
Fourier Series

Introduction

Many complicated functions can be represented by power series. Another powerful way of 
representing such functions is using a sum of sine and cosine terms, which is called a 
Fourier series. Unlike Taylor series, a Fourier series can describe functions that are not 
everywhere continuous and/or differentiable.

Derivation

The world is full of vibrations. The sound we hear is an acoustic wave, the things we see 
are electromagnetic waves and the surfers in Santa Cruz, CA ride on gravity waves of the 
ocean.

The simplest wave motion in 1-dimension is described by the 
1-dimensional wave equation

∂ 2

∂x2
−
1
v2

∂ 2

∂t 2
⎛
⎝⎜

⎞
⎠⎟

u(x,t) = 0

Let us assume a solution (we will see why later when we study partial differential 
equations)) u(x,t) = ! (x)ei" t

! (x)Substitution gives an equation for the wave amplitude          .
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u(x,t) = d2χ(x)
dx2

+
ω 2

v2
χ

⎛
⎝⎜

⎞
⎠⎟

eiω t = 0→ d2

dx2
+ k2

⎛
⎝⎜

⎞
⎠⎟
χ(x) = 0 , ω 2

v2
= k2eiω t

This new equation is easily solved by the function

χ(x) = acoskx + bsinkx

π
which gives the shape (at fixed time t) of the vibrating system (say a string). This is like 
taking a photograph of the vibrating string at one instant of time. Let us choose a string 
of length       fixed at both ends. We then have the boundary conditions:

χ(0) = 0 = χ(π )
which implies that

! (0) = a = 0  and  ! (" ) = bsink" # k = n = integer
so that ! (x) = bsinnx , n = 1,2,3,........
which is called the nth normal mode of the string (given by its shape). Each such mode 
has a different frequency and shape.

Historically, the wave equation was first studied in the 1700s. In 1742, Bernoulli showed 
that vibrations of different modes (frequency) could coexist in the string

In 1753, D'Alembert, Euler and Bernoulli showed that  all possible shapes of a vibrating 
string, even when the ends were not fixed, were representable by the series

f (x) = bn
n=1

!

" sinnx
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There was great dispute about this result.... what about the cosine series, i.e., how does 
one represent even functions of x?   

Even though f(x) solves the wave equation, others disputed the claim that this was the 
most general solution.

In 1807, Fourier (in a paper on heat conduction) showed that

   every function in the closed interval ! " ,"[ ]    or   ! " # x # "

could be represented in the form

f (x) =
1
2
a0 + an cosnx + bn sinnx( )

n=1

∞

∑
an ,bnHe rederived integral formulas for the coefficients            which had already been 

obtained by Euler in 1777. Fourier, however, broke new ground by pointing out that these 
integral formulas were well-defined even for arbitrary functions and that the resulting 
coefficients were identical for different functions that agreed within the interval, but not 
outside it.

The paper by Fourier was rejected by Lagrange, Laplace and Legendre on behalf of the 
Academy of Sciences on the grounds that it lacked mathematical rigor. A second version 
of the paper won the Academy's Grand prize in 1812.

This work has had a great impact on the development of mathematical physics in the 
1800s and it is still influencing things now.
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The Sine-Cosine Series

The general Fourier series expansion is a sum of sine and cosine terms of the form

f (t) =
a0

2
+ an

n=1

!

" cos# nt + bn
n=1

!

" sin# nt

where the frequencies
! n =

2" n
T0

are integer multiples of a fundamental frequency

ω0 =
2π
T0

and        is determined either by the natural periodicity of f(t) or possibly by an enforced 
periodicity of some sort. Different treatments of this subject can have definitions of 
which differ by various factors. The results are of all calculations are the same.

T0 T0

The assumed form guarantees that f(t) has periodicity       , i.e.,T0

f (t) = f (t +T0 )    for all   t
In terms of the independent variable t, f(t) has this periodicity for the entire interval

! " < t < "
as shown:

f(t)

t

T
0
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T0   and the  an   and   bn

The typical Fourier series problem is such that we are given a function g(t) and we then 
determine both                                            coefficients so that the series expansion is 
equal to g(t) for all t.  This requires that

g(t) = g(t + T0 )    for all   t
T0The smallest value of         that satisfies this equation is the period of g(t).

