
Worrying About the k=0 Solutions

We consider a plate, 10cm  by 30cm, with two insulated sides, 
one end held at  and the other held at a given temperature 
T = f(x) = 100 or  T = f(x) = x (two different cases).

Insulated sides means that 

! ! !

∂T
∂x

= 0    at  x = 0  and  x = 10  (the sides)

The plate looks like

! !

As before we have the general solution

! ! T(x,y) = aeky sinkx + be! ky sinkx + ceky coskx + de! ky coskx

Boundary conditions:
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! !

! T
! x

(x = 0) = 0 " a = b = 0

! T
! x

(x = 10) = 0 " k =
n#
10

T(x,y = 30) = 0 " (ce30k + de$30k )coskx = 0 " ce30k + de$30k = 0

Thus, we have

! ! !
T (x, y) = An

n
! sinh n" (30 # y)

10
cos n" x

10
For T = f(x), when y = 0, we expand f(x) in a Fourier series on 
the interval [0,10]. Note, however, that there are no constant 
terms in the solution since for n = 0 since sinh(0) = 0 .

Now putting

! ! ! ! !
k =

n!
10

= 0

in terms like e±ky coskx  gives a constant as a possible solution of 
LaplaceÕs equation.

We cannot, however, just add a constant to our solution because 
then T ≠ 0  when y = 30.

We must go back to the original  equation and set k = 0 to 
determine what to do. We have

! ! !

d2X
dx2

= 0 !
dX
dx

= constan t ! X = a + bx

d2Y
dy2

= 0 !
dY
dy

= constan t ! Y = c + dy

Therefore, we must add

! ! ! ! Tadd = a + bx+ cy + dxy

to our general solution for k = 0. We were not careful enough in 
the k = 0 case. Often this is a troublesome case and must be 
looked at with care.

Now

! ! ! !

! Tadd

! x
(x = 0) = 0 " b = d = 0

Tadd = a + cy

Tadd(x,y = 30) = 0 " a + 30c = 0
Tadd = c(30 # y)

                                                                      Page 2



and thus,

! ! ! !
T (x, y) = c(30 ! y)+ An

n
" sinh n# (30 ! y)

10
cos n#x

10
Now we can impose T = f(x) at y = 0 and get

! ! !

f (x) = 30c + An
n
∑ sinh3nπ cos

nπ x
10

= 30c + an
n
∑ cos

nπ x
10

       =
a0

2
+ an

n
∑ cos

nπ x
10

which says that

! ! ! !
c =

a0

60
     and     An =

an
sinh 3nπ

Case #1:   f(x) = 100

! ! ! !

a0 =
2

10
100dx = 200! c =

10
30

10

"

an =
2

10
100cos

n#x
10

dx = 20
10
n#

cosudu
0

n#

"
0

10

" = 0

Therefore,

! ! ! !
T(x,y) =

10
3
(30 ! y)

which you should have been able to guess !!!!!

Case # 2:  f(x) = x

! ! !

a0 =
2

10
xdx = 10! c =

1
60

10

"

an =
2

10
xcos

n#x
10

dx =
2

10
10
n#

$
%&

'
()

2

0

10

" cos
n#x
10

+
n#x
10

sin
n#x
10

*
+,

-
./ 0

10

   =
20
n2# 2 cosn# 01( ) =

0              even n

0
40
n2# 2      odd n

1
2
3

43

Therefore,

! !
T (x, y) =

1
6
(30 ! y) ! 40

" 2

1
n2 sinh 3n"odd n

# sinh n" (30 ! y)
10

cos n" x
10
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Partial Differential Equations - Some Examples

#1 - A string of length L is initially stretched straight; its ends
are fixed for all  t  . At time  t = 0 , its points are given the
initial velocity

v x
y

t
h L w

t

( ) /=
!
"#

$
%&

=

' '

' ' +

' '

(

)
*

+
*=

,
, 0

0

2

0

        for  0 x L/2 - w            

        for  L/2 - w x

        for  L/2 - w x L           

which is a square pulse. Determine the shape of the string at time t,
that is, find the displacement  y  as a function of  x and t in the
form of a series.

