
T0 ! "    or   L ! "

Fourier Transforms (Basics)

The complex Fourier series has an important limiting form when the period approaches 
infinity, i.e.,                                . Suppose that in this limit

k =
nπ
L

−∞  to  ∞(1)                  remains large (ranging from                       ) and

cn ! 0(2)               since it is proportional to  1/L, but

g(k) = lim
L! "
cn ! 0

L
#

cn =
1
2#

f (x)e$ikx

$"

"

% dx = finite

then we have

f (x) = cne
ikx

n=! "

"

# = lim
L$ "
cn $ 0

1
2%

%
L

g(k)eikx

n=! "

"

#

k =
n!
L

! n = 1where             . The sum over n is in steps of             . Thus, we can write using

Δk =
π
L
Δn

which becomes infinitesimally small when L becomes large, as a sum over k, which becomes 
an integral in the limit

f (x) = lim
L! "
cn ! 0

1

2#

#$n
L

g(k)eikx =
n=%"

"

& lim
$k! 0

1

2#
$kg(k)eikx

k=%"

"

&

       =
1

2#
g(k)eikxdk

%"

"

'
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We call g(k) the Fourier Transform of f(x)

g(k) = 1
2π

f (x)e− ikx
−∞

∞

∫ dx = F( f )

and the last equation is the so-called Fourier inversion formula.

We can now obtain an integral representation of the delta-function.  This corresponds 
to the orthogonality condition for the complex exponential Fourier series.

We substitute the definition of g(k) into the inversion formula to get

f (x) =
1

2π
g(k)eikxdk

−∞

∞

∫ = dkeikx
1

2π
dx '

−∞

∞

∫ e− ikx ' f (x ')
−∞

∞

∫

       = dx ' f (x ')
−∞

∞

∫
1

2π
dk

−∞

∞

∫ eik (x− x ')⎡

⎣
⎢

⎤

⎦
⎥ = dx ' f (x ')

−∞

∞

∫ δ (x − x ')

where

δ (x − x') =
1

2π
dk

−∞

∞

∫ eik(x− x ')

Properties
NOTE: The evaluation of the integrals involved in many Fourier transforms involves 
complex integration, which we shall learn later. We will just state some properties

Examples: The Fourier transform of the box function
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is

F( f ) =
1

2π
dx '

−∞

∞

∫ e− ikx ' f (x ') =
1

2π
dx '

−α

α

∫ e− ikx ' =
1

2π
e− ikx '

ik −α

α

=
1

2π
2sinkα

k

The Fourier transform of the derivative of a function is

f (x) =
1          x ! "

0          x # "

$
%
&

'&

F
df
dx

⎛
⎝⎜

⎞
⎠⎟
=

1

2π
dx'

−∞

∞

∫ e− ikx ' df (x')
dx'

=
1

2π
f (x')e− ikx '

−∞

∞
− (−ik) dx'

−∞

∞

∫ e− ikx ' f (x')
⎡

⎣
⎢

⎤

⎦
⎥

           =
ik

2π
dx'

−∞

∞

∫ e− ikx ' f (x') = ikF( f )

f (x) ! 0  as  x ! "where we have assumed that                                 . This generalizes to

F
dn f
dxn

⎛
⎝⎜

⎞
⎠⎟
= (ik)n F( f )

Other useful properties of the Fourier transform are:

F( f (x)) = g(k) , F( f (x ! a)) = e! ikag(k) , F( f (x)eax) = g(k + ia)

A short table of Fourier Transforms is shown below:
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f (x) g(k)

! (x)
1

2"
0          x>0

e#$x        x<0
%
&
'

1

2"

1
a + ik

e
#

cx2

2
1

c
e

#
k2

2c

1
1+ x2

"
2

e# k

More details about some transforms:

(1) The Square Pulse - Consider the function

f (t) =
1        ! T / 2 < t < T / 2 

0           otherwise        
"
#
$

f(t) is absolutely integrable so it has a valid Fourier transform. It is given by

F(! ) =
1
2"

dte#i! t

#T /2

T /2

$ =
2
"

sin ! T
2

!

%

&

'
'
'

(

)

*
*
*
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which looks like 

T=1 T=50

T ! "In the limit               we get a sharp spike, but the area remains constant.

