Review some basic concepts:
Space of Physics

Scalar = a number (temperature, minutes after noon, ...... )
Vector = set of 3 numbers (characterizes a point in the 3-dimensional world)

The vector representing the location of a point in 3-dimensional space relative to a given origin Is
the position vector. It is represented by the 3-tuple

l:’ - (X1 y; Z) - (X11X2’X3)

This Is a shorthand notation for
F=xi+tyjtzk=xe +x,e, +x,8, = xx+y)+ 23

which are all equivalent representations of the position vector. The three(for 3 dimensions) vectc

§.6,6 or XYD o PP

are unit vectors (length = 1) debPning a right-handed coordinate system as show below:
Az

Y



The numbers (x,y,z) are called the components of the position vector with respect to the chosen
vectors. The unit vectors are chosen to be orthogonal (perpendicular) for convenience as we sha

The length of the position vector is given (Pythagorean theorem) by

|
r=|f| = X% +y? + 2

We debPne avector product operation (symbol =1 ) called the scalar or dot or inner product
by the following relations o
€'!e =", =Kronecker delta
# 1 i=j

cyQ otherwise
In terms of the scalar product we have

3 3
:(Z&é‘j (ZX ] Zxxjé‘-éj = 2, %%9, 2)9
i—1 i,j=1 =1

We now debPne the Einstein summation convention,which assumes a summation anytime that a |
Index appears in the same term. Using this convention the above derivation looks like

rZ:f!F:(xé?)!( ) XX @16 =XxX" = XX

We dePne a unit vector in the direction of the position vector by



This rule generalizes to an arblirary vector as follows

A=Aé=AGA) - e(A>—

—

Vector Algebra C=A+B= (A + B)
C=AA= 1A

=(0,0,0) = zero ornull vector
—A=(-A)& =-A&A)
(-A)+A=0
&-A)=-&A)

>

Geometry of Space

For general vectors A and B ., the scalar productgives

A-B= AB@ =ABjo; =AB
and the length squared of a vectorAs A= AA

In 2-dimensions (completely general result because any 2 vectors form a 2-dimensional plane)

&A) = cos! , § +sn!,  =cos! , @ +cos/ Ayé?,

as shown below.
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These components are called tdeection cosines . In general
gA)!'&® =cos”, adon

Thus, we have é(A) = C0SH, € +C0sY, §, +CosH, €
|
=(6(A)- 9)§

A= AéXA) A "€ =" component = AéXA) "@ = Acos#,
This leads to the general rule
A1B = AB&A) ! E€B) = ABcos"

where - _
! z= angle between A and B

For a general vector

So if two vectors are perpendicular or orthogonal, then their scalar
product is equal to zero, . 0,,= 90



Another way of writing this relation gives
A!B=ABcoy" #$)=AB, +AB, = AB(cos$ cos" #sn$sin")

AY

B

>\

>

This implies that x |
coy! " #)=cos#cos! " In#3n!
which is a standard trigonometric identity.

Vector Product

We debPne the vector(cross) product of two vectors in terms of the standard cartesian unit vectt
follows: LT N TR
A 6! é=",8
where “ij Is debned by 1 f ijk=even peamutation of 123
' =%$"1 I ik =o0dd pemutation of 123

g" 0 ohewis
This says that



Let us work out some properties of vectors derivable from this vector product depbnition involying
For two arbitrary vectors we have

Ax B= £ AB,& =¢,ABE&
In 2-dimensions(for simplicity) using the diagram above we have
Al B=(A&+AB)! (B&+B,2)=AB&! §+ABS! & +ABS! §+ABS! &
=(AB," AB)&! & =(AB" AB)g
= AB(cos#sin$" sin$cos#)e, = ABsin($" #)e,
So iIf two vectors are parallel, then their vector product is equal to zero. In general we have

AI B = ”ijkA qu = ”123A182é3 T ”312A381@ t ”231A2 BSQ T ”213A2 BIQZ» T ”132AlB3@ T "321A3qu
=(AB.#AB,)8+(AB #AB;)8 +(AB, #AB,)é
which is the standard form of the cross-product in 3-dimensions.
We note that the relation A! B= "«AB®& implies that(A! :B)i = "ikA By
Why should we introduce!x ?

