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3 Diffraction

Georges Seurat painted Sunday Afternoon on the Island of

La Grande Jatte using not brush strokes in the usual sense,
but rather a myriad of small colored dots, in a style of paint-
ing now known as pointillism. You can see the dots if you
stand close enough to the painting, but as you move away
from it, they eventually blend and cannot be distinguished.
Moreover, the color that you see at any given place on the
painting changes as you move away—which is why Seurat

painted with the dots.

What causes this change in
color?

The answer is in this chapter.
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FIGURE 37-1 = This diffraction pattern
appeared on a viewing screen when light
that had passed through a narrow but tall
vertical slit reached the screen. Diffraction
causes light to flare out perpendicular to
the long sides of the slit. That produces an
interference pattern consisting of a broad
central maximum less intense and nar-
rower secondary (or side) maxima, with
minima between them.

FIGURE 37-2 = The diffraction pattern

produced by a razor blade in monochro-
matic light. Note the lines of alternating
maximum and minimum intensity.

——

37-1 Diffraction and the Wave Theory of Light

In Chapter 36 we defined diffraction rather loosely as the flaring of light as it emerges
from a narrow slit. More than just flaring occurs, however, because the light produces
an interference pattern called a diffraction pattern. For example, when monochro-
matic light from a distant source (or a laser) passes through a narrow slit and is then
intercepted by a viewing screen, the light produces on the screen a diffraction pattern
like that in Fig. 37-1. This pattern consists of a broad and intense (very bright) central
maximum and a number of narrower and less intense maxima (called secondary or
side maxima) to both sides. In between the maxima are minima.

Such a pattern would be totally unexpected in geometrical optics: If light traveled
in straight lines as rays, then the slit would allow some of those rays through and they
would form a sharp, bright rendition of the slit on the viewing screen. As in Chapter
36, we again must conclude that geometrical optics is only an approximation.

Diffraction of light is not limited to situations of light passing through a narrow
opening (such as a slit or pinhole). It also occurs when light passes an edge, such as
the edges of the razor blade whose diffraction pattern is shown in Fig. 37-2. Note the
lines of maxima and minima that run approximately parallel to the edges, at both the
inside edges of the blade and the outside edges. As the light passes, say, the vertical
edge at the left, it flares left and right and undergoes interference, producing the pat-
tern along the left edge. The rightmost portion of that pattern actually lies within what
would have been the shadow of the blade if geometrical optics prevailed.

You encounter a common example of diffraction when you look at a clear blue
sky and see tiny specks and hair-like structures floating in your view. These floaters, as
they are called, are produced when light passes the edges of tiny deposits in the vitre-
ous humor, the transparent material filling most of your eyeball. What you are seeing
when a floater is in your field of vision is the diffraction pattern produced on the
retina by one of these deposits. If you sight through a pinhole in an otherwise opaque
sheet so as to make the light entering your eye approximately a plane wave, you can
distinguish individual maxima and minima in the patterns.

The Fresnel Bright Spot

Diffraction finds a ready explanation in the wave theory of light. However, this the-
ory, originally advanced in the late 1600s by Huygens and used 123 years later by
Young to explain double-slit interference, was very slow in being adopted, largely be-
cause it ran counter to Newton’s theory that light was a stream of particles.

Newton’s view was the prevailing view in French scientific circles of the early
19th century, when Augustin Fresnel was a young military engineer. Fresnel, who
believed in the wave theory of light, submitted a paper to the French Academy of
Sciences describing his experiments with light and his wave-theory explanations of
them.

In 1819, the Academy, dominated by supporters of Newton and thinking to chal-
lenge the wave point of view, organized a prize competition for an essay on the sub-
ject of diffraction. Fresnel won. The Newtonians, however, were neither converted nor
silenced. One of them, S. D. Poisson, pointed out the “strange result” that if Fresnel’s
theories were correct, then light waves should flare into the shadow region of a sphere
as they pass the edge of the sphere, producing a bright spot at the center of the
shadow. The prize committee arranged to have Dominique Argo test the famous
mathematician’s prediction. He discovered (see Fig. 37-3) that the predicted Fresnel
bright spot, as we call it today, was indeed there!* Nothing builds confidence in a

* Since Poisson predicted the spot and Argo discovered it, an alternate name is the Poisson-Argo bright
spot.

o
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FIGURE 37-3 = A photograph of the diffraction pattern of a disk. Note the concentric
diffraction rings and the Fresnel bright spot at the center of the pattern. This experiment is
essentially identical to that arranged by the committee testing Fresnel’s theories, because both
0 the sphere they used and the disk used here have a cross section with a circular edge.

theory so much as having one of its unexpected and counterintuitive predictions veri-
fied by experiment.

37-2 Diffraction by a Single Slit: Locating the Minima i

D

Let us now examine the diffraction pattern of plane waves of light of wavelength A
that are diffracted by a single, long, narrow slit of width a in an otherwise opaque Totally destructive
screen B, as shown in cross section in Fig. 37-4a. (In that figure, the slit’s length ex- interference
tends into and out of the page, and the incoming wavefronts are parallel to screen

B.) When the diffracted light reaches viewing screen C, waves from different points _ h
within the slit undergo interference and produce a diffraction pattern of bright and T
dark fringes (interference maxima and minima) on the screen. To locate the a/2
fringes, we shall use a procedure somewhat similar to the one we used to locate the l
fringes in a two-slit interference pattern. However, diffraction is more mathemati- T T Central axis 1P
cally challenging, and here we shall be able to find equations for only the dark o2
fringes. l

Before we do that, however, we can justify the central bright fringe seen in Fig. v Viewing
37-1 by noting that the Huygens wavelets from all points in the slit travel about the I B Screeg
same distance to reach the center of the pattern and thus are in phase there. As for Incident U

the other bright fringes, we can say only that they are approximately halfway between =~ Wav¢

adjacent dark fringes.

To find the dark fringes, we shall use a clever (and simplifying) strategy that in-
volves pairing up all the rays coming through the slit and then finding what conditions
cause the wavelets of the rays in each pair to cancel each other. Figure 37-4a shows
how we apply this strategy to locate the first dark fringe, at point P;. First, we mentally
divide the slit into two zones of equal widths a/2. Then we extend to P, a light ray
r; from the top point of the top zone and a light ray r, from the top point of the
bottom zone. A central axis is drawn from the center of the slit to screen C, and P, is
located at an angle 6 to that axis.

The wavelets of the pair of rays r; and r, are in phase within the slit because they
originate from the same wavefront passing through the slit, along the width of the slit. ®)

However, to produce .the first d.ark fringe th_ey must be out pf phase by. A2 when they GURE 37-4 = (a) Waves from the top
reach Py; th_15 phase difference is due to their path length difference, Wlth the V\./avelet points of two zones of width a/2 undergo
of r, traveling a longer path to reach Py than the wavelet of r,. To display this path 5,11y destructive interference at point P,
length difference, we find a point b on ray r, such that the path length from b to Py on viewing screen C. (b) For D >> a, we
matches the path length of ray r,. Then the path length difference between the two  can approximate rays r; and r, as being
rays is the distance from the center of the slit to b. parallel, at angle 6 to the central axis.

(a)

— Path length difference

o
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. I B
Incident
wave

(a)

Path length
difference between
ryand 7o

Path length
difference between
rgand ry

(0)

FIGURE 37-5 = (a) Waves from the top
points of four zones of width a/4 undergo
totally destructive interference at point P,.
(b) For D >> a, we can approximate rays
1, 15, 13, and r4 as being parallel, at angle 6
to the central axis.

——

When viewing screen C is near screen B, as in Fig. 37-4a, the diffraction pattern on
C is difficult to describe mathematically. However, we can simplify the mathematics
considerably if we arrange for the distance between the slit and screen D to be much
larger than the slit width a. Then we can approximate rays r; and r, as being parallel,
at angle 6 to the central axis (Fig. 37-4b). We can also approximate the triangle
formed by point b, the top point of the slit, and the center point of the slit as being a
right triangle, and one of the angles inside that triangle as being 6. The path length dif-
ference between rays r; and r, (which is still the distance from the center of the slit to
point b) is then equal to (a/2) siné.

We can repeat this analysis for any other pair of rays originating at corresponding
points in the two zones (say, at the midpoints of the zones) and extending to point P;.
Each such pair of rays has the same path length difference (a/2) sin6. Setting this com-
mon path length difference equal to A/2 (our condition for the first dark fringe), we
have

a A
Zsing ==
5 sin o
which gives us
asing = A (first minimum for D > a). (37-1)

Given slit width a and wavelength A, Eq. 37-1 tells us the angle 6 of the first dark
fringe above and (by symmetry) below the central axis.

Note that if we begin with @ > A and then narrow the slit while holding the wave-
length constant, we increase the angle at which the first dark fringes appear; that is,
the extent of the diffraction (the extent of the flaring and the width of the pattern) is
greater for a narrower slit. When we have reduced the slit width to the wavelength
(that is, @ = A), the angle of the first dark fringes is 90°. Since the first dark fringes
mark the two edges of the central bright fringe, that bright fringe must then cover the
entire viewing screen.

We find the second dark fringes above and below the central axis as we found the
first dark fringes, except that we now divide the slit into four zones of equal widths
al4, as shown in Fig. 37-5a. We then extend rays ry, r,, r3, and r, from the top points of
the zones to point P,, the location of the second dark fringe above the central axis. To
produce that fringe, the path length difference between r; and r,, that between r, and
3, and that between r; and r, must all be equal to A/2.

For D >> a, we can approximate these four rays as being parallel, at angle 60 to
the central axis. To display their path length differences, we extend a perpendicular
line through each adjacent pair of rays, as shown in Fig. 37-5b, to form a series of right
triangles, each of which has a path length difference as one side. We see from the top
triangle that the path length difference between r; and r, is (a/4)sin. Similarly, from
the bottom triangle, the path length difference between r; and r, is also (a/4)siné. In
fact, the path length difference for any two rays that originate at corresponding points
in two adjacent zones is (a/4)siné. Since in each such case the path length difference is
equal to A/2, we have

a A
= sing = =
4 Sin >
which gives us
asinf = 2\ (second minimum for D > a). (37-2)

We could now continue to locate dark fringes in the diffraction pattern by split-
ting up the slit into more zones of equal width. We would always choose an even num-

o
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ber of zones so that the zones (and their waves) could be paired as we have been
doing. We would find that the dark fringes above and below the central axis can be lo-
cated with the following general equation:

asinf = mAa, form =1,2,3,... (single slit minima—dark fringes).  (37-3)

You can remember this result in the following way. Draw a triangle like the one in
Fig. 37-4b, but for the full slit width a, and note that the path length difference be-
tween the top and bottom rays from the slit equals a sin. Thus, Eq. 37-3 says:

In a single-slit diffraction experiment, dark fringes are produced where the path length dif-
ferences (a sinf) between the top and bottom rays are equal to A,2A,3A ... ..

