to the basis vectors                . We introduce a new basis                   
related to the old basis by the relations

öe' j = Sij öei

Sij ê' jThe coefficient           is the i th component of the vector           with respect to the 
original basis. We then have

 
!
A = A'i öe'i

or
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!
A = A'i ê'i = A'i Sji êj = Aj êj

Aj = Sji A'i
(S! 1)ij Sji A'i = (S! 1)ij Aj

(S! 1S)ii A'i = (I )ii A'i = (S! 1)ij Aj

A'i = (S! 1)ij Aj

Sijwhere we have denoted the matrix with elements             by S.

In the special case where the transformation is a rotation of the coordinate axes, the 
transformation matrix S is orthogonal  (see later example) and we have

A'i = (ST )ij Aj = Sji Aj

 
!
A ⋅

!
B

öA

Scalars, for example, the scalar or "dot" product of two vectors             (just a number), 
behave differently under transformations since they remain unchanged under any 
coordinate transformation. The behavior of linear operators is also different. If a linear 
operator           is represented by some matrix A in a given coordinate system, then in a 
new (primed) coordinate system it is represented by the new matrix

A' = S! 1AS
We will now develop a formalism to describe all of these different types of objects and 
their transformation properties. The generic name tensor  will be introduced and scalars, 
vectors  and linear operators will become tensors of zeroth, first and second order  (the 
order  or rank  corresponding to the number of subscripts  needed to specify a 
particular element of the tensor).
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öe1, öe2, öe3( ) öe'1, öe'2, öe'3( )

(3) Cartesian Tensors

We first confine our attention to rotations of Cartesian coordinate systems. We assume 
that the origin remains fixed and we define the transformation in terms of the components 
of the position vector in the old                     and new                     bases. We have

x 'i = Lij x j
In this case, the transformation matrix L is orthogonal so that

L! 1 = LT

or
L! 1L = LT L = LLT

LikLjk = " ij = Lki Lkj

This allows us to write xi = Lji x' j

since

 

!
x = xj öej = x' j öe' j

x' j öe' j ! öe'i = xj öe'i ! öej

x' j " ji = (öe'i ! öej )xj

x'i = (öe'i ! öej )xj

We then have the result
Lij = öe'i ⋅ öej
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We note that the product of two rotations is also a rotation. For example, suppose

x'i = Lij xj    and    x''i = Mij x' j

x''i = Mij L jkxk = (ML)ik xk

which implies that the product  ML  is also a rotation.

!
ê3 ! axis x3 ! axis

Example:  Let us consider a rotation of the coordinate axes through an angle       about 
the                      (or                  ) as shown in the figure below.

!

!

!
x

x

x'

x'

1

1

2
2

 

xLet the vector be           . Looking at the dotted lines we have

x'1 = x1 cos! + x2 sin!

x'2 = " x1 sin! + x2 cos!

x'3 = x3
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x'i = Lij xjThus, we have (using                  )

L =

cos! sin! 0

" sin! cos! 0

0 0 1

#

$

%
%

&

'

(
(

The corresponding inverse relations are

x1 = x'1 cos! " x'2 sin!

x2 = x'1 sin! + x'2 cos!

x3 = x'3

vixi

(4) First- and Zero-Order Cartesian Tensors

We now assume that any set of (three) quantities         , which are explicitly or implicitly 
functions of the coordinates            , that transform according to

v'i = Lijvj

form the components of a vector  or first-rank Cartesian tensor . Clearly, the 
position coordinates are components of a first-rank tensor. Since the transformation is 
orthogonal, the components of a first-rank tensor also satisfy

vi = Ljiv' j
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Examples:  Which of the following pairs of quantities are components of a first-rank 
Cartesian tensor in two dimensions?

(v1,v2) = (x2,! x1)(i)  Suppose                               are the components relative to the old axes.

We then have v '1 = L11v1 + L12v2 = cos! (x2) + sin! (" x1) = x '2
v '2 = L21v1 + L22v2 = " sin! (x2) + cos! (" x1) = " x '1

(v1,v2) = (x2,! x1)Thus,                                 is a first-rank tensor.

(v1,v2) = (x2,x1)(ii)  Suppose                               are the components relative to the old axes.

We then have v'1 = L11v1 + L12v2 = cos! (x2) + sin! (x1) " x'2
v'2 = L21v1 + L22v2 = #sin! (x2) + cos! (x1) " x'1

(v1,v2) = (x2,x1)Thus,                             is not a first-rank tensor.

(v1,v2) = (x1
2,x2

2)(iii)  Suppose                           are the components relative to the old axes.

We then have v'1 = L11v1 + L12v2 = cos! (x1
2) + sin! (x2

2) " x'1
2 = cos! (x1) + sin! (x2)( )2

v'2 = L21v1 + L22v2 = #sin! (x1
2) + cos! (x2

2) " x'2
2 = #sin! (x1) + cos! (x2)( )2

Thus,                             is not a first-rank tensor.(v1,v2) = (x1
2,x2

2)
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Examples of first-rank tensors (vectors) are position, velocity, momentum, acceleration 
and force.

We now consider quantities that are unchanged by a rotation of the axes. They are called
scalars  or tensors or rank zero . They contain only one element. An example is the 
square of the distance of a point from the origin

r 2 = x1
2 + x2

2 + x3
2

Under a transformation we get

r '2 = x'1
2+ x'2

2+ x'3
2 = r 2

r2  r
2 =

!
x !

!
x

 
!
A!

!
B

so the it is an invariant . We note that              is a scalar product, i.e.,             . It is 
easy to show that any scalar product                 is invariant under the transformation and 
is a tensor of rank zero.

 
!
A'!

!
B' = A'i B'i = Lij Aj LikBk = Lji

T LikAj Bk = (LT L) jk Aj Bk = " jkAj Bk = Aj Bj =
!
A!

!
B

We can use a scalar to generate a tensor of rank one. Consider the new object (the 
gradient )

 
vi =

! "
! xi

#
!
v = $ "

!where          is a scalar quantity. Under a rotation we get

v'i =
! "
! xi

#

$%
&

'(

'
=

! " '
! x'i

=
! "

! x'i
=

! xj

! x'i

! "
! xj

= Lij

! "
! xj

= Lijvj

so we have constructed a first-rank tensor.
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Now let us consider the quantity (the divergence )

 
s = ! "

!
v =

#vi

#xi

 
!
vwhere            is a first-rank tensor.

Under a rotation we get

s' =
! vi

! xi

"

#$
%

&'

'

=
! v'i
! x'i

=
! xj

! x'i

! v'i
! xj

=
! xj

! x'i

! (Likvk )
! xj

= Lij Lik

! vk

! xj

  = Lji
T Lik

! vk

! xj

= (LT L) jk

! vk

! xj

= ( jk

! vk

! xj

=
! vj

! xj

= s

so it is an invariant or zero rank tensor or scalar.

Tij

(5) Second- and Higher-Order Cartesian Tensors

We now define a second-rank Cartesian tensor  as follows: the elements        form the 
components of a second rank Cartesian tensor if

T 'ij = LikLjlTkl      and       Tij = Lki LljT 'kl

Tij ....kGeneralizing, we say that the elements              form the components of an n th rank 
Cartesian tensor (where n = the number of indices) if

T 'ij ...k = LipLjq.....LkrTpq....r      and       Tij ....k = LpiLqj .....LrkT 'pq....r

(Note order of indices)
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Tij!" #$
Tij

vi vi[ ]

In 3 dimensions, an nth rank Cartesian tensor has 3n components.

Since a second-rank tensor has two indices, it is natural to display its components in 
matrix  form. The notation             is used, as well as T, to denote the matrix having  
          as the element in the i th row and j th column. We also denote the column matrix  
containing the elements       of a vector by         .

 
!
TWe can think of a second rank tensor         as some geometrical entity and the matrix 

containing its components as a representation of the tensor with respect to a particular 
coordinate system.

Let us look more closely at the transformation rule for second rank tensors using its 
matrix representation. We have

T 'ij = LikLjlTkl = LikTkl L jl = LikTkl (L
T )lj

T ' = LTLT = LTL! 1

Tij = Lki LljT 'kl = LkiT 'kl Llj = (LT )ij T 'kl Llj

T = LTT 'L = L! 1T 'L

Thus, the matrix representing a second rank tensor behaves in the same way under 
orthogonal transformations as the matrix representation of a linear operator.

Not all  linear operators, however, are second rank tensors.
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ui    and    vi
 
!
u   and    

!
v

Tij

Examples

(i)  The outer product of two vectors.  Let                           , i = 1,2,3 be the 
components of two vectors (first rank tensors)                       and consider the set of 
quantities             defined by

Tij = uivj

Tij  
!u    and    

!v
Tij

The set           are called the components of the outer product of                        . Under 
rotations the components of             become

T 'ij = u'i v' j = LikukLjlvl = LikLjlukvl = LikLjlTkl

which shows that they do transform as the components of a second rank tensor.

We denote the outer product, without reference to a coordinate system, by the symbol

 
!
T =

"
u !

"
v

TijThis tells us the basis to which the components        of the second rank tensor refer. Using

 
!
u = ui öei      and      

!
v = vi öei

we have
T = ui öei ! vj öej = uivj öei ! öej = Tij öei ! öej

T 'ij  
!
TClearly, the quantities           are the components of the same tensor       but referred to a 

different coordinate system, i.e.,

 
!
T = Tij öei ! öej = T 'ij öe'i ! öe' j
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vi
xj

(ii) The gradient of a vector.  Suppose that      represents the components of a vector. 
We consider the quantities generated by forming the derivatives of each      , i=1,2,3, 
with respect to each         , j=1,2,3, i.e.,

Tij =
! vi

! xj

vi

We then have

T 'ij =
! v 'i
! x ' j

=
! (Likvk )

! xl

! xl
! x ' j

= Lik
! vk
! xl

! xl
! x ' j

= Lik
! vk
! xl

Ljl = LikLjlTkl

 
!
T = !