(1) It is the easiest way to do complicated vector algebra in 3-dimensions
(2) For higher dlmen3|ons IS the only way.
(3) It makes for a natural fransition to other areas of mathematics (tensors) used in later cours

Other Properties
mnkgljk — 5m|5nj 5 5

Enik€iik = 20,

i = 6



Example of use in complex vector identity:
Al (B! C)=Al (”ijkBjCké) = ”ijkBjC Al g = "ijkB'Ck"mnpAh(Q) €, = k”rmpAh#ipém
= "ijkBjCk"mniAném jkl mni j kAnQn (#rr]#nk $# # )B Ahén
= I?j(fkplkéj $|Bj|Ck,|qu< ( )(AkC )$(C, )(A B )
= B(A%)$ C(AB)
We also note that we can always write any vector in the following way:

é— arbitrary unit vector

A allrbltrary vector ' |

6 (Al =A@ @)#@(A @) = A#e(A 9
l |
A=EA"S + 6! (A! o)

More vector identities:

(e B) =t (m BA)=(1 @)% B)=(#.! . (8) 8)(% B)
(#,! ,$,8)(# B)=(#.# ) B&)=#4#) ! B
B

l l
(%, %8,8,)! ! B&=!) B&W | B&="( &B)%W B

S



J 0 2% _1( 9% a%j

VxVo=e¢. — ¢ S N
V= i OX, axk¢ il OX0X, 2 il OX, O, + Eig XX,
1 9°¢ 9°¢ Ex| 0°¢ 9’0
= — Si'k _Si'k — — :O
20 "oxox, " oxo0x, 2 | 00X, axkax.
ol w R . %B,
(v #B)=1 (s, B2 )=(1 "e)(s) B)=8.) $k%%
1& %B, %B, ) 1& %B, %B, )

2P ohon e on T 2 (M ogon B g op

$,&%B %B, )

——
> (oaok " % omt

Complex Numbers

The crucial quantity here is the numbér . It has the propeiity=-1i° = —i,i* =+1i° =i,.......

We represent a complex number z as a 2-component object in a cartesian basis as
z=(x,y) =x+iy=Real(z) +ilmag(z)
Alternatively, we can represent it with a plane-polar basis as
X=rcos! ,y=rsin! , 0" r"#,$5%" ! " %

1/2
r:(X2+y2) , = tan® Y & z=r(cos! +isin/)
X



/3 | 2

sin/ =!" —+ ...
3! 2!

Now using

we get

N\2 N3
sy 10 L) e

This generalizes to let us write

%1+iml +(iml ) +(iml ) 70

im/

+....:. =€
3! &

=(cosm¥ +isinm/ )

We can also write
m/

™ =(cosm +isnm/ )=(é")" =(cosm +isnm )"

which can be used to get expressions fe@snm’ , snnmy , etc, as
cos2! +isn2! =(cos! +isn! )’ =cos’! " sin?! +2isin! cos!
cos2! =cos’! " sn®! +2isin! cos!
sn2!/ =2sn! cos!
We debPne the complex conjugate of z by
7 =x—iy=re"’ =r(cosf —isino)
z*=z*z=r’=|7"
Note a few special results:

27mni

e =16’ =
en'i — _1 , eIn'/Z — |
Using the standard depbnitions of some mathematical functions we get:

21/2:\/2 ( )1/2 \/_|/2 ( i(/ +2n" ))1/2 \/_ i(/ /2+n") nanteger

Iogz:Iog(re”) logr +i! —Iog( | ren” ’) logr +i(! +2n") n4nteger

— @ 1(6+27n)

, N=Intege



This means that these functions are multi-valued, that is, the square root has 2 values for

each (r,/) pair and the log has an infinite number of values for each (r,/ pair.

The ambiguity is avoided by agreement. We choose n = 0 as the principal value of

multi-valued functions and restrict | “ #$# "

More functions:

:rrei(-’1+!2) , ﬁ:iei('ll"!Z)
42, = I, 2T,
" =r""e'"" =r""(coq! /n)+isin( /n))
. ei! " e"i! ei! _l_e"i!
an! = : , cos!/ =

2
This last expression also works for complex angles

.. e’'+¢ . e'+¢é
coqlly) = S~ cohy — coql) = > =1.54
o e’'-¢e
sn(ly) = > =19nhy

|

Complex Roots and Powers:
ab — e! na’ b!'na

=€
l i"2i — e"2i!ni — é'Zi!né(#’ZiZ”#) e"2i(!n(1)+i(#/212n#) — e#i4n#
= e#i4”#,e5#,e"3#,e9#,...: 23.14........

10



Inverse Functions:

"X%, X _ . e€+e’
z=dnh'¢—"( ==sdnhz=
& a 2
2X 1
let €=u( —=u! =( au’! 2xu! a=0
a u
U:eZ:Xi\/Xz-l_a2
a

Forrealz, & >0 which means we must use the + sign or

z:!n(x+x/x2+a2)! na

Partial Fractions

It is very useful to be able to express a function that is the ratio of two polynomials
X
" h(x)

In a form that easier to work with.