This may seem to be wrong, because the waves of those two particular rays will be
exactly in phase with each other when their path length difference is an integer
number of wavelengths. However, they each will still be part of a pair of waves that
are exactly out of phase with each other; thus, each will be canceled by some other
wave.

READING EXERCISE 37-1: We produce a diffraction pattern on a viewing screen
by means of a long narrow slit illuminated by blue light. Does the pattern expand away from
the bright center (the maxima and minima shift away from the center) or contract toward it if

we (a) switch to yellow light or (b) decrease the slit width?

TOUCHSTONE EXAMPLE 37-1: White Light, Red Light

A slit of width a is illuminated by white light (which consists of all
the wavelengths in the visible range).

(a) For what value of a will the first minimum for red light of wave-
length A = 650 nm appear at 6 = 15°?

SOLUTION " The Key Idea here is that diffraction occurs
separately for each wavelength in the range of wavelengths passing
through the slit, with the locations of the minima for each wave-
length given by Eq. 37-3 (a sin § = mA). When we set m = 1 (for
the first minimum) and substitute the given values of 6 and A, Eq.
37-3 yields

_ mA _ (1)(650 nm)
" sing sin 15°

2511 nm = 2.5 um.

(Answer)

For the incident light to flare out that much (+15° to the first min-
ima) the slit has to be very fine indeed—about four times the
wavelength. For comparison, note that a fine human hair may be
about 100 um in diameter.

(b) What is the wavelength A" of the light whose first side diffrac-
tion maximum is at 15°, thus coinciding with the first minimum for
the red light?

SOLUTION " The Key ldea here is that the first side maxi-
mum for any wavelength is about halfway between the first and sec-
ond minima for that wavelength. Those first and second minima can
be located with Eq. 37-3 by setting m = 1 and m = 2, respectively.
Thus, the first side maximum can be located approximately by set-
ting m = 1.5. Then Eq. 37-3 becomes

asinf = 1.5\".
Solving for A" and substituting known data yield

asing (2511 nm)(sin 15°)
1.5 1.5

= 430 nm.

A=

(Answer)

Light of this wavelength is violet. The first side maximum for light
of wavelength 430 nm will always coincide with the first minimum
for light of wavelength 650 nm, no matter what the slit width is. If
the slit is relatively narrow, the angle 6 at which this overlap occurs
will be relatively large, and conversely for a wide slit the angle is
small.
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37-3 Intensity in Single-Slit Diffraction, Qualitatively

In Section 37-2 we saw how to find the positions of the minima and the maxima in a
single-slit diffraction pattern. Now we turn to a more general problem: Find an ex-
pression for the intensity / of the pattern as a function of 6, the angular position of a
point on a viewing screen.

To do this, we divide the slit of Fig. 37-4a into N zones of equal widths Ax small
enough that we can assume each zone acts as a source of Huygens wavelets. We wish
to superimpose the wavelets arriving at an arbitrary point P on the viewing screen, at
angle 6 to the central axis, so that we can determine the amplitude E, of the magni-
tude of the electric field of the resultant wave at P. The intensity of the light at P is
then proportional to the square of that amplitude.

To find E, we need the phase relationships among the arriving wavelets. The
phase difference between wavelets from adjacent zones is given by

2
(phase difference) = <T7T>(path length difference).

For point P at angle 6, the path length difference between wavelets from adjacent
zones is Ax sin#, so the phase difference A¢ between wavelets from adjacent zones is

Ad = <2T7T>(Ax siné). (37-4)

We assume that the wavelets arriving at P all have the same amplitude AE. To
find the amplitude E, of the resultant wave at P, we add the amplitudes AE via pha-
sors. To do this, we construct a diagram of N phasors, one corresponding to the
wavelet from each zone in the slit.

For point P, at § = 0 on the central axis of Fig. 37-4a, Eq. 37-4 tells us that the
phase difference A¢ between the wavelets is zero; that is, the wavelets all arrive in
phase. Figure 37-6a is the corresponding phasor diagram; adjacent phasors represent
wavelets from adjacent zones and are arranged head to tail. Because there is zero
phase difference between the wavelets, there is zero angle between each pair of
adjacent phasors. The amplitude E, of the net wave at P, is the vector-like sum of
these phasors. This arrangement of the phasors turns out to be the one that gives the
greatest value for the amplitude E, We call this value E™*; that is, E™* is the value of
E,for 6 = 0.

We next consider a point P that is at a small angle 0 to the central axis. Equation
37-4 now tells us that the phase difference A¢ between wavelets from adjacent zones
is no longer zero. Figure 37-6b shows the corresponding phasor diagram; as before,

\

top ray

Phasor for

Phasor for
bottom ray

(e) (d)

FIGURE 37-6 = Phasor diagrams for N = 18 phasors, corresponding to the division of a single
slit into 18 zones. Resultant amplitudes E, are shown for (@) the central maximum at § =0,
(b) a point on the screen lying at a small angle 6 to the central axis, (c) the first minimum, and
(d) the first side maximum.

o
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the phasors are arranged head to tail, but now there is an angle A¢ between adjacent
phasors. The amplitude E, at this new point is still the vector sum of the phasors, but it
is smaller than the amplitude in Fig. 37-6a, which means that the intensity of the light
is less at this new point P than at P,

If we continue to increase 6, the angle A¢ between adjacent phasors increases,
and eventually the chain of phasors curls completely around so that the head of the
last phasor just reaches the tail of the first phasor (Fig. 37-6¢). The amplitude E, is
now zero, which means that the intensity of the light is also zero. We have reached the
first minimum, or dark fringe, in the diffraction pattern. The first and last phasors now
have a phase difference of 27 rad, which means that the path length difference be-
tween the top and bottom rays through the slit equals one wavelength. Recall that this
is the condition we determined for the first diffraction minimum.

As we continue to increase 6, the angle A¢ between adjacent phasors continues to
increase, the chain of phasors begins to wrap back on itself, and the resulting coil be-
gins to shrink. Amplitude E, now increases until it reaches a maximum value in the
arrangement shown in Fig. 37-6d. This arrangement corresponds to the first side maxi-
mum in the diffraction pattern.

If we increase 6 a bit more, the resulting shrinkage of the coil decreases Ej, which
means that the intensity also decreases. When 6 is increased enough, the head of the
last phasor again meets the tail of the first phasor. We have then reached the second
minimum.

We could continue this qualitative method of determining the maxima and min-
ima of the diffraction pattern but, instead, we shall now turn to a quantitative method.

READING EXERCISE 37-2: The figures represent, in
smoother form (with more phasors) than Fig. 37-6, the phasor dia-
grams for two points of a diffraction pattern that are on opposite
sides of a certain diffraction maximum. (a) Which maximum is it?
(b) What is the approximate value of m (in Eq. 37-3) that corre-
sponds to this maximum?

(a) ®

37-4 Intensity in Single-Slit Diffraction, Quantitatively

Equation 37-3 tells us how to locate the minima of the single-slit diffraction pattern
on screen C of Fig. 37-4a as a function of the angle 6 in that figure. Here we wish to
derive an expression for the intensity /, of the pattern as a function of 6. We state, and
shall prove below, that the intensity is given by

g 2
I, = ImaX<ﬂ> : (37-5)
o
1 ma
where @=— Ap = o0 siné. (37-6)

The symbol «a is just a convenient connection between the angle 6 that locates a point
on the viewing screen and the light intensity /, at that point. /™ is the greatest value
of the intensity /, in the pattern and occurs at the central maximum (where 6 = 0),
and A¢ is the phase difference (in radians) between the top and bottom rays from the
slit width a.

Study of Eq. 37-5 shows that intensity minima will occur where

o = mm, form =1,2,3,.... (37-7)

o
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Relative [intensity

0.6
a=A
0.4
02
20 15 10 5 0 5 10 15 20
0 (degrees)
(a)
Relative [intensity
a=5A
tAG >
20 15 10 5 0 5 10 15 20
0 (degrees)
(0)
Relative [intensity
1.0,
a=104
20 15 10 5 0 5 10 15 20

0 (degrees)
(¢)

FIGURE 37-7 = The relative intensity in
single-slit diffraction for three values of
the ratio a/A. The wider the slit is, the nar-
rower is the central diffraction maximum.

FIGURE 37-8 = A construction used to
calculate the intensity in single-slit diffrac-
tion. The situation shown corresponds to
that of Fig. 37-6b.

—— |

If we put this result into Eq. 37-6 we find

MW:WTaSiIlG, form=1,2,3,...,

or asinf = mA, form=1,2,3, ... (minima—dark fringes), (37-8)
which is exactly Eq. 37-3, the expression that we derived earlier for the location of the
minima.

Figure 37-7 shows plots of the intensity of a single-slit diffraction pattern, calcu-
lated with Egs. 37-5 and 37-6 for three slit widths: a = A, @ = 5\, and a = 10A. Note
that as the slit width increases (relative to the wavelength), the width of the central
diffraction maximum (the central hill-like region of the graphs) decreases; that is, the
light undergoes less flaring by the slit. The secondary maxima also decrease in width
(and become weaker). In the limit of slit width a being much greater than wavelength
A, the secondary maxima due to the slit disappear; we then no longer have single-slit
diffraction (but we still have diffraction due to the edges of the wide slit, like that pro-

duced by the edges of the razor blade in Fig. 37-2).

Proof of Eqs. 37-5 and 37-6

The arc of phasors in Fig. 37-8 represents the wavelets that reach an arbitrary point P
on the viewing screen of Fig. 37-4, corresponding to a particular small angle 6. The
amplitude E, of the resultant wave at P is the vector sum of these phasors. If we
divide the slit of Fig. 37-4 into infinitesimal zones of width Ax, the arc of phasors in
Fig. 37-8 approaches the arc of a circle; we call its radius R as indicated in that figure.
The length of the arc must be £™*, the amplitude at the center of the diffraction pat-
tern, because if we straightened out the arc we would have the phasor arrangement of
Fig. 37-6a (shown lightly in Fig. 37-8).

The angle A¢ in the lower part of Fig. 37-8 is the difference in phase between the
infinitesimal vectors at the left and right ends of arc £™*. From the geometry, A¢ is
also the angle between the two radii marked R in Fig. 37-8. The dashed line in that fig-
ure, which bisects A¢, then forms two congruent right triangles. From either triangle
we can write

S
siny A¢ R

(37-9)
In radian measure, A¢ is (with E™ considered to be a circular arc)

Emax
Ap=

Solving this equation for R, substituting the result into Eq. 37-9 and re-arranging
terms yields

Emax

E, = ——sin }A¢. 37-10
1= Tyg SN (37-10)

In Section 34-4 we saw that the intensity of an electromagnetic wave is propor-
tional to the square of the amplitude of its electric field. Here, this means that the
maximum intensity /™* (which occurs at the center of the diffraction pattern) is pro-
portional to (E™)? and the intensity /, at angle 6 is proportional to £} Thus, we may
write

o
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L, _ Ej
Jmax (Emax)Z'

Substituting for E, with Eq. 37-10 and then substituting a =

following expression for the intensity as a function of 6:

;- Imax( sina >2
0 o )

——
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(37-11)

A¢, we are led to the

This is exactly Eq. 37-5, one of the two equations we set out to prove.
The second equation we wish to prove relates « to 6: The phase difference A¢ be-
tween the rays from the top and bottom of the entire slit may be related to a path

length difference with Eq. 37-4; it tells us that

= (25 s

where a is the sum of the widths Ax of the infinitesimal zones. However, A¢ = 2a, so

this equation reduces to Eq. 37-6.