What if g(t) is not periodic? In this case we cannot use a general Fourier series to 
represent g(t) for all t.

On the other hand, we can make the series equal to g(t) for some finite interval as 
shown below

g(t)

f(t)

t

t

t1 t
2

t
2t1

T0 = t2 ! t1
g(t) above is not periodic. Suppose however we define the basic period for the Fourier 
series to be                     where the interval                      is as shown. The Fourier series 
f(t) can then be made identical to g(t) in that interval. Outside the interval, the Fourier 
series  f(t) is periodic and will not match  g(t) as shown.

t1 < t < t2
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Digression : The formal mathematical requirements that a function f(x) must satisfy 
in order that it may be expanded in a Fourier series are known as the Dirichlet 
conditions, which are summarized as follows:

f (x)

 ¥ the function must be periodic
 ¥ it must be single-valued and continuous, except possibly at a finite number of finite 
       discontinuities
  ¥ it must have only a finite number of maxima and minima within one period
  ¥ the integral over one period of           must converge

 an     and    bn   
The Orthogonality Conditions
We can determine the coefficients                      using so-called orthogonality 
conditions (proved using calculus).

dt sin 2! n
T0

t
"

#$
%

&'t0

t0 +T0

( sin 2! m
T0

t
"

#$
%

&'
= ) nm

T0
2

dt cos 2! n
T0

t
"

#$
%

&'t0

t0 +T0

( cos 2! m
T0

t
"

#$
%

&'
= ) nm

T0
2

dt sin 2! n
T0

t
"

#$
%

&'t0

t0 +T0

( cos 2! m
T0

t
"

#$
%

&'
= 0

for integer values of  m and n . In addition we have

dt sin 2πn
T0

t
⎛
⎝⎜

⎞
⎠⎟t0

t0 +T0

∫ = 0 , dt cos 2πn
T0

t
⎛
⎝⎜

⎞
⎠⎟t0

t0 +T0

∫ = δn0T0
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We can now evaluate the coefficients as follows.

f (t) =
a0

2
+ an

n=1

∞

∑ cosωnt + bn
n=1

∞

∑ sinωnt

The integral operation

dtf (t)
t0

t0 +T0

∫ = dt
a0

2t0

t0 +T0

∫ + an
n=1

∞

∑ dt
t0

t0 +T0

∫ cosωnt + bn
n=1

∞

∑ dt
t0

t0 +T0

∫ sinωnt

             = dt
a0

2t0

t0 +T0

∫ =
a0T0

2

a0determines       , i.e.,
a0 =

2
T0

dtf (t)
t0

t0 +T0

!

The integral operation

dt cos! mtf (t)
t0

t0 +T0

" = dt cos! mt
a0

2t0

t0 +T0

" + an
n=1

#

$ dt
t0

t0 +T0

" cos! mt cos! nt + bn
n=1

#

$ dt
t0

t0 +T0

" cos! mt sin! nt

             = an
n=1

#

$ dt
t0

t0 +T0

" cos! mt cos! nt = an
n=1

#

$ %nm
T0

2
= am

T0

2

amdetermines        , m > 0, i.e.,

am =
2
T0

dt cos! mtf (t)
t0

t0 +T0

"
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The integral operation

dtsinωmtf (t)
t0

t0 +T0

∫ = dtsinωmt
a0

2t0

t0 +T0

∫ + an
n=1

∞

∑ dt
t0

t0 +T0

∫ sinωmt cosωnt + bn
n=1

∞

∑ dt
t0

t0 +T0

∫ sinωmt sinωnt

             = bn
n=1

∞

∑ dt
t0

t0 +T0

∫ sinωmt sinωnt = bn
n=1

∞

∑ δnm

T0

2
= bm

T0

2

bmdetermines         , m > 0, i.e.,

bm =
2
T0

dtsin! mtf (t)
t0

t0 +T0

"
Several questions arise:

 (1) Do these Fourier coefficients exist?
 (2) Is the Fourier series convergent?
 (3) Does it converge to the original function?

The answer is YES for all physically realizable systems!!!!

Examples: 
(1) f (t) = sin(t)

T0 = 2! " # n = nThis function is periodic with period                                . Therefore the Fourier 
series looks like

f (t) =
a0
2

+ an
n=1

!

" cosnt + bn
n=1

!

