
FIRST YEAR PHYSICS 

Unit 4:  
Light II 



Contents 
PHASORS ........................................................................................................................3 
RESOLUTION OF OPTICAL INSTRUMENTS ............................................................5 

Rayleigh’s criterion..................................................................................................... 7 
MORE ON DIFFRACTION ..........................................................................................11 

Multiple slits: ............................................................................................................ 11 
Diffraction gratings................................................................................................... 14 

X-RAY DIFFRACTION ................................................................................................17 
MICHELSON’S INTERFEROMETER.........................................................................20 
POLARIZATION...........................................................................................................22 

Polarisers................................................................................................................... 25 
Linear polarisers........................................................................................................ 26 
Malus’s Law: ............................................................................................................ 29 

  



PHASORS  
 

In the previous unit we talked a lot about adding waves having different amplitudes and 
phases.  We shall now discuss a simple graphical method that can be used for any harmonic 
wave   

• Assume a sinusoidal wave y = A sin (kx - ωt + φ )  

• This arbitrary wave can be represented graphically as the ‘y’ component of a rotating 
vector that we call “phasor” 
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• If we have two waves and we would like find the resultant of these two waves,  

y1 = A1 sin (kx - ωt ) and y2 = A2 sin (kx - ωt + φ ) 

• Using analytical methods this can be messy, especially when we have lot of waves.   

• Using phasors, this is pretty simple: we add the two y components: 
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As an example of using phasors, let’s revisit the question of the intensity distribution of 
light on a screen coming from two slits (ie. Young’s double slit experiment). 

• Two waves having identical amplitudes, E0, arrive at a point P.  There will be a phase 
difference of  (see section on Young’s experiment): 

θ
λ
πφ sin2 d=  

• We first calculate the resultant electric field amplitude, Er.  The intensity is simply 
proportional to the square of the amplitude 

• We use standard trigonometry: 
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• For the resultant wave, the amplitude is Er and the phase shift relative to the 
original wave is β  

• From the diagram we see that φ  is an exterior angle of the equilateral triangle, 
therefore β  = ½φ  

• Using simple trig we can write Er =2(E0cos β ) =2 E0cos(½φ ) 

• We square this to get the intensity: 

I = [2 E0cos(½φ )]2 = 4I0cos2(½φ ) = 4I0cos2( θ
λ
π sind ) 

• This is exactly what we found in the previous unit. 

• Phasor are a simple graphical method to calculate the sum (or difference) of any 
number of waves. 

 

 

Now use the phasor method to calculate the intensity distribution from three slits. 

 

 RESOLUTION OF OPTICAL INSTRUMENTS 
The wave nature of light has fundamental consequences on the workings of optical 
instruments (including the human eye).  

• According to geometrical optics, the image of an object which is infinitely far is a 
point in the focal plane of the objective (focusing) lens.  

 

 

 

 

 

 

 

 

• But looking at this same situation from the point of view light waves, light coming 
from infinitely far should be considered as (plane) waves that will diffract as they 
pass through aperture of the objective lens.  That is, the objective lens is a circular 
aperture and we have to consider diffraction effects caused by this aperture: 



 
• Therefore the focal point is not really a ‘point’ at all.  It is a focal ‘spot’ or focal blur 

whose size is determined by diffraction from the lens: 

o You remember, the angular spread of light caused by an aperture of ‘d’ 
diameter is given by  

θ  = sin-1 (1.22 λ  / d ) 

o For small angles sinθ  ≈ θ , thus 

θ  ≈  (1.22 λ  / d ) 

o If we use a lens of diameter ‘d’ and focal length ‘f’, the diameter ‘D’ of 
the smallest possible ‘image’ will be  

D = fθ  = (1.22 f λ  / d ) 

 

Note: 

o to reduce the spot size, we need to: 

� increase the diameter (d) of the lens/mirror 

� reduce the wavelength ( λ ).  This is (one of) the reasons why 

� Telescopes have large mirrors,  

� Photolithography uses short wavelengths  

� Electron microscopes give higher resolution than optical 
microscopes (the wavelengths involved in electron microscopy 
are much shorter than that of visible light) 

o In practice, the actual image of a distant point will be somewhat larger 
than that given above.  This is caused by various lens ‘aberrations’ or 
defects.  However, the important point is that even if you eliminate all the 
lens defects, the diffraction pattern given above will remain!  This is an 
inherent property of the wave nature of light. 