As before the most general solution is of the form

y x t A kx B kx C t D t( , ) ( sin cos )( sin cos )= + +- -
where

y x D

v x v x

( , )

( , ) ( )

0 0 0

0

= . =

=

The ends are fixed so that

y t B

y L t kL k k
n

L
n

( , )

( , ) sin

0 0 0

0 0

= . =

= . = . = =
/

Therefore,

y x t A
n x

L

n vt

L
n

n

( , ) sin sin=

=

0

1 / /

1

Using the initial velocity profile we have

v x A
n v

L

n x

L

A
n v

L
h

n x

L
dx

h

L

L

n

n x

L

h

n

n n w

L

n n w

L

n

n

n

L w

L w

L w

L w

( ) sin

sin cos

cos cos

/

/

/

/

=

= = 2!
"

$
%

= 2 +
!
"

$
%

2 2!
"

$
%

!
"#

$
%&

=

=

0

2

+

2

+

1

3

/ /

/ /
/

/

/
/ / / /

1

2

2

2

2
2

2

2 2
           

           
44

2

h

n

n n w

L/
/ /

sin sin
!
"

$
%

!
"

$
%

or

A
hL

n v

n n w

L
n =

!
"

$
%

!
"

$
%

4

2
2 2/

/ /
sin sin

and

y x t
hL

v n

n n w

L

n x

L

n vt

Ln

( , ) sin sin sin sin=
!
"

$
%

!
"

$
%

=

0

14 1

2
2 2

1/
/ / / /

or since

sin sin ( )
( ) /n n n/ /

2
0

2
1

1 2!
"

$
%
=

!
"

$
%
= 2 2

    for  n  even    and         for  n  odd

we have
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Partial Differential Equations - Some Examples

#1 - A string of length L is initially stretched straight; its ends
are fixed for all  t  . At time  t = 0 , its points are given the
initial velocity

v x
y
t

h L w
t

( ) /=
!
"#

$
%&

=

' '
' ' +

' '

(

)
*

+*
=

,
, 0

0

2

0

        for  0 x L/2 - w            

        for  L/2- w x

        for  L/2- w x L           

which is a square pulse. Determine the shape of the string at time t,
that is, find the displacement  y  as a function of  x and t in the
form of a series.

As before the most general solution is of the form

y x t A kx B kx C t D t( , ) ( sin cos )( sin cos )= + +- -
where

y x D

v x v x

( , )

( , ) ( )

0 0 0

0

= . =

=

The ends are fixed so that

y t B

y L t kL k k
n
Ln

( , )

( , ) sin

0 0 0

0 0

= . =

= . = . = =
/

Therefore,

y x t A
n x
L

n vt
Ln

n

( , ) sin sin=

=

0

1 / /

1

Using the initial velocity profile we have

v x A
n v
L

n x
L

A
n v
L

h
n x
L

dx
h
L

L
n

n x
L

h
n

n n w
L

n n w
L

n
n

n
L w

L w

L w

L w

( ) sin

sin cos

cos cos

/

/

/

/

=

= = 2!"
$
%

= 2 +
!
"

$
% 2 2!

"
$
%

!
"#

$
%&

=

=

0

2

+

2

+

1

3

/ /

/ /
/

/

/
/ / / /

1

2

2

2

22

2
2 2

           

           
44

2
h

n
n n w

L/
/ /

sin sin!
"

$
%

!
"

$
%

or

A
hL

n v
n n w

Ln =
!
"

$
%

!
"

$
%

4
22 2/
/ /

sin sin

and

y x t
hL
v n

n n w
L

n x
L

n vt
Ln

( , ) sin sin sin sin=
!
"

$
%

!
"

$
%

=

0

14 1
22 2

1/
/ / / /

or since

sin sin ( )( ) /n n n/ /
2

0
2

1 1 2!
"

$
% =

!
"

$
% = 2 2    for  n  even    and         for  n  odd

we have

          y x t
hL
v n

n w
L

n x
L

n vt
L

n

n odd

( , )
( )

sin sin sin
( ) /

=
! "

#
$
%

!

&4 1
2

1 2

2'
' ' '

#2 - Find the steady-state temperature distribution in the sector of
a circular plate of radius 10 and angle  45°  if the temperature is
maintained at  0° along the radii and at  100°  along the curved edge.