The critical behavior of f(x) is determined by the location of the zeroes of its denominator, tha
where h(x) = 0. Later, when we study complex variables we will call these point the poles (or

singularities) of f(x). To make the behavior of f(x) at the poles explicit we try to write f(x) as a

sum of terms of the form A

(x! ")

11



where! Is one of the zeroes of h(x), that is,!h( = 0 and A is a constant. This expansion is calle
writing f(x) inpartial fractions

Example: Consider the expression

X 4X + 2
h(x) X" +3x+2
Rules:
I 1 (1) The number of distinct terms on the RHS is equal to the number of distinct roots of

h(x)=0.
1 (2) Each term having a different rodt, has a denomingtoy “ )"

(3) If !, is a multiple root, then the value assigned te malue of exponent when h(x)
IS expressed in terms of its roots, that is, as

h(x)=(x! " )" (x! ",)%........
and n, + n, +....=n = highest power in h(x).
If n >1 ,then A must be replaced by an degree-!1 polynomial

Applying these rules to our example we have:

I 1 h(x) has 2 roots' 2 terms in expansion roots from
h(X)=x°+3x+2=(x+1)(x+2)=0! " =#1,",=#2,n=1n,=1
n+n,=n=2

Thus, we write f(x):g(x): AX + 2 _ A N A,

h(x) X°+3x+2 X+1 X+2

12



We determine A, and A, using algebra as follows:
dx+2=A(x+2)+A,(x+1)
4=A+A,
2=2A,+A,

A =12,A,=6

g(x) _  4x+2 _ | 2 N 6

h(x) X +3x+2  X+1 X+2

so that

f(x)=

The textbook has complications and special cases.

Partial Differentiation

Given the relationship y = f(x), which represents a curve in 2-dimensions, then

dy _ di(x)
dx  dx

=dopeofthecurve y=f(x) ortherate of changeof y wt X

Now, if instead, we are given the relationship z = f(x,y), which represents a surface in
3-dimensions, then differentiation is a bit more complicated. Suppose x = constant, which Is &
plane intersecting the surface as shown:

13



¥ = constant

X

The points satisfying z = f(x,y) and x = constant lie on a curve (as shown in the pPgure).To le
about this curve, where z = g(y), we might write dz/dy, but this does not indicate that z really |
function of 2 variables and we are temporarily holding one of the variables constant. So, inste

we write Iz . —
— = patid deivative of z wt vy

'y
where )/:: 1:()<)! 54}{:: |ir.r.l 1:()(4_II)<)¢¢ f<$K)
dx "xt o "X
I S LICY

If the subscript indicating which variable(s) are constant is left off, then it means that all other
variables are constant. It is important to understand that the notation means z has to be writt
as a function of x and y only and then differentiated wrt x holding y constant (last equation).

14



Notation
| 2

I 1z, 1%z I 1z Z 1%z, 17z
—2 , ——" , ) 2 ’ €c
IxIx Ix Ixly Ixly IxIxly Ixly
Some examples:
1) z=x>1y’
Using x=rcos/ , y=rsin!/ , X+y’ =r’
we have s=r2co! " F25n?! # &z =2r(cos’! " €§in®!)
&$r),
0
P /@‘Bzgc _n 5
&$r)
%z
= 2" 2y # i =2r
&$r)
"z #"2& "z #"z2&
(2) z=f(X,y)=xy+x°! = +2X:% ’ :Xz%
( y) )(y ”X y le(y ny Oly(

Suppose that g = xy, then we have z=f(xy)=xy+ 52
z=h(x,g)=g+Xx°

||If% ||Ih%

ﬁ’x& Ix& = 2X

15



We now digress to look atotal differentials and Pnd some interesting facts.

Lfay)=fx+lx,y+1y)" flxy)=f(x+1xy+ly)" fx+lxy)+ f(x+1xy)" f(xy)

Taking the limit as lx" 0 ad !y" O we get
df(x.y) = g fO/o|x+" ERELH
y ﬁ Iy& y

This result easily generalizes to any number of cartesian coordinates. Now for some function
g(Xx,y), pick dx, dy s.t. g(x,y) = constant a5 G&#x,y' y+#y).This implies that

gix+!xy+!y)=9(xYy)
which in turn implies that

df "1 £ dx

dx ﬁ’x& dx

1% dy
o By dx

Uf% "I f% L f% Iy
ﬁ’x& ’x& ﬁ’y&ﬁlx&g

dg=0 dg=0

Going back to our earlier example
f=xy+x> , g=Xxy

(5 :(ﬂ) (&fj (w)g(y+zx)+(x)”3(g)\

IX ), \ OX ady ). \ o

\ /s

_(y+2x)+(x)(—gj y+2x—g_y+2x y=2x  &bdore
X X

16



Chain Rule

Suppose we have a function u(x(t),y(t)). For examgle= XY
This implies that du_ d

dt  dt

Nothing new arises if we use the chain rule

' 140 11, %
du(x,y) = Zg/jdx-l_ﬁ_u Ody

du(x y) ’u%dx ’u%d dx d

(te ) el +/te'’

