
DIFFRACTION AND FOURIER OPTICS  
I. Introduction  
Let us examine some of the main features of the Huygens-Fresnel scalar theory of optical 
diffraction. This theory approximates the vector electric and magnetic fields with a single 
scalar function, and adopts a simplified representation of the interaction of an 
electromagnetic wave with matter. As you will see, the model accounts for a number of 
optical phenomena rather well. 

If one accepts the Huygens-Fresnel theory, it becomes possible to manipulate images by 
altering their spatial frequency spectrum in much the same way that electronic circuits 
manipulate sound by altering the temporal frequency spectrum. 

II. Theoretical considerations  
A. Huygens-Fresnel scalar theory  
Imagine an opaque screen with a hole in it, illuminated by monochromatic light. Upon 
close examination, one finds an intricate pattern of light and dark behind the screen, not 
simply a geometric shadow as would be predicted by a particle theory of light. The first 
attempt to explain the observed pattern was made by Christiaan Huygens, in 1678, on the 
basis of his wave theory of light. In 1818, Augustin Fresnel combined Huygens' intuitive 
ideas with Young's principle of interference to produce a reasonably quantitative wave 
theory of optics. Briefly put, the model assumes that each point within the illuminated 
aperture of a screen is the source of a spherical wave. The amplitude of the optical field 
at any point beyond the screen is found by adding the spherical waves arriving from each 
fictitious point source. Additional assumptions are needed to insure that the point sources 
only radiate in the forward direction, and that the edge of the aperture makes no special 
contribution.
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Huygens and Fresnel did their work before Maxwell, so they did not really have a proper 
description of the electromagnetic field and were forced to resort to rather arbitrary 
assumptions. To the modern student of optics it seems more sensible to start with 
Maxwell's equations, appropriate boundary conditions at the screen, and a description 
of the source of electromagnetic waves. The      and       fields can then be calculated 
at all points in space, and the optical intensity found from        . It turns out that this 
approach is nearly impossible to carry through to a successful conclusion for any 
reasonably interesting geometry. The most important difficulty is that         and  
are coupled vector fields, so the basic equations are difficult to solve except for highly 
symmetric cases. Then, even when the geometry is simple, a proper description of the 
response of the screen material to the electromagnetic wave is difficult. As a result only 
a few simplified geometries have been calculated rigorously. Fortunately a number of 
scientists, including Kirchoff, Rayleigh and Sommerfeld, were able to develop a simplified 
theory of optical diffraction between about 1880 and 1900. The results of this theory 
agree well with experiment, and with complete calculations in those cases where the 
latter can be carried out. Accordingly, we will work with this simplified model in what 
follows

 
!
E

E(x,y,z,t)
The first step in the simplification is to replace the vector wave equation for        with a 
scalar equation for one component,                :

∇2E =
1
c2

∂2E
∂t 2

(01)

By treating only one component of the field, we are assuming that interactions with the 
aperture cannot affect the polarization of the incident wave. Since we already know the 
explicit time dependence of the wave, we write
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E(x,y,z,t) = Re Εexp(−iωt )[ ]
and substitute into (01) to obtain the desired scalar wave equation

∇2 + k2( )Ε = 0 (02)

where
k =

!
c

=
2"
#

(03)

! o(xo,yo )

! o

The solution of (02), with appropriate boundary conditions, will be our description of the 
diffracted wave. 

Equation (02) is to be solved for the geometry shown in Fig. 1, which depicts a planar 
aperture (the object) in an opaque screen illuminated from the left, and an image plane. 
We assume that the aperture acts as the source of a field                 which may be 
attenuated and phase shifted relative to the incident field.       is assumed to be 
identically zero beyond the opaque portions of the screen. These conditions cannot be exactly correct because the aperture must influence the fields for distances of the order of a few wavelengths, but they are good approximations for large apertures.

Εo

! o

Fig. 1 - Sketch of object and
image plane coordinates showing
the distance rio between image 
and object points. The line rio 
makes an angle θ with the z-axis.
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Ε i (xi , yi )We will derive rather generally that                is given by

Εi =
1
iλ

Εo
exp(ikrio )

rio
∫∫ cos(θ)ds (04)

! oFrom our assumptions,       is zero except directly behind the aperture, so the surface 
integral effectively runs over the aperture in the screen.

Although Eq. (04) appears complicated, it is really nothing more 
than a formal statement of the Huygens-Fresnel argument. To see 
this, recall that a spherical wave of amplitude A diverging from a 
point source is described by

! = A
exp(ikr)

r
(05)

! o
cos(! )

The integral (04) is a sum of such waves, of amplitude       , originating from the object 
points (xo,yo) within the aperture. The              term corresponds to Fresnel's assumption 
that only the forward-propagating part of the spherical waves is to be retained.