READING EXERCISE 37-3:
Two wavelengths, 650 and 430 nm, are used
separately in a single-slit diffraction experi-
ment. The figure shows the results as
graphs of intensity / versus angle 6 for the
two diffraction patterns. If both wave-
lengths are then used simultaneously, what
color will be seen in the combined diffrac-

tion pattern at (a) angle A and (b) angle B?

TOUCHSTONE EXAMPLE 37-2: Maxima Intensities

Find the intensities of the first three secondary maxima (side max-
ima) in the single-slit diffraction pattern of Fig. 37-1, measured rela-
tive to the intensity of the central maximum.

SOLUTION " One Key lIdea here is that the secondary max-
ima lie approximately halfway between the minima, whose angular
locations are given by Eq. 37-7 (e = mr). The locations of the sec-
ondary maxima are then given (approximately) by

a=(m+%)7'r, form=1,2,3,...,
with « in radian measure.

A second Key Idea is that we can relate the intensity / at
any point in the diffraction pattern to the intensity /™** of the cen-
tral maximum via Eq. 37-5. Thus, we can substitute the approximate
values of « for the secondary maxima into Eq. 37-5 to obtain the
relative intensities at those maxima. We get

I <sina )2 _ (sin(m + Y

1 - (m + D

2
), form=1,2,3,....
a

The first of the secondary maxima occurs for m = 1, and its relative
intensity is

L (sin(l + ;)77->2 B <sin1.577->2
e (1+ 157

=450 X 1072 = 4.5%. (Answer)

For m = 2 and m = 3 we find that

I I
Z_—-16% and 3

Imax Imax

= 0.83%. (Answer)

Successive secondary maxima decrease rapidly in intensity. Fig-
ure 37-1 was deliberately overexposed to reveal them.

o
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FIGURE 37-9 = The diffraction pattern of
a circular aperture. Note the central
maximum and the circular secondary
maxima. The figure has been overexposed
to bring out these secondary maxima,
which are much less intense than the
central maximum.

FIGURE 37-10 = At the top, the images of
two point sources (stars), formed by a
converging lens. At the bottom, represen-
tations of the image intensities. In (a) the
angular separation of the sources is too
small for them to be distinguished; in ()
they can be marginally distinguished, and
in (c) they are clearly distinguished.
Rayleigh’s criterion is just satisfied in

(b), with the central maximum of one dif-
fraction pattern coinciding with the first
minimum of the other.

——

37-5 Diffraction by a Circular Aperture

Here we consider diffraction by a circular aperture—that is, a circular opening such
as a circular lens, through which light can pass. Figure 37-9 shows the image of a dis-
tant point source of light (a star, for instance) formed on photographic film placed in
the focal plane of a converging lens. This image is not a point, as geometrical optics
would suggest, but a circular disk surrounded by several progressively fainter sec-
ondary rings. Comparison with Fig. 37-1 leaves little doubt that we are dealing with a
diffraction phenomenon. Here, however, the aperture is a circle of diameter d rather
than a rectangular slit.

The analysis of such patterns is complex. It shows, however, that the first mini-
mum for the diffraction pattern of a circular aperture of diameter d is located by

A
sinf = 1.22 i (first minimum— circular aperture). (37-12)

The angle 6 here is the angle from the central axis to any point on that (circular) mini-
mum. Compare this with Eq. 37-1,

A
sinf = ; (first minimum —single slit), (37-13)

which locates the first minimum for a long narrow slit of width a. The main difference
is the factor 1.22, which enters because of the circular shape of the aperture.

Resolvability

The fact that lens images are diffraction patterns is important when we wish to resolve
(distinguish) two distant point objects whose angular separation is small. Figure 37-10
shows, in three different cases, the visual appearance and corresponding intensity pat-
tern for two distant point objects (stars, say) with small angular separation. In Figure
37-10a, the objects are not resolved because of diffraction; that is, their diffraction pat-
terns (mainly their central maxima) overlap so much that the two objects cannot be
distinguished from a single point object. In Fig. 37-10b the objects are barely resolved,
and in Fig. 37-10c they are fully resolved.
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In Fig. 37-10b the angular separation of the two point sources is such that the cen-
tral maximum of the diffraction pattern of one source is centered on the first mini-
mum of the diffraction pattern of the other, a condition called Rayleigh’s criterion for
resolvability. From Eq. 37-12, two objects that are barely resolvable by this criterion
must have an angular separation 6y of

1222

Og = sin~

Since the angles involved are small, we can replace sin g with 6r expressed in
radians:

A
O = 1.22 7 (Rayleigh’s criterion—circular aperture). (37-14)

Rayleigh’s criterion for resolvability is only an approximation, because resolvabil-
ity depends on many factors, such as the relative brightness of the sources and their
surroundings, turbulence in the air between the sources and the observer, and the
functioning of the observer’s visual system. Experimental results show that the least
angular separation that can actually be resolved by a person is generally somewhat
greater than the value given by Eq. 37-14. However, for the sake of calculations here,
we shall take Eq. 37-14 as being a precise criterion: If the angular separation 6 be-
tween the sources is greater than 6y, we can resolve the sources; if it is less, we cannot.

Rayleigh’s criterion can explain the colors in Seurat’s Sunday Afternoon on the Is-
land of La Grande Jatte (or any other pointillistic painting). When you stand close
enough to the painting, the angular separations 6 of adjacent dots are greater than 6y
and thus the dots can be seen individually. Their colors are the colors of the paints
Seurat used. However, when you stand far enough from the painting, the angular sep-
arations 6 are less than 6z and the dots cannot be seen individually. The resulting
blend of colors coming into your eye from any group of dots can then cause your
brain to “make up” a color for that group—a color that may not actually exist in the  Fioure 37-11 = A false-color scanning
group. In this way, Seurat uses your visual system to create the colors of his art. electron micrograph of red blood cells

When we wish to use a lens instead of our visual system to resolve objects of  (raveling through an arterial branch.
small angular separation, it is desirable to make the diffraction pattern as small as
possible. According to Eq. 37-14, this can be done either by increasing the lens diame-
ter or by using light of a shorter wavelength.

For this reason ultraviolet light is often used with microscopes; because of its
shorter wavelength, it permits finer detail to be examined than would be possible for
the same microscope operated with visible light. It turns out that under certain cir-
cumstances, a beam of electrons behaves like a wave. In an electron microscope such
beams may have an effective wavelength that is 107> of the wavelength of visible
light. They permit the detailed examination of tiny structures, like that in Fig. 37-11,
that would be blurred by diffraction if viewed with an optical microscope.

READING EXERCISE 37-4: Suppose you can barely resolve two red dots, due to dif-
fraction by the pupil of your eye. If we increase the general illumination around you so that the
pupil decreases in diameter, does the resolvability of the dots improve or diminish? Consider
only diffraction. (You might experiment to check your answer.) |

TOUCHSTONE EXAMPLE 37-3: Circular Converging Lens

A circular converging lens, with diameter d = 32 mm and focal (a) Considering diffraction by the lens, what angular separation
length f = 24 cm, forms images of distant point objects in the focal must two distant point objects have to satisfy Rayleigh’s
plane of the lens. Light of wavelength A = 550 nm is used. criterion?

o
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SOLUTION " Figure 37-12 shows two distant point objects P; and
P,, the lens, and a viewing screen in the focal plane of the lens. It also
shows, on the right, plots of light intensity / versus position on the
screen for the central maxima of the images formed by the lens. Note
that the angular separation 6, of the objects equals the angular sepa-

—— -

(b) What is the separation Ax of the centers of the images in the fo-
cal plane? (That is, what is the separation of the central peaks in the
two curves?)

SOLUTION * The Key Idea here is to relate the separation Ax

ration 6; of the images. Thus, the Key lIdea here is that if the images

are to satisfy Rayleigh’s criterion for resolvability, the angular separa- the lens and the screen in Fig. 37-12, we see that tan 6,/2 = Ax/2f.

tions on both sides of the lens must be given by Eq. 37-14 (assuming Rearranging this and making the approximation tan 6<6, we
small angles). Substituting the given data, we obtain from Eq.37-14 find

to the angle 6,, which we now know. From either triangle between

Ax = f6, 37-15
90=9,»=9R=1.22% x = f9, (37-15)

~(1.22)(550 X 10~° m)
B 32 X103 m

where 6, is in radian measure. Substituting known data then yields

=21 X107 rad. (Answer)

Ax = (024 m)(2.1 X 107 rad) = 5.0 um. (Answer)
At this angular separation, each central maximum in the two inten-
sity curves of Fig. 37-12 is centered on the first minimum of the
other curve.

Focal-plane
screen

FIGURE 37-12 = Light from two distant point objects P, and P, passes through a
converging lens and forms images on a viewing screen in the focal plane of the lens.
Only one representative ray from each object is shown. The images are not points
but diffraction patterns, with intensities approximately as plotted at the right. The
angular separation of the objects is 6, and that of the images is 6; the central maxima
of the images have a separation Ax.

37-6 Diffraction by a Double Slit

In the double-slit experiments of Chapter 36, we implicitly assumed that the slits were
narrow compared to the wavelength of the light illuminating them; that is, a << \. For
such narrow slits, the central maximum of the diffraction pattern of either slit covers
the entire viewing screen. Moreover, the interference of light from the two slits pro-
duces bright fringes that all have approximately the same intensity (Fig. 36-9).

In practice with visible light, however, the condition a <<\ is rarely met. For rela-
tively wide slits, the interference of light from two slits produces bright fringes that do
not all have the same intensity. That is, the intensities of the fringes produced by dou-
ble-slit interference (as discussed in Chapter 36) are modified by diffraction of the
light passing through each slit (as discussed in this chapter).

As an example, the intensity plot of Fig. 37-13a (like that in Fig. 36-9) suggests the
double-slit interference pattern that would occur if the slits were infinitely narrow (for
a<<\); all the bright interference fringes would have the same intensity. The intensity
plot of Fig. 37-13b is that for diffraction by a single actual slit; the diffraction pattern
has a broad central maximum and weaker secondary maxima at +1.7°. The plot of Fig.
37-13c suggests the interference pattern for two actual slits. That plot was constructed
by using the curve of Fig. 37-13b as an envelope on the intensity plot in Fig. 37-13a. The
positions of the fringes are not changed; only the intensities are affected.

