Physics 130 General Relativity Seminar
Assignment 10  April 01, 2013

General topic: The Einstein Equation

Part 1: Readings
Hartle: Chap 20 A Little More math
Hartle: Chap 21- Sections 1-4 Curvature and Einstein’s Equation

Hartle: Chap 21 Supplement - Deriving Equation of Geodesic Devia-
tion and Formula for Riemann Tensor

Part 2: Problems Hartle Problems

e B A T

Hartle 20.04 Coordinate basis components of a gradient
Hartle 20.05 The upstairs basis

Hartle 20.07 Basis and dual vectors

Hartle 20.19 Normal vector and null curves

Hartle 20.25 Parallel propagation

Hartle 20.26 Connected by a Lorentz boost

Hartle 21.10 Uniform gravitational field

Hartle 21.12 Curvature of the wormhole

Boccio Extra Problems

1.

A Two-Dimensional World

A certain two-dimensional world is described by the metric
da? + dy?

ds® = 5
2242
[1 + %]

(a) Compute the connection coefficients I',

(b) Let £ = —yé, + zé,. Show that € is a solution of Killings
equation.



(c) What is the conserved quantity that corresponds to this sym-
metry? Show from the geodesic equation that this quantity
is indeed conserved.

(d) Compute the Riemann tensor RZ, the Ricci tensor R;'-, and
the Ricci scalar R. What is the shape of this world?

. More Geodesics
Consider the 2-dimensional metric
ds® = a* (dx2 + sinh? ng02)

(a) Compute the connection coefficients I',
(b) Compute all components of the Riemann tensor R%, the Ricci
tensor R;, and the Ricci scalar R.

(¢) A geodesic starts at x = b, ¢ = 0 with tangent dp/d\ = 1,
dx/d\ = 0. Find the trajectory x(¢).

(d) A second geodesic starts at x = b+ £(£ < 1), also initially in
the (p-direction. How does the separation initially increase or
decrease along the two curves.

(e) What is the shape of the geodesic trajectory as a — oo, y — 0
with r = ay fixed.

. Parallel Transport on a Sphere
On the surface of a 2—sphere of radius a
ds* = a* (d92 + sin® 9dc,02)

Consider the vector A'O = ép at 0 = 0y, ¢ = 0. The vector is
parallel transported all the way around the latitude circle 8 =
0y (i-e., over the range 0 < ¢ < 27 at 0 = 6y). What is the

. L N1/2
resulting vector A? What is its magnitude (A . A> ? HINT:
derive differential equations for A? and A% as functions of .

. Curvature on a Sphere

(a) Compute all the nonvanishing components of the Riemann
tensor Riji ((4,7,k,1) € (8,¢)) for the surface of a 2—sphere.



(b) Consider the parallel transport of a tangent vector A = A%¢,+
A¥é, on the sphere around an infinitesimal parallelogram of
sides épdf and é,dp. Using the results of part (a), show that
to first order in df) = sin 8dfdyp, the length of Ais unchanged,
but its direction rotates through an angle equal to df2.

(c) Show that, if A is parallel transported around the boundary
of any simply connected solid angle €, its direction rotates
through an angle Q. (Simply connected is a topological term
meaning that the boundary of the region could be shrunk to
a point; it tells us that there are no holes in the manifold
or other pathologies). Using the result of part (b) and intu-
ition from proofs of Stokes theorem, this should be an easy
calculation. Compare with the result of EP #32.

5. Riemann Tensor for 1+1 Spacetimes

(a) Compute all the nonvanishing components of the Riemann
tensor for the spacetime with line element

ds? = —e*@qt? 4 2V gy

(b) For the case ¢ = ¢ = $In|g(x — x)| where g and =z, are
constants, show that the spacetime is flat and find a coor-
dinate transformation to globally flat coordinates (¢, ) such

that ds? = —dt? + dz2.
6. About Vectors Tangent to Geodesics

Let x# (1) represent a timelike geodesic curve in spacetime, where 7
is the proper time as measured along the curve. Then u* = dx# /dr
is tangent to the geodesic curve at any point along the curve.

(a) If g, is the metric of spacetime, compute the magnitude of the
vector u/. Do not use units where ¢ = 1, but keep any factors
of ¢ explicit. Compare your result with the one obtained in
flat Minkowski spacetime. HIN'T: The magnitude of a timelike
vector v# is given by (—guuv“v”)l/Q.

(b) Consider a contravariant timelike vector v* at a point P on
the geodesic curve. Move the vector v* from the point P
to an arbitrary point Q on the geodesic curve via parallel
transport. Prove that the magnitude of the vector v* at the
point Q equals the magnitude of the vector v* at point P.



(c) Suppose that at the point P on the geodesic curve, v = ut.
Now, parallel transport the vector v* along the geodesic curve
to arbitrary point Q. Show that v# = u* at the point Q.
NOTE: This result implies that a vector tangent to a geodesic
at a given point will always remain tangent to the geodesic
curve when parallel transported along the geodesic.