  



Rayleigh’s criterion 

Assume we are looking at two stars through a telescope.  The diameter of the telescope 
mirror is ‘d’, and the optical detector attached to the telescope only ‘sees’ one 
wavelength, λ . We ask the following question: How close can these two stars be to able 
to resolve them? Or in other words, can we define some rule that helps us decide if the 
image we are looking at is made of two smaller images or just one.  

The answer can be found by looking at the diffraction patterns generated by the two 
objects (eg stars): 
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The diffraction pattern of each star looks something like this: 

 
 

 

 

When the two stars are well separated this is what we would measure: 

 



 
 

 

 

If we are looking at stars that are closer together, their images also get closer and their diffraction 
patterns overlap.  It becomes difficult to decide whether we are looking at two or just one 
star.  The limit of resolvability occurs when the principal maximum of one of the 
diffraction patterns coincides with the first minimum of the other diffraction pattern.  We 
call this condition Rayleigh’s criterion. The diffraction patterns at Rayleigh’s limit 
would look something like this: 
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When Rayleigh’s condition is met, the angular separation between the two objects (eg. 
stars) is given by the difference between the principle maximum and the first minimum of 
the diffraction pattern of a circular aperture, which is given by 

Rayleighϑ  = sin-1 (1.22 λ  / d ) 

That means that the angular separation of the two stars has to be at least Rayleighϑ  
otherwise the stars cannot be resolved. 

 



 Rayleighϑ

 

 

 

Rayleigh’s criterion is used for other areas of optics (physics) not only astronomy, (eg. 
cameras, microscopes, eyes, diffraction gratings, etc) 

 

Let’s look at microscopes:  the question again is “What is the closest two objects can be 
and still be resolved with a microscope?” 

� In the case of the microscope the objects are very close to the focal point of the 
lens: 

� Let’s denote the distance between these two objects by )y 

 

 

 

 

 )y   ϑ  

 

 

 

F = Focal distance of lens 

 

� To be able to resolve the two points, the angular separation between these two 
objects has to be greater than the angle specified by Rayleigh’s criterion:   

ϑ > Rayleighϑ  = sin-1 (1.22 λ  / d ) = 1.22 λ  / d  

where ‘d’ is the diameter of the lens. 

� From the diagram we see that angular separation between the two points is given 
by   

ϑ = )y /F 

� Therefore, the minimum angle between the two objects is: 

minϑ = )ymin /F = 1.22 λ  / d 

� The shortest focal length cannot be shorter than the radius of the lens, thus 

)ymin    $ F(1.22 8/d)  = (d/2)( 1.22 λ  / d) ≈  λ /2 



    

This is an important result:  the smallest distance we can resolve is approximately equal 
to the wavelength of light!  Or in other words, we cannot focus any wave to spot with 
dimensions < λ !  No matter how many lenses, mirrors, magnifications, etc you try, you 
cannot beat diffraction. 

 

Comments:  

• Diffraction also occurs for opaque ‘apertures’.  That is, we will see diffraction 
around opaque slits (eg. wires), or around opaque circular apertures  (eg. a ball 
bearing or something similar). In the figure below is the diffraction pattern from a 
small ball bearing.  Note the bright spot in the centre! (from 
http://dustbunny.physics.indiana.edu/~dzierba/P360n/KPAD/Exps/Poisson/poisso
n.html) (local copy) 

 
For diffraction of a wire, see for example: 
http://www.physics.montana.edu/demonstrations/video/optics/demos/thinwirediffracti
on.html (local copy) 

 

• The type of diffraction we described above assumed that the ‘screen’ (detector, 
eye, etc) is far from the object compared to the wavelength of light. For example 
the slit width was 0.1 mm, the distance from the slit 10m, the wavelength, 
0.001mm . This type of diffraction is called Fraunhofer diffraction. 

• When the screen is closer to the object, the diffraction pattern changes.  
Diffraction in this range is called Fresnel diffraction. (We’ll study Fresnel 
diffraction in higher years.) 

