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Abstract

The nonsymmetric gravitational theory predicts an acceleration law that
modifies the Newtonian law of attraction between particles. For weak fields a
fit to the flat rotation curves of galaxies is obtained in terms of the mass (mass-
to-light ratio M/L) of galaxies. The fits assume that the galaxies are not
dominated by exotic dark matter. The equations of motion for test particles
reduce for weak gravitational fields to the GR equations of motion and the
predictions for the solar system and the binary pulsar PSR 1913+16 agree
with the observations. The gravitational lensing of clusters of galaxies can be
explained without exotic dark matter.
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1 Introduction

A gravitational theory explanation of the acceleration of the expansion of the uni-
verse [1, 2, 3] and the observed flat rotation curves of galaxies was proposed [4],
based on the nonsymmetric gravitational theory (NGT) [5, 6, 7]. Since no dark
matter has been detected so far, it seems imperative to seek a possible modified
gravitational theory that could explain the now large amount of data on galaxy
rotation curves. The same holds true for the need to explain the acceleration of the
expansion of the universe without having to invoke a cosmological constant, because
of the serious problems related to this constant [8].

In the following, we summarize the derivation of the motion of test particles in
NGT. We consider the derivation of test particle motion from the NGT conservation
laws. The motion of a particle in a static, spherically symmetric gravitational field is
derived, yielding the modified Newtonian law of motion for weak gravitational fields.
Two parameters

√
M0 and r0 occur in the generalized Newtonian acceleration law.

The parameter
√

M0 is modelled for a bound system by a dependence on the mean
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orbital radius of a test particle, and the range parameter r0 is determined for galaxies
and clusters of galaxies from the acceleration cH0 where H0 is the measured Hubble
constant. A fit to both low surface brightness and high surface brightness galaxies is
achieved in terms of the total galaxy mass M (or M/L) without exotic dark matter.
A satisfactory fit is achieved to the rotational velocity data generic to the elliptical
galaxy NGC 3379. Fits to the data of the two spheroidal dwarf galaxies Fornax and
Draco and the globular cluster ω Cenauri are also obtained. The predicted light
bending and lensing can lead to agreement with galaxy cluster lensing observations.

The modelled values of the parameter
√

M0 for the solar system and Earth, lead
to agreement with solar system observations, terrestrial gravitational experiments
and the binary pulsar PSR 1913+16 observations.

2 The Field Equations

The nonsymmetric fundamental tensor gµν is defined by [5, 6, 7]:

gµν = g(µν) + g[µν], (1)

where

g(µν) =
1

2
(gµν + gνµ), g[µν] =

1

2
(gµν − gνµ). (2)

The nonsymmetric connection Γλ
µν is decomposed as

Γλ
µν = Γλ

(µν) + Γλ
[µν]. (3)

The contravariant tensor gµν is defined in terms of the equation

gµνgσν = gνµgνσ = δµ
σ. (4)

The NGT action is given by

Sngt = S + SM , (5)

where

S =
1

16πG

∫

d4x[gµνR∗
µν(W ) − 2Λ

√−g − 1

4
µ2gµνg[νµ]], (6)

and SM is the matter action satisfying the relation

1√−g

(

δSM

δgµν

)

= −1

2
Tµν . (7)

Here, we have chosen units c = 1, gµν =
√−ggµν , g = Det(gµν), Λ is the cosmological

constant, µ is a mass associated with the skew field g[µν]. Moreover, Tµν is the
nonsymmetric energy-momentum tensor and R∗

µν(W ) is the tensor

R∗
µν(W ) = Rµν(W ) − 1

6
WµWν , (8)
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where Rµν(W ) is the NGT contracted curvature tensor

Rµν(W ) = W β
µν,β − 1

2
(W β

µβ,ν + W β
νβ,µ) − W β

ανW
α
µβ + W β

αβW α
µν , (9)

defined in terms of the unconstrained nonsymmetric connection:

