
Physics 130 General Relativity Seminar

Assignment 10 April 01, 2013

General topic: The Einstein Equation

Part 1: Readings

Hartle: Chap 20 A Little More math

Hartle: Chap 21- Sections 1-4 Curvature and Einstein’s Equation

Hartle: Chap 21 Supplement - Deriving Equation of Geodesic Devia-
tion and Formula for Riemann Tensor

Part 2: Problems Hartle Problems

1. Hartle 20.04 Coordinate basis components of a gradient

2. Hartle 20.05 The upstairs basis

3. Hartle 20.07 Basis and dual vectors

4. Hartle 20.19 Normal vector and null curves

5. Hartle 20.25 Parallel propagation

6. Hartle 20.26 Connected by a Lorentz boost

7. Hartle 21.10 Uniform gravitational field

8. Hartle 21.12 Curvature of the wormhole

Boccio Extra Problems

1. A Two-Dimensional World

A certain two-dimensional world is described by the metric

ds2 =
dx2 + dy2[
1 + x2+y2

4a2

]2
(a) Compute the connection coefficients Γijk

(b) Let ~ξ = −yêx + xêy. Show that ~ξ is a solution of Killings
equation.
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(c) What is the conserved quantity that corresponds to this sym-
metry? Show from the geodesic equation that this quantity
is indeed conserved.

(d) Compute the Riemann tensor Rij
kl, the Ricci tensor Ri

j, and
the Ricci scalar R. What is the shape of this world?

2. More Geodesics

Consider the 2-dimensional metric

ds2 = a2
(
dχ2 + sinh2 χdϕ2

)
(a) Compute the connection coefficients Γijk

(b) Compute all components of the Riemann tensor Rij
kl, the Ricci

tensor Ri
j, and the Ricci scalar R.

(c) A geodesic starts at χ = b, ϕ = 0 with tangent dϕ/dλ = 1,
dχ/dλ = 0. Find the trajectory χ(ϕ).

(d) A second geodesic starts at χ = b+ ξ(ξ � 1), also initially in
the ϕ-direction. How does the separation initially increase or
decrease along the two curves.

(e) What is the shape of the geodesic trajectory as a→∞, χ→ 0
with r = aχ fixed.

3. Parallel Transport on a Sphere

On the surface of a 2−sphere of radius a

ds2 = a2
(
dθ2 + sin2 θdϕ2

)
Consider the vector ~A0 = ~eθ at θ = θ0, ϕ = 0. The vector is
parallel transported all the way around the latitude circle θ =
θ0 (i.e., over the range 0 ≤ ϕ ≤ 2π at θ = θ0). What is the

resulting vector ~A? What is its magnitude
(
~A · ~A

)1/2
? HINT:

derive differential equations for Aθ and Aϕ as functions of ϕ.

4. Curvature on a Sphere

(a) Compute all the nonvanishing components of the Riemann
tensor Rijkl ((i, j, k, l) ∈ (θ, ϕ)) for the surface of a 2−sphere.
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(b) Consider the parallel transport of a tangent vector ~A = Aθêθ+
Aϕêϕ on the sphere around an infinitesimal parallelogram of
sides êθdθ and êϕdϕ. Using the results of part (a), show that

to first order in dΩ = sin θdθdϕ, the length of ~A is unchanged,
but its direction rotates through an angle equal to dΩ.

(c) Show that, if ~A is parallel transported around the boundary
of any simply connected solid angle Ω, its direction rotates
through an angle Ω. (Simply connected is a topological term
meaning that the boundary of the region could be shrunk to
a point; it tells us that there are no holes in the manifold
or other pathologies). Using the result of part (b) and intu-
ition from proofs of Stokes theorem, this should be an easy
calculation. Compare with the result of EP #32.

5. Riemann Tensor for 1+1 Spacetimes

(a) Compute all the nonvanishing components of the Riemann
tensor for the spacetime with line element

ds2 = −e2ϕ(x)dt2 + e2ψ(x)dx2

(b) For the case ϕ = ψ = 1
2

ln |g(x− x0)| where g and x0 are
constants, show that the spacetime is flat and find a coor-
dinate transformation to globally flat coordinates (t̄, x̄) such
that ds2 = −dt̄2 + dx̄2.

6. About Vectors Tangent to Geodesics

Let xµ(τ) represent a timelike geodesic curve in spacetime, where τ
is the proper time as measured along the curve. Then uµ ≡ dxµ/dτ
is tangent to the geodesic curve at any point along the curve.

(a) If gµν is the metric of spacetime, compute the magnitude of the
vector uµ. Do not use units where c = 1, but keep any factors
of c explicit. Compare your result with the one obtained in
flat Minkowski spacetime. HINT: The magnitude of a timelike
vector vµ is given by (−gµνvµvν)1/2.

(b) Consider a contravariant timelike vector vµ at a point P on
the geodesic curve. Move the vector vµ from the point P
to an arbitrary point Q on the geodesic curve via parallel
transport. Prove that the magnitude of the vector vµ at the
point Q equals the magnitude of the vector vµ at point P.
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(c) Suppose that at the point P on the geodesic curve, vµ = uµ.
Now, parallel transport the vector vµ along the geodesic curve
to arbitrary point Q. Show that vµ = uµ at the point Q.
NOTE: This result implies that a vector tangent to a geodesic
at a given point will always remain tangent to the geodesic
curve when parallel transported along the geodesic.
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