
Review some basic concepts:
Space of Physics

Scalar  = a number (temperature, minutes after noon, ......)
Vector  = set of 3 numbers (characterizes a point in the 3-dimensional world)

The vector representing the location of a point in 3-dimensional space relative to a given origin is called 
the position vector. It is represented by the 3-tuple

 
!
r = (x,y,z) = (x1,x2,x3)

This is a shorthand notation for

 
!r = xî + yĵ + zk̂ = x1ê1 + x2ê2 + x3ê3 = xx̂ + yŷ + zẑ

which are all equivalent representations of the position vector.  The three(for 3 dimensions) vectors

öe1, öe2, öe3 öx, öy, öz öi , öj , ökor or

are unit vectors (length = 1) deÞning a right-handed coordinate system as show below:
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The numbers (x,y,z) are called the components of the position vector with respect to the chosen unit 
vectors. The unit vectors are chosen to be orthogonal (perpendicular) for convenience as we shall see.

The length of the position vector is given (Pythagorean theorem) by

 r =
!
r = x2 + y2 + z2

We deÞne a vector product operation (symbol = ) called the scalar or dot or inner product!
by the following relations

êi ! êj = " ij = Kronecker delta

                =
1     i=j         
0     otherwise

#
$
%

In terms of the scalar product we have

 
r 2 = !

r ⋅ !r = xi êi
i =1

3

∑⎛⎝⎜
⎞
⎠⎟
⋅ xj êj

j =1

3

∑
⎛

⎝⎜
⎞

⎠⎟
= xi xj êi ⋅

i , j =1

3

∑ êj = xi xjδ ij
i , j =1

3

∑ = xi
2

i =1

3

∑
We now deÞne the Einstein summation convention,which assumes a summation anytime that a repeated 
index appears in the same term. Using this convention the above derivation looks like

 
r 2 =

r !

r = xi öei( ) ! xj öej( ) = xi xj öei ! öej = xi xj" ij = xi xi

We deÞne a unit vector in the direction of the position vector by

 
öer = öe(

!
r ) = ör =

!
r
r

=
xi öei

r
!

!
r = r öer
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This rule generalizes to an arbitrary vector as follows:

 

!
A = Ai öei = Aöe(

!
A)→ öe(

!
A) =

!
A
A

Vector Algebra

 


C =

A+

B = Ai + Bi( ) öei


C = λ


A = λAi öei


0 = (0,0,0) = zero or null vector

−

A = (−Ai )öei = −Aöe(


A)

(−

A) +


A =

0

öe(−

A) = −öe(


A)

Geometry of Space

For general vectors 
!
A    and    

!
B , the scalar product gives

 


A ⋅B = Ai Bj öei ⋅ öej = Ai Bjδ ij = Ai Bi

and the length squared of a vector is                    . 
!
A ⋅

!
A = Ai Ai

In 2-dimensions (completely general result because any 2 vectors form a 2-dimensional plane) we have

 
öe(

!
A) = cos! Ax

öex + sin! Ax
öey = cos! Ax

öex + cos! Ay
öey

as shown below.
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These components are called the direction cosines . In general

 
öe(

!
A) ! öex = cos" Ax

    and so on

Thus, we have

 

öe(
!
A) = cosθAx

öex + cosθAy
öey + cosθAz

öez

        = (öe(
!
A) ⋅ öei )öei

For a general vector

This leads to the general rule

where

So if two vectors are perpendicular or orthogonal, then their scalar 
product is equal to zero,      .

 
!
A = Aöe(

!
A) !

!
A " öei = ith  component = Aöe(

!
A) " öei = Acos#Ai

 
!
A!

!
B = ABöe(

!
A) ! öe(

!
B) = ABcos" AB

 
! AB= angle between   


A  and  


B 

θAB= 90°
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Another way of writing this relation gives

 
!
A!

!
B = ABcos(" # $ ) = AxBx + AyBy = AB(cos$ cos" # sin$ sin" )

This implies that

which is a standard trigonometric identity.

cos(! " # ) = cos# cos! " sin# sin!

Vector Product

We deÞne the vector(cross) product of two vectors in terms of the standard cartesian unit vectors as 
follows: öei ! öej = " ijk öek
where          is deÞned by! ijk

! ijk =

1      if   ijk = even permutation of  123

" 1      if   ijk = odd permutation of  123 

0      otherwise                                        

#

$
%

&
%

This says that
! 123 = ! 312 = ! 231 = 1 , ! 213 = ! 132 = ! 321 = " 1

! 113 = ! 112 = ! 121 = ! 131 = ! 311 = ! 211 = ! 111 = ! 221 = ! 223 = ! 212 = 0

! 232 = ! 322 = ! 122 = ! 222 = ! 331 = ! 332 = ! 313 = ! 323 = ! 133 = ! 233 = ! 333 = 0

5



Let us work out some properties of vectors derivable from this vector product deÞnition involving     . 
For two arbitrary vectors we have

! ijk

 
!
A×

!
B = ε ijkAi Bj êk = ε ijkAj Bkêi

In 2-dimensions(for simplicity) using the diagram above we have

 

!
A !

!
B = (A1ê1 + A2ê2 ) ! (B1ê1 + B2ê2 ) = A1B1ê1 ! ê1 + A1B2ê1 ! ê2 + A2B1ê2 ! ê1 + A2B2ê2 ! ê2

         = (A1B2 " A2B1)ê1 ! ê2 = (A1B2 " A2B1)ê3

         = AB(cos# sin$ " sin$ cos# )ê3 = ABsin($ " # )ê3

So if two vectors are parallel, then their vector product is equal to zero.  In general we have

 

!
A !

