
L(y(x)) = R(x)

Ordinary Differential Equations(ODE)

ODEs are equations involving derivatives in various ways. The highest derivative specifies 
the order  of the equation. Single variable equations are ODEs and multi-variable equations 
are Partial Differential Equations(PDE)s.

An  ODE                         , is linear  if the differential operator L is a linear operator 
satisfying the linearity  property

L(a1y1(x) + a2y2(x)) = a1L(y1(x)) + a2L(y2(x))
a1  and  a2where                    are constants.

Examples:

The 1st order ODE

L(y(x)) =
dy(x)

dx
   is linear since   L(ay(x)) =

d(ay(x))
dx

= a
d(y(x))

dx
but the 1st order ODE

L(y(x)) =
dy(x)
dx

   is nonlinear since   L(ay(x)) =
d(ay(x))
dx

= a
dy(x)
dx

! a
dy(x)
dx

The 2nd order ODE d2! (t)
dt2 +

g
L

sin! (t) = 0
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which describes the large amplitude motion of a pendulum is non-linear because

sin ! " 1 + µ" 2( ) # ! sin " 1( ) + µ sin " 2( )
! sinθ ≈ θWe note that if        is always small, then                  and the new ODE

d2! (t)
dt2 +

g
L

! (t) = 0

is a linear ODE. All physical systems  not far from EQUILIBRIUM  (small 
displacements)are linear systems.

Linear  ODEs are simpler to solve than non-linear  ODEs. 

This is a consequence of the following two superposition principles  which apply only 
to linear ODEs:

y1(x)   and   y2 (x) (1) If                           are any  two solutions of a homogeneous linear ODE

L(y(x)) = 0
then yh (x) = c1y1(x) + c2y2 (x)         c1 , c2 =constants
is also a solution, i.e.,

Lyh (x) = L c1y1(x)+ c2y2 (x)( ) = c1L y1(x)( ) + c2L y2 (x)( ) = 0
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yh(x) L(y(x)) = 0
yp(x)

(2) If           is a (i.e., any ) solution of the homogeneous linear ODE,                   and             
                is a solution of the inhomogeneous  linear ODE

L(yp(x)) = R(x)

then the linear combination

y(x) = yp(x) + Ayh(x)         A =constant
is a solution of the inhomogeneous linear ODE

L(y(x)) = R(x)
i.e.,

Ly(x) = L yp(x) + ayh(x)( ) = L yp(x)( ) + aL yh(x)( ) = R(x)

h = homogeneous
p = particular

Solutions of ODEs

1st order ODEs  can be solved by direct integration  if the equation is SEPARABLE:
dy
dx

=
p(x)
q(y)

→ q(y)dy =∫ p(x)dx∫
Example:

dy
dx

! x 1 ! y2 = 0 "
dy

1 ! y2
= xdx

dy

1 ! y2
# = sin! 1 y = xdx =

1
2# x2 + C " y = sin 1

2
x2 + C$

%&
'
()
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This works for both  linear and nonlinear ODEs. It is not always easy to separate the 
variables. Sometimes a change of variables  helps.

Example: dy
dx

+ f (x)y = g(x)yn       n≠ 1→ nonlinear in y(x)

1
yn

dy
dx

+ f (x)y1−n = g(x)

v(x) = y1−n(x)→
dv
dx

= (1− n)y−n(x)
dy
dx

→
dv
dx

+ (1− n) f (x)v(x) = (1− n)g(x)

which is linear in v(x).

Now consider the following general form for a 1st-order inhomogeneous linear ODE:

d
dx

+ p(x)!
"#

$
%&

y(x) = R(x)

which is homogeneous if R(x) = 0 . We can solve this homogeneous equation formally  as 
follows:

 

dy(x)
y(x)

= ! p(x)dx "
dy(x')
y(x')a

x

# = d(! ny(x'))
a

x

# = ! p(x')dx'
a

x

#

!ny(x) ! ! ny(a) = !n
y(x)
y(a)

= ! p(x')dx'
a

x

# " y(x) = y(a)exp ! p(x')dx'
a

x

#
$

%
&

'

(
)
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The number y(a) = boundary condition  at the point y = a .

Example:
d
dx

+ x!
"#

$
%&
y(x) = 0 ' y(x) = y(0)exp ( x 'dx '

0

x

)
*

+
,

-

.
/

y(x) = y(0)e( x2 /2

yh(x)Now, given a solution           of the homogeneous equation, a particular solution of the 
inhomogeneous equation can always  be obtained as follows. Let

yp(x) = c(x)yh(x)         multiply by a function  c(x)
Substituting we get

L(yp(x)) = R(x) =
d
dx

+ x!
"#

$
%&

yp(x) =
d
dx

+ x!
"#

$
%&

c(x)yh(x)

R(x) = yh(x)
dc(x)

dx
+ c(x)

d
dx

+ x!
"#

$
%&

yh(x) = yh(x)
dc(x)

dx
since the last term

d
dx

+ x!
"#

$
%&

yh(x) = 0

This implies that dc(x)
dx

=
R(x)
yh(x)