"
vwhich says that we have a second rank tensor               . (not funny symbol)

x 'i xi

A test of whether any given set of quantities forms the components of a second rank 
tensor can always be made by direct substitution of the              in terms of the     
and then compared with the transformation rule(see example).

TijExample:  Show that the elements           given by

T = Tij!" #$=
x2

2 %x1x2

%x1x2 x1
2

&

'(
)

*+

!
öe3 ! axis
are the components of a second rank tensor. Let us consider a rotation by      about the 
             . The direct substitution using

x'1 = x1 cos! + x2 sin!

x'2 = " x1 sin! + x2 cos!

x'3 = x3
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c = cos!    and   s = sin!gives (using                                              )

T '11 = x'2
2 = (! sx1 + cx2)2 = s2x1

2 ! 2scx1x2 + c2x2
2

T '12 = ! x'1 x'2 = ! (cx1 + sx2)(! sx1 + cx2) = scx1
2 + (s2 ! c2)x1x2 ! scx2

2

T '21 = ! x'1 x'2 = ! (cx1 + sx2)(! sx1 + cx2) = scx1
2 + (s2 ! c2)x1x2 ! scx2

2

T '22 = x'1
2 = (cx1 + sx2)2 = c2x1

2 + 2scx1x2 + s2x2
2

The transformation equations using

L =

cos! sin! 0

" sin! cos! 0

0 0 1

#

$

%
%

&

'

(
(

give

T '11 = L1kL1lTkl = ccx2
2 + cs(! x1x2) + sc(! x1x2) + ssx1

2

T '12 = L1kL2lTkl = c(! s)x2
2 + cc(! x1x2) + s(! s)(! x1x2) + scx1

2

T '21 = L2kL1lTkl = (! s)cx2
2 + (! s)s(! x1x2) + cc(! x1x2) + csx1

2

T '22 = L2kL2lTkl = (! s)(! s)x2
2 + (! s)c(! x1x2) + c(! s)(! x1x2) + ccx1

2

which are the same. Thus, we have a second rank tensor.
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Tij

 


v = (x2,! x1)

The same result can be proved more easily by realizing that the        are, in fact, the 
components of the outer product of the vector                      (we proved earlier that this is 
a vector or first rank tensor) with itself, i.e.,

 


v !

v = vivj öei ! öej = Tij öei ! öej

Tij = vivj

T11 = v1v1 = x2
2                 T12 = v1v2 = " x1x2

T21 = v2v1 = " x1x2           T22 = v2v2 = x1
2

Another example of the transformation of tensors:

45¡Consider a rotation through         . The transformation array is given by

a[ ] = cos45° sin45°
−sin45° cos45°
⎡

⎣
⎢

⎤

⎦
⎥ =

2
2

1 1

−1 1
⎡

⎣
⎢

⎤

⎦
⎥

Assume that we have a vector (tensor of rank 1)

V[ ] =
1

2
!

"
#

$

%
&

then

or

V '[ ] = a[ ] V[ ] ! V 'i = aijVj
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V '1 = a11V1 + a12V2 = 3
2

2

V '2 = a21V1 + a22V2 =
2

2

V '[ ] =
2

2

3

1
!

"
#

$

%
&

For vectors  (rank 1 tensors) this is the same rule as for matrix multiplication , i.e.,

V '1
V '2

!

"
#

$

%
&=

2
2

1 1

' 1 1
!

"
#

$

%
&

1

2
!

"
#

$

%
&=

2
2

3

1
!

"
#

$

%
&

Now consider the transformation of the rank 2 tensor

T[ ] =
4 6

3 1
!

"
#

$

%
&

We have
T '[ ] = a[ ] a[ ] T[ ] ! T 'ij = airajsTrs

This is NOT matrix multiplication (look at indices)! We can, however, cast the equation as a 
matrix multiplication by a rearrangement

T 'ij = airajsTrs = airTrsajs = airTrs(asj )
T = airTrs(asj )

! 1

T ' = [a]T[a]! 1
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This IS  matrix multiplication!

We have T '11 = T11a11a11 + T12a11a12 + T21a12a11 + T22a12a12 = 7

T '12 = T11a11a21 + T12a11a22 + T21a12a21 + T22a12a22 = 0

T '21 = T11a21a11 + T12a21a12 + T21a22a11 + T22a22a12 = ! 3

T '22 = T11a21a21 + T12a21a22 + T21a22a21 + T22a22a22 = ! 2
or

T '[ ] =
7 0
! 3 ! 2

"

#
$

%

&
'

The matrix multiplication relation works also (but is not very useful), i.e.,

T '[ ] = a[ ] T[ ] a[ ]T =
2

2

1 1

! 1 1
"

#
$

%

&
'

4 6

3 1
"

#
$

%

&
'

2
2

1 ! 1

1 1
"

#
$

%

&
'

     =
1
2

1 1

! 1 1
"

#
$

%

&
'

10 2

4 ! 2
"

#
$

%

&
' =

1
2

14 0

! 6 ! 4
"

#
$

%

&
' =

7 0

! 3 ! 2
"

#
$

%

&
'

as expected.
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(6) The Algebra of Tensors

Addition and Subtraction

If two tensors have the same  rank, then they can be added and subtracted using their 
components

Sij ....k = Vij ....k +Wij ....k

Dij ....k = Vij ....k ! Wij ....k

The new objects are tensors of the same rank.

Vij ....k
Vji....k

Switching Indices

If a pair of indices are switched the new object is a tensor of the same rank,i.e., if  
represents a tensor, then           represents a tensor of the same rank.

Vji ....k = Vij ....k Vij ....k
Vji ....k = −Vij ....k

Vij ....k

If                        for all components, then             is said to be symmetric  with respect 
to that pair of indices (or simply symmetric for second rank tensors). If                            
for all components, then              is said to be antisymmetric  with respect to that pair 
of indices (or simply antisymmetric for second rank tensors).

Sij ....k Aij ....k

An arbitrary tensor is neither symmetric nor antisymmetric, but can always be written as 
the sum of a symmetric tensor            and an antisymmetric tensor             , i.e.,

Tij ....k =
1
2

(Tij ....k + Tji ....k ) +
1
2

(Tij ....k ! Tji ....k )

       = Sij ....k + Aij ....k
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The outer product discussed earlier is an example of a  kind of "multiplication"  of two 
tensors producing a tensor of higher rank. Our illustration had two first rank tensors 
producing a second rank tensor. In general, the outer product of an n th rank tensor with 
an mth rank tensor produces an (n+m) th rank tensor.

We can produce a tensor of smaller rank from a tensor of larger rank using the 
contraction  operation. The contraction operation consists of making two indices equal 
(and thus summing over that index). This reduces the number of indices (and hence the 
rank of the tensor) by two. 

Tij ..l ..m..k
Example:  Let                   be the components of an n th rank tensor. This implies that

 

T 'ij ..l ..m..k = LipLjq......Llr .....Lms....Lkn

n factors
! "# # ## $# # # #

Tpq....r ...s...n

If we contract on the indices l and m (set them both equal to l) we get

 

T 'ij ..l ..l ..k = LipLjq......Llr .....Lls....Lkn

n factors
! "# # ## $# # # #

Tpq....r ...s...n

= LipLjq......! rs....LknTpq....r ...s...n

= LipLjq.......Lkn

(n" 2) factors
! "## $# #

Tpq....r ...r ...n
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Tij ..l ..l ..kwhich says that the                    are the components of a different Cartesian tensor of 
rank (n-2).

Tii

For a second rank tensor, the process of contraction is the same as taking the trace of 
the corresponding matrix. Therefore, the trace          is a zero rank tensor (or scalar) 
and is invariant under rotations.

Tij = uivj Tii = uivi

The scalar product or two vectors can be recast in tensor language as forming the outer 
product of two vectors (first rank tensors)                       and then contracting       
to form the scalar  which is invariant under rotation as we found earlier.

ui[ ] Bij!" #$
vi[ ]

Another familiar operation that is a special case of the contraction operation is the 
multiplication of a column vector             by a matrix           to produce another column 
vector          , i.e.,

Bijuj = vi

Tijj Tijk

Bij   and   uj

We can think of this as the contraction           of the third rank tensor             formed 
from the outer product of                    .

 
!
B   and   

!
C

(7) The Quotient Law

If we know that                          are tensors and also that

Apq...k...mBij ....k.....n = Cpq.....mij ...n

Apq...k...m  
!
Adoes this imply that the                   also form components of a tensor       ?
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!
A,

!
B   and   

!
C mth , nth    and   (m + n ! 2)th

 
!
A and  

!
B

Here                          are respectively of                                               rank. The 
subscript k that has been contracted can be any of the subscripts in                   
independently.

Apq...k...m

The quotient law states that if the above component relation holds in all rotated 
coordinate systems, then the                  do form the components of a tensor.

We will prove it for m = n = 2 only, but it should be clear that the principle of the proof 
holds for arbitrary m and n (just the algebra gets worse).