T ! "This implies that as              

F(! ) " #(! )
Formally, we have

F(! ) = lim
T " #

1
2$

dte%i! t =
%T /2

T /2

&
1
2$

dte%i! t =
%#

#

& 2$' (! )
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f (t) = ! (t)(2) Transform of a Delta-Function -  Consider the function                  . The transform     
      is

F(! ) =
1
2"

dte#i! t$(t) =
#%

%

&
1
2"

The inverse transform is
1

2!
dte" i# t 1

2!
=

" $

$

% &(t)

Now
FT

df
dt

!
"#

$
%&

= i' FT( f ) = i' F(' )

Therefore for the square pulse we have
df
dt

= ! (t + T / 2) " ! (t " T / 2)

#
df
dt

$
%&

'
()

= # ! (t + T / 2) " ! (t " T / 2)( )

But FT( f (t ! t0)) = e! i" t0 FT( f (t))
Thus,

FT
df
dt

⎛
⎝⎜

⎞
⎠⎟
= e− iω (−T /2) − e− iω (T /2)( )FT δ (t)( ) = i

2
π

sinωT
2

= iωF(ω )

F(ω ) = 2
π

sinωT
2

ω

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

     for the square pulse ( as before)

Remember this only makes 
sense inside an integral.
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(3) Transform of a Gaussian - Consider the function

f (t) =
!

"
e#! 2t2

 = normalized Gaussian pulse

! =1 ! / "
! t = 1/ "

We choose           . The peak is at            . The 1/2 maximum points are separated by 
                . The area under the curve is = 1.

The Fourier transform is

F(! ) =
1

2"
dt

#

"$%

%

& e$# 2t2

e$i! t =
#

" 2
dt

$%

%

& e$(# 2t2 +i! t )

We complete the square to evaluate the integral. We have

! 2t2 + i" t = ! 2t2 + i" t + # $ # = ! t + %( )2 $ #

2! %t = i" t & %=
i"
2!

# = %2 = $
" 2

4! 2

We thus have
F(ω ) =

α
π 2

e
−
ω 2

4α2 dt
−∞

∞

∫ e
−(α t+

iω
2α

)2

Let
x = ! t +

i"
2!

# dx = ! dt
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F(! ) =
1

" 2
e

#
! 2

4$ 2 dx
#%

%

& e#x2

=
1

2"
e

#
! 2

4$ 2
thus

which is a different Gaussian.                                              An important feature is

f (t)→ Δt ≈
1
α

F(ω )← Δω ≈ 2α
ΔωΔt ≈ 2

! " ! t # c = constantIn general for any f(t) we have                                       . In the wave theory of 
quantum mechanics, this corresponds to the Heisenberg Uncertainty Principle.

After stating the basic properties, let us now delve deeper into Fourier theory.

Introduction
 
Fourier Transform theory is essential to many areas of physics including acoustics and 
signal processing, optics and image processing, solid state physics, scattering theory, and 
in the solution of differential equations in applications as diverse as weather modeling to 
quantum field calculations. The Fourier Transform can either be considered as expansion
in terms of an orthogonal basis set (sine and cosine), or a shift of space from real space to 
reciprocal(or frequency) space ( x -> k). Actually these two concepts are mathematically 
identical although they are often used in very different physical situations. 
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Notation
 
Unlike many mathematical fields of science, Fourier Transform theory does not have a well 
defined set of standard notations. To familiarize you with other notations, the notation 
maintained from now on will be:

x,y ! Real Space coordinates

u,v ! Frequency Space coordinates
f (x)

F(u)
and lower case functions (       ), being a real space function and upper case functions 
(       ), being the corresponding Fourier transform, thus:

F(u) = ! f (x){ }
f (x) = ! " 1 F(u){ }

! { }where           is the Fourier Transform operator. The character  i  for imaginary numbers has 
the property that  i 2 = -1.

sinc()Two special functions will also be employed, these being             defined as,

(01)sinc(x) =
sin(x)

x
sinc(0) = 1 sinc(x0 ) = 0 x0 = ±π , ± 2π , ...........giving                      and                       at                                   , as shown in figure 1.
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Figure 1: The sinc() function.

! (x)The top hat function          , is given by,

(02)! (x) =
1      for   x " 1 / 2
0       otherwise    

#
$
%

It is a function of unit height and width centered about  x = 0 and is shown in figure 2.

Figure 2: The !(x) function
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f (x)

The Fourier Transform 

Given a one dimensional continuous function         , its Fourier transform is defined by:

(03)

(04)

F(u) = f (x)e! 2" iux

! #

#

$ dx

with the inverse Fourier transform defined by;

f (x) = F(u)e2! iux

" #

#

$ du

2!where it should be noted that the factors of          are incorporated into the transform 
kernel(exponential factor).

2!

There are various definitions of the Fourier transform that put the        either inside the 
kernel or as external scaling factors(earlier definition). The difference between them is 
whether the variable in Fourier space is a ÒfrequencyÓ or Òangular frequencyÓ.  The 
difference between the definitions are clearly just a scaling factor. The optics and digital 
Fourier applications the       is usually defined to be inside the kernel but in solid state 
physics and differential equation solution the        is usually an external scaling factor.

2!