W λ
µν = Γλ

µν −
2

3
δλ

µWν , (10)

where

Wµ =
1

2
(W λ

µλ − W λ
λµ). (11)

Eq.(10) leads to the result
Γµ = Γλ

[µλ] = 0. (12)

The contracted tensor Rµν(W ) can be written as

Rµν(W ) = Rµν(Γ) +
2

3
W[µ,ν], (13)

where

Rµν(Γ) = Γβ
µν,β − 1

2

(

Γβ
(µβ),ν + Γβ

(νβ),µ

)

− Γβ
ανΓ

α
µβ + Γβ

(αβ)Γ
α
µν . (14)

The gravitational constant G in the action S is defined in terms of the “bare”
gravitational constant G0:

G = G0Z, (15)

where G0 = 6.673 × 10−8 g−1 cm3 s−2 is Newton’s constant and Z depends on the
strength of the coupling of g[µν] to matter. Thus, Z = 1 when g[µν] is zero and NGT
reduces to Einstein’s GR.

A variation of the action Sngt yields the field equations in the presence of matter
sources

G∗
µν(W ) + Λgµν + Sµν = 8πGTµν , (16)

g[µν]
,ν = −1

2
g(µα)Wα, (17)

gµν
,σ + gρνW µ

ρσ + gµρW ν
σρ − gµνW ρ

σρ

+
2

3
δν
σg

µρW β
[ρβ] +

1

6
(g(µβ)Wβδν

σ − g(νβ)Wβδµ
σ) = 0. (18)

Here, we have G∗
µν(W ) = R∗

µν(W ) − 1
2
gµνR∗(W ), where R∗(W ) = gµνR∗

µν(W ), and

Sµν =
1

4
µ2(g[µν] +

1

2
gµνg

[σρ]g[ρσ] + g[σρ]gµσgρν). (19)

The vacuum field equations in the absence of matter sources are given by

R∗
µν(W ) = Λgµν − (Sµν −

1

2
gµνS), (20)
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where S = gµνSµν . For the case of a static, spherically symmetric field with µ = 0
and g[0i] = 0 (i=1,2,3), the gravitational field is described by the Wyman solution
given in Appendix A [9]. In this case the vector Wµ = 0 [4, 6, 7] and the field
equations (20) in empty space Tµν = 0 become

Rµν(Γ) = Λgµν − (Sµν −
1

2
gµνS). (21)

The time independent components of these field equations are given in Appendix A.

3 The Equations of Motion of a Particle

In NGT there are two choices for the motion of a particle [10], for there exist two
connections, the Christoffel connection given by

{

λ

µν

}

=
1

2
s(λρ)

(

g(µρ),ν + g(ρν),µ − g(µν),ρ

)

, (22)

where
s(να)g(µα) = δν

µ, (23)

and the nonsymmetric connection Γλ
µν . If we define the parallel transport of a vector

V µ by
DµV

λ = ∂µV
λ + Γλ

ρµV ρ, (24)

then we obtain the equation of motion

uνDνu
λ ≡ duλ

dτ
+ Γλ

µνu
µuν = 0, (25)

where τ is the proper time along the path followed by the particle and uλ = dxλ/dτ
is the 4-velocity of the particle. This defines the path equation which is not a path
of extremal length.

We can derive the second equation of motion by using the Lagrangian defined
by

L = g(µν)u
µuν . (26)

We have
1

2

(

d

dτ

∂L

∂uα
− ∂L

∂xα

)

= g(µν)u
µuν

(

{

β

µν

}

− Γβ
µν

)

. (27)

We see that when the right-hand side vanishes, the Euler-Lagrangian equations are
satisfied and we get the extremal geodesic equation

duµ

dτ
+

{

µ

αβ

}

uαuβ = 0. (28)
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The conservation laws in NGT can be written [11]:

∂ρT̃
ρ
λ −

1

2
∂λgµνT

µν = 0, (29)

where

T̃
ρ
λ =

1

2
(gµλT

µρ + gλµT
ρµ). (30)

Let us assume a monopole test particle
∫

d3xTµν 6= 0, (31)

∫

d3x(xα − Xα)Tµν = 0, (32)

and similarly for higher moments. The integration is carried out over a hypersurface
of constant t, following the procedure of Papapetrou [12], and Xα is the position of
the monopole. It can be shown that (29) leads to

d

dt

(

dXβ

dt

∫

d3xt00
)

+

{

β

µν

}

dXµ

dt

dXν

dt

∫

d3xt00

=
1

2
s(λβ)

(

∂λgµν

∫

d3xTµν − ∂λg(µν)
dXµ

dt

dXν

dt

∫

d3xt00
)

, (33)

where tµν = s(λν)T̃
µ
λ. If we assume that T[µν] = 0, then we get

d

dτ

(

m
dXβ

dτ

)

+ m

{

β

µν

}

dXµ

dτ

dXν

dτ
= 0, (34)

where

m =
dτ

dt

∫

d3xt00. (35)

This leads us to the geodesic equation (28). However, we cannot in general assume
that T [µν] is zero, for it is associated with the intrinsic spin of matter or to the
skew field g[µν] itself, and we must include a coupling to the spin and skew field on
the right-hand side of (34). We shall find that in the weak field approximation the
path equation (25) and the geodesic equation (28) become approximately the same,
including a necessary coupling to a skew symmetric source.

4 Particle Motion in a Static Spherically Sym-

metric Gravitational Field

It was shown in ref. [10] that for large values of r in the static, spherically symmetric
solution of the NGT field equations, the geodesic equation and the path equation yield

similar physical results. Since we shall be concerned with the dynamics of galaxies,
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we shall treat the case of the geodesic equation coupled to a skew symmetric source.
We have

duβ

dτ
+

{

β

µν

}

uµuν = s(βα)f[αµ]u
µ, (36)

where

f[αµ] = λ∂[α

(

ǫησνλ

√−g
H[σνλ]g(µ]η)

)

. (37)

Here, the skew tensor ǫµνλη is the Levi-Civita tensor density and H[µνλ] is given by

H[µνλ] =
1

3
(∂λg[µν] + ∂µg[νλ] + ∂νg[λµ]), (38)

and λ is a coupling constant with the dimension of length that couples the skew
field to the test particle.

In the static, spherically symmetric field of NGT, the tensor H[µνλ] has only one
non-vanishing component

H[θφr] =
1

3
∂rg[θφ] = f ′ sin θ (39)

and we get

f[r0] = λ
d

dr

(

γf ′

√

αγ(r4 + f 2)

)

. (40)

The equations of motion for a test particle are given by

d2r

dτ 2
+

α′

2α

(

dr

dτ

)2

− r

α

(

dθ

dτ

)2

− r
(

sin2 θ

α

)(

dφ

dτ

)2

+
γ′

2α

(

dt

dτ

)2

+
d

dr

(

λγf ′

√

αγ(r4 + f 2)

)(

dt

dτ

)

= 0, (41)

d2t

dτ 2
+

γ′

γ

(

dt

dτ

)(

dr

dτ

)

+
1

γ

d

dr

(

λγf ′

√

αγ(r4 + f 2)

)

= 0, (42)

d2θ

dτ 2
+

2

r

(

dθ

dτ

)(

dr

dτ

)

− sin θ cos θ
(

dφ

dτ

)2

= 0, (43)

d2φ

dτ 2
+

2

r

(

dφ

dτ

)(

dr

dτ

)

+ 2 cot θ
(

dφ

dτ

)(

dθ

dτ

)

= 0. (44)

The orbit of the test particle can be shown to lie in a plane and by an appropriate
choice of axes, we can make θ = π/2. Integrating Eq.(44) gives

r2dφ

dτ
= J, (45)
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where J is the conserved orbital angular momentum. Integration of Eq.(42) gives

dt

dτ
= −1

γ

[

λγf ′

√

αγ(r4 + f 2)
+ E

]