To(xo,yo)

The screen is characterized by a complex transmission function               which describes 
the phase shift and attenuation produced by the aperture. If, as is frequently the case, the 
barrier either totally transmits or totally blocks the incident beam,                becomes 
identically 1 for (x o,yo) within the aperture and zero otherwise.

To(xo,yo )

! o To(xo,yo )The object amplitude        is found by multiplying the incident wave by               . The 
product is particularly simple for a point-source on the coordinate axis a distance  z s  
from the aperture, provided  z s  is large compared to the dimensions of the aperture.
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In that limit we can replace  r  by  z s  in the denominator of Eq. (05). We must be more 
careful with the  r  in the exponential, because  kr  is likely to be a big number which we 
must determine to a fraction of 2 !  . A simple expansion of  r  gives

r ! zs 1+
1
2

xi " xo

zs

#

$%
&

'(

2

+
1
2

yi " yo

zs

#

$%
&

'(

2)

*
+
+

,

-
.
.

(06)

which can be inserted into (05) to yield

! =
A
zs

exp(ikzs)exp
ik
2zs

xo
2 + yo

2( )"

#
$

%

&
' To(xo,yo) (07)

A / zs ! A 'zs ! "
! o = A'To(xo,yo)

Further simplification is obtained for plane wave illumination normal to the aperture, which 
is obtained by letting                 holding                       finite. The varying phase factors 
then vanish, leaving                              .

At this point, most of the physics is done and the content of the model has been 
presented. The remainder of our job is to make some geometrical approximations that 
will let us evaluate (04) in the cases of interest.

!

θ

cos! " 1

B. Fresnel and Fraunhofer diffraction  

Referring again to Fig. 1, we see that     in Eq. 04 is determined by the distance z between 
aperture and image planes, and by the distance from the image point to the origin. If we 
restrict our attention to a finite region of the image plane, corresponding to     less than a 
few degrees, it is adequate to take             .  Exactly the same considerations allow us to 
replace rio in the denominator by z and by the expansion (06) in the exponential. 
Substituting into (04) we get
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! i =
exp(ikz)

i"
! o exp

ik
2zs

(xi # xo)2 + (yi # yo)2( )$% &'
(
)
*

+
,
-

dxodyo.. (08)

z>> (xi − xo)
(xi ! xo) " 0

This is known as the Fresnel  approximation to the scalar diffraction theory. It is useful 
when z is very large compared to a wavelength, but not necessarily much bigger than the 
linear dimensions of the aperture. (The expansion (06) seems to require                       , 
but most of the contribution to the integral (08) comes from regions where                     . 
Outside of those regions the exponential oscillates rapidly, leading to a cancellation of 
positive and negative contributions.)

A further rearrangement of the Fresnel diffraction expression will be computationally 
convenient. Expanding the quadratic terms in the exponential, we get

! i =
exp(ikz)

i" z
exp ik

2zs

xi
2 + yi

2( )#
$
%

&
'
(

                  ! o exp ik
2zs

xo
2 + yo

2( )#
$
%

&
'
(

exp )
ik
zs

xi xo + yi yo( )#
$
%

&
'
(

dxodyo**
(09)

This tells us that the Fresnel diffraction pattern can be found, within phase factors, by 
computing the Fourier transform of

! o exp
ik
2zs

xo
2 + yo

2( )"
#
$

%
&
'
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A very efficient algorithm, the Fast Fourier Transform or FFT, exists to do this computation. 
The physical significance of the transform is discussed later.

z >> k xo
2 + yo

2( )
max

If we move farther away from the aperture, so that                             , the quadratic 
phase factor in (09) is approximately unity over the entire aperture. This infinite-distance 
limit is called the Fraunhofer  regime, and is the case usually considered in elementary 
treatments. The diffraction pattern is explicitly given by 

Εi =
exp(ikz)
iλz

exp
ik
2zs

xi
2 + yi

2( )⎧
⎨
⎩

⎫
⎬
⎭

Εo exp −
ik
zs

xixo + yiyo( )⎧
⎨
⎩

⎫
⎬
⎭
dxodyo∫∫ (10)

 


E

2
which is simply the Fourier transform of the aperture illumination. We will usually want to 
know the optical intensity, which is proportional to         , so the phase factor in front is 
irrelevant.