Suppose we start with ApkBik = Cpi

Bik   and  Cpi Apk

A'pk

where                      are arbitrary second rank tensors. Under a rotation the set           
(whether they are a tensor or not) transforms to a new set                 as follows

A'pk B'ik = C'pi

= LpqLijCqj = LpqLij Aql Bjl

= LpqLij Aql Lmj Lnl B'mn = LpqLij Lmj Lnl Aql B'mn

= Lpq! imLnl Aql B'mn

= LpqLnl Aql B'in

This can be rewritten (changing dummy index labels) as

(A'pk! LpqLkl Aql )B'ik = 0
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Bik B'ikSince          and hence            is an arbitrary tensor, we must have

A'pk = LpqLkl Aql

Apkwhich says that the              are the components of a second rank tensor. The same result 
holds if we start with ApkBki = Cpi

Using the quotient law to test whether a given set of quantities is a tensor is generally 
much more convenient than the direct substitution method we used earlier. A particular 
way in which it is applied is by contracting the given set of quantities, having n subscripts, 
with some arbitrary n th rank tensor and determining whether the result is a scalar.

Let us go back to an earlier example, namely,

T = Tij!" #$=
x2
2 %x1x2

%x1x2 x1
2

&

'(
)

*+

xi xj TijThe outer product            is a second rank tensor. Contracting it with the           we get

Tij xi xj = x2
2x1

2 ! x1x2x1x2 ! x1x2x2x2 + x1
2x2

2 = 0

Tijwhich is clearly invariant. Thus, by the quotient theorem         must also be a tensor. Very 
powerful!

! ij
! ijk(8) The Tensors               and            

Since
! 'kl = Lki Llj! ij = Lki Lli = ! kl δ ij  is a second rank tensor.
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! ijkNow consider the three-subscript Levi-Civita symbol           where we have

! ijk =

+1     if   i,j,k  is an even permutation of 1,2,3
" 1     if   i,j,k  is an odd permutation of 1,2,3 
0            other wise                                      

#

$
%

&
%

We then have
! 'lmn = Lli Lmj Lnk! ijk

ABefore proceeding, we note that for a 3x3 matrix A, the determinant           satisfies

A ! lmn = Ali Amj Ank! ijk

Example:  Evaluate the determinant of the matrix

A =

2 1 ! 3

3 4 0

1 ! 2 1

"

#

$
$

%

&

'
'

Setting l = 1, m = 2, and n = 3 we get

A ! 123 = A = A1i A2 j A3k! ijk

         = A11A22A33! 123 + A11A23A32! 132 + A12A21A33! 213 + A13A21A32! 312 + A12A23A31! 231 + A13A22A31! 321

         = (2)(4)(1) " (2)(0)(" 2) " (1)(3)(1) + (" 3)(3)(" 2) + (1)(0)(1) " (" 3)(4)(1) = 35

Now, using the above relation, we get

! 'lmn = Lli Lmj Lnk! ijk = L ! lmn
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Since L is orthogonal, its determinant is 1 and thus we have

! 'lmn = ! lmn

! ij
ε ijk

Thus, we have a third rank tensor. 

These two tensors also have exactly the same components  in every coordinate 
system.

Many of the familiar expressions of vector calculus can be written as contracted tensors 
involving            and             .

Examples:

(i)
 
!
a =

!
b !

!
c " ai = #ijkbjck so that the cross-product produces a vector.

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

 
!
a !

!
b = aibi = " ijaibj

! 2" =
#2"

#xi#xi

= $ij

#2"
#xi#xj

 
(! "

!
v)i = #ijk

$vk

$xj

 
! (! "

!
v)[ ]i

=
#

#xi

#vj

#xj

$

%
&

'

(
) = * jk

#2vj

#xi#xk

 
! " (! "

!
v)[ ]i

= #ijk

$
$xj

#klm

$vm

$xl

%

&'
(

)*
= #ijk#klm

$2vm

$xj$xl

 
(
!
a !

!
b) !

!
c = " ijci#jklakbl = #iklciakbl

23



! !An important identity between the       and        tensors is

! ijk! klm = " il" jm # " im" jl

This says that the two fourth rank tensors have identical components.

This allows us to find an alternative expression for

 

! " (! "
!v)[ ]i = #ijk#klm

$2vm
$x j$xl

= %il%jm &%im%jl( ) $2vm
$x j$xl

                     =
$2vj

$xi$x j
&

$2vi
$x j$x j

= ! (! '
!v)[ ]i &! 2vi

! " (! "
!v) = ! (! '

!v) &! 2!v

That would be very cumbersome to prove using standard methods!

We can also show that
! ijk! pqr =

" ip " iq " ir

" jp " jq " jr

" kp " kq " kr

! kk = 3
The identity above is then a special case where (p, q, r) = (k, l, m). If we contract the 
identity by setting j = l and using              we get

! ijk! ijm = 3" km # " km = 2" km

and contracting once more by setting k = m we get
! ijk! ijk = 2" kk = 6
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mi  
!
ri

 
!
!

 
!
J

(9) Physical Applications of Tensors

Mechanics Example

Consider a system of N rigidly connected point particles each characterized by a 
mass         and a position vector           with respect to an origin O. We suppose that the 
system is rotating about an axis through O with angular velocity         .

The angular momentum            about O of the system is given by

 

!
J =

!
ri

i =1

N

! "
!
pi

where
 
!
pi = mi

!
vi      and     

!
vi =

!
! "

!
ri

Substitution gives
Jl = mi

i =1

N

! " lmnximvin = mi
i =1

N

! " lmnxim" npq# pxiq

   = mi
i =1

N

! " lmn" npqximxiq# p = mi
i =1

N

! ($lp$mq %$lq$mp)ximxiq# p

   = mi
i =1

N

! ximxim$lp %xipxil( )# p = mi
i =1

N

! ri
2( )$lp %xipxil( )# p

   = I lp# p
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I lp  
!
J   and   

!
!

 
!
!

where           is a symmetric second rank tensor(by the quotient rule since                    are        
vectors) which depends only on the distribution of the masses in the system and not on 
any properties of         . It is called the inertia tensor  of the system with respect to O.

For a continuous distribution of mass this becomes

I = I ij!" #$=

(y2 + z2)%dV& ' xy%dV& ' xz%dV&
' xy%dV& (z2 + x2)%dV& ' yz%dV&
' xz%dV& ' yz%dV& (x2 + y2)%dV&

(

)

*
*
*
*

+

,

-
-
-
-

! (x,y,z)where                     is the mass density function and dV = dxdydz. The diagonal elements 
are called the moments of inertia  and the off-diagonal elements without the minus signs 
are called the products of inertia .

Similar algebra gives us an expression for the kinetic energy of the system.

T =
1
2

mi
i =1

N

! vinvin = mi
i =1

N

! " njk# j xik" npq# pxiq =
1
2

mi
i =1

N

! " njk" npqxikxiq# j# p

  = mi
i =1

N

! ($jp$kq %$jq$kp)xikxiq# j# p =
1
2

mi
i =1

N

! xikxik$ jp %xipxij( )# j# p

  = mi
i =1

N

! ri
2( )$jp %xipxij( )# j# p =

1
2

I jp# j# p =
1
2

Jp# p
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!
!

This shows that the kinetic energy of the rotating body can be expressed as a scalar 
obtained by twice contracting          with the inertia tensor.

Since I is a real, symmetric second rank tensor representable by a real, symmetric 3x3 
matrix(means it is always possible to diagonalize it), it possesses three mutually 
perpendicular eigenvectors (or principal axes ) with respect to which the inertia tensor 
is diagonal, with diagonal entries equal to the eigenvalues of the matrix (you will study 
these tensors in Physics 111).
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(10) Curvilinear Coordinates

First we mention cartesian coordinate systems. We have

basis vectors = öei     ,   i=1,2,3
These systems have intuitive appeal since they
(1) make use of straight lines
(2) make use of perpendicular(orthogonal) directions of flat space
(3) vector differential/integral operators take their simplest forms

However, many physical systems are not naturally rectangular, i.e., the surface of a sphere. In this 
case the rectangular coordinates of a point on its surface are changing from point to point, but in 
spherical polar coordinates the surface is specified simply as a surface of constant radius r. Thus, 
the choice of coordinate systems can be important in the description of a physical system. A 
good choice may lead to greater simplification and insight in the description of the physical 
system. There is, of course, a price to pay for this improvement. Coordinate systems other than 
rectangular are less intuitive and harder to visualize. Integral and differential operators have more 
complicated forms. We now show that the task is quite tractable, perhaps even enjoyable, when 
approached from the right point of view. It turns out to just be a matter of changing directions 
and changing scales as we shall now see.

(u1,u2,u3)

(x,y,z) = (x1,x2,x3)
ui = ui (x,y,z)

Generalized Coordinates
We begin by noting that any 3 independent variables                can be used to form a coordinate 
system if they uniquely  specify the position of a point in space. For convenience we start with 
the familiar rectangular coordinates                            and specify the new generalized coordinates 
by the relations                  . For the transformation between these two coordinate systems to be
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xi = xi (u1,u2,u3)well-deÞned and unique , it is necessary that the inverse  relations                          also 
exist, and that all of these relations are single-valued functions .

(r,! ," )Example: spherical polar coordinates             :

Here we have the relations

r = x2 + y2 + z2( )1/2

! = tan" 1
x2 + y2( )1/2

z

#

$
%
%

&

'
(
(

, ) = tan" 1 y
x

#
$%

&
'(

and the inverse relations

x = r sin! cos" , y = r sin! sin" , z = r cos!

