
Physics 130 General Relativity Seminar

Assignment 6 February 25, 2013

General topic: Curved Spacetimes in General Relativity

Part 1: Readings

Hartle: Ch 10 - Solar System Tests

Hartle: Ch 11 - Relativistic Gravity

Part 2: Problems Hartle Problems

1. Hartle 10.07 Solar oblateness and precession of the perihelion

2. Hartle 10.09 Solar corona and bending of light

3. Hartle 10.10 Real data analysis

4. Hartle 11.02 Odd number of gravitational lens images

5. Hartle 11.04 Path length difference

6. Hartle 11.06 A microlensing event

7. Hartle 11.07 A lensing event

Boccio Extra Problems

1. Weak Gravity

In weak gravity, the metric of a mass M at rest at the origin is

ds2 = −(1 + 2ϕ)dt2 + (1− 2αϕ)δijdx
idxj

where α is a constant and ϕ = −GM/r.

(a) What is the value of α in general relativity?

(b) Instead of sitting at rest at the origin, the mass M moves in
the +x−direction with speed v, passing through the origin at
time t = 0, so that its position as a function of time is x = vt.
What is the metric in this case?

(c) A photon moves along a trajectory originally in the +y−direction
with offset b behind the y−axis, so that its undeflected tra-
jectory is x0 = −bx̂ + tŷ. By what angle is the path of this
test particle deflected?
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(d) What is change in energy of deflected photon in part (c).

2. Star with Constant Density

The metric of a star with constant density is

ds2 = −
(

1− 2M(r)

r

)
c2dt2+

(
1− 2M(r)

r

)−1

dr2+r2dθ2+r2 sin2 θdϕ2

where

M(r) =

{
M(r/R)3 0 < r < R

M R < r

is the mass interior to radius r, M is the total mass of the star,
and R is the coordinate radius of the surface of the star. Assume
R > 2M . We consider the orbits of photons where gµνu

µuν = 0.

(a) Are there any singularities (coordinate or otherwise) of the
metric?

(b) Write the timelike and spacelike Killing vectors for this space-
time. There are actually two spacelike Killing vectors, but we
will only need one since the photon orbits are planar. You
may set θ = π/2. Write out the associated conserved quanti-
ties.

(c) Derive an expression for dr/dλ where λ is the affine parame-
ter. Put your expression in the form

1

b2
=

1

l2

(
dr

dλ

)2

+Weff (r)

and define b in terms of the constants of motion and Weff .

(d) Sketch Weff and describe the photon orbits. How do these
differ from the photon orbits in the standard Schwarzschild
geometry?

(e) Calculate the coordinate time t for a photon to travel from
the center of the star at r = 0 to the surface at r = R.

(f) Assume R >> M and find the approximate delay, i.e., the
extra time relative to the result from special relativity (t =
R) to leading order. What is the value for the Sun where
M = 1.5 km and R = 7.0× 103 km.
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3. In the Schwarzschild Geometry

Consider a spacetime described by the Schwarzschild line element:

ds2 = −
(

1− 2GM

c2r

)
c2dt2+

(
1− 2GM

c2r

)−1

dr2+r2dθ2+r2 sin2 θdϕ2

(a) A clock at fixed (r, θ, ϕ) measures an (infinitesimal) proper
time interval, which we denote by dT . Express dT (as a func-
tion of r) in terms of the coordinate time interval dt.

(b) A stationary observer at fixed (t, θ, ϕ) measures an (infinitesi-
mal) radial distance, which we denote by dR. Express dR (as
a function of r) in terms of the coordinate radial distance dr.

(c) Consider the geodesic equations for free particle motion in
the Schwarzschild geometry. Write out explicitly the equa-
tion corresponding to the time component. The equations
corresponding to the space components will not be required.
The resulting equation can be used to determine dt/dτ (where
τ is the proper time and t = x0/c is the coordinate time). In
particular, show that the quantity

k =

(
1− 2GM

c2r

)
dt

dτ

is a constant independent of τ . Using the time component of
the geodesic equation obtained earlier, compute the values of
Γ0
αβ for this geometry. Consider all possible choices of α and
β.

(d) Consider a particle falling radially into the center of the Schwarzschild
metric, i.e., falling in radially towards r = 0. Assume that
the particle initially starts from rest infinitely far away from
r = 0. Since this is force-free motion, the particle follows a
geodesic. Using the results of part (c), evaluate the constant k
and thereby obtain a unique expression for dt/dτ that is valid
at all points along the radial geodesic path. HINT: What is
the value of dt/dτ at r →∞ (where the initial velocity of the
particle is zero)?

(e) Since ds2 = −c2dτ 2 = gµνdx
µdxν it follows that

gµν
dxµ

dτ

dxν

dτ
= −c2
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In this problem, gµν is determined from the Schwarzschild
line element. Using these results and the result obtained in
part (d) for dt/dτ , compute the particles inward coordinate
velocity, v = dr/dt, as a function of the coordinate radial
distance r. Invert the equation, and integrate from r = r0 to
r = rs, where r0 is some finite coordinate distance such that
r0 > rs and rs = 2GM/c2 is the Schwarzschild radius. Show
that the elapsed coordinate time is infinite, independent of
the choice of the starting radial coordinate r0, i.e., it takes
an infinite coordinate time to reach the Schwarzschild radius.
HINT: For radial motion, θ and ϕ are constant independent
of τ . Note that for inward radial motion dt/dτ is negative.

(f) Compute the velocity dR/dT as measured by a stationary ob-
server at a coordinate radial distance r. Verify that |dR/dT | →
c as r → rs. HINT: Use the result for dR and dT obtained in
parts (a) and (b).

4. Time delay to Jupiter

The Solar System is accurately described by the Schwarzschild
metric

ds2 = −
(

1− 2GM

c2r

)
c2dt2+

(
1− 2GM

c2r

)−1

dr2+r2dθ2+r2 sin2 θdϕ2

where M is the mass of the Sun, t the time coordinate, r the radial
coordinate, and θ and ϕ are polar angles.

A radio pulse is sent from the Earth, reflected off a satellite of
Jupiter (the satellite is a point), and received on Earth. Jupiter
is a distance r2 from the Sun, the Earth is a distance r1. Assume
that Jupiter is on the other side of the Sun relative to the Earth.
Let r0 be the distance of closest approach of the radio pulse to the
Sun. Calculate the gravitational delay in the round-trip time of
the radio pulse as a function of r0, to lowest order in G. Estimate
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very roughly the magnitude of the effect, given that

mass of Sun ≈ 2× 1033gm
radius of Sun ≈ 7× 1010cm
Sun− Earth distance ≈ 1.5× 1013cm
Sun− Jupiter distance ≈ 8× 1013cm
G ≈ 6.67× 10−8cm3/gm− sec2
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