! c(x) = c(a)+ R(x ')
yh(x ')a

x

" dx'
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This means that
yp(x) = c(a)+ R(x ')

yh(x ')a

x

! dx'
"

#
$

%

&
' yh(x)

and

y(x) = Ayh (x) + yp (x) = ayh (x) + c(a) +
R(x ')
yh (x ')a

x

! dx '
"

#
$

%

&
' yh (x)

       = A 'yh (x) +
R(x ')
yh (x ')a

x

! dx '
"

#
$

%

&
' yh (x)

where
A' = A + c(a)

yp(x) yh (x)This method is called variation of constants  since           is proportional  to            , 
but the proportionality constant  is itself a function of x.

Example:  Consider the 1st-order linear ODE

d
dx

+ s!
"#

$
%&
y(x) = e' tx           t( s

(1) get a homogeneous solution

d
dx

+ s!
"#

$
%&

yh(x) = 0 '
dyh

yh

= ( sdx

yh(x) = e( sx
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(2) get the proportional function c(x)

dc(x)
dx

=
R(x)
yh (x)

=
e! tx

e! sx " c(x) = c(0) + e! (t ! s )x '

0

x

# dx '

c(x) = c(0) !
1

t ! s
e! (t ! s )x ! 1( )

(3) get final answer

yp(x) = c(x)yh(x) = c(0) − 1
t − s

e−(t−s)x −1( )⎡
⎣⎢

⎤
⎦⎥
yh(x)

         = −
1

t − s
e− tx + c(0) + 1

t − s
⎛
⎝⎜

⎞
⎠⎟

yh(x)

(4) check answer
y(x) = Ayh(x) !

1
t ! s

e! tx + c(0) +
1

t ! s
"
#$

%
&'

yh(x)

       = A' yh(x) !
1

t ! s
e! tx

d
dx

+ s!
"#

$
%&
y(x) = a '

d
dx

+ s!
"#

$
%&
yh (x) '

d
dx

+ s!
"#

$
%&

1
t ' s

e' tx

                     = '
1

t ' s
  -t+s[ ]  e' tx = e' tx   as it should.
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Uniqueness of Solutions

The solution of an nth order linear ODE is uniquely determined by  n  boundary conditions 
that can be taken to be

y(b),y'(b),y''(b),........,y(n−1)(b)

at any point x = b. In the example above, the 1st-order linear ODE required only the value 
of y(b) for a complete solution, i.e.,

y(x) = A'yh(x) !
1

t ! s
e! tx " y(b) = A'yh(b) !

1
t ! s

e! tb

which determines the unknown constant AÕ.

You are also familiar with the physical fact that a 2 nd-order linear ODE like those that 
come from Newton's laws, requires 2 boundary conditions y(b) and y'(b) or that we 
specify both the position and the velocity at some instant of time.

1st order Equations - Integrating factors

Now suppose we have the differential equation

p(x,y)dx+ q(x,y)dy= 0
It is called exact  if

∂ p
∂y

=
∂q
∂x
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This implies that there exists a function f(x,y) such that

p(x) =
! f
! x

, q(x) =
! f
! y

"
! p
! y

=
! 2 f
! y! x

,
! q
! x

=
! 2 f
! x! y

and in physics
! 2 f
! y! x

=
! 2 f
! x! y

always !

Therefore we get
p(x,y)dx+ q(x,y)dy=

! f
! x

dx+
! f
! y

dy= df

We then have the solution

df = 0 ! f (x,y) = constant

An equation that is not exact may often be made exact by multiplying it by an appropriate 
factor called an integrating factor .  For example:

xdy! ydx = 0
is not exact. But the equation

xdy! ydx
x2 =

1
x

dy!
y
x2 dx = 0

is exact, and its solution is

f (x,y) =
y
x

= constant which is the solution of 
the original equation
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Integrating factors can sometimes be used to solve linear, inhomogeneous first-order 
ODEs of the form

dy(x)
dx

+ P(x)y(x) =G(x)

! (x)We seek an         such that

! (x)
dy(x)

dx
+ P(x)y(x)"

#$
%
&'

=
d
dx

! (x)y(x)[ ] = ! (x)G(x)

or
! (x)P(x) =

d! (x)
dx

We then have

P(x)dx =
d! (x)
! (x)

" ! (x) = exp dxP(x)#$
%

&
'

Finally, d
dx

! (x)y(x)[ ] = ! (x)G(x)

or

! (x)y(x) = ! (x)G(x)dx" + C0

y(x) =
! (x)G(x)dx" + C0

! (x)
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Example:

2nd-Order Homogeneous ODEs with Constant Coefficients

Consider the ODE d2y
dx2 + 5

dy
dx

+ 4y = 0

If we let D =
d
dx

then we have the equation
D2 + 5D + 4( )y = 0

These equations can be solved by substitution(guessing)  and converting the ODE 
into an algebraic (quadratic)  equation(Physics 8). We choose(guess) the solution

y = c1e
ax

dy
dx

+ y = ex      ,    y(0) = 1 ! P(x) = 1

! " (x) = exp dx#( ) = ex

! y(x) =
e2x dx+ C0#

ex =
1
2

ex + C0e
$x

y(0) = 1=
1
2

+ C0 % C0 = $
1
2

! y(x) = cosh(x)
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Substitution gives the allowed values of  a  (possible solutions)

a2 + 5a + 4( )c1e
ax = 0 ! a2 + 5a + 4 = 0

a = " 1   and   a = " 4

conversion of ODE to 
an algebraic equation

The most general solution  is a superposition of all possible solutions  with 
arbitrary multiplicative constants (number of possible solutions = order of ODE) so

y = c1e
! x + c2e

! 4 x

c1   and  c2The arbitrary constants                       are determined by boundary conditions where 
we specify

y(x0)   and   
dy(x0)

dx
       ,   x0 = arbitrary point

For example suppose,

y(0) = 2   and   
dy(0)

dx
= −3       ,   x0 = 0

then we have y(0) = 2 = c1 + c2

dy(0)
dx

= ! 3= ! c1 ! 4c2

c1 = 5 / 3   and   c2 = 1/ 3

and the general solution with these boundary conditions is

12



y(x) =
5
3

e−x +
1
3

e−4x

The solutions for  a  can be imaginary numbers (trigonometric solutions) or complex 
numbers (mixed trigonometric and exponential solutions).

Example:Simple Harmonic Oscillator   In this case:

d2y
dt2 +ω 2y = 0 , D =

d
dt

→ D2 +ω 2( )y(t) = 0

Choosing y = c1e
at ! a2 +" 2 = 0 ! a = ±i"

which gives the general solution

y(t) = c1e
i! t + c2e

" i! t

With Boundary conditions

y(0) = 0   and   dy(0)
dt

= 4ω    (what is the oscillator doing?)

we get c1 + c2 = 0
i! (c1 " c2 ) = 4! # c1 " c2 = " 4i

c1 = " 2i    and   c2 = 2i
so that

y(t) = ! 2i(ei" t ! e! i" t ) = 4sin(" t) as expected
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Example:Equal Roots      Suppose we have

D2 + 5D + 4( ) y = 0 ! a = 3 , 3

These solutions are linearly dependent. The rule is then to choose a solution of the form

y(x) = (Ax + B)e3x

since we must have  2 constants because it is a 2nd-order ODE.

Clifford-Euler Equation

We have a homogeneous equation of the form

x2 d
2u
dx2 + ax

du
dx

+ bu = 0

The solutions take the form u = xm

Substitution gives
m(m ! 1) + am + b[ ] xm = 0 " m(m ! 1) + am + b = 0

" 2 roots    m1    and   m2

and the solution is

u(x) = Axm1 + Bxm2
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Second-Order Homogeneous ODEs in General

y1(x)   and   y2(x) Suppose                                are two solutions of the homogeneous equation with 
boundary conditions

y1(a) = 1, y '1(a) = 0 , y2(a) = 0 , y '2(a) = 1

y1(x)   and   y2(x) It is clear that                                    can never be proportional to each other, since 
they already differ at the boundary x = a. This means that they are linearly 
independent . They are also the only linearly independent solutions because 
2nd-order ODEs have only two independent boundary conditions y(a) and y'(a).

A general solution satisfying the boundary conditions

y(a) = c1   ,  y'(a) = c2   
is given by

y(x) = c1y1(x)+ c2y2 (x)

Test of Linear Independence of Solutions: The Wronskian

How do we determine the linear independence of  2  given homogeneous solutions? In the 
simple case, it is easy, just look ...  if they are not proportional, then they are linearly 
independent. This simple procedure cannot be used for  n  given homogeneous solutions 
of the n th-order linear ODE when n > 2 . We need a more general procedure, applicable 
to an ODE of any order.  I will illustrate the method in the 2 nd-order case for simplicity.
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y1(x)   and   y2 (x) If                                are linearly independent, then it turns out that any solution y(x) 
of a 2nd-order linear ODE

d2

dx2 + p(x)
d
dx

+ q(x)
⎛
⎝⎜

⎞
⎠⎟
y(x) = R(x)

(where we assume R(x) = 0 for now) and its slope y'(x) can be written as

c1y1(x)+ c2y2 (x) = y(x)
c1y '1(x)+ c2y '2 (x) = y '(x)

c1   and   c2with unique  linear coefficients                     . Let us write these equations in matrix form

y1(x) y2(x)

y'1(x) y'2(x)
!

"
#

$

%
&

c1

c2

!

"
#

$

%
&=

y(x)

y'(x)
!