, (46)

where E is the constant energy per unit mass.
By substituting (46) into (41) and using (45), we obtain

d2r

dτ 2
+

α′

2α

(

dr

dτ

)2

− J2

αr3
+

γ′

2αγ2

[

λγf ′

√

αγ(r4 + f 2)
+ E

]2

=
1

γ

d

dr

[

λγf ′

√

αγ(r4 + f 2)
+ E

]

.

(47)
Let us now make the approximations that λf ′/r2 ≪ 1, f/r2 ≪ 1 and the slow

motion approximation dr/dt ≪ 1. Then, for material particles we set E = 1 and
(47) becomes

d2r

dt2
− J2

N

r3
+

GM

r2
= λ

d

dr

(

f ′

r2

)

, (48)

where JN is the Newtonian orbital angular momentum.

5 Linear Weak Field Approximation

We expand gµν about a Ricci-flat GR background

gµν = gGR
(µν) + hµν + O(h2), (49)

where gGR
(µν) is the GR background metric. The skew field h[µν] obeys the linearized

equation of motion in the GR background geometry

∇σFµνσ + 4h[σβ]Bβµσν + µ2h[µν] = 0, (50)

where
F[µνλ] = ∂λh[µν] + ∂µh[νλ] + ∂νh[λµ] (51)

and ∇λ and Bβµσν denote the background GR covariant derivative and curvature
tensor, respectively. Moreover,

Wµ = −2∇λh[µλ]. (52)

For flat Minkowski spacetime, Eq.(50) reduces exactly to the massive Kalb-Ramond-
Proca equation [13], which is free of ghost pole instabilities with a positive Hamil-
tonian bounded from below.

For the static, spherically symmetric spacetime, the linearized equation of motion
(50) on a Schwarzschild background takes the form

(

1 − 2GM

r

)

f ′′ − 2

r

(

1 − 3GM

r

)

f ′ −
(

µ2 +
8GM

r3

)

f = 0, (53)
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where we assume that γ(r) ∼ 1/α(r) ∼ 1 − 2GM/r and β(r) = r2. The solution to
this equation in leading order is [6, 14, 15]

f(r) =
sG2M2

3

exp(−µr)

(µr)µGM

(

1+µr+
GM

r

[

2+µr exp(2µr)Ei(1, 2µr)(µr−1)
])

, (54)

where Ei is the exponential integral function

Ei(n, x) =
∫ ∞

1
dt

exp(−xt)

tn
. (55)

The constant sG2M2/3 is fixed from the exact Wyman solution with A = 0 by
taking the limit µ → 0.

For large r we obtain

f(r) =
1

3

sG2M2 exp(−µr)(1 + µr)

(µr)µM
, (56)

and for µGM ≪ 1, we have (µr)µGM ∼ 1, giving

f(r) =
1

3
sG2M2 exp(−µr)(1 + µr). (57)

This is a solution to the equation

f ′′(r) − 2

r
f ′(r) − µ2f(r) = 0. (58)

If we consider the expansion about a GR Schwarzschild background, then (58) is
valid for µ2 ≫ 8GM/r3.

To the order of weak field approximation, we obtain from Eq.(48):

d2r

dt2
− J2

N

r3
= −GM

r2
+

σ exp(−µr)

r2
(1 + µr), (59)

where the constant σ is given by

σ =
λsG2M2µ2

3
. (60)

Here, λ and s denote the coupling strengths of the test particle and the skew g[23]

field, respectively. In Eq. (59), we have required that the additional NGT accelera-
tion on the right-hand side is a repulsive force. This is in keeping with the weak field
approximation result obtained in [5, 6], which corresponds to a skew force produced
by a massive axial vector spin 1+ boson exchange.
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6 Orbital Equation of Motion

Let us write the line element as

ds2 = γdt2 − αdr2 − r2(dθ2 + sin2 θdφ2). (61)

We set θ = π/2 and divide the resulting expression by dτ 2 and use Eqs.(45) and
(46) to obtain

(

dr

dτ

)2

+
J2

αr2
− 1

αγ

[

λγf ′

√

αγ(r4 + f 2)
+ E

]2

= −E

α
. (62)

We have ds2 = Edτ 2, so that ds/dτ is a constant. For material particles E > 0 and
for massless photons E = 0.