!
B = " ijkAi Bj öek = "123A1B2 öe3 + " 312A3B1öe2 + " 231A2B3öe1 + " 213A2B1öe3 + "132A1B3öe2 + " 321A3B2 öe1

                           = A2B3 # A3B2( ) öe1 + A3B1 # A1B3( ) öe2 + A1B2 # A2B1( ) öe3

which is the standard form of the cross-product in 3-dimensions.

We note that the relation                              implies that                               . 
!
A !

!
B = " ijkAj Bk öei  

(
!
A !

!
B)i = " ijkAj Bk

Why should we introduce       ?! ijk

(1) It is the easiest way to do complicated vector algebra in 3-dimensions
(2) For higher dimensions        is the only way. 
(3) It makes for a natural transition to other areas of  mathematics (tensors) used in later courses.

! ijk

Other Properties
εmnkε ijk = δmiδnj − δniδmj

εmjkε ijk = 2δmn

ε ijkε ijk = 6
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Example  of use in complex vector identity:

 

!
A ! (

!
B !

!
C) =

!
A ! " ijkBjCkêi( ) = " ijkBjCk

!
A ! êi = " ijkBjCk" mnpAn(êi )p êm = " ijkBjCk" mnpAn#ipêm

                  = " ijkBjCk" mniAnêm = " jki" mniBjCkAnêm = #mj#nk $ #mk#nj( )BjCkAnêm

                  = BjCkAkêj $ BjCkAj êk = Bj êj( ) AkCk( ) $ Ckêk( ) Aj Bj( )
                  =

!
B(

!
A%

!
C) $

!
C(

!
A%

!
B)

We also note that we can always write any vector in the following way:

 

öe= arbitrary unit vector
!
A = arbitrary vector

öe!
!
A ! öe( ) =

!
A(öe" öe) # öe(

!
A" öe) =

!
A # öe(

!
A" öe)

!
A = öe(

!
A" öe) + öe!

!
A ! öe( )

More vector identities:

 

! " ! "
!
B( ) = ! " #ijk! jBk öei( ) = ! " öei( ) #ijk! jBk( ) = #lmn! m öei( )n öel( ) #ijk! jBk( )

        = #lmn! m$inöel( ) #ijk! jBk( ) = #lmi#ijk! m! jBk öel( ) = #ilm#ijk! m! jBk öel

        = $lj$mk %$lk$mj( )! m! jBk öel = ! k! jBk öej %! j! jBk öek = ! ! &
!
B( ) %! 2

!
B
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∇ ×∇φ = ε ijk

∂
∂xj

∂
∂xk

φ = ε ijk

∂2φ
∂xj∂xk

=
1
2

ε ijk

∂2φ
∂xj∂xk

+ ε ikj

∂2φ
∂xk∂xj

⎛

⎝⎜
⎞

⎠⎟

           = 1
2

ε ijk

∂2φ
∂xj∂xk

− ε ijk

∂2φ
∂xk∂xj

⎛

⎝⎜
⎞

⎠⎟
=
ε ijk

2
∂2φ

∂xj∂xk

−
∂2φ

∂xk∂xj

⎛

⎝⎜
⎞

⎠⎟
= 0

 

! " ! #
!
B( ) = ! " $ijk! jBkêi( ) = ! "êi( ) $ijk! jBk( ) = $ijk! i! jBk = $ijk

%2Bk
%xi%x j

                 =
1
2

$ijk
%2Bk

%xi%x j
+ $jik

%2Bk
%x j%xi

&

'
(

)

*
+ =

1
2

$ijk
%2Bk

%xi%x j
, $ijk

%2Bk
%x j%xi

&

'
(

)

*
+

                 =
$ijk
2

%2Bk
%xi%x j

,
%2Bk

%x j%xi

&

'
(

)

*
+ = 0

Complex Numbers

The crucial quantity here is the number    . It has the propertyi i 2 = −1,i 3 = −i,i 4 = +1,i 5 = i,.........

We represent a complex number z as a 2-component object in a cartesian basis as
z = (x,y) = x + iy = Real(z) + iImag(z)

Alternatively, we can represent it with a plane-polar basis as
x = r cos! , y = r sin! , 0 " r " # , $ %" ! " %

r = x2 + y2( )1/2 , ! = tan$1 y
x

& z = r cos! + i sin!( )
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Now using sin! = ! "
! 3

3!
+ .... , cos! =1 "

! 2

2!
+ ....

we get
z= r cosθ + i sinθ( ) = r 1+ iθ +

(iθ)2

2!
+

(iθ)3

3!
+ .....

⎛
⎝⎜

⎞
⎠⎟
= reiθ

This generalizes to let us write

1+ im! +
(im! )2

2!
+

(im! )3

3!
+ .....

"

#$
%

&'
= eim! = cosm! + i sinm!( )

We can also write
eim! = cosm! + i sinm!( ) = ei!( )m

= cosm! + i sinm!( )m

which can be used to get expressions for                           , etc, ascosm! , sinm!
cos2! + i sin2! = cos! + i sin!( )2 = cos2! " sin2 ! + 2i sin! cos!

cos2! = cos2! " sin2 ! + 2i sin! cos!

sin2! = 2sin! cos!
We deÞne the complex conjugate of z by

z* = x − iy = re− iθ = r(cosθ − i sinθ)

zz* = z* z= r 2 = z 2

Note a few special results:
e2πni = 1→ eiθ = ei (θ+2πn) , n = integer

eπ i = −1 , eiπ /2 = i
Using the standard deÞnitions of some mathematical functions we get:

z1/2 = z = rei!( )1/2
= rei! /2 = rei (! +2n" )( )1/2

= rei (! /2+n" )     n=integer

logz = log rei!( ) = logr + i! = log rei (! +2n" )( ) = logr + i(! + 2n" )    n=integer
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More functions:

This last expression also works for complex angles

z1z2 = r1r2e
i (! 1 +! 2 ) ,

z1

z2

=
r1
r2

ei (! 1 " ! 2 )

z1/n = r1/nei! /n = r1/n(cos(! / n) + i sin(! / n))

sin! =
ei! " e" i!