As before these are the solutions of Laplace's equation:

1 1
0

1 1
0

2

2

2

2

2

2

(
)
) (

(
)
) ( (

)
) *

( * ( *

(
)
) (

(
)
) ( (

)
) *

u u

u z R

R
R

"

#+
$

%,
+ =

=

"

#+
$

%,
+ =

( , , ) ( ) ( )-

-
-

We choose

1
0

2

2

2
2

2

2

-
- -

-
d
d

n
d
d

n
* *

= ! . + =

which gives

(
(

(
(

2
2

2

2 0
d R
d

dR
d

n R+ ! =

We assume that

R r r q q q n q n q nq q
= . ! + ! = = ! . = ±( ( ) )1 02 2 2

We have the general solution

u Ar Br C n D nn
n n( , ) ( )( sin cos )( * * *= + +

!

Since r = 0 is on the plate we must choose B = 0 so that

u r C n D nn
n

n n( , ) ( sin cos )( * * *= +

At  / = 0  we have u( , )( 0 0=  , which says that we must choose  Dn = 0 .

u C r nn n
n( , ) sin( * *=

At  / '= / 4  we have  u( , / )( ' 4 0=  , which says that we must choose

 
n

m
'

'
4

= ., m,n integers n = 4m

Thus the most general solution is then

u C r mm
m

m

( , ) sin( * *=

=

0

& 4

1

4

Finally,

u C m

C k d
n

n
n

m
m

m

k
k

( , ) sin

/
sin (cos )

/

10 10 4 100

10
200

4
4

200
1

0
400

4

1

4

0

4

* *

'
* *

'
'

'

'

= =

= = ! ! =

1
2
3

43

=

0

&

5
            even   n

        odd   n   
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          y x t
hL

v n

n w

L

n x

L

n vt

L

n

n odd

( , )
( )

sin sin sin
( ) /

=
! "

#
$
%

!

&4 1
2

1 2

2'
' ' '

#2 - Find the steady-state temperature distribution in the sector of
a circular plate of radius 10 and angle  45°  if the temperature is
maintained at  0° along the radii and at  100°  along the curved edge.

As before these are the solutions of Laplace's equation:
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1
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2
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2
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d R
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dR

d
n R+ ! =

We assume that

R r r q q q n q n q n
q q
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We have the general solution

u Ar Br C n D nn

n n( , ) ( )( sin cos )( * * *= + +
!

Since r = 0 is on the plate we must choose B = 0 so that

u r C n D nn

n

n n( , ) ( sin cos )( * * *= +

At  / = 0  we have u( , )( 0 0=  , which says that we must choose  Dn = 0 .

u C r nn n

n( , ) sin( * *=

At  / '= / 4  we have  u( , / )( ' 4 0=  , which says that we must choose

 
n

m
' '
4

= ., m,n integers n = 4m

Thus the most general solution is then

u C r mm

m

m

( , ) sin( * *=

=

0

& 4

1

4

Finally,

u C m

C k d
n

n

n

m

m

m

k

k

( , ) sin

/
sin (cos )

/

10 10 4 100

10
200

4
4

200
1

0
400

4

1

4

0

4

* *

'
* *

'
'

'

'

= =

= = ! ! =

1
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=

0

&

5
            even   n

        odd   n   

or

u
m

r
m

m
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#

"=
$
%

&
'(400 1
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4

4

#3 - Find the steady-state temperature distribution inside a sphere
of radius  1   when the surface temperature is given by

T( , , ) /1 2) " # )= *

The general solution is

  T r r P A m B mm( , , ) (cos )( sin cos )) " ) " "= +
l

l

No " dependence means that we must choose  m = 0 to get

  
T r A r P( , , ) (cos )) " )=

=

+

( l
l

l
l 0

Now

  

T A P

A P x x x

( , , ) (cos ) /

( ) / cos sin

1 2

2

0

0

1 1

) " ) # )

#

= = *

= * =

=

+

=

+
* *

(

(

l l
l

l l
l

We have

A P xP x dx xP x dx A
n n

A

A
n

xP x dx

n n n n

n n

l l
l

l l
l

( ( ) ) sin ( )

sin ( )

*=

+
*

* =

+

*

*

,( , (

,

= =
+

=
+

=
+

1

1

0

1

1

1

0

1

1

1

2
2 1

2
2 1

2 1
2

-

Now

sin

( )

*1 x

P xn

      is an odd function of  x

       is odd for  n  odd and even for  n  even

Therefore,

A
n

xP x dx

A n xP x dx

n n

n n

=
+

=

= +

*

*

*

,

,

2 1
2

0

2 1

1

1

1

1

0

1

sin ( )

( ) sin ( )

   for   n   even

        for   n   odd

Now from the tables

x xdx
x x

n n
x

x
dx

n
x

x
dx

n
n n

n

sin
sin*

+ * +

+

=
+

*
+ *

=
+

*
*

.