Let us set u = 1/r and by using (45), we have dr/dτ = −Jdu/dφ. Substituting
this into (62), we obtain

(

du

dφ

)2

=
1

αγJ2

[

E +
λγf ′

√

αγ(r4 + f 2)

]2

− 1

αr2
− E

αJ2
. (63)

By substituting dr/dφ = −(1/u2)du/dφ into (63) and using the approximation γ ∼
1/α ∼ 1 − 2GM/r and f/r2 ≪ 1 and λf ′/r2 ≪ 1, we get after some manipulation

d2u

dφ2
+ u =

EGM

J2
− EλsG2M2

3r2
0J

2
exp

(

− 1

r0u

)(

1 +
1

r0u

)

+ 3GMu2, (64)

where r0 = 1/µ.
For material test particles E = 1 and we obtain

d2u

dφ2
+ u =

GM

J2
+ 3GMu2 − K

J2
exp

(

− 1

r0u

)(

1 +
1

r0u

)

, (65)

where K = λsG2M2/3r2
0. On the other hand, for massless photons ds2 = 0 and

E = 0 and (64) gives
d2u

dφ2
+ u = 3GMu2. (66)

7 Galaxy Rotational Velocity Curves

A possible explanation of the galactic rotational velocity curves problem has been
obtained in NGT [16]. From the radial acceleration derived from (59) experienced
by a test particle in a static, spherically symmetric gravitational field due to a point
source, we obtain

a(r) = −G∞M

r2
+ σ

exp(−r/r0)

r2

(

1 +
r

r0

)

, (67)
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Moreover, G ≡ G∞ is defined to be the gravitational constant at infinity

G∞ = G0

(

1 +

√

M0

M

)

, (68)

where G0 is Newton’s “bare” gravitational constant. This conforms with our defi-
nition of G in Eq.(15), which requires that G be renormalized in order to guarantee
that (67) reduces to the Newtonian acceleration

aNewton = −G0M

r2
(69)

at small distances r ≪ r0. The constant σ is given by

σ =
λsG2

0M
2

3c2r2
0

. (70)

The integration constant s in (70), occurring in the static, spherically symmetric
solution (see, Appendix A), is dimensionless and can be modelled as

s = gMa, (71)

where M is the total mass of the particle source, g is a coupling constant and a is a
dimensionless constant. We choose a = −3/2 and λgG2

0/3c2r2
0 = G0

√
M0 where M0

is a parameter. The choice of a = −3/2 yields for a galaxy dynamics the Tully-Fisher
law [19].

We obtain the acceleration on a point particle

a(r) = −G∞M

r2
+ G0

√

MM0
exp(−r/r0)

r2

(

1 +
r

r0

)

. (72)

By using (68), we can write the NGT acceleration in the form

a(r) = −G0M

r2

{

1 +

√

M0

M

[

1 − exp(−r/r0)
(

1 +
r

r0

)]}

. (73)

We conclude that the gravitational constant can be different at small and large
distance scales depending on the size of the parameter

√
M0. We have two parame-

ters: the parameter
√

M0 and the distance range r0. We assume that G∞ scales for
constant M with increasing strength as