_ﬁlx& dt %'y& a i

But what If

Fx 2= + ( te'

X(t) =t

y(t)=¢€'

u=xy , x@t)=t , e?! y=t (animplicit rather than explicit equaion for y(t))

Using the chain rule we now get

du(x,y) " Tu% dx dx ’u% dy _ dx dy
dt 'x& dt y& ar Cdr i
We have . | dy 1
dt=d{e”’! y|=(le”’! 1Jdy" — =
(€71 y)=(ret dy" F=t
and therefore du dy 1

d
—+)c——y+z‘—y

dt

17



We now plot as shown: A oy versus y

which gives us y(t) and we thus obtain

du
—  da t

dt .

t + yversusy

General Chain Rule

Given u(x,y), X(s,t), y(s,t) we have

"Tu% "Tu%
d dx+q¢— d
u= ﬁlx& X ’)’&x Y

"I.X% ||Ix%

dx = ﬁ ds+§ dt

IIIO nlo
Y g+ y/dt

dy = Is& 11 &

which gives

18



" [u%"u Ix%

||,x% % 'Iu% ||I % ||I %

du = ﬁlx&ﬁﬁls&ds ;ﬁ_ dt- +

Illu%lllx%

e e

Since we can also write

Iu%"l %%
ﬁ_& ﬁ’s&&
" [uo

du = ﬁ’s&(

Illu% Illu%lllx%

ﬁ/s& ﬁa& ﬁl_s& ﬁ_&ﬁ

"IM% ||Iu%||[x%

ﬁlt& ﬁ/x&ﬁlt& ﬁy&ﬁlt&

&ﬁﬁls& S+§ t&dt'&

""Iu%"lx% Iu%"l %%d
"$e e THe kg

] [u%
ﬁlt&
Iu%" Iy%

dt we have

“Tu%" ’y%

Example: U= X’ +y , X=s+t X | y:SZ
2 2
These give X:S+t+s , y:S+t! > and
2 2
"IX% _1+2s ’y% 1( 2s
Is& 2~ /s& 2
"Tu%y 1+2s 1(23

3158 "

(2X) +(D)

2

1
:5+t( 2ts( 2S°

= (s+t)(L( 2S)+%( S

19



The Dirac Delta Function

Consider the vector beld.  with the form
Y B
y = —

r r

l.e. it points radially outward and falls off agr?
This is the electric beld of a point charge, or the gravitational beld of a point mass. HereOs a li
paradox: CLAIM V .y =0

(xy2)  _ s

V.
(x2 +y° 4 22)3/2 (x2 +y° 4 22)3/2 (x2 +y° +2

2)5/2 +(X e y)+ (X 2)

—2X° +y° + Z°
:( . 2y 2)5,2+(xey)+(xez)=0
X“+y +2z

OK, so this Peld is divergenceless. It looks like something is 3owing out, but on the other hand

magnitude ofv is getting smaller as you go out, so maybe itOs OK. BUT what about the diverg
theorem? If | calculate

| I ! — 11 f

vida= r—2

IFr * sin #d#d$ = 4 %

spheae
It is not zero! So, is the divergence theorem wrong, or did we miss something?

The answer is that we were a little careless in calculating the divergence and declaring it to be ;
It is zero, almost everywhere. However, if you look at our equations exactly at the point x =y = z
0, you will see that the derivatives diverge, i.e. are inPnite (you may need to do LOHospitalOs rt
convince yourself, but itOs right).

20



So we have encountered a very peculiar situation, a function of space which is inPnite at one pc
but zero everywhere else.This type of function was explored in the physics context by Paul Dire
we refer to it as the Dirac delta-function, and give it the synmbalebned as

5()=0 , x=0 and [3&(x)dx=1

and

) =1 (0! () (2)
Mathematically, it is not a function; itOs called a distribution.

So since ¢

3 "—'(Z)dv = 49

4 I

we have determined that o) .
r

Properties of  d-function
! (X)=0 , x"O
$
04(x# a) f (x)dx=f(a)

#$

!(ax)zi! (X)
(g0) = & L XH @)
. |9'(a,)

where & are the zeros of g(x) = 0.