/
0

1

2
3

, ,

,

1

0

1 1 1

0

1 1

2
0

1

1

2
0

1

1
1

1 1

1
1 2 1

                    
#

To evaluate

x

x
dx

n+

*,
1

2
0

1

1
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u
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modd
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#3 - Find the steady-state temperature distribution inside a sphere
of radius  1   when the surface temperature is given by

T( , , ) /1 2) " # )= *

The general solution is

  T r r P A m B mm( , , ) (cos )( sin cos )) " ) " "= +l
l

No "  dependence means that we must choose  m = 0 to get

  
T r A r P( , , ) (cos )) " )=

=

+

( l
l

l
l 0

Now

  

T A P

A P x x x

( , , ) (cos ) /

( ) / cos sin

1 2

2

0

0

1 1

) " ) # )

#

= = *

= * =

=

+

=

+
* *

(

(

l l
l

l l
l

We have

A P xP x dx xP x dx A
n n

A

A
n

xP x dx

n n n n

n n

l l
l

l l
l

( ( ) ) sin ( )

sin ( )

*=

+
*

* =

+

*

*

,( , (

,

= =
+

=
+

=
+

1

1

0

1

1

1

0

1

1

1

2
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2
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2

-

Now
sin

( )

*1 x

P xn

      is an odd function of  x

       is odd for  n  odd and even for  n  even

Therefore,

A
n

xP x dx

A n xP x dx

n n

n n

=
+

=

= +

*

*

*

,

,

2 1
2

0

2 1

1

1

1

1

0

1

sin ( )

( ) sin ( )

   for   n   even

        for   n   odd

Now from the tables

x xdx
x x

n n
x

x
dx

n
x

x
dx

n
n n

n

sin
sin*

+ * +

+

=
+

*
+ *

=
+

*
*

.

/
0

1

2
3

, ,

,

1

0

1 1 1

0

1 1

2
0

1

1

2
0

1

1
1

1 1

1
1 2 1

                    
#

To evaluate
x

x
dx

n+

*,
1

2
0

1

1

we let
x = sin!

to get
dx

x
d

1
2"
= !

and
x

x
dx d

n

n

n

n

+

+

"
= =

• • • •

• • • • +
# #

1

2

0

1

1

0

2

1

1 3 5

2 4 6 1 2
(sin )

( )

/

! !
$$

Finally,

A xP x dx

A xP x dx

A xP x dx

1

1

1

0

1

3

1

3

0

1

5

1

5

0

1

3
3

8

7
5

4

11
11

192

= =

= =

= =

"

"

"

#

#

#

sin ( )

sin ( )

sin ( )

$

$

$

or

A P x x P x P x P xl l
l

( ) sin ( ) ( ) ( ) .....
=

%
"& = = + + +

'
()

*
+,0

1

1 3 5
8

3
7

16

11

64

$

so that

T r A r P

rP r P r P

( , , ) (cos )

(cos ) (cos ) (cos ) .....

! - !

$
! ! !

=

= + + +
'
()

*
+,

=

%

& l
l

l
l 0

1

3

3

5

5
8

3
7

16

11

64
             

#4 - Find the electrostatic potential outside a conducting sphere of
radius a  placed in an originally uniform electric field and
maintained at zero potential.  HINT: Let the original field  

r
E   be in

the negative z-direction so that

r
E E k= " 0

ˆ

Then since     
r
E = " . /  , where  /  is the potential, we have

/ = =E z E r0 0 cos!

Verify this result.

You then want a solution of Laplace's equation    . =
2

0u   which is
zero at r = a and becomes   u 0 /   for large  r (far away from the
sphere). Select the solutions of Laplace's equation in spherical
coordinates which have the right ! -   and     dependence (there are just
two such solutions) and find the combination that reduces to zero for
r 1 % .

. = = = 1 % =
2

00 0u u r a u r E r, ( , , ) , ( , , ) cos! - ! - !