C. Thin lenses and spatial filtering
 
The geometrical-optics analysis of lenses is already familiar to you. Here we are concerned 
with the phase of the optical waves, in order to treat interference effects properly, so we 
must reexamine the effect of a lens on an incoming wave. We will eventually find that 
lenses do indeed form images, but with a phase shift which depends on position. 
Fortunately, we are usually concerned with intensity, not amplitude, so the phase shift is 
unimportant, and we can expect to use lenses as usual to form magnified images of 
objects. More surprisingly, we will also find that a lens can be used as an optical Fourier 
transformer. This will allow us to observe the Fraunhofer diffraction pattern at a finite 
distance from the diffracting object, and to do the Fourier transform required for spatial 
filtering experiments.
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! (x,y)
Δ0  

!


 ! ! '

1. Lens geometry  

The type of lenses we need to understand consist of optically dense material bounded by 
spherical surfaces, as shown in Fig. 2a. We will treat only thin lenses, in the sense that a 
ray entering at (x,y) on one face emerges at nearly the same coordinate on the other face. 
A thin lens therefore serves only to delay the incident wavefront by an amount proportional 
to the thickness of the lens at each point. Denote the thickness at any point by             , 
and the maximum thickness by        . The total phase delay between the input wave          
and the output wave         is

φ(x,y) = knΔ(x,y) + k Δ0 − Δ(x,y)[ ] (11)

where n is the index of refraction. Rearranging, we get

 ! ! ' = ! ! exp ik" 0[ ]exp ik(n #1)" (x,y)[ ] (12)

Fig. 2 Definition of the 
geometry for a thin lens
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! (x,y)To calculate             , we imagine splitting the lens, as shown in Fig. 2b, and work out the 
geometry to obtain

! (x,y) = ! 0 " R1 1" 1"
x2 + y2

R1
2

#

$%
&

'(

1/2)

*
+
+

,

-
.
.

+ R2 1" 1"
x2 + y2

R2
2

#

$%
&

'(

1/2)

*
+
+

,

-
.
.

(13)

This simplifies enormously if we stay near the lens axis, since then we can expand the 
square roots to obtain:

Δ(x,y) = Δ0 −
x2 + y2

2
1
R1

+
1
R2

⎛
⎝⎜

⎞
⎠⎟

(14)

Eq. (14) limits us to paraxial rays, but that is the normal approximation in geometric optics 
anyway. Using the lens-maker's formula to relate the focal length f to the lens parameters, 
we substitute (14) into (12) to arrive at the desired equation for the output

 
Ε ! ' = Ε ! exp −

ik
2 f

x!
2 + y!

2( )⎡

⎣
⎢

⎤

⎦
⎥

 Ε !

where we have suppressed a constant phase factor. As a check on the derivation, you 
might wish to convince yourself that an incident plane wave         will be transformed into 
a spherical wave converging on a point a distance f behind the lens, as you would expect.

2. Arbitrary d o and d i 

We now have all the machinery we need to handle the situation shown in Fig. 3.

(15)
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Fig. 3 Object, lens and image 
planes for a thin lens. A 
point-source is located on 
the axis a distance ds from 
the lens.

An object a distance do from the lens is illuminated by a point source. The object 
transmits a wave Eo(xo,yo) which is modified by the lens and then travels a distance d i 
to the "image" plane, where it is described by E i(xi,yi). To calculate Ei we start from the 
Huygens-Fresnel description of the object as a sum of point sources, each emitting a 
spherical wave of strength Eo(xo,yo). The superposition of all the spherical waves will 
give an expression for El of the form of Eq. (08). This wave is transformed to E l' by the 
lens according to Eq. (15). If we consider El' to be a new superposition we can describe 
Ei in the form of Eq. (08) again.

exp(ikz)
Writing out these steps is messy but necessary. From (08), dropping the constant phase 
             , we have

 
Ε ! =

1
iλd0

Εo∫∫ exp ik
2d0

(xi − xo)
2 + (yi − yo)

2( )⎡

⎣
⎢

⎤

⎦
⎥dxodyo (16)

We then get El' from (15), and put it into (08) again to get
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! i =
1

i" di

!
 '## exp

ik
2di

(x
 ' $ xi )

2 + (y
 ' $ yi )

2( )%

&
'

(

)
*dx

 'dy
 '

(17)

h(xi , yi ; xo,yo)It is convenient to introduce a new function                           defined by

 
! ! = h(xi , yi ; xo,yo)! o"" dxodyo (18)