Figure 37-14a shows an actual pattern in which both double-slit interference and
diffraction are evident. If one slit is covered, the single-slit diffraction pattern of
Fig. 37-14b results. Note the correspondence between Figs. 37-14a and 37-13¢ and
between Figs. 37-14b and 37-13b. In comparing these figures, bear in mind that 37-14
has been deliberately overexposed to bring out the faint secondary maxima and that
two secondary maxima (rather than one) are shown.

o
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Relative 1nten51ty (2 slits, a> 0)

2.0

(a)

A

degrees)

Relative intens'ity (1 slit, a> 0) Relative intensilty (2 slits, a > 0)

—— L —
2.0 1.5 1.0 0.5 0 0.5 1.0 1.5 2.0 2.0 1.5 1.0 0.5 0

0 (degrees) 6 (degrees)

() (¢)

FIGURE 37-13 = (a) The intensity plot to be expected in a double-slit interference experiment
with vanishingly narrow slits (here the distance between the center of the slits is d = 25 mm
and the incident light is reddish-orange with A = 623 mm). (b) The intensity plot for diffraction
by a typical slit of width ¢ = 0.031 mm (not vanishingly narrow). (c) The intensity plot to be ex-
pected for two slits of width @ = 0.031 mm. The curve of (b) acts as an envelope, limiting the in-
tensity of the double-slit fringes in (a). Note that the first minima of the diffraction pattern of
(b) eliminate the double-slit fringes that would occur near 1.2° in (¢).

With diffraction effects taken into account, the intensity of a double-slit interfer-
ence pattern is given by

2
1(6) = I™(cos? 3)( sin ) (it i), (37-16)
. . md
in which B= T sinf (37-17)
ma
and a=— sinf (37-18)

Here d is the distance between the centers of the slits, and a is the slit width. Note
carefully that the right side of Eq. 37-16 is the product of /™ and two factors. (1) The

NN 0
il 1K

o

0.5 1.0 1.5 2.0

FIGURE 37-14 = (a) Interference fringes
for an actual double-slit system; compare
with Fig. 37-13c. (b) The diffraction pattern
of a single slit; compare with Fig. 37-13b.
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——

interference factor cos® B is due to the interference between two slits with slit separa-
tion d (as given by Egs. 36-17 and 36-18). (2) The diffraction factor [(sin a)/a]? is due
to diffraction by a single slit of width a (as given by Egs. 37-5 and 37-6).

Let us check these factors. If we let a — 0 in Eq. 37-18, for example, then o« — 0
and using L’Hopital’s rule, we find that (sin «)/a — 1. Equation 37-16 then reduces, as
it must, to an equation describing the interference pattern for a pair of vanishingly
narrow slits with slit separation d. Similarly, putting d = 0 in Eq. 37-17 is equivalent
physically to causing the two slits to merge into a single slit of width a. Then Eq. 37-17
yields 8 = 0 and cos? 8 = 1. In this case Eq. 37-16 reduces, as it must, to an equation
describing the diffraction pattern for a single slit of width a.

The double-slit pattern described by Eq. 37-16 and displayed in Fig. 37-14a com-
bines interference and diffraction in an intimate way. Both are superposition effects,
in that they result from the combining of waves with different phases at a given point.
If the combining waves originate from a small number of elementary coherent
sources—as in a double-slit experiment with a << A—we call the process interference.
If the combining waves originate in a single wavefront—as in a single-slit experi-
ment—we call the process diffraction. This distinction between interference and dif-
fraction (which is somewhat arbitrary and not always adhered to) is a convenient one,
but we should not forget that both are superposition effects and usually both are pre-
sent simultaneously (as in Fig. 37-14a).

TOUCHSTONE EXAMPLE 37-4: Bright Fringes

Let’s consider a double slit with an unusually small spacing. Sup-
pose the wavelength A of the light source is 405 nm, the slit separa-
tion d is 19.44 pum, and the slit width a is 4.050 um. Consider the in-
terference of the light from the two slits and also the diffraction of
the light through each slit.

(a) How many bright interference fringes are within the central
peak of the diffraction envelope?

SOLUTION 7 Let us first analyze the two basic mechanisms re-
sponsible for the optical pattern produced in the experiment:

Single-slit diffraction: The ey lIdea here is that the limits
of the central peak are the first minima in the diffraction pattern
due to either slit, individually. (See Fig. 37-13.) The angular loca-
tions of those minima are given by Eq. 37-3 (a sinf = mA). Let us
write this equation as a sinf = m; A, with the subscript 1 referring to
the one-slit diffraction. For the first minima in the diffraction pat-
tern, we substitute m; = 1, obtaining

I~ Diffraction envelope

Intensity /

asinf = A (37-19)

Double-slit interference: The Key lIdea here is that the angular
locations of the bright fringes of the double-slit interference pattern
are given by Eq. 36-14, which we can write as
dsinf = myA\, form, =1,2,3,.... (37-20)

Here the subscript 2 refers to the double-slit interference.

We can locate the first diffraction minimum within the double-
slit fringe pattern by dividing Eq. 37-20 by Eq. 37-19 and solving for
m,. By doing so and then substituting the given data, we obtain

~d 1944um
M T 4050 pm

This tells us that the bright interference fringe for m, = 4 fits into
the central peak of the one-slit diffraction pattern, but the fringe for

FIGURE 37-15 = One side of the intensity plot for a two-slit interference experi-
ment; the diffraction envelope is indicated by the dotted curve. The smaller inset
shows (vertically expanded) the intensity plot within the first and second side peaks
of the diffraction envelope.

o
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m, = 5 does not fit. Within the central diffraction peak we have the
central bright fringe (m, = 0), and four bright fringes (up to m, = 4)
on each side of it. Thus, a total of nine bright fringes of the double-
slit interference pattern are within the central peak of the diffraction
envelope. The bright fringes to one side of the central bright fringe
are shown in Fig. 37-15.

(b) How many bright fringes are within either of the first side peaks
of the diffraction envelope?

SOLUTION " The Key Idea here is that the outer limits of
the first side diffraction peaks are the second diffraction minima,
each of which is at the angle 6 given by a sin 6 = m;A with m; = 2:

——

Diffraction Gratings 1097

Dividing Eq. 37-20 by Eq. 37-21, we find

Lo 2d (1944 pm)
2 g 4.050 wm

9.6.

This tells us that the second diffraction minimum occurs just before
the bright interference fringe for m, = 10 in Eq. 37-20. Within ei-
ther first side diffraction peak we have the fringes from m, = 5 to
m, = 9 for a total of five bright fringes of the double-slit interfer-
ence pattern (shown in the inset of Fig. 37-15). However, if the
m, = 5 bright fringe, which is almost eliminated by the first diffrac-
tion minimum, is considered too dim to count, then only four bright
fringes are in the first side diffraction peak.

asinf = 2\ (37-21)

37-7 Diffraction Gratings

One of the most useful tools in the study of light and of objects that emit and absorb
light is the diffraction grating. A diffraction grating is a device that uses interference
phenomena to seperate a beam of light by wavelength. A diffraction grating is a more
elaborate form of the double-slit arrangement of Fig. 36-8. This device has a much
greater number N of slits, often called rulings, perhaps as many as several thousand
per millimeter. An idealized grating consisting of only five slits is represented in Fig.
37-16. When monochromatic light is sent through the slits, it forms narrow interfer-
ence fringes that can be analyzed to determine the wavelength of the light. (Diffrac-
tion gratings can also be opaque surfaces with narrow parallel grooves arranged like
the slits in Fig. 37-16. Light then scatters back from the grooves to form interference
fringes rather than being transmitted through open slits.)

With monochromatic light incident on a diffraction grating, if we gradually in-
crease the number of slits from two to a large number N, the intensity plot changes
from the typical double-slit plot of Fig. 37-13c to a much more complicated one and
then eventually to a simple graph like that shown in Fig. 37-17a. The pattern you
would see on a viewing screen using monochromatic red light from, say, a helium-
neon laser, is shown in Fig. 37-17b. The maxima are now very narrow (and so are
called lines); they are separated by relatively wide dark regions.

We use a familiar procedure to find the locations of the bright lines on the view-
ing screen. We first assume that the screen is far enough from the grating so that the
rays reaching a particular point P on the screen are approximately parallel when they
leave the grating (Fig. 37-18). Then we apply to each pair of adjacent rulings the same
reasoning we used for double-slit interference. The separation d between rulings is
called the grating spacing. (If N rulings occupy a total width w, then d = w/N.) The
path length difference between adjacent rays is again dsin6 (Fig. 37-18), where 6 is the
angle from the central axis of the grating (and of the diffraction pattern) to point P. A
line will be located at P if the path length difference between adjacent rays is an inte-
ger number of wavelengths —that is, if

dsinf = mA, form =0,1,2,... (maxima—lines), (37-22)

where A is the wavelength of the light. Each integer m represents a different line;
hence these integers can be used to label the lines, as in Fig. 37-17. The integers are
then called the order numbers, and the lines are called the zeroth-order line (the cen-
tral line, with m = 0), the first-order line, the second-order line, and so on.

o

=~

| A C

FIGURE 37-16 = An idealized diffraction
grating, consisting of only five rulings, that
produces an interference pattern on a dis-
tant viewing screen C.

Intensity

m=0

FIGURE 37-17 = A diffraction grating illu-
minated with a single wavelength of light.
(a) The intensity plot produced by a diffrac-
tion grating with a great many rulings con-
sists of narrow peaks, here labeled with their
order numbers m. (b) The corresponding
bright fringes seen on the screen are called
lines and are here also labeled with order
numbers m. Lines of the zeroth, first, second,
and third orders are shown.
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To point P
on viewing
screen

4

Path length
difference
@ between adjacent rays

—

FIGURE 37-18 = The rays from the rulings
in a diffraction grating to a distant point P
are approximately parallel. The path
length difference between each two adja-
cent rays is d sinf, where 6 is measured as
shown. (The rulings extend into and out of
the page.)

Intensity

|
—{ A} —

0°

FIGURE 37-19 = The half-width A6, of
the central line is measured from the cen-
ter of that line to the adjacent minimum on
a plot of I versus 6 like Fig. 37-17a.

Top ray

To first

- minimum
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n

\

:thw AN Bottom ray
Nd = \

n
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n

H Path length

u difference

n

FIGURE 37-20 = The top and bottom rul-
ings of a diffraction grating of N rulings
are separated by distance Nd. The top and
bottom rays passing through these rulings
have a path length difference of Nd sin
A6, where A6, is the angle to the first
minimum. (The angle is here greatly exag-
gerated for clarity.)