2π

f (x)
Some insight to the Fourier transform can be gained by considering the case of the 
Fourier transform of a real signal       . In this case the Fourier transform can be separated 
to give,

(05)F(u) = Fr (u) + iFi (u)
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where we have, Fr (u) = f (x)cos(2! ux)
" #

#

$ dx

Fi (u) = " f (x)sin(2! ux)
" #

#

$ dx

So the real part of the Fourier transform is the decomposition of  f(x) in terms of cosine 
functions, and the imaginary part a decomposition in terms of sine functions. The  u 
variable in the Fourier transform is interpreted as a frequency, for example if  f(x) is a 
sound signal with  x  measured in seconds then  F(u) is its frequency spectrum with  u
measured in Hertz (s-1). Clearly  (ux)  must be dimensionless, so if  x  has dimensions of 
time then  u  must have dimensions of  time -1. This is one of the most common 
applications for Fourier Transforms where f(x)  is a detected signal (for example a sound 
made by a musical instrument), and the Fourier Transform is used to give the spectral 
or frequency response.

Properties of the Fourier Transform 

The Fourier transform has a range of useful properties, some of which are listed below. 
In most cases the proof of these properties is simple and can be formulated by use of 
equation (03) and equation (04). The proofs of many of these properties are given later 
in examples.

Linearity: The Fourier transform is a linear operation so that the Fourier transform of 
the sum of two functions is given by the sum of the individual Fourier transforms. 
Therefore,
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! af (x) + bg(x){ } = aF(u) + bG(u) (06)

g(x)

where  F(u) and  G(u) are the Fourier transforms of  f(x) and g(x) and  a  and b  are 
constants. This property is central to the use of Fourier transforms when describing linear 
systems.

Complex Conjugate: The Fourier transform of the Complex Conjugate of a function is 
given by 

(07)! f * (x){ } = F* (" u)

where F(u)  is the Fourier transform of f(x).

Forward and Inverse: We have that

! F(u){ } = f (" x) (08)

so that if we apply the Fourier transform twice to a function, we get a spatially reversed 
version of the function. Similarly with the inverse Fourier transform we have that,

! " 1 f (x){ } = F(" u) (09)

so that the Fourier and inverse Fourier transforms differ only by a sign.
  
Differentials: The Fourier transform of the derivative of a functions is given by

ℑ
df (x)

dx
⎧
⎨
⎩

⎫
⎬
⎭
= i2πuF(u) (10)

and the second derivative is given by !
d2 f (x)

dx2

"
#
$

%
&
'

= ( 2) u( )2 F(u) (11)
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F(u) 2
Power Spectrum: The Power Spectrum of a signal is defined by the modulus square 
of the Fourier transform, being            . This can be interpreted as the power of the 
frequency components or the spectrum of power versus frequency. Any function and its 
Fourier transform obey the condition that

f (x) 2
! "

"

# dx = F(u) 2
! "

"

# du (12)

which is frequently known as ParsevalÕs Theorem. If  f(x) is interpreted as a voltage, 
then this theorem states that the power is the same whether measured in real (time), or 
Fourier (frequency) space.

Strictly speaking ParsevalÕs Theorem applies to the case of Fourier series, and the 
equivalent theorem for Fourier transforms is correctly, but less commonly, known as 
RayleighÕs theorem.

Two Dimensional Fourier Transform
 
When using two-dimensional scalar potentials or images, one is dealing with a two 
dimensional function. We will define the two dimensional Fourier transform of a 
continuous function  f(x,y)  by,

F(u,v) = f (x,y)∫∫ e− i 2π (ux+vy)dxdy (13)

with the inverse Fourier transform defined by

f (x,y) = F(u,v)!! ei 2" (ux+vy)dudv (14)

where the limits of integration are taken from ! " # "
14



Unless otherwise specified all integral limits will be assumed to be from                        .− ∞→ ∞
Again for a real two dimensional function  f(x,y), the Fourier transform can be considered 
as the decomposition of a function into its sinusoidal components. If  f(x,y) is considered 
to be an image with the ÒbrightnessÓ of the image at point  (x0,y0)  given by f(x 0,y0), 
then the variables  x,y  have the dimensions of length. In Fourier space, the variables  
u,v  therefore have the dimensions of inverse length, which is interpreted as spatial 
frequency. Typically  x  and  y  are measured in  mm  so that  u  and  v  are in units of  
mm-1  - referred to as lines per mm.

The Fourier transform can then be taken as being the decomposition of the image into 
two dimensional sinusoidal spatial frequency components.  

The properties of one the dimensional Fourier transforms covered earlier extend into two 
dimensions. Clearly the derivatives then become

ℑ
∂f (x,y)

∂x
⎧
⎨
⎩

⎫
⎬
⎭
= i2πuF(u,v)

and
!