21



Example 1: S ,
H# (x" 3)x’dx=27 but #(x" 3)x’dx=0
0 0

Example 2: , | 3 y 3 :
;$ (5x)(x + 1) dx :g";g Y+ 1’dx= =
Example 3: ) o o o
2 1 1343 X" I(x+ ;
FOCTxEg I(g'<1>|) ' |c§'<" 1>|)§ o
= %Zﬂ; (X" Dx’dx+ i?g (X + 1)x3dx;(< = %(l +0) = %

Taylor Series

A MaClaurin expansion for a function f(x) in 1-dimension is given by relative to the originx =0
follows directly if the function f(x) has a power series expansion. Let

f)=" ax’

n=0
We then have |
f(0O)=a,,f'(0)=a ,Ef"(O):a2 .......

or in general

22



1 (n) —
p F7(0) =4,
and thus £ (n)
f=" O
n=0 n!

Xn

This Is also called the Taylor expansion for f(x) about the origin xA=Taylor series, in general,

means a power series in powers of (x-a) where a = some constant. The derivation of the coefb
IS identical to the last derivation except that we use x = a instead of x = 0.

Let f(x) :# a,(x! a)

1
We then have f(a)=a,, f-(a):al,Ef"(a):a2 .......

or in general 1

(n) —
~ () =3,

and thus

Let us now determine f(x+h) using a neat method. Consider the following construction for an

InPnitesimal displacement "
P f(x+!x):f(x)+!xﬁ:§1+!xi%f(x)
dx dx&

where we have used the debnition of the derivative(exact only in the limit of course). Now mak
another displacement d o

f(x+ 2! x):é1+! xdig"f(xﬂ x):%lﬂ e 100
X X

Since a Pnite displacement h can always be constructed from an inPnite number of consecutiv
iInPnitesimal displacements, we have

23



. # hdg& # de&
f(x+h)=limgd+——1( f(X)=expoh—( f(X
( ) mug{& ndx( () IO%@dx( ()
where we have used the interesting result that

limé +%Qf‘ - exp(hQ)

n! n

The differential operator ( d )
exp| h—
dx
IS called the displacement operator. Since the exponential function has the power series
representation b (@ax)
exp(ax) = kl
k=0 .

we can write d

|
f(x+h) =expygh—
(X+h) = expy ix

;)f (x) = k(:O%f (9 (x)

Example:
an!/ (t+")= exp%,’%f‘sin(! t)

N’

2 3
gy ld 1.0 +....9n(! t)
dt 2! dt* 3 dt’? ;

*

N’

sin(’ t)+! "cog! t)/ %(! "Vsin(! t)/ %(! " oog! t)+....

*}

—_ - ) i m\2 ) ) " i m\3 )
=gn(/ t);\kl/ 2!(! ) +....;+cos(! t);t! / 3!(! )

=dgn(! t)coq! ")+ coq! t)sin(! ")

which we know to be correct.

24



These results generalize easily to 3-dimensions as

ora=" L) 0

n= On
and also can be used for displacements in t|me

f(t+/)= expﬁ — f(t)—)_ f(k)(t)

Z-o K!
Binomial Series
Consider the following function F(X) = (1+X)"
If we expand this out we get (1) ) " -
f(x)= 1+ X)"=1+nx+ > X2 4 ....= 2 m!(n; m)!x”‘ — mzé(m}(m

this is called the Binomial series and the () is the Binomial coefPcient. For n = integer, the serie
terminates at m = n.

In a similar way we can write(for n = integer),

n n' .
(p+Q)" = Cmm P 4T (P

This has an interesting interpretation in the following example. Suppose we have n coins that we
[3Ip onto a table and we count the number heads and tails. Suppose the probability of getting a |
= p and the probability of getting a tails is . Hence p+qg = 1.This means we have

” |
n: mn! m

(pra) =) =1=" — o'

Now the probability of throwing m heads and n-m tails is given by

25



m nlm

P

and the number of indistinguishable ways we can do this is
n!

mi(n! m)!
Therefore the total probability of throwing m heads and n-m tails is given by

|
n: m.n!' m

P(n,m) = (Nt m)! p'qg" " =C(n,m)p

mn!' m
g

Since the probability of something happening is sum of all of these probabilities, the sum must =
we have already seen above.

Does this really work? Consider n = 3, so we can actually do it.
I For n = 3, the number of possible outcomes = 2x2x2 = 8

L1 D ppp!! ' =1=C(3,3)-p(3,3) =1/8
! ppg,pgp,qpp! =3 =C(3,1) - p(3,2) = 3/8

11 qgp,qpg,pqq! =3 =C(3,2) - p(3,1) =3/8
1 1 gqg!! ' =1=C(3,0)-p(3,0)=1/8

So it does work!