"
#

$

%
&' MC = Y

C = M ! 1YA solution of these equations is given by                  . A unique solution  requires that 
the determinant

W(x) =
y1(x) y2 (x)
y'1(x) y'2 (x)

M ! 1
does not vanish, where W(x) = Wronskian . This requirement corresponds to the 
existence of the inverse         .
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W (x = a) ! 0 c1   and   c2Now suppose                          . Then we can determine the coefficients  
at x = a, which, in turn, implies that W(x) ! 0 at all other  x. We show this as follows:

dW(x)
dx

=
d
dx

y1y'2 ! y2y'1( ) = y'1 y'2 + y1y''2 ! y'2 y'1! y2y''1 = y1y''2 ! y2y''1

           = ! y1 p(x)y'2 + q(x)y2( ) + y2 p(x)y'1+ q(x)y1( ) = ! p(x)W(x)
Therefore,

W(x) = W(a)exp ! p(x ')dx'
a

x

"
#

$%
&

'(

This implies that

 (1) if W(a) ! 0 , then W(x) ! 0 everywhere
 (2) if W(a) = 0 , then W(x) = 0 everywhere

For higher order linear ODEs

W (x) =

y1 y2 y3 ... yn
y '1 y '2 y '3 ... y 'n
y ''1 y ''2 y ''3 ... y ''n
... ... ... ... ...

y1
(n−1) y2

(n−1) y3
(n−1) ... yn

(n−1)
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An Example:  Consider the equation

d2

dx2 + k2!

"#
$

%&
y(x) = 0

This has two linearly independent solutions given by

y1(x) = coskx , y2 (x) =
1
k
sinkx

The 1/k factor in the second solution is necessary for these solutions to agree with the 
solutions when k = 0, i.e.,

d2

dx2

!

"#
$

%&
y(x) = 0

which has the two linearly independent solutions

y1(x) = 1 , y2(x) = x
k ! 0which are the limits of the first solutions as           . The Wronskian, in this case, is

W(x) =
coskx

1
k
sinkx

−ksinkx coskx
= 1

y1(x)
y2(x) 

The 2nd Homogeneous Solution

Now, if one solution          of a 2nd order homogeneous linear ODE is known, a second 
solution        , linearly independent of the first, can be constructed with the help of the 
Wronskian:
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d
dx

y2

y1

!

"
#

$

%
&=

y1y'2 ' y2y'1
y1

2 =
W(x)
y1

2(x)

A simple integration then gives

y2 (x)
y1(x)

−
y2 (b)
y1(b)

=
W (x ')
y1
2 (x ')b

x

∫ dx ' = g(x)

y2 (x) = g(x)y1(x) +
y2 (b)
y1(b)

y1(x)

y1(x)
Now we can drop the last term since it is proportional to            and we already have a 
term proportional to             in the general solution

y1(x)

y(x) = ay1(x)+by2(x) 
Therefore, we have

y2(x) = g(x)y1(x)
Since

W(x) = W(b)exp ! p(x')dx'
b

x

"
#

$%
&

'(

we get

g(x) =
W(x ')
y1
2 (x ')b

x

! dx' = W(b)
exp " p(x '')dx''

b

x '

!
#

$%
&

'(

y1
2 (x ')b

x

! dx' Does this procedure work?
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A Simple Example: d2

dx2
! (x) = 0

! 1(x) = 1If one solution is                  , then we can find a second linearly independent solution by

! 2(x) = g(x)! 1(x) = g(x)

We choose b = 0 and get (since p(x) = 0 in this case), W(x) = W(0) and

g(x) =
W(0)

12
0

x

! dx' = W(0)x " # 2(x) = x

which is the correct second linearly independent homogeneous solution.

Inhomogeneous Solutions

The solution of the inhomogeneous 2nd order linear ODE

Ly(x) = R(x)
has the general form y(x) = yp (x) + c1y1(x) + c2y2(x)[ ]
where yp(x)=any particular solution

c1y1(x) + c2y2(x)[ ] = complementary solution

                             = combination of 2 linearly independent

                                  solutions of the homogeneous equation
20



yp(x)
yp(a) , y'p(a)

Why do we bother with y(x) if we already know           ? The reason is that           

satisfies the boundary conditions                          at  x = a.

yp(x)

yp(a) = ! , y'p(a) = "
Suppose instead that we want a solution satisfying the boundary conditions                    
                                      . We do not want to spend time looking for a particular  
solution with JUST the right boundary conditions because they are very hard to obtain 
in general. Anyway we are unlikely to find one with exactly the correct boundary 
conditions.

The complementary function now comes to our rescue. Using it we can change the 
boundary conditions without contributing anything to the inhomogeneity of the ODE
(i.e., without changing the fact that we have a solution of the inhomogeneous ODE). 
So we choose c1y1(a)+ c2y2 (a) = ! " yp (a)

c1y '1(a)+ c2y '2 (a) = # " y 'p (a)

c1  and   c2The existence of the coefficients                        is guaranteed by the linear independence 
of the homogeneous solutions                        , since then the Wronskian W(a) ! 0 and 
the inverse matrix needed to solve

y1  and   y2

c1

c2

!