The explicit form of  h  is found from (15), (16), and (17):

h(xi , yi ; xo,yo) =
1

λ2d0di

exp
ik
2di

xi
2 + yi

2( )⎡

⎣
⎢

⎤

⎦
⎥exp

ik
2do

xo
2 + yo

2( )⎡

⎣
⎢

⎤

⎦
⎥

                exp
ik
2

1
di

+
1
do

−
1
f

⎛
⎝⎜

⎞
⎠⎟

q1
2⎡

⎣
⎢

⎤

⎦
⎥∫ exp −ik

xo

do

+
xi

di

⎛
⎝⎜

⎞
⎠⎟

q1

⎡

⎣
⎢

⎤

⎦
⎥dq1

                exp
ik
2

1
di

+
1
do

−
1
f

⎛
⎝⎜

⎞
⎠⎟

q1
2⎡

⎣
⎢

⎤

⎦
⎥∫ exp −ik

yo

do

+
yi

doi

⎛
⎝⎜

⎞
⎠⎟

q2

⎡

⎣
⎢

⎤

⎦
⎥dq2

(19)

Clearly, this equation is too messy to be useful, and we need to set about evaluating 
some special cases. Before proceeding, note that we could have gotten  h  directly by 
finding the image of a point source located at (x o,yo) since the definition (18) is just 
the Huygens-Fresnel superposition integral again.
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exp(iqx)

3. Image condition  

As a first case, let us look at the geometry for forming an ordinary image. Recall from 
geometrical optics that a real image is formed by a positive lens when (1/d o)+(1/d i)=1/f. 
For that geometry the quadratic phase factors in (19) vanish leaving two integrals over 
            , which are delta functions. Substituting into Eq. (18) we get, after some algebra,

 

! i =
1
M

exp
ik
2di

1+
1
M

"
#$

%
&'

x


2 + y


2( )(

)
*

+

,
- ! o .

xi

M
,.

yi

M
"
#$

%
&' (20)

where M = d i/do is the geometric magnification. Except for a phase shift, E i is a scaled 
copy of Eo. The phase factor will vanish when we take |E i| 2 to get the intensity at d i, so 
we have shown that we do indeed get an image of the input object when we 
satisfy the geometrical-optics condition for imaging .

4. Fourier transform condition
 
Although it is not obvious, a simple Fourier transform can describe the "image" in the 
plane at dt shown in Fig. 4. This is the plane conjugate to the source, that is 
(1/d s)+(1/d t )=1/f.

Fig. 4 The lens forms the Fourier 
transform at plane t and a geometric 
image at plane i. The source at 
distance ds is not shown.
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When Eo is given by Eq. (07) and we set d i = d t in Eq. (19) the integrand in Eq. (18) 
becomes

hΕo =
iA(ds − f )
λ f (ds − do)

exp −
ik

2 f 2

(do − f )(ds − f )
(ds − do)

xt
2 + yt

2( )⎡

⎣
⎢

⎤

⎦
⎥

                        T0(xo,yo)exp −
ik
f

(ds − f )
(ds − do)

xoxt + yoyt( )⎡

⎣
⎢

⎤

⎦
⎥

(21)

!

where (xt,yt) are coordinates in the plane at d t. This is almost the transform of the 
aperture transmission function. The quadratic phase factors can be eliminated by 
setting do = f and using plane-wave illumination for which ds      ! and d t = f. These 
conditions lead to

Εt (xt ,yt ) =
iA'
λ f

T0 (xo,yo)∫∫ exp −
ik
f

xoxt + yoyt( )⎡

⎣
⎢

⎤

⎦
⎥dxodyo (22)

which indicates that under these conditions the image formed at d t is exactly the Fourier 
transform of the object transmission function.

One sees from (21) and (22) that the image formed in the plane conjugate to the point 
source can have some interesting properties. Comparison with Eq. (10) shows that the 
intensity distribution in the transform plane is the same as in the Fraunhofer diffraction 
pattern of the object. This is true even though the transform plane is rather close to the 
object, a potential advantage in setting up experiments. The image is also closely related 
to the spatial frequency spectrum of the object, a point we now consider in detail.
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! x,! y( ) = kxt / 2" f ,kyt / 2" f( )

5. Spatial filtering  

Equation (22) shows that the complex amplitude Et in the plane at d t is the 
spatial-frequency spectrum of the object transmission function T o. Specifically, the 
observed amplitude at a point (x t,yt) in the "transform plane" is proportional to the 
spectral amplitude at frequency                                      . By inserting an appropriate 
barrier (filter) in the optical path at the transform plane, we can remove or phase shift 
any desired part of the spatial frequency spectrum. If we pick the filter correctly, the 
processed image may be modified in any of several well-defined ways. For example, a 
filter which removes the higher spatial frequencies (the parts of the transform farthest 
from the optic axis) will blur all sharp edges in the final image. 