A coordinate axis  now becomes a coordinate curve  along which only one of the 
coordinates is changing (same as in the cartesian case). The coordinate curves in spherical polar 
coordinates are:
! ! ! radii 

 
     (only r varies, ! , "  = constant)
! ! ! longitudes 

 (only !  varies, r, "  = constant) 
! ! ! latitudes 
 
 (only "  varies, r, !  = constant)

It is easy to find explicit algebraic expressions describing these coordinate curves because by 
definition only one of the coordinates changes along such a curve, while the others remain 
unchanged.

 
!
r = r öer = r öe(

!
r )For example, if                             represents a coordinate curve, then the equations
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!
!r

! r
= öer ,

!
!r

! "
= r

! öer
! "

,
!

!r
! #

= r
! öer
! #

describe the vectorial changes along this coordinate curve.

hi
öei

We state a rule:  


 Each of these derivatives is a vector in space;  it has a length      and a direction       , where 

 i = r, !  or " .   We can readily obtain their explicit forms with the help of rectangular 

 coordinates, where the basis vectors are constants:

 

∂ !
r

∂r
=

∂
∂r

(xöex + yöey + zöez) = sinθ cosφöex + sinθ sinφöey + cosθöez = hr öer

∂ !
r

∂θ
=

∂
∂θ

(xöex + yöey + zöez) = r cosθ cosφöex + r cosθ sinφöey − r sinθöez = hθ öeθ

∂ !
r

∂φ
=

∂
∂φ

(xöex + yöey + zöez) = −r sinθ sinφöex + r sinθ cosφöey = hφ öeφ

We then have (taking scalar products)

hr
2 = sin2 ! cos2 " + sin2 ! sin2 " + cos2 ! =1# hr =1

h!
2 = r 2 (cos2 ! cos2 " + cos2 ! sin2 " + sin2 ! ) = r 2 # h! = r

h"
2 = r 2 (sin2 ! sin2 " + sin2 ! cos2 " ) = r 2 sin2 ! # h" = r sin!

Now

 
d
!
r =

∂ !
r

∂r
dr +

∂ !
r

∂θ
dθ +

∂ !
r

∂φ
dφ = hr öerdr + hθ öeθdθ + hφ öeφdφ = dröer + rdθöeθ + r sinθdφöeφ
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(u1,u2,u3)

which should look familiar from our earlier discussions.

In the general case                  we have

 
d
!
r =

!
!
r

! u1
du1 +

!
!
r

! u2
du2 +

!
!
r

! u3
du3

where

 

!
!
r

! ui

=
!

!
r

! ui

=
!

! ui

(xêx + yêy + zêz) =
! x
! ui

êx +
! y
! ui

êy +
! z
! ui

êz

      = vector (actually the tangent vector)
      =hi(

!
r )êi (

!
r )

so that

 

hi (
!
r ) =

! x
! ui

"

#$
%

&'

2

+
! y
! ui

"

#$
%

&'

2

+
! z
! ui

"

#$
%

&'

2(

)
*
*

+

,
-
-

1/2

and the displacement vector  is

 
d
!
r = hi (

!
r )öei (

!
r )dui

i
! = öei (

!
r )dsi

 öei (
!
r )

 
!
r  dsi = hi (

!
r )dui

 hi (
!
r )

ui

Thus,           defines the coordinate curve  since it gives the unit vector tangent to the curve 
at       .  The infinitesimal scalar displacement                       gives the displacement along this 
coordinate curve. The function         is a scale factor .  It ensures that the displacement has the 
dimensions of length, independent of the dimensions of the      .

All other geometrical quantities can be calculated readily in terms of these scale factors and unit 
tangent vectors.
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The infinitesimal scalar displacement ds along a path in space is

 
(ds)2 = d

!
r !d

!
r = (hi öeidui )

ij
" !(hj öejduj ) = gijduiduj

ij
"

gij = hihj (öei ! öej )where                          gives the so-called metric coefÞcients  of the generalized coordinate 
system.

The differential elements of surface and volume can be written down as

 
d

!
Aij = d

!
! ij =

"
!
r

" ui

dui

#

$%
&

'(
)

"
!
r

" uj

duj

#

$
%

&

'
( = hihj (öei ) öej )duiduj = (öei ) öej )dsidsj

(Think of the  Cartesian case to understand this result. What does the direction mean?) and

dτ = dV = ds1ds2ds3öe1(öe2 × öe3)

where the last factor is the volume of a unit parallelpiped.

 
!
r  öei (

!
r )

Orthonormal Curvilinear Coordinates

If at every point     , the three unit tangents             are orthogonal to one another(mutually 
orthogonal), that is, if

 
öei (

!
r ) ! ej (

!
r ) = " ij

or equivalently, if

 

!
!
r

! ui

"
!

!
r

! uj

# $ij

ui

 öe1(
!
r ), öe2(

!
r ), öe3(

!
r )

 
!
r

then the generalized coordinates        are said to form an orthogonal curvilinear coordinate 
system . In this system, the unit tangents                           form a cartesian coordinate system at 
every point       (not the same one at different points). The only complication is that their
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orientation changes from point to point (different than in the case of a cartesian system) in 
space. In such orthogonal systems, the metric coefficients

gij = hi
2! ij " diagonal    and     hi

2 =
#x
#ui

$

%&
'

()

2

+
#y
#ui

$

%&
'

()

2

+
#z
#ui

$

%&
'

()

2

and the squared length
(ds)2 = ds2 = hi

2

i
! (dui )

2 = (dsi )
2

i
!

contains NO CROSS TERMS  (so things can get worse!).

The differential surface/volume elements are

 

d
!
! ij = dsidsj " ijk

k
# öek

d$ = ds1ds2ds3

dsi dxiThus, the          are very much like the rectangular coordinates        .   However, the tangent 
directions change from point to point, except in the case of rectangular coordinates for which 
they are constant unit vectors.

Examples:  Spherical polar coordinates (orthogonal)

 

hr = 1, h! = r , h" = r sin! , öer =
1
hr

#

r

#r
, öer =

1
h!

#

r

#!
, öe" =

1
h"

#

r

#"

sin! cos" öex + sin! sin" öey + cos! öez = öer , cos! cos" öex + cos! sin" öey $ sin! öez = öe!

$sin" öex + cos" öey = öe"

öer %öe! = öer %öe" = öe" %öe! = 0 , öer & öe! = öe" , öe" & öer = öe! , öe! & öe" = öer
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In addition,

 

d
!
r = hrdröer + hθdθöeθ + hφdφöeφ

dsr = dr , dsθ = rdθ , dsφ = r sinθdφ

ds2 = dr2 + r 2dθ 2 + r 2 sin2θdφ2

and

 

d

! r" = rdrd" ê# = $d


! " r , d


! " # = r 2 sin" d" d#êr = $d


! #" , d


! #r = r sin" drd#ê" = $d


! " r

d%= ds1ds2ds3 = r 2 sin" drd" d#

The volume element looks like

Does it work for the cartesian coordinates 
(x,y,z) ?

 

!
!
r

! x
=

!
! x
(xêx + yêy + zêz) = êx ,

!
!
r

! y
= êy ,

!
!
r

! z
= êz

hx = hy = hz =1 " d
!
r = dxêx + dyêy + dẑez =

!
!
r

! x
dx+

!
!
r

! y
dy+

!
!
r

! z
dz

dsx = dx , dsy = dy , dsz = dz" ds2 = dx2 + dy2 + dz2

d
!
# xy = dxdyêx $ êy = dxdyêz , d

!
# yz = dydẑex , d

!
# zx = dzdxêy

d%= dxdydẑex &(êy $ êz) = dxdydz

Clearly it does!
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!
r (t)Finally, remember that the coordinate          of a physical event is a function of the time t. It can 

be differentiated wrt t to give

 

!v =
d!r
dt

   and   !a =
d!v
dt

=
d 2 !r
dt 2

If cartesian coordinates are used, then their will only be contributions from the time derivatives 
of the components and not the unit vectors (since they are constant in time). But for curvilinear 
coordinates we get contributions from

d
dt

(components) +
d
dt

(unitvectors)

because the unit vectors are also changing in time.

Vector Differential Operators in Curvilinear Coordinates
Now, finally, what do                              look like? Now,                           = position in space and 
define a scalar field                      and a vector field                     . The quantity                     
describes, at every point      , a vector that can be decomposed into components along the local unit 
tangents          , that is

 ! " , ! #
!
V, ! $

!
V  

!
r = (u1,u2,u3)

! (u1,u2,u3)  
!
V(u1,u2,u3) ∇φ(u1,u2,u3)

 
!
r

 öei (
!
r )

 
! " (

!
r ) = öei (

!
r )

i
# ! "( )i

= öei (
!
r )

i
# ! " $öei (

!
r )( )

If we expand the gradient in rectangular coordinates(we can use any) then we get

 
∇φ( )i =

∂φ
∂x

öex +
∂φ
∂y

öey +
∂φ
∂z

öez
⎛
⎝⎜

⎞
⎠⎟
⋅ öei (

!r )

From earlier we have

 
d!r = hi

i
! (

!r )öei (
!r )dui = öei (

!r )dsi
i

!
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and then

 
öex ! öei = öex !

"
!
r

" si

= öex !
" (xöex + yöey + zöez)

" si

=
" x
" si

Therefore,
! "( )i

=
#"
#x

#x
#si

+
#"
#y

#y
#si

+
#"
#z

#z
#si

$

%&
'

()
=

#"
#si

or

 
! " (u1,u2,u3) = öei

i
# (

!
r )

$"
$si

= öei
i

# (
!
r )

1
hi

$"
$ui

ui ! " (u1,u2,u3)

 öei (
!
r ) dsi = hidui

This implies that the      in                    can be treated as if they were rectangular coordinates 
if the local tangents            are used together with local displacements                  .