MATLAB Program

% m-file coins1.m

% 64 coinswithp=q=1/2

p=0.5; N=64; pn=[];

for m=-N:2:N

pn=[pn,(prod(1:N)*(0.5)"N)/ ...
(prod(1:((N+m)/2))*prod(1:((N-m)/2)))];

end

bar(pn)

title('Probability of m heads out 64 tosses');

xlabel('Number of heads);

ylabel('Probability")

26



Probability of m heads out 64 tosses
0.1

0.09
008
007
0.06 -

2 oost

robability

P

0.04

003+

002+

001

0

1 1 1
0 10 20 30 40 S0 60 70
Murmber of heads

We note that the gquantity n! that we have been using is usually dePned only for positive integer:
we shall later in the course, there is a more general dePnition of this function, which reduces to
same values when n = integer. It is given.by
sl= ste‘xdx= I'(s+1)
0

for all s not equal to a negative integer. It is called the gamma function.

Taylor Expansion in more than 1 variable

We can generalize the Taylor expansion to more than 1 dimensions as follows:
f(x,y)= f(ab)+(x! a)f(ab)+(y! b)f,(ab)

+%(x! a)’ fxx(a,b)+§(x! a)(y! b)fxy(a,b)+%(y! b) f, (a,b)

+%(x! a)3fxxx(a,b)+§(x! a)*(y! b)fxxy(a,b)+§(x! a)(y! b)’ fxyy(a,b)+%(y! b)*f,,(a,b)

and so on.
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Curvilinear Coordinates

First we mention cartesian coordinate systems.We have

bassvectors=& , FE1,2,3

These systems have intuitive appeal since they

(1) make use of straight lines

(2) make use of perpendicular(orthogonal) directions of [3at space
(3) vector differential/integral operators take their simplest forms

However, many physical systems are not naturally rectangular, i.e., the surface of a sphere. Ir
case the rectangular coordinates of a point on its surface are changing from point to point, bi
spherical polar coordinates the surface is specibPed simply as a surface of constant radius r.”
the choice of coordinate systems can be important in the description of a physical system. A
good choice may lead to greater simplibcation and insight in the description of the physical
system.There Is, of course, a price to pay for this improvement. Coordinate systems other th:e
rectangular are less intuitive and harder to visualize. Integral and differential operators have
complicated forms.We now show that the task is quite tractable, perhaps even enjoyable, wh
approached from the right point of view. It turns out to just be a matter of changing directions
and changing scales as we shall now see.

Generalized Coordinates

We begin by noting that any 3 independent variales,,u,) can be used to form a coordir
system if theyuniquely specify the position of a point in space. For convenience we start witl
the familiar rectangular coordinatés, y,z) = (x,,x,,x;,)  and specify the new generalized coordi
by the relationsi =u.(x,y,2) . For the transformation between these two coordinate systems to
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well-dePned and unique it Is necessary that thewverse relations x = x (u,,u,,u,) also
exist, and that all of these relations asmgle-valued functions

Example: spherical polar coordinates (r,!,")

Here we have the relations

Fid

1/2
r :(x2 +y’ +zz)

# 2+ ) 1/2&
! :tanul‘%x 4 ) 2 ,) :tannl?((&
% %

L

— 7 —

/ — rzinfd 7

Z

and the inverse relations
X=rsn! cos",y=rsin! sn",z=rcos/ ¢

A coordinate axis now becomes @&oordinate curve  along which only one of the

coordinates is changing (same as in the cartesian case). The coordinate curves in spherical pt
coordinates are:

L oradii !t (only r varies’y & = constant)
I I 1 Jongitudes !! (onhfovaries, r& = constant)
11 | Jatitudes! ! (only& varies, r'%= constant)

It is easy to Pnd explicit algebraic expressions describing these coordinate curves because by
dePnition only one of the coordinates changes along such a curve, while the others remain
unchanged.

For example, ifl’ = rér =r&T) represents a coordinate curve, then the equations
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Y RV R Y >

’r

@r J = r - y T =T
1" 1" I # I #

describe the vectorial changes along this coordinate curve.

We state a rule:

| Each of these derivatives is a vector in space; it has a lémgth  and a dir€ction
I 1=r%o0r & We can readily obtain their explicit forms with the help of rectangular
| coordinates, where the basis vectors are constants:

I'f

4

'r

/

Ill

!#

I #

I e e " . " s . T} . s "o e
= ,r(X@+YQ/+ZQz)‘Sn COS#Q +s8in” 9n#@, +cos"€ = h @

(X@ +Yy§ +78) =rcos” cos#§, +rcos”Sn#Q $rsn”€@ = h.@

(x@x +Yy€ +26)=3rsn" In#g +rsin” cos#g = h,e

We then have (taking scalar products)

NS =r%(sin’! sin

III

N’ =dn®/ cos’ " +€n°! sin’" +cos’! =1# h =1
"’ =r?(cos’! cos’ " +cos’! sin®" +€in!)=r?# h =t

" +dn®! cos ") =r’sn’! # h. =rdn!