 

http://dustbunny.physics.indiana.edu/~dzierba/P360n/KPAD/Exps/Poisson/poisson.html
http://dustbunny.physics.indiana.edu/~dzierba/P360n/KPAD/Exps/Poisson/poisson.html
http://www.physics.montana.edu/demonstrations/video/optics/demos/thinwirediffraction.html
http://www.physics.montana.edu/demonstrations/video/optics/demos/thinwirediffraction.html


    

 

MORE ON DIFFRACTION  

Multiple slits: 

 

Remember two-slit interference?  We found that the product of the single-slit diffraction 
pattern and the double-slit interference pattern gives the intensity pattern: 

I(2) = I0 (sin $/ $)2 (cos2") 

where  $ = Basin2 /8   and  " = Bdsin2 /8 

 

 

Double slit 
interference 

 

 

(*) How would the diffraction/interference pattern of many slits look?  For example 5 
slits (N=5)? 



Five-slit 
interference 

 
   

 

o Maxima occur when:  dsin2m = m8   (same as 2 slits)  

o Minima occur when  dsin2p = p8/N   (different from 2 slits)  

where p = 1,2, .. but p…5, 10, .. 

 

So the more slits, the more minima between the principal maxima.  On the figure below, 
we compare the 3 and 6 slit pattern.  Note two important points:  the maxima become 
narrower as we increase the number of slits, and the number of minima increases: 

 

(from http://www.dur.ac.uk/r.g.bower/OpticsI/optlec/img132.gif )  

 

http://www.dur.ac.uk/r.g.bower/OpticsI/optlec/img132.gif


• In general, for N slits:  

Maxima:  dsin2m = m8 

Minima:  dsin2p = p8/N where p= 1,2,3 ... but p…N 

 

See for example, http://www.physics.nwu.edu/ugrad/vpl/optics/diffraction.html  
(local copy) 

Note:  

� If there are N slits, there are N minima between two main maxima  

� As N is increased the maxima become sharper  

� If N is very large (eg. N = 10,000 or more), interference fringes 
become sharp interference ‘lines’  

� Different wavelengths will diffracted by different angles  

� If we shine white light on such a multiple slit device, each ‘line’ 
corresponds to a wavelength, 8  

� A device with very large large number of slits (104 or 105) is called a 
diffraction grating   

� Diffraction gratings are used to separate light into its components 
(similar to a glass prism) 
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http://www.physics.nwu.edu/ugrad/vpl/optics/diffraction.html


Diffraction gratings 

 

 Question: How wide is a ‘line’ produced by a grating for a given 8? 

 

 Answer:  

sin2m = m8/d 

sin2m+1 = (m+1)8/d 

 

 The angular separation between different order is therefore given by: 

 

)2m= 2m - 2m+1 = 8 /d    (assuming that sin2 . 2) 

 

Since there are N minima between two maxima, the width of each line 
representing a given wavelength, 8  is given by:  

)28 = )2m /N 

 which can be written as: 

 

)28 = 8 /Nd 

 

Note: Nd is the width of the grating. The wider the grating the narrower the line 
width. 

 

 

Now that we know the angular width of a ‘line’, let’s calculate the angular separation 
between two wavelengths, 81, and 82, where 82= 81+)8  

 

• We know that  

sin21  = m81/d 

sin22 = m82/d 

therefore the angular separation between these two wavelengths is 

)2 = 21 - 22 . m)8 /d 

• But we can only resolve 81 and 82 if their angular separation ()2) is larger 
than their angular width ()28): 



)2 $ )28

ˆ m)8 /d $ 8 /Nd 

• Therefore the smallest possible )8 that can be resolved with a grating having 
N slits (grooves) is: 

8/)8 = Nm 

• R = 8/)8 is called the resolving power of the grating. 

� Gratings are used in monochromators, spectrometers.  These are 
instruments that are used to study the composition of light. 

� Gratings can either work in transmission or reflection  
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X-RAY DIFFRACTION  
� X-rays are short wavelength E.M. waves:  8 . 0.1nm = 10-10m   

� Can interference or diffraction be observed with such short wavelengths?  

