
Supplement to Chapter 14:
The Construction of a Freely Falling Frame

This supplement extends the discussion in Section 14.6 on how to construct the
coordinates of a freely falling frame by using gyroscopes to define the directions of
three spatial axes. Recall the general idea: An observer in a freely falling laboratory
initially orients gyroscopes in three orthogonal directions. They remain orthogonal
as a consequence of (14.6) (Problem 1). Three unit vectors along the directions of
the spinse1(τ), e2(τ), ande3(τ) together with the four-velocity of the laboratory
u(τ) ≡ e0(τ) constitute an orthonormal basis for each point labeled byτ along the
geodesic. (Although the basis is orthonormal we don’t use hats over the indices
because this basis is also going to be the coordinate basis for the freely falling
frame.) To use these vectors to construct the coordinates of a freely falling frame
proceed as follows: Let the proper time of the observer be one coordinate, and let
the observer’s geodesic be the origin of the three spatial coordinates. At the point
labeled byτ along the observer’s geodesic pick a unit vectorn with components
(0,n1,n2,n3). Follow a spatial geodesic in the direction ofn a distances from the
point on the observer’s geodesic. Assign the point which is reached the coordinates

xα = (x0,x1,x2,x3)≡ (τ,sn1,sn2,sn3) . (1)

Repeat for different directionsn at eachτ, and for allτ along the observer’s geodesic.
In this way a coordinate system labeling each point in the neighborhood of the
observer’s geodesic can be defined. The components of the unit vectorn can be
parametized by polar angles according toni = (sinθcosφ, sinθsinφ, cosθ) ensur-
ing the vector is of unit length. Thexi are related tosand the polar angles like usual
Cartesian coordinates are related tor and polar angles. We now show that these are
the coordinates of a freely falling frame in which the Christoffel symbols vanish on
the observer’s geodesic.

The demonstration makes use of the geodesic equation (14.3), the gyroscope
equation (14.6), and the equation for the spatial geodesics

d2xα

ds2 + Γα
βγ

dxβ

ds
dxγ

ds
= 0 . (2)

The key observation is that the derivativesd2xα/dτ2 andd2xα/ds2 all vanish be-
cause of (1) which is linear in bothτ ands. Further, since the coordinate axes were
defined to lie along the directions of the spins, the components of each spin are
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constant, e.g. for the first gyrosα = (0,s,0,0) wheres is the magnitude of the spin.
Thusdsα/dτ = 0 for each spin. Now let’s see the consequences of these facts.

In these coordinates, whereuα = (1,0,0,0), we have

Γα
ττ = 0 (3)

from the observer’s geodesic equation (14.3). Similarly from the equation for spa-
tial geodesics (2)

Γα
βγn

βnγ = 0 . (4)

But since the theni can point in any direction this implies that

Γα
i j = 0 (5)

on the observer’s geodesic. There remain the Christoffel symbols of the formΓα
τi .

However since the components of the spins are constant in these coordinates the
three spatial gyroscope equations (14.6) imply

Γα
τi = 0 . (6)

Thus all the Christoffel symbols vanish on the observer’s geodesic and thexα de-
fined by (1) are the coordinates of a freely falling frame.
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