" f (x,y)
"y

#
$
%

&
'
(

= i2) vF(u,v) (16)

(15)

yielding the important result that,

! " 2 f (x,y){ } = # 2$w( )2 F(u,v) (17)

w2 = u2 + v2
where we have that 
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! 4" 2w2
So that taking the Laplacian of a function in real space is equivalent to multiplying its 
Fourier transform by a circularly symmetric quadratic of              . The two dimensional 
Fourier Transform , of a function  f(x,y) is a separable operation, and can be written as,

F(u,v) = P(u,y)! e" i 2#vydy (18)

where 

P(u,y) = f (x,y)! e" i 2#uxdx (19)

where  P(u,y) is the Fourier Transform of  f(x,y) with respect to x only. This property of 
separability leads to an implementation of two dimensional discrete Fourier Transforms 
(DFT) in terms of one dimensional Fourier Transforms. We study them in lab.

 f (
!
r )  

!
r = (x,y,z)

The Three-Dimensional Fourier Transform 

In the three dimensional case we have a function        where                    , then the
three-dimensional Fourier Transform is

 
F(!s) = f (!r )e! i 2"

!
r #

!
sd

!
r$$$

 
!
s = (u,v,w) length! 1where                      being the three reciprocal variables each with units             . 

Similarly the inverse Fourier Transform is given by

 
f (

!
r ) = F(

!
s)ei 2!

!
r "

!
sd

!
s###

 
!
k  

!
k = 2!

!s
This is used extensively in solid state physics where the three-dimensional Fourier 
Transform of crystal structures is usually called Reciprocal Space or   -space where            .
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The three-dimensional Fourier Transform is again separable into one-dimensional Fourier 
Transforms. This property is independent of the dimensionality and a multi-dimensional 
Fourier Transform can always be formulated as a series of one dimensional Fourier 
Transforms.

Dirac Delta Function (second pass) 

A frequently used concept in Fourier theory is that of the Dirac Delta Function, which as 
we have seen earlier, is somewhat abstractly defined as:

! (x) = 0 for x " 0 and ! (x)dx = 1
#$

$

% (20)

This can be thought of as a very Òtall-and-thinÓ spike with unit area located at the 
origin, as shown in figure 3.

Figure 3: The ! -function

!NOTE: The   -function should not be considered to be an infinitely high spike of zero width 
since it scales as:

a! (x)dx = a
" #

#

$
where  a  is a constant.
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The Delta Function is not a true function in the analysis sense and if often called an 
improper function or distribution. There are a range of definitions of the Delta Function 
in terms of the limit of a proper function, some of which are:

! " (x) =
1

" #
e$ x2 /" 2

! " (x) =
1
"

%
x $ " / 2

"
&
'(

)
*+

! " (x) =
1
"
sinc x

"
&
'(

)
*+

These are the Gaussian, Top-Hat and Sinc approximations respectively. All of these 
expressions have the property that,

Δε (x)dx= 1 ∀ε
−∞

∞

∫ (21)

and we have the formal result,

! (x) = lim
" # 0

$ " (x) (22)

Δε (x)which can be interpreted as making any of the above approximations            a very 
Òtall-and thinÓ spike with unit area.

In the field of optics and imaging, we deal with two dimensional distributions, so it is 
especially useful to define the Two Dimensional Dirac Delta Function, as,
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! (x,y) = 0 for x " 0 & y " 0 and ! (x,y)dxdy## = 1 (23)

! (x)which is the two dimensional version of the         function defined above, and in particular:

! (x,y) = ! (x)! (y) (24)

This is the two dimensional analogue of the impulse function used in signal processing. 
In terms of an imaging system, this function can be considered as a single bright spot in 
the center of the field of view, for example a single bright star viewed by a telescope.

Properties of the Dirac Delta Function
 
Since the Dirac Delta Function is used extensively, and has some useful, and slightly 
peculiar properties, it is worth considering these at this point. For an integrable function
 f(x), we have that

! (x) f (x)dx = f (0)
" #

#

$ (25)

δ
which is often taken as an alternative definition of the Delta function. This says that
integral of any function multiplied by a   -function located about zero is just the value of 
the function at zero. This concept can be extended to give the Shifting Property, again for a 
function  f(x) , giving,

δ (x − a) f (x)dx= f (a)
−∞

∞

∫ (26)

! (x " a) ! x = awhere               is just a     -function located at            as shown in figure 4.
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Figure 4: Shifting property of the ! -function

In two dimensions, for a function f(x,y), we have that,

δ (x − a,y− b) f (x,y)dxdy∫∫ = f (a,b) (27)

δ (x − a,y− b) ! a,bwhere                          is a    -function located at position        . This property is 
central to the idea of convolution, which is used extensively in image formation theory, 
and in digital image processing.