2i
, cos! =

ei! + e" i!

2

cos(iy) =
e−y + ey

2
= coshy→ cos(i ) =

e−1 + e1

2
= 1.54

sin(iy) =
e−y − ey

2i
= i sinhy

Complex Roots and Powers:

 

ab = e!nab

= eb!na

! i " 2i = e" 2i ! ni = e" 2i ! nei (# /2±2n# )

e" 2i (! n(1)+i (# /2±2n# ) = e# ±4n#

         = e# ±4n# ,e5# ,e" 3# ,e9# ,...= 23.14,........

(r,! )

! " # $ # "

This means that these functions are multi-valued, that is, the square root has 2 values for 
each           pair and the log has an infinite number of values for each         pair.

The ambiguity is avoided by agreement. We choose n = 0 as the principal value of 
multi-valued functions and restrict                  .

(r,! )
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Inverse Functions:
z = sinh! 1 x

a
"
#$

%
&'

(
x
a

= sinhz =
ez + e! z

2

let ez = u (
2x
a

= u !
1
u

( au2 ! 2xu ! a = 0

u = ez =
x ± x2 + a2

a

ez > 0For real z,                which means we must use the  +  sign or

 
z = !n x + x2 + a2( ) ! ! na

Partial Fractions

It is very useful to be able to express a function that is the ratio of two polynomials 

f (x) =
g(x)
h(x)

in a form that easier to work with.

The critical behavior of f(x) is determined by the location of the zeroes of its denominator, that is, 
where h(x) = 0. Later, when we study complex variables we will call these point the poles (or 
singularities) of f(x). To make the behavior of f(x) at the poles explicit we try to write f(x) as a 
sum of terms of the form A

(x ! " )n
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where !  is one of the zeroes of h(x), that is, h(! ) = 0 and A is a constant. This expansion is called 
writing f(x) in partial fractions .

Example:  Consider the expression
f (x) =

g(x)
h(x)

=
4x + 2

x2 + 3x + 2

! i (x ! " i )
ni

Rules:
! ! (1) The number of distinct terms on the RHS is equal to the number of distinct roots of 
              h(x)=0.
! ! (2) Each term having a different root        has a denominator 

! i

ni

(3) If        is a multiple root, then the value assigned to ni = value of exponent when h(x) 
     is expressed in terms of its roots, that is, as

h(x) = (x ! " 1)
n1 (x ! " 2)n2 ........

n1 + n2 + ....= n
ni >1 ni −1

and                              = highest power in h(x).
If           , then A must be replaced by an  degree !       polynomial

Applying these rules to our example we have:

! ! h(x) has 2 roots "  2 terms in expansion roots from

h(x) = x2 + 3x + 2 = (x +1)(x + 2) = 0 ! " 1 = #1, " 2 = #2, n1 = 1, n2 = 1

n1 + n2 = n = 2

Thus, we write
f (x) =

g(x)
h(x)

=
4x + 2

x2 + 3x + 2
=

A1

x +1
+

A2

x + 2
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A1 A2We determine        and         using algebra as follows:

4x + 2 = A1(x + 2) + A2(x +1)

4 = A1 + A2

2 = 2A1 + A2

A1 = ! 2 , A2 = 6
so that

f (x) =
g(x)
h(x)

=
4x + 2

x2 + 3x + 2
= !

2
x +1

+
6

x + 2
The textbook has complications and special cases.

Partial Differentiation

Given the relationship y = f(x), which represents a curve in 2-dimensions, then

dy
dx

=
df (x)

dx
= slope of the curve   y=f (x)  or the rate of change of    y    wrt    x

Now, if instead, we are given the relationship z = f(x,y), which represents a surface in 
3-dimensions, then differentiation is a bit more complicated. Suppose x = constant, which is a 
plane intersecting the surface as shown:
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The points satisfying z = f(x,y) and x = constant lie on a curve  (as shown in the Þgure). To learn 
about this curve, where z = g(y), we might write dz/dy, but this does not indicate that z really is a 
function of 2 variables and we are temporarily holding one of the variables constant. So, instead, 
we write ! z

! y
= partial derivative   of  z   wrt    y

where y = f (x) !
dy
dx

= lim
" x! 0

f (x + " x) # f (x)
" x

z = f (x,y) !
$z
$x

%
&'

(
)*

y

= lim
" x! 0

f (x + " x,y) # f (x,y)
" x

If the subscript indicating which variable(s) are constant is left off, then it means that all other 
variables are constant. It is important to understand that the notation means z has to be written 
as a function of x and y only and then differentiated wrt x holding y constant (last equation).
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Notation
!
! x

! z
! x

"
! 2z
! x2     ,     

!
! x

! z
! y

"
! 2z

! x! y
    ,     

!
! x

! 2z
! x! y

"
! 3z

! x2! y
    ,     etc .......

Some examples:

(1) z = x2 ! y2

Using x = r cos! , y = r sin! , x2 + y2 = r 2

we have z = r2 cos2! " r2 sin2 ! #
$z
$r

%
&'

(
)*

!

= 2r(cos2! " sin2 ! )

z = 2x2 " r2 #
$z
$r

%
&'

(
)* x

= " 2r

z = r2 " 2y2 #
$z
$r

%
&'

(
)* y

= 2r

(2) z = f (x,y) = xy + x2 !
" z
" x

= y + 2x =
" z
" x

#
$%

&
'(

y

,
" z
" y

= x =
" z
" y

#

$%
&

'(
x

Suppose that g = xy, then we have z = f (x,y) = xy + x2

z = h(x,g) = g + x2

! f
! x

"
#$

%
&'

g

=
! h
! x

"
#$

%
&'

g

= 2x
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We now digress to look at total differentials  and Þnd some interesting facts.