"
#

$

%
&=

y1(a) y2(a)

y'1(a) y'2(a)
!

"
#

$

%
&

' 1 ( ' yp(a)

) ' yp(a)
!

"
#

$

%
&

exists.
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yp(x)
yp(x)

x = x1 yp (x1) y'p(x1)

A Particular Solution: Method of Variation of Constants

We still need one (any one) particular solution             of the inhomogeneous ODE. To 

obtain this, we first observe that the function             contains 2 degrees of freedom in  
the sense that at a point              , its value              and its slope              can be 
chosen arbitrarily.

yi (x) , i = 1,2
These two arbitrary numbers may be expressed in terms of the values and slopes of the 
two linearly independent homogeneous solutions 

yp(x) = v1y1(x) + v2y2(x)

y'p(x) = v1y'1(x) + v2y'2(x)

v1   and   v2
yp(x)

because the RHSs also describe a system with 2 degrees of freedom, as represented by 
the 2 linear coefficients                      . However, these linear coefficients                       
cannot be constants independent of x, for then           solves the homogeneous linear 
ODE, not the inhomogeneous equation. We therefore must have (need)

v1   and   v2

vi = vi (x)   ,   i=1,2

This method is called variation of constants . However, by direct differentiation we 
have

dyp(x)

dx
= y'p(x) =

d
dx

v1y1(x) + v2y2(x)[ ] = v1y'1+ v2y'2+ [v'1 y1 + v'2 y2]
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v'i
which is not correct unless [.............] = 0 . It turns out that this single requirement is 
insufficient to determine the 2 unknowns          . We need another relation, which we can 
obtain from the original ODE:

d 2

dx2
+ p(x) d

dx
+ q(x)

!

"#
$

%&
y(x) = R(x)

As before, using
yp(x) = v1y1(x) + v2y2(x)

y'p(x) = v1y'1(x) + v2y'2(x)

we get
y'p(x) =

d
dx

v1y1(x) + v2y2(x)( )
         = v1y'1+ v'1 y1 + v'2 y2 + v2y'2

d2yp

dx2 =
d
dx

y'p(x)( ) = d
dx

v1y'1+ v'1 y1 + v'2 y2 + v2y'2( )
       = v''1 y1 + 2v'1 y'1+ v1y''1+ v''2 y2 + 2v'2 y'2+ v2y''2

or d2

dx2 + p(x) d
dx

+ q(x)
!

"#
$

%&
y(x)

      = v''1 y1 + 2v'1 y'1+ v1y''1+ v''2 y2 + 2v'2 y'2 + v2y''2 + p v1y'1+ v'1 y1 + v'2 y2 + v2y'2( )
               + q v1y1 + v2y2( ) = R(x)
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v1y''1+ pv1y'1+ qv1y1[ ] + v2y''2+ pv2y'2+ qv2y2[ ] + pv'1 y1 + pv'2 y2[ ]
     + v''1 y1 + 2v'1 y'1+ v''2 y2 + 2v'2 y'2 = R

v1 y''1+ py'1+ qy1[ ] + v2 y''2+ py'2+ qy2[ ] + p v'1 y1 + v'2 y2[ ]
     + v''1 y1 + 2v'1 y'1+ v''2 y2 + 2v'2 y'2 = R

v1 0[ ] + v2 0[ ] + p 0[ ] + v''1 y1 + 2v'1 y'1+ v''2 y2 + 2v'2 y'2 = R

v''1 y1 + v'1 y'1+ v''2 y2 + v'2 y'2[ ] + v'1 y'1+ v'2 y'2 = R

d
dx

v'1 y1 + v'2 y2( )!
"#

$
%&

+ v'1 y'1+ v'2 y'2 = R

[0] + v'1 y'1+ v'2 y'2 = R

and we thus get a second relation. These two relations
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v'1(x)y1(x) + v'2(x)y2(x) = 0

v'1(x)y'1(x) + v'2(x)y'2(x) = R(x)

W (x) = y1(x)y '2(x) ! y2(x)y '1(x) " 0along with                                                              give the results

v1(x) = !
y2(x')R(x')

W(x')a

x

" dx'

v2(x) =
y1(x')R(x')

W(x')a

x

" dx'

v1(a) = v2(a) = 0
yp(a) = y'p(a) = 0

where integration constants have been chosen arbitrarily  to give                                 .
With this choice, the particular solution satisfies the boundary conditions                         .

An Example: d2

dx2
+ k2

!