——

If we rewrite Eq. 37-22 as 6 = sin™! (mA/d) we see that, for a given diffraction
grating, the angle from the central axis to any line (say, the third-order line)
depends on the wavelength of the light being used. Thus, when light of an unknown
wavelength is sent through a diffraction grating, measurements of the angles to the
higher-order lines can be used in Eq. 37-22 to determine the wavelength. Even
light of several unknown wavelengths can be distinguished and identified in this
way. We cannot do that with the double-slit arrangement of Section 36-4, even
though the same equation and wavelength dependence apply there. In double-slit
interference, the bright fringes due to different wavelengths overlap too much to
be distinguished.

Width of the Lines

A grating’s ability to resolve (separate) lines of different wavelengths depends on the
width of the lines. We shall here derive an expression for the half-width of the central
line (the line for which m = 0) and then state an expression for the half-widths of the
higher-order lines. We measure the half-width of the central line as the angle A6,
from the center of the line at # = 0 outward to where the line effectively ends and
darkness effectively begins with the first minimum (Fig. 37-19). At such a minimum,
the N rays from the N slits of the grating cancel one another. (The actual width of
the central line is, of course 2(A6,), but line widths are usually compared via
half-widths.)

In Section 37-2 we were also concerned with the cancellation of a great many
rays, there due to diffraction through a single slit. We obtained Eq. 37-3, which,
because of the similarity of the two situations, we can use to find the first minimum
here. It tells us that the first minimum occurs where the path length difference
between the top and bottom rays equals A. For single-slit diffraction, this difference
is a sin 6. For a grating of N rulings, each separated from the next by distance d,
the distance between the top and bottom rulings is Nd (Fig. 37-20), so the path length
difference between the top and bottom rays here is Nd sinA6,,. Thus, the first mini-
mum occurs where

Nd sin Ab,,, = A (37-23)
Because A6, is small, sinA6,, = A6, (in radian measure). Substituting this in Eq.
37-23 gives the half-width of the central line as

Aby, = (half-width of central line). (37-24)

A
Nd
We state without proof that the half-width of any other line depends on its location
relative to the central axis and is

A

Ay = ———
Oh Nd cos 6

(half-width of line at 6). (37-25)

Note that for light of a given wavelength A and a given ruling separation d, the
widths of the lines decrease with an increase in the number N of rulings. Thus, of
two diffraction gratings, the grating with the larger value of N is better able to dis-
tinguish between wavelengths because its diffraction lines are narrower and so
produce less overlap. But the line width of a monochromatic light beam is deter-
mined by the number of slits that the beam encounters. In a diffraction grating
spectrometer, a collimating telescope can be used to illuminate all N slits of the
grating.

o
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The Diffraction Grating Spectrometer

Diffraction gratings are widely used to determine the wavelengths that are emitted by
sources of light ranging from lamps to stars. Figure 37-21 shows a simple grating
spectroscope in which a grating is used for this purpose. Light from source S is focused
by lens L; on a vertical slit §; placed in the focal plane of lens L,. The light emerging
from tube C (called a collimator) is a plane wave and is incident perpendicularly on
grating G, where it is diffracted into a diffraction pattern, with the m = 0 order dif-
fracted at angle 6 = 0 along the central axis of the grating.

We can view the diffraction pattern that would appear on a viewing screen at any
angle 0 simply by orienting telescope 7 in Fig. 37-21 to that angle. Lens L; of the tele-
scope then focuses the light diffracted at angle 6 (and at slightly smaller and larger an-
gles) onto a focal plane FF' within the telescope. When we look through eyepiece E, A A
we see a magnified view of this focused image.

By changing the angle 6 of the telescope, we can examine the entire diffraction
pattern. For any order number other than m = 0, the original light is spread out ac-
cording to wavelength (or color) so that we can determine, with Eq. 37-22, just what
wavelengths are being emitted by the source. If the source emits a number of dis-
crete wavelengths, what we see as we rotate the telescope horizontally through the
angles corresponding to an order m is a vertical line of color for each wavelength,
with the shorter-wavelength line at a smaller angle m = 0 than the longer-wave-
length line.

For example, the light emitted by a hydrogen lamp, which contains hydrogen gas,
has four discrete wavelengths in the visible range. If our eyes intercept this light di-
rectly, it appears to be white. If, instead, we view it through a grating spectroscope, we H
can distinguish, in several orders, the lines of the four colors corresponding to these
visible wavelengths. (Such lines are called emission lines.) Four orders are represented
in Fig. 37-22. In the central order (m = 0), the lines corresponding to all four wave- V
lengths are superimposed, giving a single white line at # = 0. The colors are separated
in the higher orders.

The third order is not shown in Fig. 37-22 for the sake of clarity; it actually over- FIGURE 37-21 = A simple type of grating
laps the second and fourth orders. The fourth-order red line is missing because it is  spectroscope used to analyze the wave-
not formed by the grating used here. That is, when we attempt to solve Eq. 37-22 for ~lengths of light emitted by source S.

=la 5

I 1 1 1 1 1 1 1 1
0° 10° 20° 30° 40° 50° 60° 70° 80°

FIGURE 37-22 = The zeroth, first, second, and fourth orders of the visible emission lines from
hydrogen. Note that the lines are farther apart at greater angles. (The lines are also dimmer and
wider, although that is not shown here. Also, the third order line is eliminated for clarity.)

the angle 0 for the red wavelength when m = 4, we find that sin 6 is greater than
unity, which is not possible. The fourth order is then said to be incomplete for this
grating; it might not be incomplete for a grating with greater spacing d, which will
spread the lines less than in Fig. 37-22. Figure 37-23 is a photograph of the visible
emission lines produced by cadmium.

FIGURE 37-23 = The visible emission
lines of cadmium, as seen through a grat-
ing spectroscope.
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The fine rulings, each 0.5 wm wide, on a
compact disc function as a diffraction grat-
ing. When a small source of white light illu-
minates a disc, the diffracted light forms
colored “lanes” that are the composite of
the diffraction patterns from the rulings.

——

READING EXERCISE 37-5: The figure shows lines of
different orders produced by a diffraction grating in monochro-
matic red light. (a) Is the center of the pattern to the left or
right? (b) If we switch to monochromatic green light, will the half-widths of the lines then pro-
duced in the same orders be greater than, less than, or the same as the half-widths of the lines
shown? [ ]

37-8 Gratings: Dispersion and Resolving Power

There are two characteristics that are important in the design of a diffraction grating
spectrometer. First, the different wavelengths of light in a beam should be spread out.
This characteristic is called dispersion. The second characteristic is the resolving
power of the spectrometer. It should have a narrow line width for each wavelength so
the lines are sharp.

Dispersion

To be useful in distinguishing wavelengths that are close to each other (as in a grating
spectroscope), a grating must spread apart the diffraction lines associated with the
various wavelengths. This spreading, called dispersion, is defined as

D = ——  (dispersion defined). (37-26)

Here A6 is the angular separation of two lines whose wavelengths differ by AA. The
greater D is, the greater is the distance between two emission lines whose wavelengths
differ by AA. We show below that the dispersion of a grating at angle 6 is given by

D = 7 cosd (dispersion of a grating). (37-27)

Thus, to achieve higher dispersion we must use a grating of smaller grating spacing d
and work in a higher order m. Note that the dispersion does not depend on the num-
ber of rulings. The SI unit for D is the degree per meter or the radian per meter.

Proof of Eq. 37-27

Let us start with Eq. 37-22, the expression for the locations of the lines in the diffrac-
tion pattern of a grating:

dsinf = mA.
Let us regard 6 and A as variables and take differentials of this equation. We find
d cosf (d6) = m (d)),

where the differentials d6 and dA are placed in parentheses to distinguish them from
the product of the center to center slit spacing d and the angle 6 or wavelength A.

For small enough angles, we can write these differentials as small differences,
obtaining

d cosf (A6) = m(AN), (37-30)
(A0) m
o (A\)  dcos’
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The ratio on the left is simply D (see Eq. 37-26), so we have indeed derived Eq. 37-27.

Resolving Power

To resolve lines whose wavelengths are close together (that is, to make the lines dis-
tinguishable), the line should also be as narrow as possible. Expressed otherwise, the
grating should have a high resolving power R, defined as

A
R = <A_)>\ (resolving power defined). (37-28)

Here ()} is the mean wavelength of two emission lines that can barely be recognized
as separate, and AA is the wavelength difference between them. The greater R is, the
closer two emission lines can be and still be resolved. We shall show below that the re-
solving power of a grating is given by the simple expression

R = Nm (resolving power of a grating). (37-29)

To achieve high resolving power, we must spread out the light beam so it is incident
on many rulings (large N in Eq. 37-29).

Proof of Eq. 37-29

We start with Eq. 37-30, which was derived from Eq. 37-22, the expression for the lo-
cations of the lines in the diffraction pattern formed by a grating. Here AA is the small
wavelength difference between two waves that are diffracted by the grating, and A6 is
the angular separation between them in the diffraction pattern. If Af is to be the
smallest angle that will permit the two lines to be resolved, it must (by Rayleigh’s cri-
terion) be equal to the half-width of each line, which is given by Eq. 37-25:

A

A, = ———.
™ Ndcos @

If we substitute A6y, as given here for Af in Eq. 37-30, we find that
A
W = mA)\,

from which it readily follows that

This is Eq. 37-29, which we set out to derive.

Dispersion and Resolving Power Compared

The resolving power of a grating must not be confused with its dispersion. Table 37-1
shows the characteristics of three gratings, all illuminated with light of wavelength
A = 589 nm, whose diffracted light is viewed in the first order (m = 1 in Eq. 37-22).
You should verify that the values of D and R as given in the table can be calculated
with Egs. 37-27 and 37-29, respectively. (In the calculations for D, you will need to
convert radians per meter to degrees per micrometer.)

o
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B Grafmg TaBLE 37-1
““2 Three Gratings*
0 13 40 Specifications Calculated Values
6 (degrees) Grating N d (nm) 0 D (°/pm) R
. A 10 000 2540 13.4° 23.2 10 000
k= Graung
é B 20 000 2540 13.4° 23.2 20 000
é C 10 000 1370 25.5° 46.3 10 000
13 4°
0 (degrees) “Data are for A = 589 nm and m = 1.

/\Gratlng /\

o Intensity
—
|

0 (degrees)

FIGURE 37-24: The intensity patterns for
light of two wavelengths sent through the
gratings of Table 37-1. Grating B has the
highest resolving power and grating C the
highest dispersion.

TOUCHSTONE EXAMPLE 37-5: Diffraction Grating

For the conditions noted in Table 37-1, gratings A and B have the same dispersion
25.5° and A and C have the same resolving power.

Figure 37-24 shows the intensity patterns (also called line shapes) that would be
produced by these gratings for two lines of wavelengths A; and A,, in the vicinity of
A = 589 nm. Grating B, with the higher resolving power, produces narrower lines and
thus is capable of distinguishing lines that are much closer together in wavelength
than those in the figure. Grating C, with the higher dispersion, produces the greater
angular separation between the lines.