� Let’s try to use a standard optical diffraction grating at these wavelengths.  

o Typical optical diffraction grating: d = 3:m 

o 8=0.1nm, 

o From the grating equation (assuming m = 1):  

2 = sin-1(8/d) .0.0010

o 2=0.0010 basically means that the X-rays are not diffracted enough to be 
measurable. We need a better grating. 

� To observe diffraction we need to have the spacing between the slits to be d . 8   

� How can we make a diffraction grating such that d = 0.1nm?  

� We rely on nature: crystals are 3 dimensional gratings such that d .10-10 m   

 

Where does the diffraction occur? 

� In crystals X-rays get scattered by the atoms/molecules  

� In some directions scattered x-rays interfere constructively 

� Condition for constructive interference: 

 

http://www.mrl.ucsb.edu/mrl/centralfacilities/xray/xray-basics/Xray-basics.html#x1 
(local copy) 

 
dsinθ  



When 
2dsinθ  = m λ  

 

we get constructive interference.   This equation is called Bragg’s law.   

 

Note: 

o ‘d’  is the spacing between atomic planes, not the spacing between atoms.  It is 
called the inter-planar or lattice spacing 

o  d depends on the crystallographic structure  

o Rotating the crystal, the beam will see different ‘d’ 

o By measuring d we learn about the crystal structure 

o The symmetry of the crystal structure will be mirrored by the symmetry of 
the diffraction pattern 

 

 

 

 

o θ  is the angle between incoming beam and the atomic planes, and not between 
the incoming beam and the normal to the planes (as is expected in optics)   

o x-ray diffraction is mainly used: 

o to study crystal structure 

o nowadays an important use is the study the structure of large bio-
molecules  

o The use of X-rays as an instrument for the systematic study of the way in 
which crystals are built was due to the William and Lawrence Bragg 
(father and son). They were recognized by the award of the Nobel Prize 
jointly in 1915. 

o An example of a x-ray diffraction from a silicon crystal is shown below 
(from 
http://images.google.com.au/imgres?imgurl=www.digiray.com/diffraction
/Silicon0556.gif&imgrefurl=http://www.digiray.com/diffraction/&h=358
&w=371&prev=/images%3Fq%3Dx-

http://images.google.com.au/imgres?imgurl=www.digiray.com/diffraction/Silicon0556.gif&imgrefurl=http://www.digiray.com/diffraction/&h=358&w=371&prev=/images%3Fq%3Dx-ray%2Bdiffraction%26start%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN
http://images.google.com.au/imgres?imgurl=www.digiray.com/diffraction/Silicon0556.gif&imgrefurl=http://www.digiray.com/diffraction/&h=358&w=371&prev=/images%3Fq%3Dx-ray%2Bdiffraction%26start%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN
http://images.google.com.au/imgres?imgurl=www.digiray.com/diffraction/Silicon0556.gif&imgrefurl=http://www.digiray.com/diffraction/&h=358&w=371&prev=/images%3Fq%3Dx-ray%2Bdiffraction%26start%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN


ray%2Bdiffraction%26start%3D20%26svnum%3D10%26hl%3Den%26lr
%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN)  

 
For a nice review of x-ray diffraction, see for example: 
http://www.mrl.ucsb.edu/mrl/centralfacilities/xray/xray-basics/Xray-basics.html#x1 
(local copy) 

http://images.google.com.au/imgres?imgurl=www.digiray.com/diffraction/Silicon0556.gif&imgrefurl=http://www.digiray.com/diffraction/&h=358&w=371&prev=/images%3Fq%3Dx-ray%2Bdiffraction%26start%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN
http://images.google.com.au/imgres?imgurl=www.digiray.com/diffraction/Silicon0556.gif&imgrefurl=http://www.digiray.com/diffraction/&h=358&w=371&prev=/images%3Fq%3Dx-ray%2Bdiffraction%26start%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN


Michelson’s Interferometer 
� Historical importance:  

o The Michelson interferometer is associated with experiments that lead to 
special relativity.  These experiments by Michelson and Morley provided 
evidence against the existence of an absolute frame of reference (based on 
ether). (see for example, 
http://scienceworld.wolfram.com/physics/Michelson-
MorleyExperiment.html ) (local copy) 

o But Michelson's pioneering contributions to interferometry are much 
broader than just one experiment.  He was awarded the Nobel Prize in 
1907 for his many discoveries in optics. 

o The Michelson interferometer has become an indispensable tool in many 
scientific applications such as high-resolution spectroscopy, atomic length 
standards, and in practical applications, where displacements as small as a 
fraction of the wavelength of visible light must be measured. 

o We shall review the instrument that Michelson and Morley used. 