The general solution is

u r Ar Br P C m D m
m

( , , ) ( ) (cos )( cos sin )
( )! - ! - -= + +

" +l l
l

1
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we let
x = sin!

to get
dx

x
d

1 2"
= !

and
x

x
dx d

n
n

n
n

+

+

"
= =

• • • •

• • • • +
# #

1

2
0

1
1

0

2

1

1 3 5
2 4 6 1 2

(sin )
( )

/

! !
$$

Finally,

A xP x dx

A xP x dx

A xP x dx

1
1

1
0

1

3
1

3
0

1

5
1

5
0

1

3
3
8

7
5
4

11
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192

= =

= =

= =

"

"

"

#

#

#

sin ( )

sin ( )

sin ( )

$

$

$
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A P x x P x P x P xl l
l

( ) sin ( ) ( ) ( ) .....
=

%
"& = = + + +

'
()

*
+,0

1
1 3 58

3
7
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11
64

$

so that

T r A r P

rP r P r P

( , , ) (cos )

(cos ) (cos ) (cos ) .....

! - !

$
! ! !

=

= + + +
'
()

*
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=

%
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l
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1
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3
5
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7
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#4 - Find the electrostatic potential outside a conducting sphere of
radius a  placed in an originally uniform electric field and
maintained at zero potential.  HINT: Let the original field  

r
E  be in

the negative z-direction so that

r
E E k= " 0

ö

Then since     
r
E = "./  , where  /  is the potential, we have

/ = =E z E r0 0 cos!

Verify this result.

You then want a solution of Laplace's equation    . =
2

0u   which is
zero at r = a and becomes   u 0 /  for large  r (far away from the
sphere). Select the solutions of Laplace's equation in spherical
coordinates which have the right ! -   and     dependence (there are just
two such solutions) and find the combination that reduces to zero for
r 1%  .

. = = = 1% =
2

00 0u u r a u r E r, ( , , ) , ( , , ) cos! - ! - !

The general solution is

u r Ar Br P C m D mm
( , , ) ( ) (cos )( cos sin )

( )! - ! - -= + +
" +l l

l
1

No ! dependence means we must choose  m = 0 .

  
u r A r B r P( , , ) ( ) (cos )( )" ! "= + # +

=

$

% l
l

l
l

l
l

1

0

We keep both radial solutions since r = 0 is not in system.

The boundary condition

  u r a A a B a B a A( , , ) ( )= = & + = & = ## + +" ! 0 01 2 1
l

l
l

l
l

l
l

so that

  
u r A r a r P( , , ) ( ) (cos )( )" ! "= # + # +

=

$

% l
l l l

l
l

2 1 1

0

The boundary condition

  

u r A r P E r

A E

( , , ) (cos ) cos&$ = =

& =
=

$

%" ! " "

'

l
l

l
l

l l

0
0

0 1

so that

u r E r a r P E r
a

r
( , , ) ( ) (cos ) cos" ! " "= # = # ()

*
+

(
),

*
+-

#
0

3 2
1 0

3

1
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Now we know that as r ! "  the potential is
! ! ! u(r ! " ,#,$) = E0r cos# = E0rP1(cos#)
Thus, we must have A1 = E0 ,  

 
A


= 0  for  ! = 0,2,3,4,........ Thus, 

! ! ! u(r ,! ," ) = E0 r #
a3

r 2
$

%&
'

()
cos!

#5. A hollow split conducting sphere of radius a is placed at 
    the origin. If one half of the surface is charged to a 
    potential v0  and the other half is kept at zero potential, 

    find the potential inside and outside the sphere.

We choose the top hemisphere to be charged to v0  and the bottom 

hemisphere at zero potential with the plane where the two 
hemispheres meet perpendicular to the polar (z) axis. The 
boundary conditions are then

! !
V(a,! ," ) =

v0 0 <! < # / 2 (0 < cos! <1)
0 # / 2 <! < # ($1< cos! < 0)

%
&
'

This implies that the potential is independent of !  so that we 

choose m = 0 in the solution

! ! ! ! ! (" ) = Asinm" + Bcosm"

and the θ  solution is given by  P! (cos! ) . Therefore,

! ! ! !  

V(r,! ," ) = A

r  + B


r #(+1)( )

=0

$

% P

(cos! )

Inside the sphere r < a (r = 0 in this region) so that we must 
choose  B! = 0  and therefore

! ! ! !  
Vinside(a,θ,ϕ ) = A!a

!

! =0

∞

∑ P! (cosθ)

or using the orthogonality of the Legendre polynomials we have

! ! !  