√
M0, while for fixed values of M0 we have

G∞ → G0 as the total mass of the source M → ∞. Let us model the parameter
α =

√
M0 as a function of the mean orbital radius of a test particle

α ≡
√

M0 = k〈rorb〉n, (74)

where k and n are constants. We shall choose the exponent to be n = 3/2. We
shall apply (73) to explain the flatness of rotation curves of galaxies, as well as the
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approximate Tully-Fisher law [19], G0M ∼ v4, where v is the rotational velocity of
a galaxy and M is the galaxy mass

M = M∗ + MHI + MDB + Mf . (75)

Here, M∗, MHI , MDB and Mf denote the visible mass, the mass of neutral hydrogen,
possible dark baryon mass and gas, and the mass from the skew field energy density,
respectively. In [4], we obtained from the modified Friedmann equations

Ω = Ωb + Ωm + Ωf , (76)

where Ωb, Ωm and Ωf denote the fractional values of baryons, g[µν] field matter
density and smooth g0

[µν] field density background, respectively, obtained from the
expansion

g[µν] = g0
[µν] + δg[µν], (77)

where the smooth background g0
[µν] and the fluctuations δg[µν] describe the “dark

energy” and “dark matter” components, respectively. The NGT cosmological field
equations must be solved to yield the observational results Ωb ∼ 0.05, Ωm ∼ 0.3,
and Ω ∼ 0.7 in order to be consistent with WMAP and supernovae data [1, 2, 3].
The quantities Ωm and Ωf in NGT replace the dark matter and dark energy. The
mass Mf obtained from the skew field density ρm is expected to contribute to the
total mass M of galaxies.

The rotational velocity of a star v is given by

v =

√

G0M

r

{

1 +

√

M0

M

[

1 − exp(−r/r0)
(

1 +
r

r0

)]}1/2

. (78)

Let us postulate that the parameters M0 and r0 give the magnitude of the con-
stant acceleration

a0 =
G0M0

r2
0

. (79)

We assume that for galaxies and clusters of galaxies this acceleration is determined
by

a0 = cH0. (80)

Here, H0 is the current measured Hubble constant H0 = 100 h km s−1 Mpc−1 where
h = (0.71 ± 0.07) [17]. This gives

a0 = 6.90 × 10−8 cm s−2. (81)

A good fit to low surface brightness and high surface brightness galaxy data is
obtained with the parameters

M0 = 9.60 × 1011M⊙, r0 = 13.92 kpc = 4.30 × 1022 cm (82)
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and M (or the mass-to-light ratio M/L). Substituting M0 = 9.60×1011M⊙ into (79)
yields the r0 in (82). Thus, we fit the galaxy rotation curve data with one parameter
M0 and the total galaxy mass M . Since we are using an equation of motion for point
particle sources, we are unable to fit the cores of galaxies. A possible model for the
galaxy cores is to assume for a radius r ≪ rc, where rc is the core radius, a rotation
curve of an isothermal sphere in the ideal case where we can consider a massless
disk embedded in it. Then, for r ≪ rc:

v(r) ∼
(

4πG0ρc

3

)1/2

r, (83)

where ρc is the core density. For r ≫ rc, the rotational velocity curve will be
described by the NGT model (78). Further investigation of this issue will require
solving the field equations of NGT for a core mass density profile and will be the
subject of future research.

We can now fix the constant k in Eq.(74) by using the relation

k =
αg

〈rorb〉3/2
g

, (84)

where αg and 〈rorb〉g denote the values of these quantities for galaxies, respectively.
For the mean value 〈rorb〉g we choose

〈rorb〉g = 200 kpc (85)

and using the value of M0 in (82) we obtain

k = 2.02 × 10−13 g1/2 cm−1. (86)

The fits to the galaxy rotation curves v in km/s versus the galaxy radius r in
kps are shown in Fig. 1. The data are obtained from ref. [18].