! f (x,y) = f (x + ! x,y + ! y) " f (x,y) = f (x + ! x,y + ! y) " f (x + ! x,y) + f (x + ! x,y) " f (x,y)

Taking the limit as ! x " 0    and    ! y " 0 we get

df (x,y) =
! f
! x

"
#$

%
&'

y

dx+
! f
! y

"

#$
%

&'
x

dy

This result easily generalizes to any number of cartesian coordinates. Now for some function 
g(x,y), pick dx, dy s.t. g(x,y) = constant as (x" x+# x, y" y+# y). This implies that

g(x + ! x,y + ! y) = g(x,y)

which in turn implies that

df
dx dg=0

=
! f
! x

"
#$

%
&' y

dx
dx dg=0

+
! f
! y

"

#$
%

&' x

dy
dx dg=0

(
! f
! x

"
#$

%
&' g

=
! f
! x

"
#$

%
&' y

+
! f
! y

"

#$
%

&' x

! y
! x

"
#$

%
&' g

Going back to our earlier example

f = xy+ x2 , g = xy

∂ f
∂x

⎛
⎝⎜

⎞
⎠⎟

g

=
∂ f
∂x

⎛
⎝⎜

⎞
⎠⎟

y

+
∂ f
∂y

⎛
⎝⎜

⎞
⎠⎟

x

∂y
∂x

⎛
⎝⎜

⎞
⎠⎟

g

= (y+ 2x) + (x)
∂ g

x
⎛
⎝⎜

⎞
⎠⎟

∂x

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

g

         = (y+ 2x) + (x) −
g
x2

⎛
⎝⎜

⎞
⎠⎟
= y+ 2x −

g
x
= y+ 2x − y = 2x       as before
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Chain Rule

Suppose we have a function u(x(t),y(t)). For example,u = xy , x(t) = t , y(t) = e! t

This implies that du
dt

=
d
dt

te! t( ) = e! t + ! te! t

Nothing new arises if we use the chain rule

du(x,y) =
! u
! x

"
#$

%
&' y

dx +
! u
! y

"

#$
%

&' x

dy

du(x,y)
dt

=
! u
! x

"
#$

%
&' y

dx
dt

+
! u
! y

"

#$
%

&' x

dy
dt

= y
dx
dt

+ x
dy
dt

= e( t +( te( t

But what if
u = xy , x(t) = t , e! y ! y = t    (an implicit rather than explicit equation for y(t))

Using the chain rule we now get

du(x, y)
dt

=
! u
! x

"
#$

%
&' y

dx
dt

+
! u
! y

"

#$
%

&' x

dy
dt

= y
dx
dt

+ x
dy
dt

= y + t
dy
dt

We have
dt = d e! y ! y( ) = ! e! y ! 1( )dy"

dy
dt

= !
1

e! y +1
and therefore

du
dt

= y + t
dy
dt

= y !
1

e! y +1
17



We now plot as shown:

which gives us  y(t) and we thus obtain
du
dt

   at    t

General Chain Rule

Given u(x,y), x(s,t), y(s,t) we have

du =
! u
! x

"
#$

%
&' y

dx +
! u
! y

"

#$
%

&' x

dy

dx =
! x
! s

"
#$

%
&' t

ds +
! x
! t

"
#$

%
&' s

dt

dy =
! y
! s

"
#$

%
&' t

ds +
! y
! t

"
#$

%
&' s

dt

which gives
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du =
! u
! x

"
#$

%
&' y

! x
! s

"
#$

%
&' t

ds +
! x
! t

"
#$

%
&' s

dt
"

#$
%

&'
+

! u
! y

"

#$
%

&' x

! y
! s

"
#$

%
&' t

ds +
! y
! t

"
#$

%
&' s

dt
"

#$
%

&'

    =
! u
! x

"
#$

%
&' y

! x
! s

"
#$

%
&' t

+
! u
! y

"

#$
%

&' x

! y
! s

"
#$

%
&' t

"

#
$

%

&
' ds +

! u
! x

"
#$

%
&' y

! x
! t

"
#$

%
&' s

+
! u
! y

"

#$
%

&' x

! y
! t

"
#$

%
&' s

"

#
$

%

&
' dt

Since we can also write
du =

! u
! s

"
#$

%
&'

t

ds+
! u
! t

"
#$

%
&'

s

dt we have

! u
! s

"
#$

%
&' t

=
! u
! x

"
#$

%
&' y

! x
! s

"
#$

%
&' t

+
! u
! y

"

#$
%

&' x

! y
! s

"
#$

%
&' t

! u
! t

"
#$

%
&' s

=
! u
! x

"
#$

%
&' y

! x
! t

"
#$

%
&' s

+
! u
! y

"

#$
%

&' x

! y
! t

"
#$

%
&' s

Example: u = x2 + y , x = s+ t , x ! y = s2

These give x =
s+ t + s2

2
, y =

s+ t ! s2

2
and

! x
! s

"
#$

%
&'

t

=
1+ 2s

2
, ! y

! s
"
#$

%
&'

t

=
1 ( 2s

2
! u
! s

"
#$

%
&'

t

= (2x)1+ 2s
2

+ (1)1 ( 2s
2

= (s+ t)(1 ( 2s) +
1
2

( s

        =
1
2

+ t ( 2ts( 2s2
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The Dirac Delta Function

Consider the vector Þeld      with the form
 
!v

 

!v =
ör
r2 =

!r
r3

i.e. it points radially outward and falls off as         .1 / r 2

This is the electric Þeld of a point charge, or the gravitational Þeld of a point mass. HereÕs a little 
paradox: CLAIM                : ∇ ⋅ !v = 0

∇ ⋅
(x,y,z)

x2 + y2 + z2( )3/2 =
1

x2 + y2 + z2( )3/2 −
3x2

x2 + y2 + z2( )5/2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ (x ↔ y) + (x ↔ z)

                              =
−2x2 + y2 + z2

x2 + y2 + z2( )5/2 + (x ↔ y) + (x ↔ z) = 0

OK, so this Þeld is divergenceless. It looks like something is ßowing out, but on the other hand the 
magnitude of     is getting smaller as you go out, so maybe itÕs OK. BUT what about the divergence 
theorem? If I calculate

 
!
v

 

!
v !d

!
a

sphere
" =

r̂
r 2

!" r̂r 2 sin#d#d$ = 4%

It is not zero!  So, is the divergence theorem wrong, or did we miss something?