I:
" +—#d# h&®dr+h&d" +hd#=dre® +rd" & +rsn"d#e,

.whel
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which should look familiar from our earlier discussions.

In the general caséu,,u,,U,) we have
!
dr = 8—rdul+8—rdu +8—rdu
au, Ju, du,

where :
!r_!r ! I'X !y..+!z..
!u._’u !—(x@X+ye;+z@)——I@K+H H@
= vector (actudly the tangent vector)
=, (r)@(r)
so that

he{(2) (2] (2T

and thedisplacement vector is
di =1 h()é()dy = &(r)ds

Thus,@(F) debnes theoordinate curve  since it gives the unit vector tangent to the curve
at r . The inPnitesimal scalar displacemént= 4;(r)du, gives the displacement along this
coordinate curve.The functiohR (f) issztale factor . It ensures that the displacement has the
dimensions of length, independent of the dimensions of the

All other geometrical quantities can be calculated readily in terms of these scale factors and t
tangent vectors.
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The inbnitesimal scalar displacement ds along a path in space is
(ds)* =drtdr =" (hédu)!(h&du)="" gdudu,

Ij ]
where @; =hh,(&!€) gives the so-calladetric coefpcients  of the generalized coordinate
system.

The differential elements of surface and volume can be written down as

l |
! | #p & HoUp & L Lo
A, =d; =g -0 ) g -du (=hi (@) @)dudy, = (@) §)dsds
I j

(Think of the Cartesian case to understand this result. What does the direction mean?) and

d/ =dV =dsdsds€(e " )

where the last factor is the volume of a unit parallelpiped.

Orthonormal Curvilinear Coordinates

If at every pointt ,the three unit tangent$(r) are orthogonal to one another(mutually
orthogonal), that is, if i i
° e()le)="
or equivalently, if Ir Iy
q y LI
'u, Ju,
then the generalized coordinated, are said to formoathogonal curvilinear coordinate

system . In this system, the unit tangengd(r),&(r),&(F)  form a cartesian coordinate system
every point I' (not the same one at different points). The only complication is that their
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orientation changes from point to point (different than in the case of a cartesian system) in
space. In such orthogonal systems, the metric coefbcients

$Sax' S#y' $S#z'
g, =h’!," diagonal and h’= @f#_uz +§f§;‘ﬂuk +§f#—uz
and the squared length
(d9=ds’ =1 h(dy) =1 (ds)’
containsNO CROSS TERMS (so things can get worse!).

The differential surface/volume elements are
do; = dsds ggijkq

dr = dsds,ds,

Thus, the ds are very much like the rectangular coordinatbé . However, the tangent
directions change from point to point, except in the case of rectangular coordinates for which
they are constant unit vectors.

Examples: Spherical polar coordinates (orthogonal)

. Lo1# . 1# . 1#
h=1,h =r,h=ran/ , € =———, €6 =——,0 = —
| h # h, # h, #"
sin/ cos"@ +sn/sn"g +cos/€ =€ , cos/ cos"§ +cos/ sn"g $sn/e =€

$sin"g +cos"Q =@
64 =6%-6%=0  §a8-6,686-6 686=¢
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{radiallfrnutward and In addltlon’
tangent to r lined ' .. .. ..
\ df =hdré +hd/ @ +h.d"é
ds =dr,ds =rd/ ,ds =rsn/d

[east alnng and

- ffjf;fftangent to a latitude)

E

1))

rsouth along and

tangent to a longitude) CSZ — drz +r2d! 2 +rzgn2!d”2

! and

do,, = rdrdéé =-dg,, , dG,, =r°sin6dod¢é =-dG,, , dG, =rsinddrdp§ =-dg,,

— o 2 q
dz = dsds,ds; = r” snfdrdodg Does it work for the cartesian coordinates

. X,V,Z2) ?
The volume element looks like (x.y.2)
wolume I r I I r

element L . X + +Z
T 0GR ) =8 AT

rsinAdp
| | |

N A n A I'r I'r
h.=h =h,=1 dr—dxex+dyey+dzez—,—dx+ﬁdy+ﬁdz

dg dx, ds, =dy,ds, = dz" ds2 dx’ +dy2+dz2
d# = dxdyg, $ & = dxdyg, , d# = dydz , d# = dzixg,
d%= dxdydz, &g, $ &,) = dxdydz

Clearly it does!