"#
$

%&
y(x) = Asinqx

We know the 2 homogeneous solutions from our earlier discussions

y1(x) = coskx , y2(x) =
1
k

sinkx , W (x) = 1

This gives
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v1(x) = !
A
k! L

x

" sinkxsinqxdx = !
A
k

sin(k ! q)x
2(k ! q)

!
sin(k + q)x

2(k + q)
#

$
%

&

'
( + constant

v2 (x) = A
! L

x

" coskx sinqxdx =

A
k

cos(k ! q)x
2(k ! q)

!
cos(k + q)x

2(k + q)
#

$
%

&

'
( + constant      for  k ) q

A
2k

sin2 kx + constant                                   for k=q

*

+
,,

-
,
,

k ! qThus, a particular solution is, for 

yp(x) =
A

2k(k − q)
sin(k − q)xcoskx − cos(k − q)xsinkx[ ]

                     +
A

2k(k + q)
sin(k + q)xcoskx − cos(k + q)xsinkx[ ]

       = −
A

2k(k − q)
sinqx+

A
2k(k + q)

sinqx=
A

k2 − q2 sinqx

k = qFor                ,
yp(x) = −

A
k

x
2
−

sin2kx
4k

⎡
⎣⎢

⎤
⎦⎥
coskx +

A
2k2 sin3 kx

         = −
A
2k

xcoskx +
A

2k2 cos2 kx + sin2 kx⎡⎣ ⎤⎦sinkx

         = −
A
2k

xcoskx +
A

2k2 sinkx
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y2(x)where we can drop the last term because it is proportional to          which is already 
included in the solution. Similarly for the extra integration constants.

The general solution is then

y(x) = !
A
2k

xcoskx + c1 coskx + c2 sinkx

and any boundary conditions  can be met by adjusting the two arbitrary constants.

For later use. Now consider again the Heaviside step function  defined by

H(x ! a) =
0        for   x<a

1        for   x>a
"
#
$

Now since dH (x ! a)
dx! "

"

# f (x)dx = H (x ! a) f (x)
! "

" ! H (x ! a)
! "

"

# df (x)

                 = f (" )(1) ! f (! " )(0) !
a

"

#df (x) = f (" ) ! f (" ) + f (a) = f (a)

                 = $(x ! a)
! "

"

# f (x)dx

we have dH(x ! a)
dx

= " (x ! a)
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Therefore, when we have an inhomogeneous equation with

R(x) = δ (x − x ')
we have

v1(x) = !
y2(x')
W(x')

H(x ! x') , v2(x) =
y1(x')
W(x')

H(x ! x')

This solution of an inhomogeneous ODE with a delta-function inhomogeneity  is 
called a Green Function . We have

G(x,x') = Gp(x,x') + c1y1(x) + c2y2(x)
where

Gp (x, x ') =
−y1(x)y2 (x ') + y1(x ')y2 (x)

W (x ')
H (x − x ')

More about Green functions later.

Series Solution of Homogeneous 2nd Order Linear ODEs: Method of Frobenius

We have seen
(1) given one solution of a homogeneous 2nd order ODE we can generate a second 
     linearly independent solution by integration
(2) if we are given both solutions, then a particular solution of the inhomogeneous 
     ODE also can be calculated by integration

Thus, it remains for us to obtain at least 1 solution for the homogeneous equation. 
A method, with which it is usually possible to do so, is to obtain the solution y(x) of the 
homogeneous ODE
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Ly(x) = 0

using a power series  in x.  We choose

y(x) = xs aλ
λ=0

∞

∑ xλ                  a0 ≠ 0

We then have dy
dx

= a!
! =0

"

# (! + s)x ! +s$1

d2y
dx2 = a!

! =0

"

# (! + s)(! + s $1)x ! +s$2

Substitution back into the homogeneous ODE produces a powers series which sums to 
zero. In this case, because each term in the series is linearly independent, each coefficient 
must separately = 0. This allows us to determine the values of  s  and the  a-coefficients  
and hence the solution to the problem. 

Let us illustrate the method with some examples. First we follow the book and consider 
the equation

d2u
dx2 + x2u = 0

Let us first use the simpler method which is valid for certain equations where s = integer.

We choose u(x) = a!
! =0

"

# x!          a0 $ 0
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i.e., we use the simpler series with s = integer. We then have

Substitution gives

d2u
dx2

= a!
! =0

"

# (! )(! $1)x! $2

aλ
λ=0

∞

∑ (λ)(λ −1)xλ−2 + aλ
λ=0

∞

∑ xλ+2 = 0

or a2(1)(2)x0 + a3(2)(3)x1 + a4(3)(4) + a0[ ]x2 + ....