A diffraction grating has 1.26 X 10* rulings uniformly spaced over
width w = 25.4 mm (so that it has 496 lines/mm). It is illuminated at
normal incidence by yellow light from a sodium vapor lamp. This
light contains two closely spaced emission lines (known as the
sodium doublet) of wavelengths 589.00 nm and 589.59 nm.

(a) At what angle does the first-order maximum occur (on either
side of the center of the diffraction pattern) for the wavelength of
589.00 nm?

SOLUTION " The Key Idea here is that the maxima pro-
duced by the diffraction grating can be located with Eq. 37-22
(d sin 6 = mA). The grating spacing d for this diffraction grating is

PR 254 X 1073 m
N 1.26 X 10*
=2.016 X 107°m = 2016 nm.

The first-order maximum corresponds to m = 1. Substituting these
values for d and m into Eq. 37-22 leads to

_, (1)(589.00 nm)
2016 nm

. A
0= sin-124 —

= 16.99° = 17.0°. (Answer)

(b) Using the dispersion of the grating, calculate the angular sepa-
ration between the two lines in the first order.

SOLUTION " One Key Idea here is that the angular separa-
tion A6 between the two lines in the first order depends on their

wavelength difference AX and the dispersion D of the grating, ac-
cording to Eq.37-26 (D = A#/A)). A second Key lIdea is that the
dispersion D depends on the angle 6 at which it is to be evaluated.
We can assume that, in the first order, the two sodium lines occur
close enough to each other for us to evaluate D at the angle 6 =
16.99° we found in part (a) for one of those lines. Then Eq. 37-27
gives the dispersion as

oom 1
dcos® (2016 nm)(c0s16.99°)

= 5.187 X 10~* rad/nm.
From Eq. 37-26, we then have

Af = DAX = (5.187 X 107* rad/nm)(589.59 nm — 589.00 nm)

=3.06 X 10~*rad = 0.0175°. (Answer)
You can show that this result depends on the grating spacing d but
not on the number of rulings there are in the grating.

(c) What is the least number of rulings a grating can have and still
be able to resolve the sodium doublet in the first order?

SOLUTION " One Key Idea here is that the resolving power
of a grating in any order m is physically set by the number of rul-
ings N in the grating according to Eq. 37-29 (R = Nm). A second
Key Idea is that the least wavelength difference AA that can be
resolved depends on the average wavelength involved and the re-
solving power R of the grating, according to Eq. 37-28 (R = (A)/AA).

o
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For the sodium doublet to be barely resolved, AA must be their R (A)
wavelength separation of 0.59 nm, and (\) must be their average N = m mAa
wavelength of 589.30 nm.
Putting these ideas together, we find that the least number of _ 58930nm _ 999 rulings (Answer)
rulings for a grating to resolve the sodium doublet is (1)(0.59 nm) ’
C
=
37-9 X-Ray Diffraction T
o - r
X rays are electromagnetic radiation whose wavelengths are of the order of 1 A (= §
0.1 nm = 107 m). Compare this with a wavelength of 550 nm (= 5.5 X 1077 m) at
the center of the visible spectrum. Figure 37-25 shows that x rays are produced when (S
electrons escaping from a heated filament F are accelerated by a potential difference X raysi w
V and strike a metal target 7. ||V

A standard optical diffraction grating cannot be used to discriminate between dif-
ferent wavelengths in the x-ray wavelength range. For A = 1 A (= 0.1 nm) and d =
3000 nm, for example, Eq. 37-22 shows that the first-order maximum occurs at

LmA Gin-! (1)(0.1 nm)

d 3000 nm = 0.0019°.

0 = sin~

This is too close to the central maximum to be practical. A grating with d = A is desir-
able, but, since x-ray wavelengths are about equal to atomic diameters, such gratings
cannot be constructed mechanically.

In 1912, it occurred to German physicist Max von Laue that a crystalline solid,
which consists of a regular array of atoms, might form a natural three-dimensional
“diffraction grating” for x rays. The idea is that, in a crystal such as sodium chloride
(NaCl), a basic unit of atoms (called the unit cell) repeats itself throughout the array.
In NaCl four sodium ions and four chlorine ions are associated with each unit cell.
Figure 37-26a represents a section through a crystal of NaCl and identifies this basic
unit. The unit cell is a cube measuring a, on each side.

When an x-ray beam enters a crystal such as NaCl, x rays are scattered—that is,
redirected—in all directions by the crystal structure. In some directions the scattered

3 2 1
Incident
5 X rays
S Na IV
T
)
Y
ai
aa

Ray 2

FIGURE 37-25: X rays are generated
when electrons leaving heated filament F
are accelerated through a potential differ-
ence V and strike a metal target 7. The
“window” W in the evacuated chamber C
is transparent to x rays.

FIGURE 37-26: (a) The cubic structure of
NaCl, showing the sodium and chlorine
ions and a unit cell (shaded). (b) Incident x
rays undergo diffraction by the structure of
(a).The x rays are diffracted as if they
were reflected by a family of parallel
planes, with the angle of reflection equal to
the angle of incidence, both angles mea-
sured relative to the planes (not relative to
anormal as in optics). (¢) The path length
difference between waves effectively re-
flected by two adjacent planes is 2d siné.
(d) A different orientation of the incident
x rays relative to the structure. A different
family of parallel planes now effectively
reflects the x rays.
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FIGURE 37-27: A family of planes
through the structure of Fig. 37-26a, and a
way to relate the edge length a, of a unit
cell to the interplanar spacing d.

——

waves undergo destructive interference, resulting in intensity minima; in other direc-
tions the interference is constructive, resulting in intensity maxima. This process of
scattering and interference is a form of diffraction, although it is unlike the diffraction
of light traveling through a slit or past an edge as we discussed earlier.

Although the process of diffraction of x rays by a crystal is complicated, the max-
ima turn out to be in directions as if the x rays were reflected by a family of parallel
reflecting planes (or crystal planes) that extend through the atoms within the crystal
and that contain regular arrays of the atoms. (The x rays are not actually reflected; we
use these fictional planes only to simplify the analysis of the actual diffraction
process.)

Figure 37-26b shows three of the family of planes, with interplanar spacing d, from
which the incident rays shown are said to reflect. Rays 1,2, and 3 reflect from the first,
second, and third planes, respectively. At each reflection the angle of incidence and
the angle of reflection are represented with . Contrary to the custom in optics, these
angles are defined relative to the surface of the reflecting plane rather than a normal
to that surface. For the situation of Fig. 37-26b, the interplanar spacing happens to be
equal to the unit cell dimension a.

Figure 37-26¢ shows an edge-on view of reflection from an adjacent pair of
planes. The waves of rays 1 and 2 arrive at the crystal in phase. After they are re-
flected, they must again be in phase, because the reflections and the reflecting planes
have been defined solely to explain the intensity maxima in the diffraction of x rays
by a crystal. Unlike light rays, the x rays have negligible refraction when entering the
crystal; moreover, we do not define an index of refraction for this situation. Thus, the
relative phase between the waves of rays 1 and 2 as they leave the crystal is set solely
by their path length difference. For these rays to be in phase, the path length differ-
ence must be equal to an integer multiple of the wavelength A of the x rays.

By drawing the dashed perpendiculars in Fig. 37-26¢, we find that the path length
difference is 2d sin 6. In fact, this is true for any pair of adjacent planes in the family
of planes represented in Fig. 37-26b. Thus, we have, as the criterion for intensity max-
ima for x-ray diffraction,

2d sinf = mA, form =1,2,3, ... (Bragg’s law), (37-31)

where m is the order number of an intensity maximum. Equation 37-31 is called
Bragg’s law after British physicist W. L. Bragg, who first derived it. (He and his father
shared the 1915 Nobel Prize for their use of x rays to study the structures of crystals.)
The angle of incidence and reflection in Eq. 37-31 is called a Bragg angle.

Regardless of the angle at which x rays enter a crystal, there is always a family of
planes from which they can be said to reflect so that we can apply Bragg’s law. In Fig.
37-26d, the crystal structure has the same orientation as it does in Fig. 37-26a, but the
angle at which the beam enters the structure differs from that shown in Fig. 37-26b. This
new angle requires a new family of reflecting planes, with a different interplanar spacing
d and different Bragg angle 6, in order to explain the x-ray diffraction via Bragg’s law.

Figure 37-27 shows how the interplanar spacing d can be related to the unit cell
dimension a,. For the particular family of planes shown there, the Pythagorean theo-
rem gives

5d = \5a,,
or d=-"0 (37-32)
=

Figure 37-27 suggests how the dimensions of the unit cell can be found once the
interplanar spacing has been measured by means of x-ray diffraction.

o
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X-ray diffraction is a powerful tool for studying both x-ray spectra and the
arrangement of atoms in crystals. To study spectra, a particular set of crystal planes,
having a known spacing d, is chosen. These planes effectively reflect different wave-
lengths at different angles. A detector that can discriminate one angle from another
can then be used to determine the wavelength of radiation reaching it. The crystal it-
self can be studied with a monochromatic x-ray beam, to determine not only the spac-

ing of various crystal planes but also the structure of the unit cell.

Problems

SEC. 37-2 ® DIFFRACTION BY A SINGLE SLIT: LOCATING
THE MINIMA

1. Narrow Slit Light of wavelength 633 nm is incident on a narrow
slit. The angle between the first diffraction minimum on one side of
the central maximum and the first minimum on the other side is
1.20°. What is the width of the slit?

2. Distance Between Monochromatic light of wavelength 441 nm
is incident on a narrow slit. On a screen 2.00 m away, the distance
between the second diffraction minimum and the central maximum
is 1.50 cm. (a) Calculate the angle of diffraction 6 of the second
minimum. (b) Find the width of the slit.

3. Single Slit A single slit is illuminated by light of wavelengths A,
and A, chosen so the first diffraction minimum of the A, component
coincides with the second minimum of the A, component. (a) What
relationship exists between the two wavelengths? (b) Do any other
minima in the two diffraction patterns coincide?

4. First and Fifth The distance between the first and fifth minima
of a single-slit diffraction pattern is 0.35 mm with the screen 40 cm
away from the slit, when light of wavelength 550 nm is used. (a)
Find the slit width. (b) Calculate the angle 6 of the first diffraction
minimum.

5. Plane Wave A plane wave of wavelength 590 nm is incident on a
slit with a width of a = 0.40 nm. A thin converging lens of focal
length +70 cm is placed between the slit and a viewing screen and
focuses the light on the screen. (a) How far is the screen from the
lens? (b) What is the distance on the screen from the center of the
diffraction pattern to the first minimum?

6. Sound Waves Sound waves with
frequency 3000 Hz and speed 343
m/s diffract through the rectangular
opening of a speaker cabinet and
into a large auditorium. The open-
ing, which has a horizontal width of
30.0 cm, faces a wall 100 m away
(Fig. 37-28). Where along that wall | 100 m 1
will a listener be at the first diffrac-
tion minimum and thus have diffi-
culty hearing the sound? (Neglect
reflections).