" sinnt
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This example requires no calculations. It is clear that

am = 0    for  all   m , bm = 0    for  all   m ! 1 , b1 = 1
(2) f(t) equals the periodic triangle wave shown below

f(t)

t! 2!

−π / 2 < t < 3π / 2In the interval                                this has the functional form

f (t) =

2t
!

                  "
!
2

# t #
!
2

2 "
2t
!

                  !
2

# t #
3!
2

$

%
&&

'
&
&

T0 = 2! ωn = nOnce again the basic period is              which again gives             . We have

am =
2
T0

dt cos! mtf (t)
" # /2

3# /2

$ = 0    for all   m

since the integrand is the product of an odd and an even function. We also have
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bm =
2
T0

dtsin! mtf (t)
" # /2

3# /2

$ =
8

# 2n2
sin n#

2
Therefore, we get

f (t) =
8

! 2n2
sin n!

2n=1
odd

" sinnx

DEMO: fseries_tri.m

% illustrate Fourier Series
% triangle wave
% gives sequence of images building up to final curve
x=-pi/2:pi/100:3*pi/2;
val = zeros(1,length(x));
figure(1);
for m=1:2:100
  f=8/(m*pi)^2*sin(m*pi/2)*sin(m*x);
  val=val+f;
  m
  clf;
  plot(x,val,'-k');
  axis([-pi/2 3*pi/2 -1.5 1.5]);
  hold on;
  pause(1);
end
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(3) g(x) is the square wave function
f(t)

t!!-

-1

1

g(x) =
+1       for   0≤ x ≤ π      

−1       for   − π ≤ x ≤ 0
⎧
⎨
⎩

T0 = 2! ωn = n
an = 0

Once again the basic period is               which again gives           . Again this is an odd 
function so all the               and we find

bn =
4 / n!         n=1,3,5,7,...... 

0              n=2,4,6,8,......
"
#
$

which gives
g(x) =

4
!

sinnx
nn=

odd

"

#MATLAB program(fseries_sqr.m)

% illustrate Fourier Series for square wave pulse
% gives sequence of images building up to final curve
x=-pi:pi/100:pi;
val = zeros(1,length(x));
figure(1);
for m=1:2:100
  f=4/(m*pi)*sin(m*x);
  val=val+f;
  m
  clf;
  plot(x,val,'-k');
  axis([-pi pi -1.5 1.5]);
  hold on;
  pause(1);
end
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Even and Odd Stuff

We can always rewrite any function as:

f (x) =
1
2
f (x) + f (! x)[ ] +

1
2
f (x) ! f (! x)[ ] = feven (x) + fodd (x)

We can then use Fourier series to write:

feven(x) =
a0

2
+ an cosnx

n
!    and   fodd(x) = bn sinnx

n
!

T0 = 2!where we have assumed that the function has a period              .

Example:
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Now to allow for an Arbitrary Interval.

2π
If f(x) is defined for an interval [-L,L] of length(period) 2L instead of the standard interval 
of length (period)        , then a simple change of variable and integration range deals 
with the problem. We have

f (t) =
a0

2
+ an

n=1

!

" cos
2#n
T0

t + bn
n=1

!

" sin
2#n
T0

t

with

a0 =
2
T0

dtf (t)
−T0 /2

T0 /2

∫ , an =
2
T0

dtcos 2πnt
T0

f (t)
−T0 /2

T0 /2

∫ , bn =
2
T0

dtsin 2πnt
T0

f (t)
−T0 /2

T0 /2

∫
T0 = 2LWe let             to get

f (x) = a0
2
+ an

n=1

∞

∑ cosπn
L

x + bn
n=1

∞

∑ sinπn
L

x

with

a0 =
1
L

dxf (x)
! L

L

" , an =
1
L

dx cos#nx
L

f (x)
! L

L

" , bn =
1
L

dx sin#nx
L

f (x)
! L

L

"
Another Example:
Suppose f (x) =

0       ! " < x < 0
h       0 < x < +"

#
$
%

The is a square pulse(wave). We might imagine this is a signal being sent into some 
electronic apparatus. We can calculate its Fourier coefficients
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a0 =
1
π

dxf (x)
−π

π

∫ =
1
π

hdx= h
0

π

∫

an =
1
π

dxcosnxf (x)
−π

π

∫ = 0      for all   n

bn =
1
π

dxsinnxf (x)
−π

π

∫ =
h

nπ
(1− cosnπ ) =

2h / nπ         n   odd   
0               n   even

⎧
⎨
⎩

which gives

f (x) =
h
2

+
2h
!

sin x
1

+
sin 3x
3

+
sin5x
5

+,,,,,,,"
#$

%
&'

We note that the terms fall off only as 1/n, which implies physically that a square wave 
contains lots of high frequency components.