                        + ak−2 + ak+2(k + 2)(k +1)[ ]xk + ....= 0
We then have

a0 ≠ 0

a1 ≠ 0

a2 = 0

a3 = 0

ak + ak+4(k + 3)(k + 4) = 0       

ak+4 = !
ak

(k + 3)(k + 4)
       

a2 = 0 ! a6 = a10 = a14 = .....= 0
a3 = 0 ! a7 = a11 = a15 = .....= 0

a0Starting with          we get a4 = −
a0

(3)(4)

a8 = −
a4

(7)(8)
=

a0

(3)(4)(7)(8)
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a1Starting with        we get a5 = !
a0

(4)(5)

a9 = !
a5

(8)(9)
=

a1

(4)(5)(8)(9)
     

and the general solution is

u(x) = c1 1−
1

12
x4 +

1
672

x8 − ....⎛
⎝⎜

⎞
⎠⎟
+ c2 x −

1
20

x5 +
1

1440
x9 − ....⎛

⎝⎜
⎞
⎠⎟

Let us now do this same equation with s  left in (more general).  We choose

u(x) = aλ
λ=0

∞

∑ xλ+ s          a0 ≠ 0

We then have
d2u
dx2 = aλ

λ=0

∞

∑ (s+ λ)(s+ λ −1)xλ−2+s

Substitution gives
a!

! =0

"

# (s+ ! )(s+ ! $1)x! $2+s + a!
! =0

"

# x! +2+s = 0

or a0s(s ! 1)xs ! 2 + a1s(s +1)xs ! 1 + a2(s +1)(s + 2)xs + a3(s + 2)(s + 3)xs+1

                        + a4(s + 3)(s + 4) + a0[ ] xs+2 + ....

                        + ak ! 2 + ak+2(s + k + 2)(s + k +1)[ ] xs+k + ....= 0
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We then have
a0s(s−1) = 0 → a0 ≠ 0,s= 0,1
a1s(s+1) = 0 → a1 ≠ 0,s= 0  and  a1 = 0,s= 1
a2 (s+1)(s+ 2) = 0 → a2 = 0
a3(s+ 2)(s+ 3) = 0 → a3 = 0
ak−2 + ak+2 (s+ k + 2)(s+ k +1) = 0       

ak+4 = !
ak

(s + k + 3)(s + k + 4)
       

a2 = 0 ! a6 = a10 = a14 = .....= 0

a3 = 0 ! a7 = a11 = a15 = .....= 0

a0 = a1 = 1Starting with s=0 and choosing                     we get

a4 = !
a0

(3)(4)
, a8 = !

a4

(7)(8)
=

a0

(3)(4)(7)(8)
, ........ 

a5 = !
a1

(4)(5)
, a9 = !

a5

(8)(9)
=

a1

(4)(5)(8)(9)
, ........     

The case s = 1 does not generate any new series (always happens if s = integer).

The general solution is the same as earlier

u(x) = c1 1 !
1
12

x4 +
1
672

x8 ! ...."
#$

%
&'

+ c2 x !
1
20

x5 +
1

1440
x9 ! ...."

#$
%
&'
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We now consider the equation

8x2 d2u
dx2 + 6x

du
dx

+ (x ! 1)u = 0

Substitution gives u(x) = xs aλ
λ=0

∞

∑ xλ                  a0 ≠ 0

8 a!
! =0

"

# (! + s)(! + s$1)x! +s + 6 a!
! =0

"

# (! + s)x! +s + a!
! =0

"

# x! +s+1 $ a!
! =0

"

# x! +s = 0

8a0s(s$1) + 6a0s$ a0[ ] xs + 8a1s(s+1) + 6a1(s+1) $ a1 + a0[ ] xs+1

     + 8a2(s+1)(s+ 2) + 6a2(s+ 2) $ a2 + a1[ ] xs+2 + .......

     + 8an(s+ n $1)(s+ n) + 6an(s+ n) $ an + an$1[ ] xs+n + ....= 0

xs
a0 = 1

The coefficient of        is called the indicial equation . It determines the allowed values 
of  s. We choose            for simplicity. We get

8s(s ! 1) + 6s ! 1= 0 = 8s2 ! 2s ! 1" s =
2 ± 4 + 32

16
=

1
2

, !
1
4

These two allowed s values will generate the two linearly independent homogeneous 
solutions. We have from the other coefficients

8an(s+ n ! 1)(s+ n)+ 6an(s+ n) ! an + an! 1 = 0

an = !
an! 1

8(s+ n ! 1)(s+ n)+ 6(s+ n) ! 1
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a0
This last relation is a recursion relation and determines all higher order coefficients
(for each allowed s value) in terms of        . We get

s=
1
2

u1(x) = x1/2 −
1

8(1 / 2)(3 / 2) + 6(3 / 2) −1
x3/2

                               + 1
(8(3 / 2)(5 / 2) + 6(5 / 2) −1)(8(1 / 2)(3 / 2) + 6(3 / 2) −1)

x5 /2 − ....

       = x1/2 −
1

14
x3/2 +

1
616

x5 /2 −

s = !
1
4

u2 (x) = x! 1/4 !
1
2

x3/4 +
1
40

x7 /4 ! ......

and the most general solution is

u(x) = au1(x) + bu2(x)
A second example is slightly trickier(even though equation is 
simpler). Consider the equation

d2

dx2 + k2!

"#
$

%&
y(x) = 0
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Remember we already know the solutions to this equation and that will help us to figure 
out what is going on with the method.