Example:
! " (r,#," ) = öer

$
$r

+ öe#

1
r

$
$#

+ öe"

1
r sin#

$
$"

%

&'
(

)*

In general,

 
! uj (

!
r ) = öei

i
" (

!
r )

1
hi

#uj

#ui

= öei
i

" (
!
r )

1
hi

$ij =
öej (

!
r )

hj

which implies that a generalized coordinate curve has a natural curliness  of

 
! " öej = #hj!

1
hj

$

%
&

'

(
) " öej (

!
r )

Consider

 

! "
!
V = ! "

j
#

öej

hj

hjVj

$

%
&

'

(
) = ! "

öej

hj

$

%
&

'

(
) hjVj + ! hjVj( ) "

öej

hj

*

+
,
,

-

.
/
/j

#

         = ! hjVj( ) "
öej

hjj
# = 0ijk

ijk
# 1

hj

1
1si

hjVj( ) öek
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This implies that we get the usual cartesian contribution

! Vj

! si
plus an extra term proportional to Vj

hj

! hj

! si

arising from the curliness of the coordinate curve.

We can also write

 
! "

!
V = #ijk

ijk
$ 1

hihj

%
%ui

hjVj( ) öek =
1

h1h2h3

#ijk
ijk
$ %

%ui

hjVj( )hk öek

Similarly, we can write

! " um! un( ) = (! um) " ! un( ) + um! " ! un( ) = (! um) " ! un( ) =
öem

hm

#

$%
&

'(
"

öen

hn

#

$%
&

'(
= ) mnk

öek

hmhnk
*

where m must be different from n in every term, which implies that

! " u1! u2( ) = #12k

öek
h1h2k

$ =
öe3

h1h2

= %! " u2! u1( ) & ! '
öe3

h1h2

= 0 = ! '
öe3h3

h1h2h3

since div(curl()) = 0 always. Generalizing we have

0 = ! "
êihi

h1h2h3
= ! "

êi

pi

, pi =
h1h2h3

hi

Therefore, we get

0 = ! "
öei

pi

= !
1
pi

#

$%
&

'(
" öei +

1
pi

! " öei ) ! " öei = * pi !
1
pi

#

$%
&

'(
" öei = * pi

+
+si

1
pi

#

$%
&

'(
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In general, this does not vanish. This implies that the curliness of the coordinate curve 
contributes to its divergence. Now we put all the pieces together and get

 

! "
!
V = ! "

i
# öeiVi( ) = ! "

öei
pi

$

%&
'

()
piVi

*

+
,

-

.
/

i
# = ! "

öei
pi

$

%&
'

()
piVi + ! (piVi ) "

öei
pi

*

+
,

-

.
/

i
#

        = ! (piVi ) "
öei
pi

*

+
,

-

.
/

i
# =

1
pii

# 0
0si

piV( )

Finally, we have

 

!
V = ! " # Vi = pi

$"
$si

# ! 2" =
1
pii

% $
$si

pi
$

$si

&

'(
)

*+
"

dV = dxdydz
dV = rdrd! dz
dV = r 2 sinθdrdθdφ

Jacobians

For different coordinate systems we have

 
 
 cartesian
 
 


 
 
 cylindrical polar


 
 
 spherical polar
 

How do we convert between area and volume elements in different coordinate 
systems?

The rules are:
(x,y) ! (q,t) dA= J dqdt
(x,y,z) ! (q,t,w) dV = J dqdtdw

If                                 , then 
If                                 , then 

where J is a determinant of partial derivatives called the Jacobian .
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J = J
(x,y)
(q,t)

!

"#
$

%&
=

' x
' q

' x
' t

' y
' q

' y
' t

     in 2-dimensions

and

J = J
(x,y,z)
(q,t,w)

!

"#
$

%&
=

' x
' q

' x
' t

' x
' w

' y
' q

' y
' t

' y
' w

' z
' q

' z
' t

' z
' w

     in 3-dimensions

Examples:

q = r , t = ! " J =
cos! #r sin!

sin! r cos!
= r " dA= dxdy= rdrd!

q = r , t = ! , w = " # J =

sin! cos" r cos! cos" $r sin! sin"

sin! sin" r cos! sin" r sin! cos"

cos! $r sin! 0

= r 2 sin!

                         dV = dxdydz= r 2 sin! drd! d"
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u1,u2,u3
 
!
r (u1,u2,u3)

(11) Non-Cartesian Coordinates

The position of an arbitrary point P in space may be expressed in terms of the three 
curvilinear coordinates                    . If                            is the position vector of the 
point P, at every such point there exist two sets  of basis vectors

 
êi =

!
!
r

! ui     and    êi = " ui

öei
öei

where the         (subscripts) are tangent to the coordinate curves (the axes) and the
            (superscripts) are normal to the coordinate curves. Thus, we can write a vector 
in two ways (we change our summation convention so that we now sum over repeated 
indices only if one is up and the other is down)

 
!
a = ai öei = ai öe

i

ai
 
!
a ai

 
!
a

The       are called the contravariant  components of the vector        and the         are 
called the covariant  components of the vector     .

For cartesian coordinate systems there is no difference between these two 
sets of  basis vectors, which is why we were able to only use lower indices.

öei êiThe         are the covariant basis vectors and the         are the contravariant basis vectors.

öei   and  öei
In general, the vectors in each set are neither of unit length nor form an orthogonal basis. 
The sets                        are, however, a dual systems of vectors, so that

öei ! öej = " i
j
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We thus have

 

a ! öei = a j öej ! öei = a j" j
i = ai

a ! öei = aj öe
j ! öei = aj" i

j = ai
From the earlier Cartesian discussion we have

 
ê1 =

!
!
r

! x
= êx , ê1 = " (x) = êx

If we consider the components of higher rank tensors in non-Cartesian coordinates, 
there are even more possibilities. For example, consider a second rank tensor T. Using 
the outer product notation we can write T in three different ways

T = T ij öei ! öej = Tj
i öei ! öej = Tij öe

i ! öej

T ij ,Tj
i   and  Tijwhere                              are called the contravariant, mixed  and covariant components 

of T respectively. These three sets of quantities form the components of the same tensor 
T, but refer to different (tensor) bases made up from the basis vectors of the coordinate 
system. 

In Cartesian coordinates, all three sets are identical.

(12) The Metric Tensor

Any particular curvilinear coordinate system is completely  characterized (at each point 
in space) by the nine quantities

41



gij = öei ! öej

 d
!
r = dui öeiSince an infinitesimal vector displacement can be written as                       we have 

these results

 
(ds)2 = d

!
r !d

!
r = dui öei !duj öej = duiduj öei ! öej = gijduiduj

(ds)2 dui

gij

Since                is a scalar and the                are components of a contravariant vector, 
the quotient law says that the             are the covariant components of a tensor  g called 
the metric tensor .

The scalar product can be written in four different ways in terms of the metric tensor

 

!
a !

!
b = ai öei !bj öej = öei ! öeja

ibj = gija
ibj

      = ai öe
i !bj öe

j = öei ! öejaibj = gijaibj

      = ai öe
i !bj öej = öei ! öejaib

j = " j
i aib

j = aib
i

      = ai öei !bj öe
j = öei ! öejaibj = " i

jaibj = aibi

These imply that gijbj = bi     and      gijb
j = bi

or that the covariant components of g can be used to lower in index and the 
contravariant components of g can be used to raise an index.

In a similar manner we can show that öei = gij öej    and   öei = gij öe
j
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öei    and   öeiNow since                       are dual vectors, i.e.,

öei ⋅ öej = δ i
j

we then have ! k
i ak = ai = gijaj = gij gjka

k

gij gjk = ! k
i

In terms of matrix representations this says that

G = gij!" #$, G = gij!" #$, I = %j
i!" #$& GG = I & G = G' 1

or the matrix formed from the covariant components is the inverse of the matrix formed 
from the contravariant components.

The above relations also give the result

gj
i = öei ! öej = " j

i # components are identical
Finally, we have

g = g = det[gij ] = g1i g2 j g3k! ijk = öe1 "(öe2 # öe3)
and

or

dV = du1öe1 !(du2 öe2 " du3öe3) = öe1 !(öe2 " öe3)du1du2du3

dV = g du1du2du3
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u1,u2,u3 u '1,u '2 ,u '3

(13) General Coordinate Transformations and Tensors

We now discuss the concept of general transformations from one coordinate system  
                   to another                    . We can describe the coordinate transformation 
using the three equations

u 'i = u 'i (u1,u2,u3)

u'i

ui
for i = 1,2,3, in which the new coordinates            can be arbitrary functions of the old 
ones             , rather than just represent linear orthogonal transformations (rotations) 
of the coordinate axes. We shall also assume that the transformation can be inverted, 
so that we can write the old coordinates in terms of the new ones as

ui = ui (u'1,u'2,u'3)
An example is the transformation from spherical polar to Cartesian coordinates given by

x = r sin! cos"

y = r sin! sin"

z = r cos!
which is clearly not a linear transformation.

u'1,u'2,u'3The two sets of basis vectors in the new coordinate system                       are given by

 
ê'i =

!
!
r

! u 'i
and ê'i = " u 'i
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Considering the first set, we have from the chain rule that

 
öej =

!
!
r

! u j =
! u'i

! u j

!
!
r

! u'i
=

! u'i

! u j
öe'i

so that the basis vectors in the old and new coordinate systems are related by

öej =
! u'i

! u j
öe'i

 
!
aNow, since we can write any arbitrary vector       in terms of either basis as

 

!
a = a'i öe'i = aj öej = aj ! u'i

! u j
öe'i

it follows that the contravariant components of a vector must transform as

a'i =
! u'i

! u j aj

ai
In fact, we use this relation as the defining property  that a set of quantities         must 
have if they are to form the contravariant components of a vector.