!

Unfortunately, the condition d o = f, required to completely eliminate the phase factors 
in the transform plane, leads to an image at infinity. This is not very satisfactory for 
experiments. Suppose instead that we consider the more general case of do > f to obtain 
a filtered image at a finite distance. Taking the limit d s        ! in (21) then yields an 
expression like (22) but with a multiplicative phase factor

exp !
ik
2 f 2

(do ! f ) xt
2 + yt

2( )"

#
$

%

&
'

! t ' = Tf (xt , yt )! t

A filter in the transform plane t will modify this complex amplitude according to 
                       . The modified wave then propagates to the final image plane at d i 
according to Eq. (09), with the result
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! i =
A'

" 2 fz
exp ikz+

ik
2zi

x


2 + y


2( )#

$
%

&

'
(

                 Tf F To{ })) exp *
ik
z

xi xt + yi yt( )#
$%

&
'(
dxtdyt

(22)

where
F To{ } = To∫∫ exp −

ik
f
xox f + yoyf( )⎡

⎣
⎢

⎤

⎦
⎥dxodyo (22)

is the Fourier transform of T o and z = d i-f. Note that the quadratic phase factors in the 
transform plane have vanished, so we can retain all of our previous discussion based on 
Eq. (22). Also note that, when T f = 1, E i is the Fourier transform of the Fourier transform 
of To. Double-transforming a function results in an inverted version of the original 
function, so we recover the geometric image, consistent with Eq. (11), as we must.

Diffraction from a Circular Aperture  

As most optical systems are circular, the next most useful diffraction to consider is the 
circular aperture, which is going to give up the shape of the spot formed by a lens. 
Consider the circular aperture of radius a, being defined by,

p(x,y) =
1 when x2 + y2 ! a2

0      otherwise             

"
#
$

First we need to calculate the Fourier transform P(u,v), which using

15



x = ρcosθ , y = ρsinθ
we have that

P(u,v) = exp(−i2π (uρcosθ + v
0

2π

∫
0

a

∫ ρsinθ)ρdρdθ

where the limits of integration are across a circle of radius a. The circular aperture p(x,y) 
is clearly circularly symmetric, so it Fourier transform must also be circularly symmetric. 
Therefore we only need to calculate P(u,v) along one radial line; select the line with 
v = 0, to give

P(u,0) = exp(! i2" u#cos$
0

2"

%
0

a

% )#d#d$

Now we have the standard special function identity that

exp(ir cos!
0

2"

# )d! = 2" J0(r )

J0(r)where            is the zero order Bessel function, we get that

P(u,0) = 2! J0 (2! u" )" d"
0

a

#
We now need the second identity that

rJ0(r ) =
d
dr

rJ1(r )( ) so that J0(t)t =
0

r

! rJ1(r )

we will derive all of the 
Bessel identities later
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t = 2! u"so if we let              , we get

P(u,0) =
1
2!

J0 (t)
1
u2

tdt
0

2! ua

"

which we can then integrate to get

P(u,0) = 2πua
u2

J1(2πua) = 4πa2
J1(2πua)
2πua

Using the fact that it is circularly symmetric, we can then write this in two dimensions as

P(u,v) = 4πa2 J1(2πaw)
2πaw

where w2 = u2 + v2

! f

We then know from earlier work that the intensity in the back 
focal plane of a lens of focal length f is the square modulus of 
the Fourier transform scaled by    , giving

I (s,t) = 4 I 0

J1
2!
" f

ar
#
$%

&
'(

2!
" f

ar

2

where r 2 = s2 + t 2

I0where we have incorporated the various constants into       and this is the intensity at the 
center of the pattern.
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J1(x) / x J1(x) / x
2

To analyze this we need to consider the shape of the                and                  , both of 
which are plotted in figure 05.

Figure 05: 
Plot of J1(x)/x and |J1(x)/x|2

J1(x) / x
These functions have a similar shape to sin() and sinc2(), but have 
    1. Peak value of                 at x = 0 is 1/2. 
    2. Zeros located at 3.832, 7.016, 10.174, 13.324 
    3. Secondary maximas are lower that a sinc, or sinc2 respectively.