34



Finally, remember that the coordinate(t)  of a physical event is a function of the time t. It cal

be differentiated wrt t to give |

| dr | dv  d¥x
v=— ad a=—=—
dt dt dt

If cartesian coordinates are used, then their will only be contributions from the time derivative:
of the components and not the unit vectors (since they are constant in time). But for curvilines
coordinates we get contributions from

d d .
— (components) + — (unitvectors)
dt dt

because the unit vectors are also changing in time.

Vector Differential Operators in Curvilinear Coordinates

Now, bPnally, what do! *, 1| #, | $v look like? Nowr = (u,,u,,u;) = position in space an
debne a scalar Delﬂ(ul,biz,ug) and a vector bEla, ,u,,u,) .The qudntity,,u,,u,)
describes, at every poinf  , a vector that can be decomposed into components along the loc
tangents@(r') ,that is

) =# 6N)(! ) =# e(n)(! (D))
If we expand the gradient in rectangular coordinates(we can use any) then we get
.|
Vo)~ La+Le+ Lo a0

From earlier we have

dr =1 h(r)é(F)du =1 §(r)ds
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and then BH d(xe, + ye, +ze ) ~ Ox

6,6 =8 =0, = —
ds. ds. ds.
Therefore, (Vo) = P IX . ap oy N op dz | _ dp
" \IXdS dyds dzds ) Js

or $"
! ”(ul,uz,us) #@(r)_—# @( ) $LI

This implies that theli  irve(u,u,,u;)  can be treated as If they were rectangular coordinates
if the local tangents  @(r) are used together withocal displacements  ds = A.du

Example: %. .
p | n( #”)_'Q £+ Ei @ 1 $£
& r r $# rsin# $")
In general, | 1 #u, 11 &(r)
Ly (=" 8(0r)——L=" &()—%. =-2
0 ()=" 80), =" 80), 8=

i i i J

which implies that a generalized coordinate curve haataral curliness  of

v = oL e
J J @&]2 J

Consider ! $@ ' *$ @ e -
| "V = 1 "o I hVy = .ol "IyhV +! (hV )" =/
ﬁ: %J sz #J'tﬂ-o h1211+ (JJ) hJ[

8 11 ..

:# | (thj) h_jzﬁ O,jkh—jE(thj)@K
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This implies that we get the usual cartesian contribution
! Vj
's

plus an extra term proportional to V. I'h

arising from the curliness of the coordinate curve.
We can also write |

1 9% 1 %
! V. hV. |h
V % ”khh /fui(h’ ’)q hlhhﬁi( ”k%( )kq

Similarly, we can write

I (um! un)=(! u.)" (! un)+um! " (! un):(! u)" (! un):#émc(&" #E & _ 4 )mnk?i

where m must be different from n in every term, which implies that

q — QE —_ " ' @3> — —_ ' Q’)hS
! u,! u =% "(u!u)& ! =0=!
)= Ay, T, T TS, hhh.
since div(curl()) =0 always Generalizing we have
oy v Oh _, .8 | p_hlhzh3
hyhyh, Pi l h,

Therefore, we get

. . L # .
0=! "T=g) — "@+=1 "@) | "@=%xpol — "d=*p,
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In general, this does not vanish.This implies that the curliness of the coordinate curve
contributes to its divergence. Now we put all the pieces together and get

V=1 ()= ":;-ﬁlp' /—#+9% le" !(pivi)"%i

= ! " =H =
#4m).{#n%()
Finally, we pave
| $" ) 1 $& $)
V=1 Vi=p ot 1 =0 g
$s ipi$3( $§;l-

Jacobians

For different coordinate systems we have

I 1 I cartesian! ! ! dV =dxdydz

I 1 1 cylindrical polar! dV =rdrd! dz

| | 1 spherical polar! 'dV =r*sin/drd/d"

How do we convert between area and volume elements in different coordinate
systems?

The rules are:

it (xy)! () ,then dA=|J|dqdt
If (x,y,2)! (qg,t,w) ,then dV =|J|dgddw

where J is a determinant of partial derivatives calledJdneobian .
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and
Examples:

q=r .,
g=r , t=06 |,

"X "X
S, lxs_['a
“av% |'y 'y
q 't
IX JX X
Jdq ot oJw
_ [ xy.2)|_|dy dy dy
(th) log ot ow
Jz dz 0Jz
Jq ot oJw
cos! #Hran!
=" J= _
sn!  rcos!/
sin @ cos ¢
W=¢— J=|sinfsing
cos@

dV = dxdydz= r? sin0drdod¢

1in 2-dimensions

In 3-dimengons

=T

—rsin@

dA=dxdy = rdrd!

rcosfcos¢ —rsimnfsing

rcos@sing rsinfBcoso

0

= r%sin6