The Fourier transform of a Delta function is can be formed by direct integration of the 
definition of the Fourier transform, and the shift property in equation 25 above. We 
get that,

! " (x){ } = " (x)e#i 2$uxdx =
#%

%

& e0 = 1 (28)

(29)

and then by the Shifting Theorem, equation 26, we get that,

ℑ δ (x − a){ } = e− i 2πua

so that the Fourier transform of a shifted Delta Function is given by a phase ramp. It 
should be noted that the modulus squared of equation 29 is
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! " (x # a){ } 2
= e#i 2$ua 2

=1

± a

saying that the power spectrum of a Delta Function is a constant independent of its 
location in real space(equal everywhere). Now noting that the Fourier transform is a 
linear operation, if we consider two Delta Functions located at         , then from 
equation 29 the Fourier transform gives,  

! " (x # a) +" (x + a){ } = e#i 2$ua + ei 2$ua = 2cos(2$ua) (30)

and ! " (x # a) # " (x + a){ } = e#i 2$ua # ei 2$ua = #2i sin(2$ua) (31)

Noting the relations between forward and inverse Fourier transform we then get the 
two useful results that 

                           F {cos(2ax)} = 2 [!(u - a)+ !(u + a)]                                       (32) 
and that 
                           F {sin(2ax)} = 2õ [!(u - a) - !(u + a)]                                       (33) 

So that the Fourier transform of a cosine or sine function consists of a single frequency 
given by the period of the cosine or sine function as would be expected.

! x

The Infinite Comb
 
If we have an infinite series of Delta functions at a regular spacing of       , this is 
described as an Infinite Comb. The expression for a Comb is given by,
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(34)CombΔx(x) = δ (x − nΔx)
n=−∞

∞

∑
A short section of such a Comb is shown in figure 5.

Figure 5: Infinite Comb with separation ! x

Since the Fourier transform is a linear operation then the Fourier transform of the 
infinite comb is the sum of the Fourier transforms of shifted Delta functions, which 
from equation (29) gives,

! Comb" x(x){ } = ! #(x $ n" x){ }
n=$%

%

& = e$i 2' un" x

n=$%

%

& (35)

Now the exponential term,

e− i2πunΔx = 1 when 2πuΔx = 2πm

so that:
e! i 2" un#x

n=! $

$

% & $ when u =
m
#x

                    = 0 otherwise
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!which is an infinite series of    -functions at a separation of                 . So that an 
Infinite Comb Fourier transforms to another Infinite Comb of reciprocal spacing,

! u =1 / ! x

! Comb" x(x){ } = Comb" u(u) with " u = 1/ " x (36)

This is a very important result that is used in a field called  Sampling Theory.

Figure 6: Fourier Transform of the Comb function

Symmetry Conditions
 
When we take the the Fourier Transform of a real function, for example a one-dimensional 
sound signal or a two-dimensional image we obtain a complex Fourier Transform. This 
Fourier Transform has special symmetry properties that are essential when calculating 
and/or manipulating Fourier Transforms.

One-Dimensional Symmetry
 
First, consider the case of a one dimensional real function f(x), with a Fourier transform 
of  F(u). Since  f(x)  is real, we can write
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F(u) = Fr (u) + iFi (u)

where the real and imaginary parts are given by the cosine and sine transforms are

Fr (u) = f (x)cos(2πux)
−∞

∞

∫ dx

Fi (u) = − f (x)sin(2πux)
−∞

∞

∫ dx

(37)

now cos() is a symmetric function and sin() is an anti-symmetric function, as shown in 
figure 7,

        cosine                                 sine
Figure 7: Symmetry properties of cos() and sin() functions

so that: Fr (u) is symmetric

Fi (u) is anti-symmetric

which can be written out explicitly as, Fr (u) = Fr (! u)

Fi (u) = ! Fi (! u)
(38)
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The power spectrum is given by

F(u) 2 = Fr (u)( )2
+ Fi (u)( )2

so that if the real and imaginary parts obey the symmetry property given in 
equation (38), then clearly the power spectrum is also symmetric with

F(u) 2 = F(! u) 2
(39)

0 ! umax

so when the power spectrum of a signal is calculated it is normal to display the signal 
from                 and ignore the negative components.

Two-Dimensional Symmetry
 
In the two dimensional case, if we have a real image  f(x,y), then the Fourier transform 
of this image can be written as,

F(u,v) = Fr (u,v) + iFi (u,v) (40)

where after expansion of the exp() functions into cos() and sin() functions we get that

Fr (u,v) = f (x,y)!! cos(2" ux)cos(2" vy) # sin(2" ux)sin(2" vy)[ ]dxdy

and
Fi (u,v) = f (x,y)!! cos(2" ux)sin(2" vy) + sin(2" ux)cos(2" vy)[ ]dxdy

In this case the symmetry properties are more complicated. The real part is symmetric 
and the imaginary part is anti-symmetric. In two dimensions, the symmetry conditions 
are given by
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Fr (u,v) = Fr (! u, ! v)
Fr (! u,v) = Fr (u, ! v)

(41)

for the real part of the Fourier transform, and

Fi (u,v) = ! Fi (! u, ! v)
Fi (! u,v) = ! Fi (u, ! v) (42)

for the imaginary part. Similarly the two dimensional power spectrum is also 
symmetric, with F(u,v) 2 = F(! u, ! v) 2

F(! u,v) 2 = F(u, ! v) 2 (43)

This symmetry condition is shown schematically in figure 8, which shows a series of 
symmetric points.

