
Optical Ray Tracing Using Matrices 
 
Reference 
http://chaos.swarthmore.edu/courses/Physics50_2008/P50_Optics/03_Opt_Matrix_Meth.pdf 
 
Theory 
An optical ray at any point in a paraxial optical system can be specified by a two-element 
column vector in which the upper element is the distance of the ray from the optical axis (y) and 
the lower element is the index of refraction of the medium times the sine of the angle the ray 
makes with the optical axis (V) 
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Two-by-two matrices operating on this column vector then describe how the ray changes as it 
progresses through an optical system.  If the ray traverses a distance t (measured along the 
optical axis) in a uniform medium of index n, then the translation matrix that produces the new 
column vector is 

! 

1 t /n

0 1

" 

# 
$ 

% 

& 
' . 

 
If the ray encounters a spherical boundary separating materials with indices of refraction n1 and 
n2, the refraction matrix that produces the new column vector after traversing the boundary is 
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where r is the radius of curvature of the boundary.  The matrix appropriate for a thin lens, which 
is really an approximation for two refraction and one translation matrices, can be written in terms 
of the focal length f of the lens 
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If the matrix is appropriate for a ray progressing from an object to the real image of the object 
formed by an optical system, then the matrix has a number of properties: 
(a) the determinant of the matrix equals 1; 
(b) the upper right element vanishes; 
(c) the upper left element is equal to the transverse magnification; and 
(d) the lower right element equals the inverse of the transverse magnification. 
 
Let the distance from the object to the first reference plane of the optical system be R and the 
distance from the second reference plane of the optical system to the image of the object be S.  
Let the matrix for the optical system be 
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Then the matrix appropriate for a ray traveling from the object to the real image is 
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where α is the inverse of the transverse magnification.  Therefore, if one measures the transverse 
magnification for several values of R, then a graph of α vs. R has a slope equal to C and an α-
intercept equal to D.  Since AR+B +S(CR+D) = 0, then one  can define β to be AR+B =  
-S(CR+D) = -Sα.  Therefore, a graph of β vs. R has slope A and β-intercept B.  Thus, by 
measuring the transverse magnification and S for several values of R, the complete matrix for the 
optical system (defined by what is between the two reference planes) can be determined. 
 
Experiment 
The object of the experiment is to empirically determine the matrix representing a converging 
and diverging lens separated by a certain distance.  This matrix can then be compared to the 
theoretical one.  To make the calculations easier, let the first reference plane be at the position of 
the converging lens and let the second reference plane be at the position of the diverging lens. 
 
The first lens is a converging lens with f1 ≈ 10 cm.  Place it on the optical bench with the bright 
object and use the screen to find the image it forms.  By measuring the object and image 
distances, find the focal length of the lens using the thin lens equation. 
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Do this for several object distances and average your values to get a final value for f1. 
 
The second lens is a diverging lens with f2 ≈ -15 cm.  Measuring its focal length is a bit trickier.  
Set up the converging lens so a real image of the bright object forms on the screen.  This real 
image is going to be the virtual object for the diverging lens.  Place the diverging lens between 
the converging lens and the screen and move the screen to where the new image forms.  Note the 
distance from the original image to the diverging lens and the distance from the new image to the 
diverging lens.  Use these with the thin lens equation (remember virtual object distances are 
negative) to find the focal length of the diverging lens.  Do this for several virtual object 
distances and average your values to a get a final value for f2. 
 
Now place the converging and diverging lenses 15 cm apart with the converging lens closer to 
the bright source.  Measure both the transverse magnification (1/α) and the distance from the 
diverging lens to the image (S) for at least 5 values of R centered around 20 cm.  Make graphs of 
α vs. R and β vs. R, and from these graphs determine the elements of the matrix for the optical 
system.  Is the determinant of your matrix equal to 1 (within experimental error)? 
 
Calculate the matrix for the optical system using the measured focal lengths and the distance 
between the lenses.  Are the two determinations of the matrix equal (within experimental error)? 