Speaker
/cabinct

Central

axis

FIGURE 37-28
Problem 6.

7. Central Maximum A slit 1.00 mm wide is illuminated by light
of wavelength 589 nm. We see a diffraction pattern on a screen
3.00 m away. What is the distance between the first two diffrac-
tion minima on the same side of the central diffraction maxi-
mum?

SEC. 37-4 W INTENSITY IN SINGLE-SLIT DIFFRACTION,
QUANTITATIVELY

8. Off Central Axis A 0.10-mm-wide slit is illuminated by light of
wavelength 589 nm. Consider a point P on a viewing screen on
which the diffraction pattern of the slit is viewed; the point is at 30°
from the central axis of the slit. What is the phase difference be-
tween the Huygens wavelets arriving at point P from the top and
midpoint of the slit? (Hint: See Eq. 37-4.)

9. Explain Quantitatively If you double the width of a single slit,
the intensity of the central maximum of the diffraction pattern in-
creases by a factor of 4, even though the energy passing through the
slit only doubles. Explain this quantitatively.

10. Monochromatic Monochromatic light with wavelength 538 nm
is incident on a slit with width 0.025 mm. The distance from the slit
to a screen is 3.5 m. Consider a point on the screen 1.1 cm from the
central maximum. (a) Calculate 6 for that point. (b) Calculate a. (c)
Calculate the ratio of the intensity at this point to the intensity at
the central maximum.

11. FWHM The full width at half-maximum (FWHM) of a central
diffraction maximum is defined as the angle between the two points
in the pattern where the intensity is one-half that at the center of
the pattern. (See Fig. 37-7b.) (a) Show that the intensity drops to
one-half the maximum value when sin®> « = /2. (b) Verify that
a = 1.39 rad (about 80°) is a solution to the transcendental equa-
tion of (a). (c) Show that the FWHM is A# = 2sin'(0.443\/a),
where a is the slit width. (d) Calculate the FWHM of the central
maximum for slits whose widths are 1.0, 5.0, and 10 wavelengths.

12. Babinet’s Principle A monochromatic beam of parallel light is
incident on a “collimating” hole of diameter x >> A. Point P lies in
the geometrical shadow region on a distant screen (Fig. 37-29a).
Two diffracting objects, shown in Fig. 37-29b, are placed in turn

Screen ]

P

e
YYvVYvyy

(@) (b)
FIGURE 37-29 = Problem 12.

o
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over the collimating hole. A is an opaque circle with a hole in it and
B is the “photographic negative” of A. Using superposition con-
cepts, show that the intensity at P is identical for the two diffracting
objects A and B.

13. Values of « (a) Show that the values of « at which intensity
maxima for single-slit diffraction occur can be found exactly by dif-
ferentiating Eq. 37-5 with respect to « and equating the result to
zero, obtaining the condition tana = «. (b) Find the values of « sat-
isfying this relation by plotting the curve y = tan « and the straight
line y = « and finding their intersections or by using a calculator
with an equation solver to find an appropriate value of « (or by us-
ing trial and error). (c) Find the (noninteger) values of m corre-
sponding to successive maxima in the single-slit pattern. Note that
the secondary maxima do not lie exactly halfway between minima.

SEC. 37-5 ® DIFFRACTION BY A CIRCULAR APERTURE

14. Entopic Halos At night many people see rings (called entopic
halos) surrounding bright outdoor lamps in otherwise dark sur-
roundings. The rings are the first of the side maxima in diffraction
patterns produced by structures that are thought to be within the
cornea (or possibly the lens) of the observer’s eye. (The central
maxima of such patterns overlap the lamp.) (a) Would a particular
ring become smaller or larger if the lamp were switched from blue
to red light? (b) If a lamp emits white light, is blue or red on the
outside edge of the ring? (c) Assume that the lamp emits light at
wavelength 550 nm. If a ring has an angular diameter of 2.5°, ap-
proximately what is the (linear) diameter of the structure in the eye
that causes the ring?

15. Headlights The two headlights of an approaching automobile
are 1.4 m apart. At what (a) angular separation and (b) maximum
distance will the eye resolve them? Assume that the pupil diameter
is 5.0 mm, and use a wavelength of 550 nm for the light. Also as-
sume that diffraction effects alone limit the resolution so that
Rayleigh’s criterion can be applied.

16. An Astronaut An astronaut in a space shuttle claims she can
just barely resolve two point sources on the Earth’s surface, 160 km
below. Calculate their (a) angular and (b) linear separation,
assuming ideal conditions. Take A = 540 nm and the pupil diameter
of the astronaut’s eye to be 5.0 mm.

17. Moon’s Surface Find the separation of two points on the
Moon’s surface that can just be resolved by the 200 in. (= 5.1 m)
telescope at Mount Palomar, assuming that this separation is deter-
mined by diffraction effects. The distance from the Earth to the
Moon is 3.8 X 10° km. Assume a wavelength of 550 nm for the
light.

18. Large Room The wall of a large room is covered with acoustic
tile in which small holes are drilled 5.0 mm from center to center.
How far can a person be from such a tile and still distinguish the in-
dividual holes, assuming ideal conditions, the pupil diameter of the
observer’s eye to be 4.0 mm, and the wavelength of the room light
to be 550 nm?

19. Estimate Linear Separation Estimate the linear separation of
two objects on the planet Mars that can just be resolved under ideal
conditions by an observer on Earth (a) using the naked eye and (b)
using the 200 in. (= 5.1 m) Mount Palomar telescope. Use the fol-
lowing data: distance to Mars = 8.0 X 107 km, diameter of pupil =
5.0 mm, wavelength of light = 550 nm.

——

20. Radar System The radar system of a navy cruiser transmits at a
wavelength of 1.6 cm, from a circular antenna with a diameter of
2.3 m. At a range of 6.2 km, what is the smallest distance that two
speedboats can be from each other and still be resolved as two sep-
arate objects by the radar system?

21. Tiger Beetles The wings of tiger beetles (Fig. 37-30) are col-
ored by interference due to thin cuticle-like layers. In addition,
these layers are arranged in patches that are 60 um across and pro-
duce different colors. The color you see is a pointillistic mixture of
thin-film interference colors that varies with perspective. Approxi-
mately what viewing distance from a wing puts you at the limit of
resolving the different colored patches according to Rayleigh’s cri-
terion? Use 550 nm as the wavelength of light and 3.00 mm as the
diameter of your pupil.

- -

FIGURE 37-30 = Problem 21. Tiger beetles are colored by
pointillistic mixtures of thin-film interference colors.

22. Discovery In June 1985, a laser beam was sent out from the Air
Force Optical Station on Maui, Hawaii, and reflected back from the
shuttle Discovery as it sped by, 354 km overhead. The diameter of
the central maximum of the beam at the shuttle position was said to
be 9.1 m, and the beam wavelength was 500 nm. What is the effec-
tive diameter of the laser aperture at the Maui ground station?
(Hint: A laser beam spreads only because of diffraction; assume a
circular exit aperture.)

23. Millimeter-Wave Radar Millimeter-wave radar generates a
narrower beam than conventional microwave radar, making it less
vulnerable to antiradar missiles. (a) Calculate the angular width of
the central maximum, from first minimum to first minimum, pro-
duced by a 220 GHz radar beam emitted by a 55.0-cm-diameter
circular antenna. (The frequency is chosen to coincide with a low-
absorption atmospheric “window.”) (b) Calculate the same quantity
for the ship’s radar described in Problem 20.

24. Circular Obstacle A circular obstacle produces the same dif-
fraction pattern as a circular hole of the same diameter (except
very near 6 = 0). Airborne water drops are examples of such obsta-
cles. When you see the Moon through suspended water drops, such
as in a fog, you intercept the diffraction pattern from many drops.

o
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FIGURE 37-31
is a composite of the diffraction patterns of airborne water
drops.

Problem 24. The corona around the Moon

The composite of the central diffraction maxima of those drops
forms a white region that surrounds the Moon and may obscure it.
Figure 37-31 is a photograph in which the Moon is obscured. There
are two, faint, colored rings around the Moon (the larger one may
be too faint to be seen in your copy of the photograph). The smaller
ring is on the outer edge of the central maxima from the drops; the
somewhat larger ring is on the outer edge of the smallest of the sec-
ondary maxima from the drops (see Fig. 37-3). The color is visible
because the rings are adjacent to the diffraction minima (dark
rings) in the patterns. (Colors in other parts of the pattern overlap
too much to be visible.)

(a) What is the color of these rings on the outer edges of the
diffraction maxima? (b) The colored ring around the central max-
ima in Fig. 37-31 has an angular diameter that is 1.35 times the
angular diameter of the Moon, which is 0.50°. Assume that the
drops all have about the same diameter. Approximately what is that
diameter?

25. Allegheny Observatory (a) What is the angular separation of
two stars if their images are barely resolved by the Thaw refracting
telescope at the Allegheny Observatory in Pittsburgh? The lens di-
ameter is 76 cm and its focal length is 14 m. Assume A = 550 nm.
(b) Find the distance between these barely resolved stars if each of
them is 10 light-years distant from Earth. (c) For the image of a sin-
gle star in this telescope, find the diameter of the first dark ring in
the diffraction pattern, as measured on a photographic plate placed
at the focal plane of the telescope lens. Assume that the structure of
the image is associated entirely with diffraction at the lens aperture
and not with lens “errors”.

26. Soviet-French Experiment In a joint Soviet—French experi-
ment to monitor the Moon’s surface with a light beam, pulsed radi-
ation from a ruby laser (A = 0.69 um) was directed to the Moon
through a reflecting telescope with a mirror radius of 1.3 m. A re-
flector on the Moon behaved like a circular plane mirror with ra-
dius 10 cm, reflecting the light directly back toward the telescope on
the Earth. The reflected light was then detected after being brought

——

Problems 1107

to a focus by this telescope. What fraction of the original light en-
ergy was picked up by the detector? Assume that for each direction
of travel all the energy is in the central diffraction peak.

SEC. 37-6 ® DIFFRACTION BY A DOUBLE SLIT

27. Bright Fringes Suppose that the central diffraction envelope of
a double-slit diffraction pattern contains 11 bright fringes and the
first diffraction minima eliminate (are coincident with) bright
fringes. How many bright fringes lie between the first and second
minima of the diffraction envelope?

28. Slit Separation In a double-slit experiment, the slit separation
d is 2.00 times the slit width w. How many bright interference
fringes are in the central diffraction envelope?

29. Eliminate Bright Fringes (a) In a double-slit experiment, what
ratio of d to a causes diffraction to eliminate the fourth bright side
fringe? (b) What other bright fringes are also eliminated?

30. Two Slits Two slits of width a and separation d are illuminated
by a coherent beam of light of wavelength A. What is the linear sep-
aration of the bright interference fringes observed on a screen that
is at a distance D away?