Figure 8: Symmetry in two dimensions
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These symmetry properties have major significance in the digital calculation of Fourier 
transforms and the design of digital filters. 

Convolution of Two Functions 

The concept of convolution is central to Fourier theory and the analysis of Linear Systems. 
In fact the convolution property is what really makes Fourier methods useful. In one 
dimension the convolution between two functions,  f(x)  and  h(x)  is defined as:

 
g(x) = f (x) ! h(x) = f (s)h(x − s)ds

−∞

∞

∫ (44)

where  s  is a dummy variable of integration. This operation may be considered the area 
of overlap between the function  f(x)  and the spatially reversed version of the function 
 h(x) . The result of the convolution of two simple one dimensional functions is shown 
in figure 9.

Figure 9: Convolution of two simple functions
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The Convolution Theorem relates the convolution between the real space domain to a 
multiplication in the Fourier domain, and can be written as

G(u) = F(u)H (u) (45)
where  g(x) = convolution of f(x) and h(x):

G(u) = ! g(x){ } , F(u) = ! f (x){ } , H(u) = ! h(x){ }
This is the most important result in Fourier theory. This concept may appear a bit 
abstract at the moment but there will be extensive illustrations of convolution as 
we proceed.

Digression: The Fourier transform of the product of two functions can be given in 
terms of the Fourier transforms of the individual function. Using first FT definition:

FT f (t)g(t)[ ] = 1
2π

dte− iω t

−∞

∞

∫ f (t)g(t)

          = 1
2π

dte− iω t

−∞

∞

∫
1
2π

dω 'eiω ' t

−∞

∞

∫ G(ω ') 1
2π

dω ''eiω '' t

−∞

∞

∫ F(ω '')

FT f (t)g(t)[ ] =
1

2!
"
#$

%
&'

3

d( '
) *

*

+ d( '' G(( ')F(( '')[ ] dt
) *

*

+ ei (( '+( '') ( )t

) *

*

+

                  =
1

2!
"
#$

%
&'

3

d( '
) *

*

+ d( '' G(( ')F(( '')[ ]2! , (( '+ ( '') ( )
) *

*

+

                  =
1

2!
d( '

) *

*

+ G(( ')F(( ) ( ') = G(( ) - F(( )
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G(! )   and   F(! )This just the convolution of the Fourier transforms                                 . It is the 
fundamental construction needed to solve ODEs using GreenÕs functions later , as we 
shall see later.

The symmetry of the Fourier transform and its inverse operation gives the results

InvFT F(ω )G(ω )[ ] = 1

2π
f (t)⊗ g(t)→ℑ f (t)⊗ g(t)[ ] = 2πF(ω )G(ω )

h(t) = f (t)⊗ g(t) = dτ f (τ )g(t − τ )
−∞

∞

∫where

is the convolution.

Returning to discussion - Simple Properties
 
The convolution is a linear operation which is distributive, so that for three functions  f(x),  
g(x) and  h(x)  we have that

 f (x) ! (g(x) ! h(x)) = ( f (x) ! g(x)) ! h(x) (46)

and commutative, so that

 f (x) ! h(x) = h(x) ! f (x) (47)

If the two functions  f(x)  and  h(x)  are of finite extent, (are zero outside a finite range 
of x), then the extent (or width) of the convolution  g(x)  is given by the sum of the 
widths the two functions. 
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For example, in figure 9 both  f(x)  and  h(x)  are non-zero over the finite range  x = ±1
while the convolution  g(x)  is non-zero over the range  x = ±2. This property is used in 
optical image formation and in the practical application of convolution filters in digital 
image processing.
 
The special case of the convolution of a function with a Comb(x) function results in 
replication of the function at the comb spacing as shown in figure 10.

Figure 10: Convolution of function with 
           Comb of ! -functions

Clearly if the extent of the function is less than the comb spacing, as shown in this figure, 
the replications are separated, while if the the extent of the function is greater than the 
comb period, overlap of adjacent replications will occur. This operation is central to 
sampling theory, and image formation. This idea is also central to Solid State Physics 
where the electron density of a unit cell is convolved with the lattice sites.