Substitution gives a!
! =0

"

# (! + s)(! + s$1)x! +s$2 + k2 a!
! =0

"

# x! +s = 0

or a0s(s −1)xs−2 + a1s(s +1)xs−1 + a0k
2 + a2(s + 2)(s +1)⎡⎣ ⎤⎦ x

s + ......

                        + aλk
2 + aλ+2(s + λ + 2)(s + λ +1)⎡⎣ ⎤⎦ x

s+λ + ....= 0

Since the coefficient of each power must separately be = 0, we have

a0s(s! 1) = 0 " s = 0  or  1    since   a0 # 0

a0 ! 0
This is always STEP #1 : determine the possible values of  s. It is at this point that we use 
the assumption            .

Then look at next coefficient

a1s(s +1) = 0→
if  s=0, then   a1  can be nonzero

if  s=1, then   a1=0                     
⎧
⎨
⎩

In general, the coefficient of the other higher powers vanishes if

aλ+2 = −
k2

(s+ λ + 2)(s+ λ +1)
aλ

a0    and   a1

This is a recursion relation , which allows an ordered step-by-step determination of all 
coefficients in terms of                       , i.e.,
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a2 = !
k2

(s + 2)(s +1)
a0

a3 = !
k2

(s + 3)(s + 2)
a1

a!!

and so on.

The particular recurrence relation for this equation contains the special feature that it 
steps        by 2. As a result, the coefficients          are separated into two disjoint groups, 
one with even       and another with odd         .! !

For the even chain we find
(a) for  s = 0

a2 = !
k2

2!
a0 , a4 = !

k2

12
a2 =

k4

4!
a0 , .............

(b) for  s = 1

a2 = !
k2

3!
a0 , a4 = !

k2

20
a2 =

k4

5!
a0 , .............

or we get solutions

(a)

(b)

y1(x) = yeven (x) = 1−
k2

2!
x2 +

k4

4!
x4 − .....= coskx

y2(x) = yodd(x) = x 1!
k2

3!
x2 +

k4

5!
x4 ! .....

"

#$
%

&'
=

1
k

x !
k3

3!
x3 +

k5

5!
x5 ! .....

"

#$
%

&'
=

1
k

sinkx

a0 =1where we have used          .
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a1 = 0

What about the odd chain of coefficients? 

There is no solution in that case for s = 1, since            and therefore all higher order odd 
coefficients vanish.

a1 ≠ 0For  s = 0 however,             and this gives

a3 = !
k2

3!
a1 , a5 = !

k2

20
a3 =

k4

5!
a1 , .............

yodd (x)which is the same solution as            from before, so we get nothing new.

In fact, we should not have expected anything new since we already have found the 2 
allowed linearly independent solutions.

The solution are, of course, the same as we found earlier.

Parity Property

It can easily be seen that

yeven(−x) = yeven(x)→ even function→ even parity

yodd(−x) = −yodd(x)→ odd function→ odd parity

x ! " x
For a solution of a linear ODE to have a definite parity, the linear operator   L  must be 
even (or invariant under inversion or parity operation                 or
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L(! x) = L(x)

An example is a classical oscillator with damping

L(t)y(t) =
d2

dt2
+ 2!

d
dt

+" 0
2#

$%
&

'(
y(t) = 0 ) L(t) * L(+t)

s ! integer

which means that solutions do not have definite parity.

Let us do another example where                     . Consider the equation

16x2 d2u
dx2 + 3(1+ x)u = 0

Substitution gives
u(x) = xs a!

! =0

"

# x!                  a0 $ 0

16 a!
! =0

"

# (! + s)(! + s$1)x! +s + 3 a!
! =0

"

# x! +s+1 + 3 a!
! =0

"

# x! +s = 0

16a0s(s$1) + 3a0[ ] xs + 16a1s(s+1) + 3a0 + 3a1[ ] xs+1

     + 16a2(s+1)(s+ 2) + 3a1 + 3a2[ ] xs+2 + .......

     + 16an(s+ n $1)(s+ n) + 3an$1 + 3an[ ] xs+n + ....= 0

a0 = 1We choose                for simplicity. We get
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16s(s −1) + 3= 0 = 16s2 −16s + 3→ s =
16± 256−192

32
= +

3
4

, +
1
4

These two allowed s values will generate the two linearly independent homogeneous 
solutions we need.

We have from the other coefficients

16an(s+ n ! 1)(s+ n) + 3an! 1 + 3an = 0

an = !
3

16(s+ n ! 1)(s+ n) + +3
an! 1

a0 = 1
The recursion relation determines all higher order coefficients(for each allowed s value) in 
terms of            .

We get
s =

1
4

! u1(x) = x1/4 1 "
3
20

x +
1
160

x2 + ......#
$%

&
'(

s =
3
4

! u2 (x) = x3/4 1 "
1
8

x +
3
640

x2 + ......#
$%

&
'(

and the most general solution is
u(x) = au1(x) + bu2 (x)
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