The answer is that we were a little careless in calculating the divergence and declaring it to be zero. 
It is zero, almost everywhere. However, if you look at our equations exactly at the point x = y = z = 
0, you will see that the derivatives diverge, i.e. are inÞnite (you may need to do LÕHospitalÕs rule to 
convince yourself, but itÕs right).
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So we have encountered a very peculiar situation, a function of space which is inÞnite at one point, 
but zero everywhere else. This type of function was explored in the physics context by Paul Dirac, so 
we refer to it as the Dirac delta-function, and give it the symbol $, deÞned as 

δ (x) = 0 , x ≠ 0 and δ (x)dx= 1
−∞

∞

∫
and

 !
(3)(

!
r ) = ! (x)! (y)! (z)

Mathematically, it is not a function; itÕs called a distribution.

So since 
! "

ör
r 2

#
$ dV = 4%

we have determined that

 
! "

ör
r2 = 4#$(3)(

!r )

Properties of  δ-function
! n(x) = 0 , x " 0

! (x # a) f (x)dx =
#$

$

% f (a)

! (ax) =
1
a

! (x)

! (g(x)) =
! (x # an)

g'(an)an

&

where an are the zeros of g(x) = 0.
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Example 1:

Example 2:

Example 3:

! (x " 3)x3dx =
0

5

# 27 but ! (x " 3)x3dx =
0

2

# 0

! (5x)(x +1)3dx =
" #

#

$
1
5

! (x)(x +1)3dx =
1
5" #

#

$

! (x2 " 1)x3dx =
0

#

$
! (x " 1)

g'(1)
+

! (x +1)
g'(" 1)

%

&
'

(

)
* x3dx

0

#

$

                       =
1
2

! (x " 1)x3dx
0

#

$ + ! (x +1)x3dx
0

#

$
%

&
'

(

)
* =

1
2

(1+ 0) =
1
2

Taylor Series

A MaClaurin expansion for a function f(x) in 1-dimension is given by relative to the origin x = 0 
follows directly if the function f(x) has a power series expansion. Let

f (x) = anx
n

n=0

!

"
We then have

or in general

f (0) = a0 , f '(0) = a1 ,
1
2!

f ''(0) = a2 ,......
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1
n!

f (n)(0) = an

and thus
f (x) =

f (n)(0)
n!

xn

n=0

!

"

This is also called the Taylor expansion for f(x) about the origin x = 0. A Taylor series, in general, 
means a power series in powers of (x-a) where a = some constant. The derivation of the coefÞcients 
is identical to the last derivation except that we use x = a instead of x = 0.

Let f (x) = an(x ! a)n

n=0

"

#
We then have

or in general

and thus

Let us now determine f(x+h) using a neat method. Consider the following construction for an 
inÞnitesimal displacement

where we have used the deÞnition of the derivative(exact only in the limit of course). Now make 
another displacement

Since a Þnite displacement h can always be constructed from an inÞnite number of consecutive 
inÞnitesimal displacements, we have

f (a) = a0 , f '(a) = a1 ,
1
2!

f ''(a) = a2,......

1
n!

f (n)(a) = an

f (x) =
f (n)(a)

n!
(x ! a)n

n=0

"

#

f (x + ! x) = f (x)+ ! x
df
dx

= 1+ ! x
d
dx

"
#$

%
&'

f (x)

f (x + 2! x) = 1+ ! x
d
dx

"
#$

%
&'

f (x + ! x) = 1+ ! x
d
dx

"
#$

%
&'

2

f (x)
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f (x + h) = lim
n! "

1+
h
n

d
dx

#
$%

&
'(

n

f (x) = exp h
d
dx

#
$%

&
'(

f (x)

where we have used the interesting result that

lim
n! "

1+
h
n

Q#
$%

&
'(

n

= exp(hQ)

The differential operator
exp h

d
dx

⎛
⎝⎜

⎞
⎠⎟

is called the displacement operator. Since the exponential function has the power series 
representation

exp(ax) =
(ax)k

k!k=0

!

"
we can write

f (x + h) = exp h
d
dx

!
"#

$
%&

f (x) =
hk

k!k=0

'

( f (k)(x)

Example:
sin! (t + " ) = exp "

d
dt

#
$%

&
'(

sin(! t)

              = 1+"
d
dt

+
1
2!

" 2 d2

dt2 +
1
3!

" 3 d3

dt3 + ....
)

*
+

,

-
. sin(! t)

              = sin(! t) + ! " cos(! t) /
1
2!

(! " )2 sin(! t) /
1
3!

(! " )3 cos(! t) + ....)
*+

,
-.

              = sin(! t) 1/
1
2!

(! " )2 + ....)
*+

,
-.

+ cos(! t) ! " /
1
3!

(! " )3 + ....)
*+

,
-.

             = sin(! t)cos(! " ) + cos(! t)sin(! " )

which we know to be correct.
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These results generalize easily to 3-dimensions as

and also can be used for displacements in time
 
f (!r +

!a) =
1
n!n=0

!