A! a
! =

2! +1
2

Vinside(a,θ,ϕ )
−1

1

∫ P! (cosθ)d(cosθ)

       =
2! +1

2
v0 P! (µ)dµ +

2! +1
2

(0) P! (µ)dµ
−1

0

∫
0

1

∫

       =
2! +1

2
v0 P! (µ)dµ

0

1

∫
which gives the results
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! !
A0 =

v0

2
, A1 =

3v0

4a
, A2 = 0 , A3 = −

7v0

16a3 ,.........

and

! !
Vinside(r,θ,ϕ ) =

v0

2
1+

3r
2a

P1(cosθ) −
7r3

8a3 P3(cosθ) + ....
⎡

⎣
⎢

⎤

⎦
⎥

Outside the sphere (r > a) the solution must approach zero as 
r →∞ , which implies that 

 
A


= 0  and thus

! ! ! !  
Voutside(a,! ," ) = B!a

#(! +1)

! =0

$

% P! (cos! )

and similar to above we have

! ! !  

B!a
−(! +1) =

2! +1
2

Voutside(a,θ,ϕ )
−1

1

∫ P! (cosθ)d(cosθ)

       =
2! +1

2
v0 P! (µ)dµ +

2! +1
2

(0) P! (µ)dµ
−1

0

∫
0

1

∫

       =
2! +1

2
v0 P! (µ)dµ

0

1

∫
which gives

! !
B0 =

v0a
2

, B1 =
3v0a

2

4
, B2 = 0 , B3 = !

7v0a
4

16
,.........

and

! !
Voutside(r,! ," ) =

v0a
2r

1+
3a
2r
P1(cos! ) #

7a3

8r3
P3(cos! )+ ....

$

%
&

'

(
)

On the equator (r = a, θ = π / 2 )

! ! !
V(a,! / 2," ) =

v0

2
or halfway between the top and bottom hemisphere values (the 
average).

Relaxation Methods

Cartesian Coordinates

! ! ! !
∇2u(x,y,z) =

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂z2 = 0

We approximate the derivatives by
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! !

∂u
∂x

(x,y,z) =
u(x + Δx / 2,y,z) − u(x − Δx / 2,y,z)

Δx

∂ 2u
∂x2 (x,y,z) =

∂u
∂x

(x + Δx / 2,y,z) − ∂u
∂x

(x − Δx / 2,y,z)

Δx

                 =
u(x + Δx,y,z) − u(x,y,z)

(Δx)2 −
u(x,y,z) − u(x − Δx,y,z)

(Δx)2

                 =
u(x + Δx,y,z) + u(x − Δx,y,z) − 2u(x,y,z)

(Δx)2

We then have (choosing ! x = ! y = ! z = ! ) the finite difference 

equation
∇2u(x, y,z) = 0

  = u(x + Δ, y,z) + u(x − Δ, y,z) + u(x, y+ Δ,z) + u(x, y− Δ,z) + u(x, y,z+ Δ) + u(x, y,z− Δ) − 6u(x, y,z)
Δ2

or in 3 dimensions

!
u(x,y,z) =

1
6

u(x + Δ,y,z) + u(x − Δ,y,z) + u(x,y + Δ,z) + u(x,y − Δ,z)
                       + u(x,y,z + Δ) + u(x,y,z − Δ)
⎡

⎣
⎢

⎤

⎦
⎥

and in 2 dimensions

! !
u(x,y) =

1
4
u(x + ! ,y) + u(x " ! ,y) + u(x,y + ! ) + u(x,y " ! )[ ]

n = 200;
pin=zeros(n); p=pin; b=pin;
pin(16*n/20,14*n/20)=15 ;
pin(6*n/20:10*n/20,6*n/20)=15*ones(size(pin(6*n/20:10*n/20,6*n/
20))) ; 
pin(6*n/20:10*n/20,12*n/20)=-15*ones(size(pin(6*n/20:10*n/
20,12*n/20)));
b(:,[1,n])=1*ones(size(b(:,[1,n])));
b([1,n],:)=1*ones(size(b([1,n],:)));
b=b+(pin ~= 0);
p=pin;
for i=1:5000
  p=0.25*(p(:,[n,[1:(n-1)]])+p(:,[[2:n],1]) ...
         +p([n,[1:(n-1)]],:)+p([[2:n],1],:));
  p=p.*(1-b)+pin;
end
figure('Position',[300,300,600,600]);
pcolor(p);
axis square;
colormap(waves);
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shading interp;

Plane-Polar Coordinates

! ! ! !