This implies that if an electronic apparatus does not pass high-frequency components 
well, the square wave input will emerge with corners rounded off in the best case and, 
possibly, an amorphous blob in the worst case.

Complex Fourier Series and Return of the Dirac Delta Function

Let us rewrite our Fourier representation for f(x) using

eiβt = cosβt + i sinβt
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as follows (using the interval [-L,L]):

f (x) =
a0

2
+ an

einπ x/L + e− inπ x/L

2n=1

∞

∑ + bn

einπ x/L − e− inπ x/L

2in=1

∞

∑ = cn
n=−∞

∞

∑ einπ x/L

Note the change of limits on the last summation. The new coefficients are given by:

c0 =
a0

2
, cn>0 =

1
2

(an − ibn) , cn<0 =
1
2

(an + ibn ) =
1
2

(a−n + ib−n)

and in general, using the formulas for the a and b coefficients, we have:

cn =
1
2L

f (x)e! in" x /L

! L

L

# dx

This is called the complex Fourier representation.

Example: Let us repeat the example from earlier. Again g(x) is the square wave function

f(t)

t!!-

-1

1

g(x) =
+1       for   0 ! x ! "      

#1       for   # " ! x ! 0
$
%
&
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L = !We have               so that

cn =
1

2π
g(x)e− inx

−π

π

∫ dx =
1

2π
e− inx

0

π

∫ dx −
1

2π
e− inx

−π

0

∫ dx

   =
i

2πn
e− inπ −1+ einπ −1⎡⎣ ⎤⎦ = i

cosnπ −1
nπ

or

cn =
!

2i
n"

      n odd      

0       n even

#
$
%

&%

This gives

g(x) = cn
n=−∞

∞

∑ einx = −
2i
nπn odd

−∞,∞[ ]

∑ einx = −
2i
π

1
nn odd

0,∞[ ]

∑ (einx − e− inx) =
4
π

sinnx
nn=

odd

∞

∑

which, of course, is the same as the earlier result. Clearly, this calculation was more 
complicated. The usefulness of the complex Fourier series comes when doing theoretical 
derivations.

cn

Digression : The Dirac Delta Function

Let us substitute the expression for          back into the Fourier series. We get:
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f (x) = cn
n=! "

"

# ein$ x/L = ein$ x/L

n=! "

"

# 1
2L

f (x')e! in$ x '/ L

! L

L

% dx' = f (x')
1

2L
ein$ (x! x ')/ L

n=! "

"

#&

'
(

)

*
+

! L

L

% dx'

       = f (x'), (x ! x')
! L

L

% dx'

where we have defined

! (x " x ') =
1

2L
ein# (x " x ') /L

n=" $

$

%&

'
(

)

*
+= Dirac delta function

This expression has all the standard properties of the Dirac delta function(listed below) 
and is a very important representation of the delta function.

Dirac, when faced with a mathematical dilemma during his development of quantum 
mechanics, solved his problem by introducing a new "function" defined by

! (x " x')dx' = 1
" #

#

$
! (x " x') = 0   if   x'%x

f (x')! (x " x')dx' = f (x)
" #

#

$
Clearly, this is not an ordinary "function" in any sense.
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Some Properties:

(1) dt '! (" t ')
0"

0+

# f (t ') = " dt '! (t ')
" 0"

" 0+

# f (" t ') = " dt '! (t ')
0+

0"

# f (" t ') = dt '! (t ')
0"

0+

# f (" t ') = f (0)

δ (−t) = δ (t)which implies that                      if we are using it inside integrals, i.e.,

f (0) = δ (−t ) f (t)dt =∫ δ (t) f (t)dt∫
(2)

dt '! (at ')
0"

0+

# f (t ') =
1
a

dt ''! (t '')
0" /a

0+/a

# f (
t ''
a

) =
1
a

f (0)

which implies that δ (at) = 1
a
δ (t) if we are using it inside integrals, i.e.,

1
a
f (0) = δ (at) f (t)dt = 1

a∫ δ (t) f (t)dt∫

(3)
dt 't '! (t ')