Convolution Theorem Proof 

Finally, let us prove the Convolution Theorem that if  g(x) = f (x) ! h(x) then we have that
G(u) = F(u)H(u) . We will also show why Convolution is frequently described as 

Fold-Shift-Multiply-Add.
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Convolution is defined as

 
g(x) = f (x) ! h(x) = f (s)h(x ! s)ds

! "

"

#
Now take the Fourier Transform of both sides, to get

G(u) = f (s)h(x ! s)ds
! "

"

#
$

%
&

'

(
)# e! i 2* uxdx

The Fourier Transform is linear, so the order of integration does not matter, so we get

G(u) = f (s)h(x ! s)"" e! i 2#uxdsdx

Now let t = x - s to get

G(u) = f (s)h(t)!! e" i2#u(s+t )dsdt = f (s)! e" i2#usds h(t)e" i2#utdt!
       = F(u)H (u)

Convolution can be described as: 

1. Fold and Shift h(x-s) can be interpreted at taking function h(s), ÒFoldingÓ to get h(-s) 
       and ÒShiftingÓ by distance x to get h(x-s). 
2. Multiply the folded and shifted function h(x-s) is x by f(s) 
3. Add up the area of overlap, (or more formally integrate).

This can be considered diagrammatically(same diagram as earlier) as:
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Two Dimensional Convolution 
 
As with Fourier Transform, the extension to two-dimensions is simple with

 
g(x,y) = f (x,y) ! h(x,y) = f (s,t)h(x ! s,y ! t)"" dsdt

which in the Fourier domain gives the important result that,

G(u,v) = F(u,v)H (u,v)

!

This relation is fundamental to both optics and image processing. The most important 
implication of the Convolution Theorem is that

    Multiplication in Real Space       Convolution in Fourier Space  
    Convolution in Real Space      Multiplication in Fourier Space 

which is a Key Result.

!

Correlation of Two Functions 

A closely related operation to Convolution is the operation of Correlation of two functions. 
In Correlation, two function are shifted and the area of overlap found by integration, but 
this time without the spatial reversal involved in convolution. The Correlation between 
two function  f(x)  and  h(x)  is given by

c(x) = f (x) ! h(x) = f (s)h* (s " x)ds
" #

#

$
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where  h*(x)   is the complex conjugate of  h(x). It should be noted that for a real 
function complex conjugation does not effect the function, so if both  f(x)  and  h(x)  are 
real then the Convolution and Correlation differ only by a change of sign, which represents 
the spatial reversal on one of the functions.

This operation is shown for two simple functions in figure 11. Comparison between the 
convolution in figure 9 and the correlation shows that the only difference is that the 
second function is not spatially reversed and the direction of the shift is changed.

Figure 11: Correlation of two    
           simple functions
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Of more importance, if we consider  f(x)  to be the ÒsignalÓ and  to be the ÒtargetÓ then 
we see that the correlation gives a peak where the ÒsignalÓ matches the ÒtargetÓ. This 
gives the basis of the simplest method of target detection.

In the Fourier Domain the Correlation Theorem becomes

C(u) = F(U)H * (u)

where
C(u) = ! c(x){ } , F(u) = ! f (x){ } , H (u) = ! h(x){ }

It should be noted that the Fourier Transform  H(u)  is generally complex, and the complex 
conjugation is of vital significance to the operation. This is again a linear operation, which 
is distributive, but however is not commutative, since if

c(x) = f (x) ! h(x)
then we can show that

c* (! x) = h(x) " f (x)

In two dimensions we have the correlation between two functions given by

c(x,y) = f (x,y) ! h(x,y) = f (s,t)h*(s" x,t " y)## dsdt
which in Fourier space gives

C(u,v) = F(u,v)H * (u,v)

Correlation is used in optics to to characterize the incoherent optical properties of a system 
and in digital imaging as a measure of the ÒsimilarityÓ between two images.
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Autocorrelation
 
If we consider the special case of correlation with two identical real space functions, we 
obtain the correlation of the input function with itself, being known as the Autocorrelation,

a(x,y) = f (x,y) ! f (x,y)
so that in Fourier space we have,

A(u,v) = F(u,v)F* (u,v) = F(u,v) 2

which is the Power Spectrum of the function  f(x,y). Therefore the Autocorrelation of a 
function is given by the Inverse Fourier Transform of the Power Spectrum, giving,

a(x,y) = ! " 1 F(u,v) 2{ }
In this case the correlation must be commutative, so we have that

a*(−x,−y) = a(x,y)
If in addition the function  f(x)  is real, then clearly the correlation of a real function with 
itself is real, so that a(x) is real. Therefore for a real function the autocorrelation is 
symmetric.