� Interferometers are often used to measure very small distances but an 
interferogram can also be used to provide spectral information (see for example, 
http://scienceworld.wolfram.com/physics/FourierTransformSpectrometer.html )  
(local copy) 

� In the Michelson interferometer, light travels through 2 paths as shown in the 
diagram below 

 

Detector  

Light source 
(typically IR) 

http://scienceworld.wolfram.com/physics/Michelson-MorleyExperiment.html
http://scienceworld.wolfram.com/physics/Michelson-MorleyExperiment.html
http://scienceworld.wolfram.com/physics/FourierTransformSpectrometer.html


 

 

See for example, http://www.3dimagery.com/michelsn.html (local copy) 

 

� Differences in the paths: )L = 2(D1 - D2) gives rise to phase difference between 
the waves:  

M = (2B /8))L 

� Depending on the phase shift between the two beams travelling different paths, 
the interference between the waves can be constructive or destructive  

� By moving one of the mirrors, the path difference changes, and so do the 
interference fringes from constructive to destructive or vice versa  

o By moving the mirror by ¼8 we go from a bright spot (constructive 
interference) to a dark spot (destructive interference)  

o By counting the number of dark - bright switches (fringes) we can 
measure distances in terms of 8 

 

http://www.3dimagery.com/michelsn.html


 

POLARIZATION 
o Light (EM radiation) is a transverse wave  

o One of the properties of a transverse wave is that it can be polarised.  

o This means that all the oscillations of the wave are in the same plane.  

o Light waves are electromagnetic waves, made up of electric and magnetic fields 
that oscillating perpendicular to each other.  

o When we talk about the oscillations of a light wave, we will be describing the 
oscillating electric field.  (For clarity, the magnetic fields will not be shown.  This 
is the normal practice when describing electromagnetic waves.) 

 

 

Direction of 
propagation 

Electric 
field 

 

o The plane containing the E and k vectors (k => direction of propagation) is called 
the plane of vibration  

o Since the electric (magnetic) fields are vector quantities they can be written as: 

E(x,t) = Ez(x,t) + Ey(x,t) 

 where 

Ez(x,t) = kEozcos(kx-ωt)   

Ey(x,t) = jEoycos(kx-ωt+Φ) 

 where  (i,j,k) are the unit verctors 

o When Φ = 0, Ez(x,t) and Ey(x,t) are in phase, and the wave (light) is said to be 
linearly polarised:  



 
(from http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/polclas.html#c2) (local copy) 

 

o When Φ ≠ 0, light is not linearly polarised.  In the special case of  Φ = π/2,  and 
Eoz = Eoy (= Eo) light is circularly polarised: 

Ez(x,t) = kEocos(kx-ωt) 

Ey(x,t) = jEocos(kx-ωt+π/2) = jEosin(kx-ωt) 

E(x,t) = Ez(x,t) + Ey(x,t)  

E(x,t) = kEocos(kx-ωt) + jEosin(kx-ωt) 

E(x,t) = Eo(kcos(kx-ωt) + jsin(kx-ωt)) 

 

o When we look at the beam head on, we’ll see the tip of the E field rotate in a 
circle.  For example, 

o when (kx-ωt) = 0, E(x,t) points in the z-direction:  

o at some other time, when (kx-ωt) = π/2 then E(x,t) points in the y-
direction:   

o Therefore the tip of the electric field vector goes around in a circle!  Hence 
circularly polarised light. 