0"

0+

# f (t ') = f (0)(0) = 0

If f(0) ! 0, then this relation implies that tδ (t) = 0 if we are using it inside integrals.
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(4)
f (x)! (x2 " b2)dx = f (x)! (x2 " b2)dx+ f (x)! (x2 " b2)dx

0

L

#
" L

0

#
" L

L

#

         = f (x)! (x " b)(x + b)( )dx+ f (x)! (x " b)(x + b)( )dx
0

L

#
" L

0

#

        = f (x)! (" 2b)(x + b)( )dx+ f (x)! (x " b)(2b)( )dx
0

L

#
" L

0

#

        =
1

2 b
f (x)! x + b( )dx+

1
2 b

f (x)! x " b( )dx
0

L

#
" L

0

#

        =
1

2 b
( f (" b) + f (b))

which implies that
! (x2 " b2) =

1
2 b

(! (x " b) + ! (x + b))

Example: if a > 0, then

e−xδ (x2 − a2 )dx= e−x 1
2a
(δ (x − b) + δ (x + b))dx=

e−a + ea

2a−a

a

∫
−a

a

∫ =
1
a
cosh(a)
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Fourier Series Extended......
  
Let us extend Fourier series somewhat ......

 


ARemember a vector        in n-dimensions has n cartesian components

 

!
A = Ai

i =1

n

! öei = (öei "
!
A)

i =1

n

! öei

The Fourier series has a similar structure! Consider

f (x) = cn
n=−∞

∞

∑ ψ n(x)

cn
Ai

This is also a sum of terms, each of which is made up of a Fourier coefficient       (the 
analog of the vector component     ) and a unique (basis) function

! n (x) = ein" x /L

öei ψ n (x)which plays the role of        . The functions           satisfy the integral relations

! m
*

" L

L

# (x)! n(x)dx = ei$ x(n" m)/L

" L

L

# dx =

2L                            m=n

2L
(n " m)$

sin(n " m)$      m%n    
= 2L&mn

'

(
)

*)

which corresponds to the inner product relations of the unit vectors
öem ⋅ öen = δmn

Note the different normalizations.
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cnThe coefficients          are given by

ψ m
*

−L

L

∫ (x) f (x)dx = cn ψ m
*

−L

L

∫ (x)ψ n (x)dx
n
∑ = cn2Lδmn

n
∑ = 2Lcm

 
Ai =


A ! êiwhich corresponds to the component relations                 .

We can make the agreement exact by defining a unit function (equivalent to a unit 
basis vector) as

en(x) =
1

2π
einπ x/L

This unit function has the inner product

em ,en( ) = em
* (x)en (x)dx = ! mn

" L

L

#
which then gives

f (x) = fn
n
∑ en(x)→ fn = en, f( ) = em

* (x) f (x)dx
−L

L

∫
in direct analogy to the relations

 

!
A = Ai

i =1

n

! êi = (êi "
!
A)

i =1

n

! êi

The unit functions are a set of orthonormal basis functions. They are a basis because 
they span the space of all functions(since that is what a Fourier series is designed to do).
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The Dirac delta-function is given by

! (x " x') = en(x)en
* (x')

n=" #

#

$

% f (x')! (x " x')& dx' = en(x) en
* (x')&

n=" #

#

$ f (x')dx = fnen(x)
n=" #

#

$ = f (x)

as it should.

The number of basis functions is infinite, so we have an infinite dimensional space. 
Since an inner product is defined it is an inner product space.

For regular vectors, a different choice of axes implies a different set of unit basis vectors.

In the case of functions, a different choice of coordinate axes implies the use of a 
different set of "orthonormal" functions.

For the complex Fourier series in the interval [-1,1] corresponding to L = 1, the basis 
functions are

ψ n(x) = einπ x               ωn = 2πn / T0 = 2πn / 2L = πn
where

einπ x  = 1+(inπx)+ 1
2!