J1(r) / r 2
The two dimensional function                is circularly symmetric and is plotted in figure 06 
along with its log(), which makes the ring patterns more obvious. This distribution is 
known as the Airy Pattern. The key feature of this pattern is the location of first zero, being 
at 3.832.
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Figure 06: Two-dimensional surface plot of |J1(r)/r|2 and its log()

If we have lens of focal length f and diameter d, then if we view a distant point object, 
the front of the lens will be illuminated by approximately plane waves. The aperture of 
the lens is circular, so in the back focal plane we will get a diffraction pattern from the 
aperture. The distant object will therefore be imaged as the distribution I(s,t) defined 
above as shown in figure 07. Note that a compound lens can be represented be a simple 
ideal lens located in the back principal plane. The key feature of this distribution is the 
location of the first zero, being at radius

r0 =
1.22λ f
2a

=
1.22λ f

d

Figure 07: 
Point spread function of a a lens
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It is the same of all systems with the same ratio f/d. This shows that the image of 
a distant point object will be imaged as a bright central spot surrounded by a series 
of rings, known as the Airy Rings, the whole pattern being known as the 
Point Spread Function  of the system.

! "

Spatial Resolution of an Optical System 

Just as the size of the grating limited the spectral resolution of a spectrometer, then 
the Point Spread Function limits the spatial resolution of an imaging system. If we 
consider two distant point objects with angular separation           , then as shown 
in figure 08, in the back focal plane of an imaging system with focal length f, we get 
two point spread functions with, for small            , their peaks separated by

! "

s= fΔθ

Figure 08: Image of two 
distant point objects.
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s r0

 s ! r0

s ! r0

There are three possible conditions, these are: 
 
1.              , two well separated point spread functions, distant points are resolved. 

2.              , the two point spread functions merge into one, and the distant points are 
                   not resolved, 

3.              , there will be a limit where the distant points are just resolved .

s = r0
There are a range of resolution limits. The most useful and practical is the Rayleigh Limit, 
when             , so the peak of one point spread function is at the zero of the other. This 
results in a twin-peak with a dip of about 20% between them as shown in figure 09.

Figure 09: Plot of point
spread functions at the 
Rayleigh resolution
limit on one and two 
dimensions

In terms of angular resolution, we therefore get the Rayleigh Limit to be ! " 0 =1.22 #
d
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! v ! f

It depends only of the diameter of the imaging system and the wavelength of light 
being imaged. This limit applies to a whole range of optical system, including the eye, 
telescopes, microscopes and cameras. This basic theory also applies to all other waves 
phenomena, including radar, microwaves, and even in acoustics! 

When using this analysis for imaging system, for example a microscope, or camera, the 
image is not formed in the back focal plane, but rather in the image plane, a distance v 
from the back Principal plane, where v is given by the Gaussian Lens formula. Under 
these conditions, all the above analysis is still valid, but the scaling from Fourier 
Transform to diffracted intensity become           rather than         .

The Annular Aperture  

Most large astronomical telescopes have a fairly large central obstruction where the 
secondary mirror is located giving an annular aperture rather than a circular one. As in 
the previous discussions, the diffraction pattern will be the scaled square modulus of the 
Fourier transform of the pupil, so we need to consider the Fourier transform of an annular 
aperture as shown in figure 10.

Figure 10: layout of an annular pupil
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This can be mathematically written as,

p(x,y) =
1 when a2 < x2 + y2 < b2

0      otherwise                     

⎧
⎨
⎩

Using polar coordinates as earlier, the Fourier transform of this is given by

P(u,v) = exp(−i2π (uρ cosθ + v
0

2π

∫
a

b

∫ ρ sinθ)ρdρdθ

which only differs from the circular case in the limits of the radial integration. Again 
p(x,y) is radially symmetric, so the Fourier transform will the radially symmetric. The 
angular integration is identical to the circular aperture, so that along one radial direction,

P(u,0) = 2π J0(2πuρ)ρdρ
a

b

∫ = 2π J0(2πuρ)ρdρ
0

b

∫ − 2π J0(2πuρ)ρdρ
0

a

∫

since J0() is a symmetric function.

This is just the difference between the Fourier transform of two circular apertures, 
one of radius b and one of radius a, so we get

P(u,v) = 4π b2 J1(2πbw)
2πbw

− a2 J1(2πaw)
2πaw

⎡
⎣⎢

⎤
⎦⎥

where w2 = u2 + v2
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The intensity of the point spread function is then just the scaled modulus squared of this, 
giving the rather complicated expression of

I (s,t) = B b2

J1

2!
" f

br
#
$%

&
'(

2!
" f

br
) a2

J1

2!
" f

ar
#
$%

&
'(

2!
" f

ar
where r 2 = s2 + t2

where the constant B is given by

B =
4I 0

b2 − a2

I0and         is the intensity at the center of the pattern.