 

 

 

 

 

 

Looking towards 
the source, the 
tip of the electric 
field rotates 



 

 

 

 

 
 

 

from http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/polclas.html#c3 (local copy) 

 

o The vector can rotate clock-wise or anti clock-wise  

o Right-circularly polarised light and left c.p:  

R.C.P. E+(x,t) = kEozcos(kx-ωt) + jEoysin(kx-ωt) 

L.C.P. E-(x,t) = kEozcos(kx-ωt) - jEoysin(kx-ωt) 

 

o When we add a RCP and a LCP we get: 

E+(x,t) + E-(x,t) = 2kEozcos(kx-ωt) <= linearly polarised light 

 

 

This was the case when Φ = π/2, and Eoz = Eoy (= Eo).  What happens if Φ = π/2, but Eoz 
≠ Eoy? 



o When  Φ = π/2, but Eoz ≠ Eoy  light is called elliptically polarised.  The tip of the 
electric field writes an ellipse: 

 

 

 

 

 

 

 

 

o When light is composed of a rapidly varying succession of different polarisations, 
we talk about unpolarised light.  Sunlight is unpolarised.  (NB. unpolarised light 
is not circularly polarised light): 

 

 
unpolarised light             linearly polarised light 

 

 

Polarisers  

How can we ‘make’ light oscillate in a certain direction?  Polarisers do that. 



 
Linear polariser 

 

o ‘Instruments’ that produce well defined polarisation out of unpolarised light are 
called polarisers  

o Polarisers <=> analysers  

 

Linear polarisers   

Many types. We described some here: 

o Wire-grid type polarisers: light oscillating along the wire is absorbed, light 
oscillating perpendicular to the wires is not absorbed  => transmitted light linearly 
polarised.   

 

Linearly 
polarised light 

Unpolarised 
light 

 

 

o OK for microwaves, IR or in general longer wavelengths  

o polaroid: similar to wire-grid but ‘wires’ are molecules.  OK for shorter 
wavelengths, eg. visible radiation  (Invented in 1928 by Land, P/G 
student) 



 

o Dichroic crystals: selective absorption of one direction of polarisation.  Some 
crystalline materials absorb more light in one polarisation than in the other, so as 
light propagates through the material it becomes more and more polarised.  This 
anisotropy in absorption is called dichroism. There are several naturally occurring 
dichroic materials. (The polaroid discussed above also polarises by selective 
absorption.)  

 
 

 
 

 

 

o Birefringence: in some crystals the refractive index depends on the direction of 
polarisation of light.  So there are two refractive indexes depending on the 
polarisation: no (ordinary) and ne (extraordinary).  Since the r.i. are different, so is 
refraction: light will bend differently depending on the polarisation. These 
materials are anisotropic. In a birefringent material, light is split into two 
perpendicular polarizations with each being refracted slightly differently. Because 
they are refracted differently, the polarizations emerge in slightly different 
directions. Calcite is birefringent. 

 

 
(from http://www.city.ac.uk/optics/optics/EX12.pdf ) (local copy) 

http://www.city.ac.uk/optics/optics/EX12.pdf


 

 

o Polarisation by reflection: when unpolarised light is reflected from a dielectric, 
the reflected light is found to be partially polarised.  

o the degree of polarisation depends on the angle of incidence  

o at a special angle, called Brewster’s angle, the reflected light is 100% 
polarised.  Thus shining unpolarised light on a dielectric, we can get 
polarised light from the reflected component.  (The transmitted light will 
only be partially polarised) 

o Brewster’s angle occurs when ϑi + ϑt = 900: 

  
 

 
(from http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html ) (local copy) 

 

 

 

From Snell’s law: 

 

(from  http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html ) (local copy) 

http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html


 

Note: 

o By measuring Brewster’s angle we can determine the refractive index 

(for example, n1=1 (air), n2= 1.5 (glass)  ϑi = tan-1(1.5) = 560) 

o Brewster windows often used in lasers 

 

 

o Polarisation by scattering: 

 

(From http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html) (local copy) 

o just like polarisation by reflection, polarisation by scattering produces 
linearly polarised light 

o air (other) molecules can be thought of as small antennas which reradiate 
perpendicular to their line of oscillation. 

o For example, the blue sky is (partially) polarised.  

 

How much light gets through a linear polariser? 

Malus’s Law:   

I = I0cos2ϑ 

http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html


 

 
(from http://ece-classweb.ucsd.edu/archive/spring02/ece183/lecture17.pdf)  

http://ece-classweb.ucsd.edu/archive/spring02/ece183/lecture17.pdf
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