" !a #$( ) f (!r )

f (t + ! ) = exp !
d
dt

"
#$

%
&'

f (t) =
! k

k!k=0

(

) f (k)(t)

Binomial Series

Consider the following function f (x) = (1+ x)n

If we expand this out we get

f (x) = (1+ x)n = 1+ nx+
n(n−1)

2!
x2 + ....=

n!
m!(n− m)!m=0

∞

∑ xm =
n

m
⎛
⎝⎜

⎞
⎠⎟m=0

∞

∑ xm

this is called the Binomial series and the ( ) is the Binomial coefÞcient. For n = integer, the series 
terminates at m = n.

In a similar way we can write(for n = integer),

(p + q)n =
n!

m!(n ! m)!m=0

n

" pmqn! m =
n

m
#

$%
&

'(m=0

n

" pmqn! m

This has an interesting interpretation in the following example. Suppose we have n coins that we will 
ßip onto a table and we count the number heads and tails. Suppose the probability of getting a heads 
= p and the probability of getting a tails is q. Hence p+q = 1. This means we have

(p + q)n = (1)n = 1=
n!

m!(n ! m)!m=0

n

" pmqn! m

Now the probability of throwing m heads and n-m tails is given by
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pmqn ! m

and the number of indistinguishable ways we can do this is
n!

m!(n ! m)!

Therefore the total probability of throwing m heads and n-m tails is given by

P(n,m) =
n!

m!(n ! m)!
pmqn! m = C(n,m)pmqn! m

Since the probability of something happening is sum of all of these probabilities, the sum must = 1 as 
we have already seen above.

Does this really work? Consider n = 3, so we can actually do it.

! For n = 3, the number of possible outcomes = 2x2x2 = 8

! ! ! ppp! ! ! = 1 = C(3,3) - p(3,3) = 1/8
          ! ppq,pqp,qpp! = 3 = C(3,1) - p(3,2) = 3/8
! ! ! qqp,qpq,pqq! = 3 = C(3,2) - p(3,1) = 3/8
! ! ! qqq! ! ! = 1 = C(3,0) - p(3,0) = 1/8

So it does work!
MATLAB Program

% m-file coins1.m
% 64 coins with p = q = 1/2
p=0.5; N=64; pn=[];
for m=-N:2:N
 pn=[pn,(prod(1:N)*(0.5)^N)/ ...
       (prod(1:((N+m)/2))*prod(1:((N-m)/2)))];
end
bar(pn)
title('Probability of m heads out 64 tosses');
xlabel('Number of heads');
ylabel('Probability')
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We note that the quantity n! that we have been using is usually deÞned only for positive integers.  As 
we shall later in the course, there is a more general deÞnition of this function, which reduces to the 
same values when n = integer. It is given by

s! = xs

0

∞

∫ e−xdx= Γ(s+1)

for all s not equal to a negative integer. It is called the gamma function.

Taylor Expansion in more than 1 variable

We can generalize the Taylor expansion to more than 1 dimensions as follows:
f (x,y) = f (a,b) + (x ! a) fx(a,b) + (y ! b) fy(a,b)

 +
1
2!

(x ! a)2 fxx(a,b) +
2
2!

(x ! a)(y ! b) fxy(a,b) +
1
2!

(y ! b)2 fyy(a,b)

 +
1
3!

(x ! a)3 fxxx(a,b) +
3
3!

(x ! a)2(y ! b) fxxy(a,b) +
3
3!

(x ! a)(y ! b)2 fxyy(a,b) +
1
3!

(y ! b)3 fyyy(a,b)

 + ......

and so on.
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Curvilinear Coordinates

First we mention cartesian coordinate systems. We have

basis vectors = öei     ,   i=1,2,3
These systems have intuitive appeal since they
(1) make use of straight lines
(2) make use of perpendicular(orthogonal) directions of ßat space
(3) vector differential/integral operators take their simplest forms

However, many physical systems are not naturally rectangular, i.e., the surface of a sphere. In this 
case the rectangular coordinates of a point on its surface are changing from point to point, but in 
spherical polar coordinates the surface is speciÞed simply as a surface of constant radius r. Thus, 
the choice of coordinate systems can be important in the description of a physical system. A 
good choice may lead to greater simpliÞcation and insight in the description of the physical 
system. There is, of course, a price to pay for this improvement. Coordinate systems other than 
rectangular are less intuitive and harder to visualize. Integral and differential operators have more 
complicated forms. We now show that the task is quite tractable, perhaps even enjoyable, when 
approached from the right point of view. It turns out to just be a matter of changing directions 
and changing scales as we shall now see.

(u1,u2,u3)

(x,y,z) = (x1,x2,x3)
ui = ui (x,y,z)

Generalized Coordinates
We begin by noting that any 3 independent variables                can be used to form a coordinate 
system if they uniquely  specify the position of a point in space. For convenience we start with 
the familiar rectangular coordinates                            and specify the new generalized coordinates 
by the relations                  . For the transformation between these two coordinate systems to be
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xi = xi (u1,u2,u3)well-deÞned and unique , it is necessary that the inverse  relations                          also 
exist, and that all of these relations are single-valued functions .

(r,! ," )Example: spherical polar coordinates             :

Here we have the relations

r = x2 + y2 + z2( )1/2

! = tan" 1 x2 + y2( )1/2
z

#

$
%
%

&

'
(
(
, ) = tan" 1 y

x
#
$%

&
'(

and the inverse relations

x = r sin! cos" , y = r sin! sin" , z = r cos!