öe'i = ! u'iIf we consider the second set of basis vectors,             , we have from the chain rule that

! u j

! x
=

! u j

! u 'i
! u 'i

! x
! u j / ! y ! u j / ! zand similarly for              and                 .
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So the basis vectors in the old and new coordinate systems are related by

öej =
! u j

! u'i
öe'i

 
!
aFor any arbitrary vector        ,

 

!
a = a'i öe'i = aj öe

j = aj

! u j

! u'i
öe'i

and so the covariant components of a vector must transform as

a'i =
! u j

! u'i
aj

ai

In a similar way to that used in the contravariant case, we take this result as the defining 
property  that a set of quantities         must have if they are to form the covariant 
components of a vector.

xi

! x 'i

We may compare these two transformation laws with those for a first-order Cartesian 
tensor under a rigid rotation of axes. Let us consider a rotation of the Cartesian axes  
through an angle       about the 3-axis to a new set         , i = 1,2,3 

x'1 = x1 cos! + x2 sin!

x'2 = " x1 sin! + x2 cos!

x'3 = x3

and the inverse transformation
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x1 = x'1 cos! " x'2 sin!

x2 = x'1 sin! + x'2 cos!

x3 = x'3
It is then straightforward to show that ! x j

! x'i
=

! x'i

! x j = Lij

Lijwhere the elements            are given by

L =

cos! sin! 0

" sin! cos! 0

0 0 1

#

$

%
%

&

'

(
(

Thus, the new relations agree with the earlier definitions in this special case of a rigid 
rotation of the Cartesian axes.

We now generalize these two laws for contravariant and covariant components of a 
vector to tensors of higher rank. For example, the contravariant, mixed and covariant 
components, respectively, of a second-order tensor must transform as follows:

contravariant components T 'ij =
! u'i

! uk

! u' j

! ul T kl

           mixed components T ' j
i =

! u'i

! uk

! ul

! u' j Tl
k

      covariant components T 'ij =
! uk

! u'i
! ul

! u' j Tkl

as earlier
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It is important to remember that these quantities form the components of the same  
tensor T but refer to different tensor bases made up from the basis vectors of the 
different coordinate systems. For example, in terms of the contravariant components 
we may write

T = T ij öei ! öej = T 'ij öe 'i ! öe ' j

We can clearly go on to define tensors of higher order, with arbitrary numbers of 
covariant (subscript) and contravariant (superscript) indices, by demanding that their 
components transform as follows:

T 'lm......n
ij .......k =

! u'i

! ua

! u' j

! ub """
! u'k

! uc

! ud

! u'l
! ue

! u'm
"""

! u f

! u'n
Tde......... f

ab.......c

Using the revised summation convention (matched contravariant and covariant indices 
summed over), the algebra of general tensors is completely analogous to that of 
Cartesian tensors discussed earlier.

! j
i

For example, as with Cartesian coordinates, the Kronecker delta is a tensor, provided it is 
written as a mixed tensor       , since

! ' j
i =

" u 'i

" uk
" ul

" u ' j
! l
k =

" u 'i

" uk
" uk

" u ' j
=

" u 'i

" u ' j
= ! j

i

where we have used the chain rule to prove the third equality. Since we showed earlier 
that gj

i = öei ! öej = " j
i

! j
i       can be considered as the mixed components of the metric tensor g.
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In the new (primed) coordinate system, we have

g'ij = öe'i ! öe' j

Using

we have

öej =
! u'i

! u j
öe'i

! uk

! u'i
! u' j

! uk
öe' j =

! u' j

! u'i
öe' j = " i

j öe' j = öe'i =
! uk

! u'i
öek

öe ' jand similarly for           . Thus, we can write

g'ij =
! uk

! u'i
! ul

! u' j
öek " öel =

! uk

! u'i
! ul

! u' j gkl

gijwhich shows that the         are indeed the covariant components of a second-order tensor 
(the metric tensor g).

gij
A similar argument shows that the quantities        form the contravariant components of 
a second-order tensor, such that

g'ij =
! u'i

! uk

! u' j

! ul gkl
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gij
gij

gij

Earlier we saw that the components         and          could be used to raise and lower 
indices in contravariant and covariant vectors. This can be extended to tensors of arbitrary 
rank. In general, contraction of a tensor with             will convert the contracted index 
from being contravariant(superscript) to covariant (subscript), i.e., it is lowered . This 
can be repeated for as many indices as required. For example,

Tij = gikTj
k = gikgjlT

kl

gijSimilarly, contraction with          raises an index, i.e.,

T ij = gikTk
j = gikgjlTkl

That these two relations are mutually consistent, can be shown by using the relation

gikgkj = ! j
i

öei

öei öei

(14) Derivatives of basis vectors and Christoffel symbols

In Cartesian coordinates, the basis vectors             are constant and so their derivatives 
with respect to the coordinates vanish. In general coordinate systems, however, the basis 
vectors        and         are functions of the coordinates. In order that we may differentiate 
general tensors, we must therefore first consider the derivatives of the basis vectors.

Let us consider the derivative
! öei

! u j
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öek ! ij
k

Since this is itself a vector, it can be written as a linear combination of the basis 
vectors           , k = 1,2,3. If we introduce the symbol           to denote the coefficients 
in this combination, we have

! öei

! u j = " ij
k öek

! ij
k ! öei

! u j

öei ! öej = " j
i

The coefficient            is simply the k th component of the vector 

Using the reciprocity relation                   , these 27 numbers are given (at each point in 
space) by

öek !
" öei

" u j = # ij
möek ! öem = # ij

m$m
k = # ij

k

# ij
k = öek !

" öei

" u j

Furthermore, we then have

! öei " öek( )
! u j = 0 = öei "

! öek

! u j +
! öei

! u j " öek

! öei

! u j " öek = # öei "
! öek

! u j = #$ kj
möei " öem = #$ kj

i

%
! öei

! u j = #$ kj
i öek
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! ij
kThe symbol           is called a Christoffel symbol  (of the second kind), but despite 

appearances to the contrary, these quantities do not  form the components of a 
third-order tensor. 

In a new coordinate system
! 'ij

k = öe'k"
#öe'i
#u' j

we get

Using öe'i =
∂ul

∂u'i
öel and öe'k =

∂u'k

∂un
öen

! 'ij
k =

" u'k

" un
öen #

"
" u' j

" ul

" u'i
öel

$

%&
'

()

    =
" u'k

" un
öen #

" 2ul

" u' j " u'i
öel +

" ul

" u'i
" öel

" u' j

$

%&
'

()

    =
" u'k

" un

" 2ul

" u' j " u'i
öen #öel +

" u'k

" un

" ul

" u'i
öen #

" öel

" u' j

    =
" u'k

" un

" 2ul

" u' j " u'i
* l

n +
" u'k

" un

" ul

" u'i
" um

" u' j
öen #

" öel

" u'm

    =
" u'k

" ul

" 2ul

" u' j " u'i
+

" u'k

" un

" ul

" u'i
" um

" u' j ! lm
n
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! ij
kThis result shows that the        do not  form the components of a third-order tensor 

because of the presence of the first term on the right-hand side.

We note that in Cartesian coordinates it is clear from the relation

! ij
k = öek "

#öei

#uj

! ij
k = 0that                    for all values of the indices i, j and k.

Γ ij
k

In a given coordinate system we can, in principle, calculate the           using the relation

! ij
k = öek "

#öei

#uj

gij

! ij
k

In practice, however, it is often quicker to use an alternative expression, which we now 
derive, for the Christoffel symbol in terms of the metric tensor          and its derivatives 
with respect to the coordinates.

First, we note that the Christoffel symbol             is symmetric with respect to the 
interchange of its two subscripts i and j. This is easily shown, since

 

! öei

! u j =
! 2!

r
! u j! ui =

! 2!
r

! ui! u j =
! öej

! ui

which gives ! öei

! u j = " ij
k öek = " ji

k öek =
! öej

! ui

" ij
k öek #öel = " ji

k öek #öel

" ij
l = " ji

l
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! ij
k gij = êi ! êjTo obtain an expression for          we then use                  and consider the derivative

! gij

! uk =
! öei

! uk " öej + öei "
! öej

! uk = # ik
l öel " öej + öei "# jk

l " öel

      = # ik
l glj + # jk

l gil

By cyclically permuting the free indices i,j,k in this relation we obtain two further equivalent 
relations ! gjk

! ui = " ji
l glk + " ki

l gjl

! gki

! u j = " kj
l gli + " ij

l gkl

! ij
k gij

gmk
where we have used the symmetry properties of both        and           .  Contracting both 
sides with        leads to the required expression for the Christoffel symbol in terms of the 
metric tensor and its derivatives, namely

! ij
m =

1
2

gmk " gjk

" ui +
" gki

" u j #
" gij

" uk

$
%&

'
()

Example: cylindrical polar coordinates

(u1,u2,u3) = (! ," ,z)

ds2 = d! 2 + ! 2d" 2 + dz2 = gijduiduj

# g11 = 1,g22 = ! 2 ,g33 = 1,all others = 0
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! 12
2 = ! 21

2 ! 22
1This implies that the only non-zero Christoffel symbols are                and          . These 

are given by
! 12

2 = ! 21
2 =

g22

2
" g22

" u1 =
1

2g22

" g22

"#
=

1
2#2

"#2

"#
=

1
#

! 22
1 = $

g11

2
" g22

" u1 = $
1

2g11

" g22

"#
=

1
2

"#2

"#
= $#

Alternatively, we can use

öe1 = öe! = cos" öex + sin" öey
öe2 = öe" = #sin" öex + cos" öey
öe3 = öez
$öe!