The significance of this complicated expression only becomes apparent when it is 
plotted and compared to the intensity from an unobstructed aperture of the same 
outer diameter as in figure 11, which is plotted for a = 0.7b.

Figure 11: Comparison of annular point spread 
function with point spread function for 
unobstructed aperture.
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The important feature are: 

1. Both have the basic shape with a large central peak and a series of secondary maximas. 

2. The secondary maximas for the obstructed aperture are higher than for the 
    unobstructed case. 

3. The central peak is narrower for the obstructed aperture, which is not what is expected.

A two-dimensional surface plot of the annular case is shown in figure 12, shown the much 
more obvious ring pattern that than an unobstructed aperture in figure 06.

Figure 12: Surface plot of point 
spread function of an annular 
aperture with a = 0.7b.

As we have seen earlier, the angular resolution for a telescope of focal length f is given by

! " 0 =
r0
d
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r0where        is the radius of the first zero of the point spread function, so since the 
annular aperture has a narrow point spread function, its angular resolution will be smaller 
and thus improved. This effect is shown graphically in figure 13 for an annular aperture 
with a = 0.7b. The intensity distribution at the Rayleigh limit is plotted on the left, 
showing a very clear dip, so the points are well resolved. The plot on the right shows 
the stars separated by

! " =
#
d

where they are still resolved. The actual resolution limit for the annular aperture does 
not have a simple analytical expression, but has to be found numerically.

Figure 13: Plot of intensity 
distribution or annular aperture 
with two stars (a) at the 
Rayleigh resolution criteria of 
! θ = 1.22 λ/d and (b) below 
the Rayleigh criteria at 
! θ = λ/d

This improved resolution does have a cost, that being the absolute peak intensity is 
proportional to the open area of the pupil which is clearly reduced by the presence of a 
central stop.
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Resolution in Real Astronomical Telescopes
 
The above analysis assumes that a distant point source results in plane wavefronts 
across the input aperture of the system, with the resolution of the system limited only 
by diffraction. This is valid for a small high quality system, for example microscopes, the 
human eye, small telescopes, and high quality camera systems. When we consider large 
astronomical telescopes, there is another very significant effect, that of the atmosphere. 
The refractive index of a gas depends on it local density, thus for air, it depends on 
pressure and temperature. Thus pressure and temperature gradients in the atmosphere 
result in local refractive index, and thus optical path length variations, as illustrated in 
figure 14.

Figure 14: Schematic of a real 
terrestrial telescope.
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This is also why start twinkle. As the atmosphere moves, this introduces a time varying 
phase aberration across the aperture of the telescope with the speed and extent of the 
variation depending on the local atmospheric conditions. This is known as the seeing 
conditions. In conditions of good seeing, the phase aberration can be considered 
constant for approximately 1/10th of second and plane over a region, known as the 
isoplanatic patch. 

Under these conditions, each isoplanatic patch acts as an individual telescope, with the 
long,compared tothe time constant of the atmosphere, exposure. Thte image of the star 
is an intensity summation of the image from each patch. The resolution is therefore 
limited by the size of the isoplanatic and not the overall aperture of the telescope. In 
areas of good seeing, the isoplanatic patch is 100 - 150 mm in diameter, giving an 
effective angular resolution of

! " e # 6 $10%6Rad # 1sec of arc

λ ≈

e! 2

f ! " e

for         = 500nm and d       100mm. Since the isoplanatic patches are time-varying, and 
not circular, the shape of the point spread function will be time averaged and will 
approximate a Gaussian with it radius given by the            intensity position, given, for 
a telescope of focal length f approximately by            . There are a range of schemes to 
minimize this effect:

Telescope Location:  Locate the telescope in areas of good seeing, typically high on 
a mountain plateau in an area of stable atmospheric conditions, Hawaii, Tenerif, Arizona 
are typical examples. The ultimate is the remove the atmosphere, hence the Hubble 
Space Telescope!
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Short Exposures:  Use exposure times short compared to the movement of the 
atmosphere and combine after digital processing. 

Adaptive Optics:  Analyze the input distorted wavefront and correct its shape as shown 
in figure 15.

Figure 15: Layout of 
adaptive optical system 
for wavefront correction
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1. Part of the beam is split off and send to a detector. 

2. The shape of this distorted wavefront is analyzed by a detector system, typically 
    consisting or an array of micro-lenses. 

3. The position on the image from each lens give the local  gradient of the wavefront, 
    allowing the shape to be digitally reconstructed. 