(inπx)2 + .....

which is a convergent infinite power series in  x.
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ψ n(x)
Since powers of x are much easier to work with than exponentials, let us attempt to 
use the powers of x, instead of the            as our basis functions for a generalized 
Fourier series. Let us take the first two basis functions to be

P0 (x) = 1 , P1(x) = x

The orthogonality relations are

P0 ,P0( ) = dx = 2
−1

1

∫

P0 ,P1( ) = P1,P0( ) = xdx = 0
−1

1

∫

P1,P1( ) = x2dx =
2
3−1

1

∫
x2 P1(x)The next power       is orthogonal to         

P1,x
2( ) = x2 ,P1( ) = x3dx= 0

−1

1

∫
P0 (x)but not to  

P0,x
2( ) = x2,P0( ) = x2dx =

2
3! 1

1

"

x2This implies that         cannot be one of the set of mutually orthogonal functions that 
is to be used as a basis for our so-called generalized Fourier series.
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x2 P0(x)
Let us now use the Gram-Schmidt(GS) orthogonalization procedure to create an 
orthogonal function. If        is not orthogonal to         , then part of it must be parallel 
to         . Indeed the parallel component is given byP0(x)

P0,x
2( ) =

2
3

The GS procedure creates an orthogonal function by subtracting off the parallel part as 
follows

P2 (x) = x2 −
(x2 ,P0 )
(P0 ,P0 )

P0 = x2 −
1
3

We then have the orthogonality relations

(P2 ,P1) = (P1,P2 ) = 0   and   (P2 ,P0 ) = (P0 ,P2 ) = 0

(P2 ,P2 ) = x4 −
2
3
x2 +

1
9

⎛
⎝⎜

⎞
⎠⎟

−1

1

∫ dx =
8
45

Now x3,P2( ) = x3,P0( ) = 0   but   x3,P1( ) ≠ 0

P1(x)
Therefore, we can construct the next basis function by subtracting off the part parallel 
to             in the same way

P3(x) = x3 −
(x3,P1)
(P1,P1)

P1 = x3 −
3
5

x

It is customary to normalize all basis functions to 1, which entails multiplication by the 
factor
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1
(Pi ,Pi )

Pn (x = 1) = 1or by defining their value at a point, say                      .

This gives (using the latter normalization procedure) us a set of orthonormal basis functions 
(polynomials in this case) which are identical to the Legendre functions or Legendre 
polynomials.

P0 (x) = 1 , P1(x) = x , P2 (x) =
3
2
x2 !

1
2

P3(x) =
5
2
x3 !

3
2
x , P4 (x) =

35
8
x4 !

15
4
x2 +

3
8

P5 (x) =
63
8
x5 !

35
4
x3 +

15
8
x      and so on

where we have

Pn ,Pm( ) = Pn (x)Pm (x)dx =
2

2n +1! 1

1

" #mn , ,Pm (1) =1

We then have using these as basis functions

f (x) = cn
n=0

∞

∑ Pn(x)→ Pm(x)
−1

1

∫ f (x)dx= cn
n=0

∞

∑ Pm(x)
−1

1

∫ Pn(x)dx= cn
n=0

∞

∑ 2
2n+1

δmn =
2

2m+1
cm

cn =
2n +1
2

Pn(x)
! 1

1

" f (x)dx
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Example:
f (x) =

+1          0 ! x ! 1
" 1        -1 ! x ! 0

#
$
%

Now f(x) is odd, which implies that all n = even terms will = 0. For odd  n  we have

c1 =
3
2

x
−1

1

∫ f (x)dx = 3 x
0

1

∫ dx =
3
2

c3 =
7
2

5
2
x3 −

3
2
x⎛

⎝⎜
⎞
⎠⎟

−1

1

∫ f (x)dx = 7
2

5x3 − 3x( )
0

1

∫ dx = −
7
8

c5 =
11
16

                 and so on

The Legendre series is then

f (x) =
3
2

P1(x) !
7
8

P3(x)+
11
16

P5 (x)+ ......

The corresponding Fourier series in the interval [-1,1] is given by

an = 0 , bn =
1
1

f (x)sin(n! x)dx = 2
" 1

1

# sin(n! x)dx =
4

n!0

1

#
and the corresponding Fourier series is

f (x) =
4
!

sin ! x( ) +
4

3!
sin 3! x( ) +

4
5!

sin 5! x( ) + ....

Such expansion can also be made in terms of other special functions such as Bessel 
functions, etc and we will use this fact to great advantage when solving partial differential 
equations.
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