Let us calculate the Autocorrelation of a two-dimensional square of side a centered on the 
origin. This will be seen to be equivalent to calculating the two dimensional Fourier 
transform of the function

h(x,y) =
1!

x

a
"
#$

%
&'

1!
y

b
"
#$

%
&'

for x < a and y < b

0                        otherwise      

(

)
*

+
*
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Take a square of size a x a centered about the origin

The autocorrelation is given, mathematically, by

a(x,y) = f (x,y)⊗ f (x,y) = f (s,t) f * (s− x,t − y)∫∫ dsdt

In this case f(x,y) is real. Physically this means: 

   1. Shift f(s,t) by amount (x,y). 

   2. Multiply with the unshifted version. 

   3. Integrate over the area of overlap. 

So if we shift by (x,y) we get
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so the Area of Overlap is

a(x,y) = (a− x )(a− y ) = a2 1−
x

a
⎛
⎝⎜

⎞
⎠⎟

1−
y

b
⎛
⎝⎜

⎞
⎠⎟

This is a square pyramid with base 2a x 2a
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Note that the autocorrelation is twice the size of of the original square. The function 
h(x,y) is the Normalized Autocorrelation, so that

h(x,y) =
a(x,y)

a2

The Fourier Transform of h(x,y) is

H(u,v) = ! h(x,y){ } =
1
a2 ! a(x,y){ } =

1
a2 A(u,v)

The autocorrelation theorem gives at
a(x,y) = f (x,y) ! f (x,y)

A(u,v) = F(u,v) 2

Now f(x,y) is a square of size a x a, from the example below we have that

F(u,v) = a2sinc(! au)sinc(! av)
So we have that

A(u,v) = a4sinc2(! au)sinc2(! av)

and so the required Fourier Transform is

H(u,v) = a2sinc2(πau)sinc2(πav)

This is much easier than trying to form the direct Fourier Transform.
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Rectangular Aperture 

Let us figure out the two dimensional Fourier transform of a rectangle of unit height and 
size a by b centered about the origin. We let a = 5mm and b = 1mm.

We can express a rectangle of size a x b by:

f (x,y) =
1 for x < a / 2 and y < b / 2

0                otherwise               

!
"
#

The Fourier Transform is given by:

F(u,v) = f (x,y)e! i 2" (ux+vy)## dxdy

which can then be written as:

F(u,v) = e− i 2π (ux+vy)dx
−a/2

a/2

∫
⎡

⎣
⎢

⎤

⎦
⎥

−b/2

b/2

∫ dy

Noting that the exp() term is separable, this can be written as

F(u,v) = e! i2" vy

! b /2

b /2

# dy e! i2" uxdx
! a /2

a /2

#

Look at one of the integrals, and we get,
e! i 2" uxdx

! a/2

a/2

# =
1

! i2" u
e! i 2" ux

! a/2

a/2
=

! i
2" u

ei" ua ! e! i" ua$% &'

                  =
sin(" ua)

" u
= asinc(" ua)
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The other integral is of exactly the same form, so that the Fourier transform of the 
rectangle is:

F(u,v) = absinc(! ua)sinc(! vb)

The zeros of this function occur at: un = ±
n
a

for n = 1,2,3,....

vm = ±
m
b

for m = 1,2,3,....

which if a = 5mm and b = 1mm then un = 0.2mm−1,0.4mm−1,0.6mm−1,.....

vm = 1mm−1,2mm−1,3mm−1,.....
In diagrams we get,

so in Fourier space we get a three-Dimensional plot

Note that the long/thin shape 
of the rectangle Fourier 
Transforms to tall/thin 
structures in the Fourier 
Transform.
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Two-Dimensional Gaussian

Let us calculate the Fourier Transform of a two-dimensional Gaussian given by,

f (x,y) = e! r2 /r0
2

r 2 = x2 + y2 r0 e! 1
where                     and       is the radius of the         point. We will need the standard 
mathematical identity that  

e! bx2

eiaxdx
! "

"

# =
$
b

e! a2 /4b

The Fourier Transform is given by:

F(u,v) = e
! x2 +y2( )/r02 e! i 2" (ux+vy)## dxdy

Since the Gaussian and the Fourier kernel are separable, this can be written as

F(u,v) = e−x2 /r0
2

e− i 2πuxdx∫ e−y2 /r0
2

e− i 2πvydy∫
so we need only evaluate one integral. Using the identity we have

e! x2 /r0
2

e! i2" uxdx# =
"
r0
e! " 2r0

2u2

which is also a Gaussian. The Fourier Transform of a Gaussian is a Gaussian. It is the only 
function that is its own Fourier Transform. We get exactly the same expression for the y 
integral, so we get that
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F(u,v) ==
!
r0

2 e" ! 2r0
2 (u2 +v2 )

which is more conveniently written as:

F(u,v) ==
!
r0
2 e" w2 /w0

2

w2 = u2 + v2 w0 = 1/ ! r0

e! 1

w0

r0 = 3

where                   and                   , which is a circular Gaussian with  e -1 point at      . 
So the Fourier Transform of a Gaussian is a Gaussian of reciprocal width. Or more simply, 
a wide Gaussian Fourier Transform gives a narrow Gaussian and vice versa. General 
shape of two dimensional Gaussian with              is given by
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