A coordinate axis  now becomes a coordinate curve  along which only one of the 
coordinates is changing (same as in the cartesian case). The coordinate curves in spherical polar 
coordinates are:
! ! ! radii !! !     (only r varies, %, & = constant)
! ! ! longitudes !! (only % varies, r, & = constant) 
! ! ! latitudes ! ! (only & varies, r, % = constant)

It is easy to Þnd explicit algebraic expressions describing these coordinate curves because by 
deÞnition only one of the coordinates changes along such a curve, while the others remain 
unchanged.

 


r = rêr = rê(r )For example, if                             represents a coordinate curve, then the equations
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!
!r

! r
= öer ,

!
!r

! "
= r

! öer
! "

,
!

!r
! #

= r
! öer
! #

describe the vectorial changes along this coordinate curve.

hi êi

We state a rule:  

! Each of these derivatives is a vector in space;  it has a length      and a direction       , where 
! i = r, % or &.   We can readily obtain their explicit forms with the help of rectangular 
! coordinates, where the basis vectors are constants:

 

!
!
r

! r
=

!
! r

(xöex + yöey + zöez) = sin" cos#öex + sin" sin#öey + cos" öez = hr öer

!
!
r

! "
=

!
! "

(xöex + yöey + zöez) = r cos" cos#öex + r cos" sin#öey $ r sin" öez = h" öe"

!
!
r

! #
=

!
! #

(xöex + yöey + zöez) = $r sin" sin#öex + r sin" cos#öey = h# öe#

We then have (taking scalar products)

hr
2 = sin2 ! cos2 " + sin2 ! sin2 " + cos2! = 1# hr = 1

h!
2 = r 2(cos2! cos2 " + cos2! sin2 " + sin2 ! ) = r 2 # h! = r

h"
2 = r 2(sin2 ! sin2 " + sin2 ! cos2 " ) = r 2 sin2 ! # h" = r sin!

Now

 
d!r =

!
!r

! r
dr +

!
!r

! "
d" +

!
!r

! #
d# = hr öerdr + h" öe" d" + h# öe#d# = dröer + rd" öe" + rsin" d#öe#
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(u1,u2,u3)

which should look familiar from our earlier discussions.

In the general case                  we have

 
d
!
r =

∂ !
r

∂u1

du1 +
∂ !

r
∂u2

du2 +
∂ !

r
∂u3

du3

where

 

!
!
r

! ui

=
!

!
r

! ui

=
!

! ui

(xöex + yöey + zöez) =
! x
! ui

öex +
! y
! ui

öey +
! z
! ui

öez

      = vector (actually the tangent vector)

      =hi (
!
r )öei (

!
r )

so that

 

hi (
!
r ) =

∂x
∂ui

⎛
⎝⎜

⎞
⎠⎟

2

+
∂y
∂ui

⎛
⎝⎜

⎞
⎠⎟

2

+
∂z
∂ui

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

and the displacement vector  is

 
d
!
r = hi (

!
r )öei (

!
r )dui

i
! = öei (

!
r )dsi

 
öei (
r )

 
!r  dsi = hi (

!r )dui
 hi (

!
r )

ui

Thus,           deÞnes the coordinate curve  since it gives the unit vector tangent to the curve 
at       .  The inÞnitesimal scalar displacement                       gives the displacement along this 
coordinate curve. The function         is a scale factor .  It ensures that the displacement has the 
dimensions of length, independent of the dimensions of the      .

All other geometrical quantities can be calculated readily in terms of these scale factors and unit 
tangent vectors.
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The inÞnitesimal scalar displacement ds along a path in space is

 

(ds)2 = d

r !d

r = (hi öeidui )

ij
" !(hj öejduj ) = gijduiduj

ij
"

gij = hihj (êi ! êj )where                          gives the so-called metric coefÞcients  of the generalized coordinate 
system.

The differential elements of surface and volume can be written down as

 
d

!
Aij = d

!
! ij =

"
!
r

" ui

dui

#

$%
&

'(
)

"
!
r

" uj

duj

#

$
%

&

'
( = hihj (öei ) öej )duiduj = (öei ) öej )dsidsj

(Think of the  Cartesian case to understand this result. What does the direction mean?) and

d! = dV = ds1ds2ds3öe1(öe2 " öe3)

where the last factor is the volume of a unit parallelpiped.

 
!
r  

öei (

r )

Orthonormal Curvilinear Coordinates

If at every point     , the three unit tangents             are orthogonal to one another(mutually 
orthogonal), that is, if

 
êi (

!
r ) ! ej (

!
r ) = " ij

or equivalently, if

 

!
!
r

! ui

"
!

!
r

! uj

# $ij

ui

 
öe1(
r ), öe2(

r ), öe3(
r )

 
!
r

then the generalized coordinates        are said to form an orthogonal curvilinear coordinate 
system . In this system, the unit tangents                           form a cartesian coordinate system at 
every point       (not the same one at different points). The only complication is that their
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orientation changes from point to point (different than in the case of a cartesian system) in 
space. In such orthogonal systems, the metric coefÞcients

gij = hi
2! ij " diagonal    and     hi

2 =
#x
#ui

$

%&
'

()

2

+
#y
#ui

$

%&
'

()

2

+
#z
#ui

$

%&
'

()

2

and the squared length
(ds)2 = ds2 = hi

2

i
! (dui )

2 = (dsi )
2

i
!

contains NO CROSS TERMS  (so things can get worse!).

The differential surface/volume elements are

 

d
!
σ ij = dsidsj ε ijk

k
∑ öek

dτ = ds1ds2ds3

dsi dxiThus, the          are very much like the rectangular coordinates        .   However, the tangent 
directions change from point to point, except in the case of rectangular coordinates for which 
they are constant unit vectors.

Examples:  Spherical polar coordinates (orthogonal)

 

hr = 1, h! = r , h" = r sin! , öer =
1
hr

#
!
r

#r
, öer =

1
h!

#
!
r

#!
, öe" =

1
h"

#
!
r

#"

sin! cos" öex + sin! sin" öey + cos! öez = öer , cos! cos" öex + cos! sin" öey $ sin! öez = öe!