! 2u(r ," ) =
1
r

#
#r

r
#u
#r

$
%&

'
()

+
1
r 2

#2u
#" 2 = 0

#2u
#r 2

+
1
r

#u
#r

+
1
r 2

#2u
#" 2 = 0

We approximate the derivatives (as earlier) by

! ! ! !

! u
! r
(r ," ) =

u(r + #r ," ) $ u(r $ #r ," )
#r

! 2u
! r 2

(r ," ) =
u(r + #r ," )+ u(r $ #r ," ) $ 2u(r ," )

(#r )2

! 2u
! " 2 (r ," ) =

u(r ," + #" )+ u(r ," $ #" ) $ 2u(r ," )
(#" )2

This gives the finite difference equation
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! !

u(r ,θ) = 1
2(Δr )2 + r 2 (Δθ)2 (r 2 (Δθ)2 u(r + Δr ,θ) + u(r − Δr ,θ)( )

                                              + r(Δr )(Δθ)2 u(r + Δr ,θ) − u(r − Δr ,θ)( )
                                              + (Δr )2 u(r ,θ + Δθ) + u(r ,θ − Δθ)( ))

n=60;
m=10;
steps=1000;
dth=2.0*pi/59;
dr=1.0/9;
theta=(0:59)*dth;
r=(0:9)*dr;
pin=zeros(10,60); b=pin;
pin(1:2,:)=0.0;
pin(3,:)=10.0;
pin(9,1:30)=100.0;
pin(9,31:60)=200.0;
b(1:3,:)=1;
b(9,:)=1;
p=pin;
for i=1:steps
  i 
  for j=3:8
   for k=1:60
    coef=1.0/(2.0*((dr^2)+(r(j)^2)*(dth^2)));
    a2=((r(j)^2)*(dth^2))*(p(j+1,k)+p(j-1,k));
    a3=(dr*r(j)*(dth^2)/2.0)*(p(j+1,k)-p(j-1,k));
    a4=(dr^2)*(p(j,fixerp(k+1,n))+p(j,fixerm(k-1,n)));
    p(j,k)=coef*(a2+a3+a4);
   end
  end
  p=p.*(1-b)+pin;
end
TH=zeros(10,60);
RO=zeros(10,60);
for j=1:10
 TH(j,:)=theta;
end
for j=1:60
 RO(:,j)=r;
end
[X,Y,Z] = pol2cart(TH,RO,p);
figure;
contour(X,Y,Z,40);
colormap(hsv);
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axis square
figure
pcolor(X,Y,Z);
shading interp;
colormap(hsv);
axis square

function z=fixerp(m,n)
if (m == (n+1)) 
  z=1;
else
  z=m;
end

function z=fixerm(m,n)
if (m == 0) 
  z=n;
else
  z=m;
end
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Changing the 
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boundary conditions:

n=60;m=10;steps=1000;
dth=2.0*pi/59;dr=1.0/9;
theta=(0:59)*dth;r=(0:9)*dr;
pin=zeros(10,60); b=pin;
pin(1:2,:)=0.0;pin(3,:)=10.0;
pin(9,:)=100.0;
b(1:3,:)=1;b(9,:)=1;
p=pin;
for i=1:steps
  i 
  for j=3:8
   for k=1:60
    coef=1.0/(2.0*((dr^2)+(r(j)^2)*(dth^2)));
    a2=((r(j)^2)*(dth^2))*(p(j+1,k)+p(j-1,k));
    a3=(dr*r(j)*(dth^2)/2.0)*(p(j+1,k)-p(j-1,k));
    a4=(dr^2)*(p(j,fixerp(k+1,n))+p(j,fixerm(k-1,n)));
    p(j,k)=coef*(a2+a3+a4);
   end
  end
  p=p.*(1-b)+pin;
end
TH=zeros(10,60);RO=zeros(10,60);
for j=1:10
 TH(j,:)=theta;
end
for j=1:60
 RO(:,j)=r;
end
[X,Y,Z] = pol2cart(TH,RO,p);
figure;
contour(X,Y,Z,40);
colormap(hsv);
axis square
figure
pcolor(X,Y,Z);
shading interp;
colormap(hsv);
axis square
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