31. How Many (a) How many bright fringes appear between the
first diffraction-envelope minima to either side of the central maxi-
mum in a double-slit pattern if A = 550 nm, d = 0.150 mm, and a =
30.0 um? (b) What is the ratio of the intensity of the third bright
fringe to the intensity of the central fringe?

32. Intensity Vs. Position Light of wavelength 440 nm passes
through a double slit, yielding a diffraction pattern whose graph of
intensity / versus angular position 6 is shown in Fig. 37-32. Calculate
the (a) slit width and (b) slit separation. (c) Verify the displayed in-
tensities of the m = 1 and m = 2 interference fringes.

7
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FIGURE 37-32 = Problem 32.

SEC. 37-7 m DIFFRACTION GRATINGS

33. Calculate d A diffraction grating 20.0 mm wide has 6000 rul-
ings. (a) Calculate the distance d between adjacent rulings. (b) At
what angles 6 will intensity maxima occur on a viewing screen if the
radiation incident on the grating has a wavelength of 589 nm?

34. Visible Spectrum A grating has 315 rulings/mm. For what
wavelengths in the visible spectrum can fifth-order diffraction be
observed when this grating is used in a diffraction experiment?

o
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35. How Many Orders A grating has 400 lines/mm. How many or-
ders of the entire visible spectrum (400—700 nm) can it produce in
a diffraction experiment, in addition to the m = 0 order?

36. Confuse a Predator Perhaps to confuse a predator, some tropi-
cal gyrinid beetles (whirligig beetles) are colored by optical inter-
ference that is due to scales whose alignment forms a diffraction
grating (which scatters light instead of transmiting it). When the in-
cident light rays are perpendicular to the grating, the angle between
the first-order maxima (on opposite sides of the zeroth-order maxi-
mum) is about 26° in light with a wavelength of 550 nm. What is the
grating spacing of the beetle?

37. Two Adjacent Maxima Light of wavelength 600 nm is incident
normally on a diffraction grating. Two adjacent maxima occur at an-
gles given by sin # = 0.2 and sin 6 = 0.3. The fourth-order maxima
are missing. (a) What is the separation between adjacent slits? (b)
What is the smallest slit width this grating can have? (c¢) Which or-
ders of intensity maxima are produced by the grating, assuming the
values derived in (a) and (b)?

38. Normal Incidence A diffraction grating is made up of slits of
width 300 nm with separation 900 nm. The grating is illuminated by
monochromatic plane waves of wavelength A = 600 nm at normal
incidence. (a) How many maxima are there in the full diffraction
pattern? (b) What is the width of a spectral line observed in the first
order if the grating has 1000 slits?

39. Visible Spectrum Assume that the limits of the visible spec-
trum are arbitrarily chosen as 430 and 680 nm. Calculate the num-
ber of rulings per millimeter of a grating that will spread the first-
order spectrum through an angle of 20°.

40. Gaseous Discharge Tube With
light from a gaseous discharge tube
incident normally on a grating with
slit separation 1.73 um, sharp max-
ima of green light are produced at
angles 6= * 17.6°, 37.3°, —37.1°,
65.2°, and —65.0°. Compute the
wavelength of the green light that
best fits these data.

41. Show That Light is incident on . '
a grating at an angle ¢ as shown in Grating
Fig. 37-33. Show that bright fringes FIGURE 37-33

occur at angles 6 that satisfy the

. Problem 41.
equation

d(sin ¢ + sin 0) = mA, form=20,1,2, . ...

(Compare this equation with Eq. 37-22.) Only the special case ¢ =
0 has been treated in this chapter.

42. Plot A grating with d = 1.50 pum is illuminated at various
angles of incidence by light of wavelength 600 nm. Plot, as a func-
tion of the angle of incidence (0 to 90°), the angular deviation of
the first-order maximum from the incident direction. (See Prob-
lem 41.)

43. Derive Derive Eq. 37-25, the expression for the half-widths of
lines in a grating’s diffraction pattern.

44. Spectrum Is Formed A grating has 350 rulings per millimeter
and is illuminated at normal incidence by white light. A spectrum is
formed on a screen 30 cm from the grating. If a hole 10 mm square
is cut in the screen, its inner edge being 50 mm from the central

——

maximum and parallel to it, what is the range in the wavelengths of
the light that passes through the hole?

45. Derive Two Derive this expression for the intensity pattern for
a three-slit grating (ignore diffraction effects);

Iy = §I™(1 + 4 cos¢ + 4 cos® ¢),

where ¢ = (27d sinf)/A. Assume that a < A; be guided by the de-
rivation of the corresponding double-slit formula (Eq. 36-21).

SEC. 37-8 B GRATINGS: DISPERSION AND RESOLVING
POwER

46. D Line The D line in the spectrum of sodium is a doublet with
wave-lengths 589.0 and 589.6 nm. Calculate the minimum number
of lines needed in a grating that will resolve this doublet in the
second-order spectrum. See Touchstone Example 37-5.

47. Hydrogen-Deuterium Mix A source containing a mixture of
hydrogen and deuterium atoms emits red light at two wavelengths
whose mean is 656.3 nm and whose separation is 0.180 nm. Find the
minimum number of lines needed in a diffraction grating that can
resolve these lines in the first order.

48. Smallest Wavelength A grating has 600 rulings/mm and is
5.0 mm wide. (a) What is the smallest wavelength interval it can
resolve in the third order at A = 500 nm? (b) How many higher
orders of maxima can be seen?

49. Dispersion Show that the dispersion of a grating is D =
(tan 6)/A.

50. Sodium Doublet With a particular grating the sodium doublet
(see Touchstone Example 37-5) is viewed in the third order at 10°
to the normal and is barely resolved. Find (a) the grating spacing
and (b) the total width of the rulings.

51. Resolving Power A diffraction grating has resolving power R
= (M)A A = Nm. (a) Show that the corresponding frequency
range Af that can just be resolved is given by Af = ¢/NmA. (b)
From Fig. 37-18, show that the times required for light to travel
along the ray at the bottom of the figure and the ray at the top
differ by an amount Az = (Nd/c) sinf. (c) Show that (Af)(Ar) = 1,
this relation being independent of the various grating parameters.
Assume N > 1.

52. Product (a) In terms of the angle 6 locating a line produced by
a grating, find the product of that line’s half-width and the resolving
power of grating. (b) Evaluate that product for the grating of Prob-
lem 38, for the first order.

SEC. 37-9 B X-RAY DIFFRACTION

53. Second-Order Reflection X rays of wavelength 0.12 nm are
found to undergo second-order reflection at a Bragg angle of 28°
from a lithium fluoride crystal. What is the interplanar spacing of
the reflecting planes in the crystal?

54. Diffraction by Crystal Figure 37-34 is a graph of intensity ver-
sus angular position 6 for the diffraction of an x-ray beam by a
crystal. The beam consists of two wavelengths, and the spacing
between the reflecting planes is 0.94 nm. What are the two wave-
lengths?

o
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FIGURE 37-34 = Problem 54.

55. NaCl Crystal An x-ray beam of a certain wavelength is inci-
dent on a NaCl crystal, at 30.0° to a certain family of reflecting
planes of spacing 39.8 pm. If the reflection from those planes is of
the first order, what is the wavelength of the x rays?

56. Two Beams An x-ray beam of wavelength A undergoes first-
order reflection from a crystal when its angle of incidence to a crystal
face is 23°, and an x-ray beam of wavelength 97 pm undergoes third-
order reflection when its angle of incidence to that face is 60°. As-
suming that the two beams reflect from the same family of reflecting
planes, find the (a) interplanar spacing and (b) wavelength A.

57. Not Possible Prove that it is not possible to determine both
wavelength of incident radiation and spacing of reflecting planes in
a crystal by measuring the Bragg angles for several orders.

58. Reflection Planes In Fig. 37-35, first-order reflection from the
reflection planes shown occurs when an x-ray beam of wavelength

X rays
63.89 Y

apy—=

FIGURE 37-35 = Problem 58.

——

Problems 1109

0.260 nm makes an angle of 63.8° with the top face of the crystal.
What is the unit cell size a,?

59. Square Crystal Consider a two-dimensional square crystal
structure, such as one side of the structure shown in Fig. 37-26a.
One interplanar spacing of reflecting planes is the unit cell size aj.
(a) Calculate and sketch the next five smaller interplanar spacings.
(b) Show that your results in (a) are consistent with the general
formula

o
h+ K

where /1 and k are relatively prime integers (they have no common
factor other than unity).

60. X-Ray Beam In Fig. 37-36, an x-ray beam of wavelengths from
95.0 pm to 140 pm is incident at 45° to a family of reflecting planes
with spacing d = 275 pm. At which wavelengths will these planes
produce intensity maxima in their reflections?

61. NaCl In Fig. 37-36, let a beam of x-rays of wavelength 0.125 nm
be incident on an NaCl crystal at an angle of 45.0° to the top face of
the crystal and a family of reflecting planes. Let the reflecting
planes have separation d = 0.252 nm. Through what angles must
the crystal be turned about an axis that is perpendicular to the
plane of the page for these reflecting planes to give intensity max-
ima in their reflections?

Incident
beam

FIGURE 37-36 = Problems 60 and 61.
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Additional Problems

62. Changing Interference Consider a plane wave of monochro-
matic green light, A = 500 nm, that is incident normally upon two
identical narrow slits (the widths of the individual slits are much
less than A). The slits are separated by a distance d = 30 um. An in-
terference pattern is observed on a screen located a distance L
away from the slits. On the screen, the location nearest the central
maximum where the intensity is zero (i.e., the first dark fringe) is
found to be 1.5 cm from this central point. Let this particular posi-
tion on the screen be referred to as P;. (a) Calculate the distance, L,
to the screen. Show all work. (b) In each of the parts below, one
change has been made to the problem above (in each case, all para-
meters not explicitly mentioned have the value or characteristics
stated above). For each case, explain briefly whether the light inten-
sity at location P; remains zero or not. If not, does P; become the
location of a maximum constructive interference (bright) fringe? In
each case, explain your reasoning.

(1) One of the two slits is made slightly narrower, so that the
amount of light passing through it is less than that through the other.
(2) The wavelength is doubled so that A = 1000 nm.

(3) The two slits are replaced by a single slit whose width is exactly
60 um.

63. Hearing and Seeing Around a Corner We can make the obser-
vation that we can hear around corners (somewhat) but not see

around corners. Estimate why this is so by considering a doorway
and two kinds of waves passing through it: (1) a beam of red light
(A = 660 nm), and (2) a sound wave playing an “A” (f = 440 Hz).
(See Fig. 37-37.) Treat these two waves as plane waves passing
through a slit whose width equals the width of the door. (a) Find
the angle that gives the position of the first dark diffraction fringe.
(b) From that, assuming you are 2 m back from the door, estimate
how far outside the door you could be and still detect the wave.
(See the picture for a clarification. The distance x is desired.)

(Picture NOT

to scale)
x
29m You.r .
position
Approaching
wave Doorway

FIGURE 37-37 = Problem 63.