$"
=

1
!

öe" %
$öe1

$u2 =
1
u1

öe2 % &12
2 =

1
u1 =

1
!

= &21
2

$öe"

$"
= #! öe! %

$öe2

$u2 = #u1öe1 % &22
1 = #u1 = #!

as expected.
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(15) Covariant differentiation

For Cartesian tensors, we noted that the derivative of a scalar is a (covariant) vector. 
This is also true for general tensors, as may be shown by considering the differential of 
a scalar

d! =
" !
" ui

dui

dui d!Since the         are the components of a contravariant vector, and        is a scalar, we 
have by the quotient rule that the quantities

! vi

! x j

form the components of a second-order tensor. In general coordinates, however, this
is not the case. We may show this directly by considering

! vi

! u j

"

#$
%

&'

'
=

! v'i

! u' j =
! uk

! u' j

! v'i

! uk =
! uk

! u' j

!
! uk

! u'i

! ul vl"

#$
%

&'

          =
! uk

! u' j

! u'i

! ul

! vl

! uk +
! uk

! u' j

! 2u'i

! uk! ul vl

The presence of the second term on the right-hand side shows that the

! vi

! u j
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! u'i / ! u j"# $%

do not form the components of a second-order tensor. This term arises because the 
"transformation matrix"                     changes with position in space. This is not true 
in Cartesian coordinates, for which the second term vanishes, and

! vi

! u j

is a second-order tensor.

We can, however, use the Christoffel symbols to define a new covariant  derivative of 
the components of a tensor, which does result in the components of another tensor.

 
!v

 
!
v = vi öei

Let us first consider the derivative of a vector        with respect to the coordinates. 
Writing the vector in terms of its contravariant components                   , we find

 

!
!
v

! u j =
! vi

! u j
öei + vi ! öei

! u j

öeiwhere the second term arises because, in general, the basis vectors         are not constant 
(this term vanishes in Cartesian coordinates). Using the definition of the Christoffel symbol 
we can write

 

∂ v
∂uj =

∂vi

∂uj
öei + viΓ ij

k öek

Since i and k are dummy indices in the last term on the right-hand side, we may 
interchange them to obtain

 

!
!
v

! u j =
! vi

! u j êi + vk" kj
i êi =

! vi

! u j + vk" kj
i#

$%
&

'(
êi
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öeiThe reason for interchanging the dummy indices is that we may then factor out       . 
The quantity in the bracket is called the covariant derivative , for which the standard 
notation is

v; j
i =

! vi

! u j + " kj
i vk

where the semicolon denotes covariant differentiation; a similar short-hand notation also 
exists for the simple partial derivative, in which a comma is used instead of a semicolon. 
For example

v, j
i =

∂vi

∂uj

so that

 
v; j

i = v, j
i + ! kj

i vk "
#

!
v

#uj = v; j
i öei = $

!
v

Using the quotient rule, it is then clear that the        are the (mixed) components of 
a second-order tensor.

v; j
i

! ij
kIn Cartesian coordinates, all the           are zero, and so the covariant derivative reduces to 

the simple partial derivative ! vi

! u j

Example: cylindrical polar coordinates

Contracting the definition of the covariant derivative we have

v;i
i = v,i

i + ! ki
i vk =

" vi

" ui + ! ki
i vk
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Using the Christoffel symbols we worked out earlier we find

! 1i
i = ! 11

1 + ! 12
2 + ! 13

3 =
1
"

! 2 i
i = ! 21

1 + ! 22
2 + ! 23

3 = 0
! 3i

i = ! 31
1 + ! 32

2 + ! 33
3 = 0

and

v;i
i =

! v"

! "
+

! v#

! #
+

! vz

! z
+

1
"

v" =
1
"

! (" v" )
! "

+
! v#

! #
+

! vz

! z

which is the standard expression for the divergence  of a vector field in cylindrical polar 
coordinates.

vi

 
!
v = vi öe

i

So far we have considered only the covariant derivative of the contravariant components 
of a vector. The corresponding result for the covariant components        may be found in 
a similar way, by considering the derivative of                  . We obtain

vi; j =
! vi

! u j " # ij
kvk

Following a similar procedure we can obtain expressions for the covariant derivatives of 
higher-order tensors.

Expressing T in terms of its contravariant components, we have

! T
! uk =

!
! uk T ij öei " öej( ) =

! T ij

! uk
öei " öej + T ij ! öei

! uk " öej + T ij öei "
! öej

! uk
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Using the definition of the Christoffel symbols we can write

! T
! uk =

! T ij

! uk êi " êj + T ij# ik
l êl " êj + T ij êi " # jk

l êl

Interchanging dummy indices i and l in the second term and j and l in the third term on 
the right-hand side this becomes

! T
! uk =

! T ij

! uk + " lk
i T lj + " lk

j T il#

$%
&

'(
öei ) öej

where the expression in brackets is the required covariant derivative

T;k
ij =

∂T ij

∂uk + Γ lk
i T lj + Γ lk

j T il = T,k
ij + Γ lk

i T lj + Γ lk
j T il

In a similar way we can write the covariant derivative of the mixed and covariant 
components. Summarizing we have

T;k
ij = T,k

ij + ! lk
i T lj + ! lk

j T il

Tj;k
i = Tj ,k

i + ! lk
i Tj

l " ! jk
l Tl

i

Tij;k = Tij ,k " ! ik
l Tlj " ! jk

l Til
T;k

ij ,Tj;k
i and Tij;k

! T
We note that the quantities                             are the components of the same  
third-rank tensor             with respect to different tensor bases, i.e.,

∇T = T;k
ij öei ⊗ öej ⊗ öek = Tj;k

i öei ⊗ öej ⊗ öek = Tij ;k öei ⊗ öej ⊗ öek
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!

We conclude by considering the covariant derivative of a scalar. The covariant derivative 
differs from the simple partial derivative with respect to the coordinates only because 
the basis vectors of the coordinate system change with position in space (hence for 
Cartesian coordinates there is no difference). However, a scalar function        does not 
depend on the basis vectors at all, so its covariant derivative must be the same as its 
partial derivative, i.e.,

! ; j =
" !
" u j = ! , j

!

(16) Vector Operators in tensor form 

We now use tensor methods to obtain expressions for the grad, div, curl and Laplacian 
that or valid in all coordinate systems.

Gradient.  The gradient of a scalar     is simply given by

! " = " ;i öe
i =

#"
#ui

öei

since the covariant derivative of a scalar is the same as its partial derivative.

 
!vDivergence.  The divergence of a vector field        in a general coordinate system is given 

by

 
!

!
v = v;i

i =
" vi

" ui + # ki
i vk

Using
! ki

i =
1
2

gil " gil

" uk +
" gkl

" ui #
" gki

" ul

$
%&

'
()

=
1
2

gil " gil

" uk
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The last two terms cancel because

gil ! gkl

! ui = gli ! gki

! ul = gil ! gki

! ul

where in the first equality we have interchanged the dummy indices i and l, and in the 
second equality we have used the symmetry of the metric tensor.

We need one further result before we can simplify the divergence expression.

A = [aij ] B = [bij ] B = A! 1 a = A = det A
aij ! ij

Suppose             ,               and that             . Let                          . If we denote the 
cofactor of the element       by          , then the elements of the inverse matrix are given 
by

bij =
1
a

! ji

aij

in which we have fixed i and explicitly written the sum over j for clarity. Partially 
differentiating both side with respect to      , we then obtain

∂a
∂aij

= Δ ij

aij Δ ijsince         does not occur in any of the cofactors         .

aij

a
Now, if we suppose that the      are functions of the coordinates, then so also will the 
determinant       , and by the chain rule we have

! a
! uk =

! a
! aij

! aij

! uk = " ij ! aij

! uk = abji ! aij

! uk
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gij gjk = ! k
i

gij
Applying this result to the determinant g of the metric tensor and using                  and 
the fact that         is symmetric we obtain

! g
! uk = ggij ! gij

! uk

Finally, we get

! ki
i =

1
2

gil " gil

" uk =
1

2g
" g
" uk =

1

g

" g

" uk

which gives the result

 
!

!
v = v;i

i =
" vi

" ui +
1

g

" g

" uk vk =
1

g

"
" uk gvk( )

 
!
v ! "

! 2"
Laplacian.  If we replace         by           in the above divergence result we obtain the 
Laplacian           . Now

 

!
v = ! " = vi öe

i =
#"
#ui

öei $ vi =
#"
#ui = covariant components

vi
However, we need the contravariant components       . These can be obtained by raising 
the index using the metric tensor, to give

vj = gjkvk = gjk ! "
! uk

We then obtain

! 2" =
1
g

#
#uj ggjk #"

#uk

$
%&

'
()
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êi ! êj = " ijFor an orthogonal coordinate system (g diagonal since                ), we have

g =

h1
2 0 0

0 h2
2 0

0 0 h3
2

!