$sin" öex + cos" öey = öe"

öer %öe! = öer %öe" = öe" %öe! = 0 , öer & öe! = öe" , öe" & öer = öe! , öe! & öe" = öer
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In addition,

 

d
!
r = hrdröer + h! d! öe! + h" d" öe"

dsr = dr , ds! = rd! , ds" = r sin! d"

ds2 = dr2 + r 2d! 2 + r 2 sin2 ! d" 2

and

 

d

σ rθ = rdrdθöeφ = −d


σθr , d


σθφ = r 2 sinθdθdφöer = −d


σφθ , d


σφr = r sinθdrdφöeθ = −d


σθr

dτ = ds1ds2ds3 = r 2 sinθdrdθdφ

The volume element looks like

Does it work for the cartesian coordinates 
(x,y,z) ?

 

!
!
r

! x
=

!
! x
(xêx + yêy + zêz) = êx ,

!
!
r

! y
= êy ,

!
!
r

! z
= êz

hx = hy = hz =1 " d
!
r = dxêx + dyêy + dẑez =

!
!
r

! x
dx+

!
!
r

! y
dy+

!
!
r

! z
dz

dsx = dx , dsy = dy , dsz = dz" ds2 = dx2 + dy2 + dz2

d
!
# xy = dxdyêx $ êy = dxdyêz , d

!
# yz = dydẑex , d

!
# zx = dzdxêy

d%= dxdydẑex &(êy $ êz) = dxdydz

Clearly it does!
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!
r (t)Finally, remember that the coordinate          of a physical event is a function of the time t. It can 

be differentiated wrt t to give

 

!
v =

d
!
r

dt
   and   

!
a =

d
!
v

dt
=

d2!
r

dt2

If cartesian coordinates are used, then their will only be contributions from the time derivatives 
of the components and not the unit vectors (since they are constant in time). But for curvilinear 
coordinates we get contributions from

d
dt

(components) +
d
dt

(unitvectors)

because the unit vectors are also changing in time.

Vector Differential Operators in Curvilinear Coordinates
Now, Þnally, what do                              look like? Now,                           = position in space and 
deÞne a scalar Þeld                      and a vector Þeld                     . The quantity                     
describes, at every point      , a vector that can be decomposed into components along the local unit 
tangents          , that is

 ! " , ! #
!
V , ! $

!
V  

!r = (u1,u2,u3)
! (u1,u2,u3)  

!
V (u1,u2 ,u3) ! " (u1,u2,u3)

 

r

 
öei (

r )

 

! " (

r ) = öei (


r )

i
# ! "( )i

= öei (

r )

i
# ! " $öei (


r )( )

If we expand the gradient in rectangular coordinates(we can use any) then we get

 
∇φ( )i =

∂φ
∂x

öex +
∂φ
∂y

öey +
∂φ
∂z

öez

⎛
⎝⎜

⎞
⎠⎟
⋅ öei (

!
r )

From earlier we have

 
d
!
r = hi

i
! (

!
r )öei (

!
r )dui = öei (

!
r )dsi

i
!
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and then

 
êx ⋅ êi = êx ⋅

∂ !r
∂si

= êx ⋅
∂(xêx + yêy + zêz )

∂si
=
∂x
∂si

Therefore,
∇φ( )i =

∂φ
∂x

∂x
∂si

+
∂φ
∂y

∂y
∂si

+
∂φ
∂z

∂z
∂si

⎛
⎝⎜

⎞
⎠⎟
=
∂φ
∂si

or

 
! " (u1,u2,u3) = öei

i
# (

!
r )

$"
$si

= öei
i

# (
!
r )

1
hi

$"
$ui

ui ∇φ(u1,u2,u3)

 öei (
!
r ) dsi = hidui

This implies that the      in                    can be treated as if they were rectangular coordinates 
if the local tangents            are used together with local displacements                  .

Example:
! " (r,#," ) = öer

$
$r

+ öe#

1
r

$
$#

+ öe"

1
r sin#

$
$"

%

&'
(

)*

In general,

 
! uj (

!r ) = öei
i

" (
!r )

1
hi

#uj

#ui
= öei

i
" (

!r )
1
hi

$ij =
öej (

!r )

hj
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This implies that we get the usual cartesian contribution

! Vj

! si

plus an extra term proportional to Vj
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! si

arising from the curliness of the coordinate curve.
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where m must be different from n in every term, which implies that
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since div(curl()) = 0 always. Generalizing we have
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In general, this does not vanish. This implies that the curliness of the coordinate curve 
contributes to its divergence. Now we put all the pieces together and get
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Finally, we have
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dV = dxdydz
dV = rdrd! dz
dV = r 2 sin! drd! d"

Jacobians

For different coordinate systems we have
! ! ! cartesian! ! !
! ! ! cylindrical polar!
! ! ! spherical polar! !
How do we convert between area and volume elements in different coordinate 
systems?

The rules are:
(x,y) ! (q,t) dA= J dqdt
(x,y,z) ! (q,t,w) dV = J dqdtdw

If                                 , then 
If                                 , then 

where J is a determinant of partial derivatives called the Jacobian .
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J = J
(x, y)
(q,t)

!
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' x
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' y
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' y
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     in 2-dimensions

and
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     in 3-dimensions

Examples:

q = r , t = ! " J =
cos! #r sin!

sin! r cos!
= r " dA= dxdy= rdrd!

q = r , t = θ , w = φ → J =
sinθ cosφ r cosθ cosφ −r sinθ sinφ
sinθ sinφ r cosθ sinφ r sinθ cosφ

cosθ −r sinθ 0
= r 2 sinθ

                         dV = dxdydz= r 2 sinθdrdθdφ
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