4. The wavefront shape is used to distort a flexible mirror, which typically is glass mirror 
    that can be distorted by piezoelectric stacks. 

5. Reflected, corrected wavefront is split-off and used to form the image, free of the 
    input aberration. 

6. The wavefront sensing and correction run continuously at a rate comparable to the 
    movement time of the atmosphere, typically 1/10th second. 

This system assumes that there is a single bright guide star in the field of view which 
acts as a point source, and hence a bright source of plane waves. The correction is 
then valid over the whole field of view so that dimmer objects close to the guide star 
are also corrected. This system gives significant improvement in resolution, and under 
optimal conditions, with a bright guide star we can get within 20% of the Rayleigh 
diffraction limit of the full telescope aperture.
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r0 + ! / 2 r0 + ! r0 + 3! / 2

The Fresnel Zone Plate  

In the Fraunhofer formalism light is represented by plane waves, and the distance 
between light-source and scattering object or scattering object and observer is assumed 
to be very large compared to the dimensions of the obstacle in the light path. If you drop 
these conditions, the light phenomena observed are described by the Fresnel formalism 
and the light waves are represented by spherical waves rather than plane waves. 
Figure 16 shows the spherical surface corresponding to the primary wave front at some 
arbitrary time t after it has been emitted from S at t = 0. As illustrated the wave front 
is divided into a number of annular regions. The boundaries of these regions correspond 
to the intersections of the wave front with a series of spheres centered at P of radius 
               ,              ,                   , etc.

Figure 16: Fresnel Zone - 
The surface of the spherical 
wavefront generated at point S 
in the figure above has been 
divided into several Fresnel 
Zones . Each area is comprised 
of points that are close to the 
same distance from point P and 
thus all the secondary wavelets 
emanating from within the same 
Fresnel Zone will add 
constructively at P.

These are Fresnel or half-period zones. The sum of the optical disturbances from all m 
zones of P is
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E = E1 + E2 + E3 + E4 + ............+ Em (23)

! / 2 π EP  !
Because of the phase of the light passing through each consecutive zone increases by 
             (= change in phase by         ) the amplitude           of the zone          alternates 
between positive and negative values depending on whether m is odd or even. As a result 
contributions from adjacent zones are out of phase and tend to cancel.  This suggests that 
we would observe a tremendous increase in irradiance (intensity) of P if we remove all of 
either the even or odd zones. A screen which alters the light, either in amplitude or phase, 
coming from every other half-period is called a zone plate. Examples are shown in 
Figure 17.

Figure 17: Fresnel Zone Plates

Suppose that we construct a zone plate which passes only the first 20 odd zones and 
obstructs the even ones,

E = E1 + E2 + E3 + EP + ............+ E39 (24)
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E1 / 2 I = (E1 / 2)2

E = 20E1 I = (20E1)
2

and that each of these terms is approximately equal. For a wavefront passing through a 
circular aperture the size of the fortieth zone, the disturbance at P (demonstrated by 
Fresnel but not obvious) would be           with corresponding intensity                 . 
However, with the zone plate in place                    at P and                . The intensity I 
of the light at P has been increased by a factor of

(20E1)
2

(E1 / 2)
2 =1600

The zone plate acts as a lens with the focusing being done by interference rather than by 
refraction! 

To calculate the radii of the zones shown in Figure 17, refer to Figure 18.

Figure 10 Fresnel Zone Radii 
for Fresnel Zone Plates

!

The outer edge of the m th zone is marked with the point A m. By definition, a wave which 
travels the path S-Am-P must arrive out of phase by m/2 with a wave which travels the 
path S-O-P, that is,
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! m + rm( ) " ! 0 + r0( ) = m# / 2phase difference = (25)

! m = (Rm
2 + ! 0

2)1/2 rm = (Rm
2 + r0

2)1/2

! m " ! 0 + Rm
2 / 2! 0 rm ! r0 + Rm

2 / 2r0
!

According to the Pythagorean theorem                       and                      . Expand both 
these expressions using the binomial series and retain only the first two terms 
(                          and                      ). Substituting into Equation (25) gives the criterion 
the zone radii must satisfy to maintain the alternating     /2 phase shift between zones.

Rm
2 =

m!
1
" 0

+
1
r0

(26)

mThe width of zone m is proportional to        . Rewriting Equation (26) as,

1
! 0

+
1
r0

=
m"
Rm
2 =

1
f1

(27)

1 / o+1 / i =1 / fputs it in a form identical to the thin lens equation (                              ) with primary 
focal length f 1,

f1 =
Rm

2

m!
, m = 1,2,3,.... (28)
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