"

#
#
#

$

%

&
&
&

so that
ds2 = hi

2duidui
i
∑ and vi =

vi
hi

(no sum on i)

g = h1h2h3
gij =

1
hi

2 ! ijTherefore,                    and                   and we get

∇2φ =
1

h1h2h3

∂
∂uj

h1h2h3

hj
2

∂φ
∂uj

⎛

⎝⎜
⎞

⎠⎟
as expected.

 curl
!
v

Curl.  The special vector form of the curl of a vector field exists only in three dimensions. 
We therefore consider its more general form, which is also valid in higher-dimensional 
spaces. In a general space the operation              is defined by

 
(curl

!
v)ij = vi; j ! vj ;i

which is an antisymmetric covariant tensor.

The difference of derivatives can be simplified since

vi; j ! vj;i =
" vi
" u j ! # ij

l vl !
" vj
" ui

+ # ji
l vl =

" vi
" u j !

" vj
" ui
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using the symmetry properties of the Christoffel symbols. Thus,

 
(curl

!
v)ij =

! vi

! u j "
! vj

! ui = vi , j " vj ,i

 
!r (t)

 
!
v

ui öei

 
!
v = vi öei

(17) Absolute derivatives along curves

We now consider the problem of calculating the derivative of a tensor along a curve  
parameterized by some variable t.

Let us begin by considering the derivative of a vector        along the curve. If we 
introduce an arbitrary coordinate system       with basis vectors      , i = 1, 2,3, then we 
can write               , and we have

 

d
!
v

dt
=

dvi

dt
öei + vi döei

dt
=

dvi

dt
öei + vi ! öei

! uk

duk

dt

where we have used the chain rule to rewrite the last term on the right-hand side.

Now, using the definition of the Christoffel symbols we obtain

 

d
!
v

dt
=

dvi

dt
öei + ! ik

j vi duk

dt
öej

Interchanging the dummy indices i and j in the last term we get

 

d
!
v

dt
=

dvi

dt
+ ! jk

i vj duk

dt

"

#$
%

&'
öei
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vi  
!r (t)

The expression in the brackets is called the absolute  (or intrinsic ) derivative of the 
components       along the curve          and is usually denoted by

δvi

δt
≡

dvi

dt
+ Γ jk

i vj duk

dt
=

∂vi

∂uk + Γ jk
i vj⎛

⎝⎜
⎞
⎠⎟

duk

dt
= v;k

i duk

dt

so that

 

d
!
v

dt
=
δvi

δt
öei = v;k

i duk

dt
öei

viSimilarly, we can show that the absolute derivative of the covariant components        of a 
vector is given by ! vi

! t
" vi;k

duk

dt

and the absolute derivatives of the contravariant, mixed and covariant components of a 
second-order tensor T are ! T ij

! t
" T;k

ij duk

dt
! Tj

i

! t
" Tj ;k

i duk

dt
! Tij

! t
" Tij ;k

duk

dt

 
!
r (t)The derivative of T along the curve           may then be written in terms of, for example, 

its contravariant components as

dT
dt

=
! T ij

! t
öei " öej = T;k

ij duk

dt
öei " öej
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(18) Geodesics

As an example of the use of the absolute derivative, we conclude our discussion of 
tensors with a short discussion of geodesics. 

A geodesic  in real three-dimensional space is a straight line, which has two equivalent 
defining properties. First, it is the curve of shortest length between two points and, 
second, its tangent vector always points along the same direction (along the line).

Although we have explicitly considered only the familiar three dimensional space in our 
discussions, much of the mathematical formalism developed can easily be generalized 
to more abstract spaces of higher dimensionality in which the familiar ideas of Euclidean 
geometry are no longer valid. It is often of interest to find geodesic curves in such 
spaces by using the properties of straight lines in Euclidean space that define a geodesic.

Consideration of these more complicated space is left for a future seminar in general 
relativity. Instead, we will derive the equation that a geodesic in Euclidean three 
dimensional space(i.e., a straight line) must satisfy, in a sufficiently general way that it 
may be applied with little modification, to find the equations satisfied by geodesics in 
more abstract spaces.

 
!
r (s)Let us consider a curve         , parameterized by the arc length s from some point on 

the curve, and choose as our defining property for a geodesic that its tangent vector

 

!
t =

d
!
r

ds
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always points in the same direction everywhere on the curve, i.e.,

 

d
!
t

ds
= 0

ui öei

 
!
t = t i öei

This is called parallel transport  of the tangent vector, i.e., the vector is always moved 
parallel to itself along the curve, which is the same as its direction not changing for a 
straight line.

If we now introduce an arbitrary coordinate system       with basis vectors      , i = 1, 2,3, 
then we can write            , and we have

 

d
!
t

ds
= t;k

i duk

ds
êi = 0

Writing out the covariant derivative, we obtain

dt i

ds
+ Γ jk

i t j
duk

ds
⎛
⎝⎜

⎞
⎠⎟

öei = 0

But since
t j =

duj

ds

we find that the equation satisfied by a geodesic is

d2ui

ds2 + ! jk
i duj

ds
duk

ds
= 0
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Example: cartesian coordinates

All Christoffel symbols are zero. Therefore, the equations of a geodesic are
d2x
ds2 = 0 ,

d2y
ds2 = 0 ,

d2z
ds2 = 0

which correspond to a straight line.

Example: cylindrical polar coordinates

The only non-zero Christoffel symbols are
! 22
1 = " # and ! 12

2 = ! 21
2 =

1
#

The geodesic equations are then
d2u1

ds2
+ ! 22

1 du2

ds
du2

ds
= 0 "

d2#
ds2

$ #
d%
ds

&
'(

)
*+

2

= 0

d2u2

ds2
+ 2! 12

2 du1

ds
du2

ds
= 0 "

d2%
ds2

+
2
#

d#
ds

d%
ds

= 0

d2u3

ds2
= 0 "

d2z
ds2

= 0

! = constantOn the surface of a cylinder given by                   we have
d2ρ
ds2

= 0 , d2φ
ds2

= 0 , d2z
ds2

= 0

which also corresponds to a straight line. Think if unrolling the cylinder. It is then just a 
plane!
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Example: spherical polar coordinates

The metric tensor is

g =

! 1 0 0

0 ! r 2 0

0 0 ! r 2 sin2"

#

$

%
%

&

'

(
(

The non-zero Christoffel symbols are

! 22
1 = " r , ! 33

1 = " r sin2# , ! 33
2 = " sin# cos#

! 12
2 = ! 21

2 =
1
r

, ! 13
3 = ! 31

3 =
1
r

, ! 23
3 = ! 32

3 = cot#

r = constantThe corresponding geodesic equations on the surface of the sphere                          are

d2r
ds2

= 0

d2!
ds2

" sin! cos! d#
ds

$
%&

'
()

2

= 0

d2#
ds2

+ 2cot! d#
ds

d!
ds

= 0

which correspond to the equations of a great circle!
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Parallel Transport and the Riemann Tensor

If a vector is parallel transported along a curve, the geodesic equations tells us how the 
vector components change during the transport.

d2ui

ds2 + ! jk
i duj

ds
duk

ds
= 0

A!It also can be shown that for a covariant vector field          we have this result

A! ;µ;" # A! ;" ;µ = R! µ"
$ A$

R! µ"
#

that is, in a general curved spacetime the covariant derivatives do not commute (order 
is important). In a Cartesian or flat space the difference would be zero. Thus the 
fourth-rank tensor            , which is called the Riemann curvature tensor is a measure of 
the curvature of spacetime. It is given by

R! µ"
# = $%! µ,"

# + %! " ,µ
# $ %! "

& %&µ
# $ %! µ

& %&"
#

If a vector field is parallel transported around a closed path in a curved spacetime, the 
vector components do not return to the same values at the end (as they would do in flat 
space). In fact, parallel transport around a parallelogram gives the result

! A" = R#µ$
" A#d%$d%µ

d! µwhere the          represent the sides of the parallelogram. Thus, once again the Riemann 
tensor serves as a measure of the curvature of spacetime.
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The second-rank Ricci tensor is defined by a contraction over the first and last 
indices of the Riemann tensor

R! µ = R! µ"
"

In addition we define the curvature scalar R by

R = Rβ
β = Rβα

αβ

Einstein Field Equation for Metric Coefficients

The gravitational field equations developed by Einstein are

Rµ! " 1
2 gµ! R= "

8#G
c4 Tµ!

Tµ!

gµ!

!

where the inclusion of the Riemann scalar term is necessary for energy-momentum 
conservation and where         is a second-rank tensor that gives the energy-momentum 
content of spacetime. It represent 16 coupled differential equations for the metric 
coefficients           .

An alternative form of these field equations originally proposed by Einstein but later 
discarded by him as his worst mistake, is now coming back into favor. It contains the 
so-called cosmological constant        .

Rµ! " 1
2 gµ! R + #gµ! = "

8$G
c4 Tµ!

It predicts the existence of a repulsive gravitational force on a cosmological scale and is 
of interest now that data seems to indicated that the universal expansion is accelerating.
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Schwarzschild Solution

For a spherically symmetric point mass at the origin, the filed equations are given by 
(for r > 0)

Rµ! " 1
2 gµ! R= 0

Schwarzschild solved these equations in 1915. His solution written as the square of the 
spacetime interval looks like

ds2 = 1!
2GM

r
"
#$

%
&'

c2dt2 !
dr2

1!
2GM

r
"
#$

%
&'

! r 2(d( 2 + sin2( d) 2)

where M is the central mass.

This solution accounts for bending of light around the sun, the advance of the perihelion 
of mercury, gravitational redshift, radar time delays from signals bounced off of planets, 
precession of spinning satellites in earth orbit and black holes, where the radius r=2GM 
is the radius of the event horizon or the boundary where nothing can escape the mass, 
even light.
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