In Fig. 2, fits to two dwarf galaxies (dSph) are shown. We assume that the
relation between the velocity dispersion σ and the rotational velocity v takes the
simple form in e.g. an isothermal sphere model for which v ∼

√
2σ. The error bars

on the data [20] for the velocity dispersions are large, and in the case of Draco, due
to the small radial range 0.1 kpc < r < 0.6 kpc, the Newtonian curve for

v =

√

G0M

r
, (87)

cannot be distinguished within the errors from the NGT prediction. However, it
is noted that the NGT prediction for v appears to flatten out as r increases. For
Draco M/L = 28.93 + 50.30(9.58)(M⊙/L⊙), whereas for Fornax M/L = 1.79 +
0.72(0.40)(M⊙/L⊙). There is also an expected large error in the distance estimates
to the dSph. Another serious potential source of error is that it is assumed that
dSph galaxies are in dynamical equilibrium. The two studied here are members of
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the Local Group and exist in the gravitational field of a larger galaxy, the Milky
Way. Thus, the tidal interactions with the larger galaxy are expected to affect the
dynamics of dSph galaxies and the interpretations of velocity dispersions [21]. These
issues and others for dSph galaxies are critically considered in the context of dark
matter models by Kormendy and Freeman [22].

We have also included a fit to the elliptical galaxy NGC 3379. The elliptical
galaxy NGC 3379 has been the source of controversy recently [23]. The velocities of
elliptical galaxies are randomly distributed in the galaxy. However, the gravitational
potential that would be experienced by a test particle star or planetary nebula in
circular rotation about the center of the galaxy can be extracted from the line-
of-sight velocity dispersion profiles. The data for R/Reff > 0.5 refer to planetary
nebula.

We use the mean values of the extracted rotational velocities for NGC 3379, ob-
tained by Romanowsky et al. [23] and find that the NGT predicted rotational veloci-
ties agree well with their data. According to Romanowsky et al. there appears to be
a dearth of dark matter in the elliptical galaxy which needs to be explained by dark
matter models and N-body cosmological simulations. For Milgrom’s MOND [24, 25]
it is argued by Sanders and Milgrom [26] that NGC 3379 is marginally within the
MOND regime with an acceleration a ∼ (a0)Milgrom ∼ 1.2 × 10−8 cm s−2, so MOND
should not apply to the elliptical galaxies. As we see from the fit to the data, the
NGT results agree well with the data. Romanowsky et al. also give data for the
two elliptical galaxies NGC 821 and NGC 4494, but the intrinsic circular velocities
associated with the line-of-sight velocity dispersion profile data are not given by the
authors, although the trends of the data are similar to NGC 3379.

A fit to the data for the globular cluster ω Centauri is shown in Fig. 3. The
data is from McLaughlin and Meylan [27]. We use the velocity dispersion data and
assume that the data is close to the rotational velocity curves associated with the
velocity dispersion σp i.e. the isothermal sphere model relation v ∼

√
2σp holds. The

fit to the data reveals that the predicted rotational velocity cannot be distinguished
from the Newtonian-Kepler circular velocity curve within the orbital radius of the
data. The authors conclude that there appears to be no room for Milgrom’s MOND
or dark matter, whereas the NGT results agree well with the data.

In Fig.4, we display a 3-dimensional plot of v versus the range of distance
0.1 kpc < r < 10 kpc and the range of total galaxy mass M used in the fitting
of rotational velocity data. The red surface shows the Newtonian values of the
rotational velocity v, while the black surface displays the NGT prediction for v.

Table 1, displays the values of the total mass M used to fit the galaxies and the
mass-to-light ratios M/L estimated from the data in references given in [18].

There are now about 100 galaxies with available rotational velocity data [18].
However, some of these galaxies are not well described by spherically symmetric
halos or have some other disturbing physical feature, so we are unable to obtain fits
to these data.
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In Milgrom’s phenomenological model [24, 25] we have

v4 = G0M(a0)Milgrom, (88)

where
(a0)Milgrom = 1.2 × 10−8 cm s−2. (89)

We see that (88) predicts that the rotational velocity is constant out to an infinite
range and the rotational velocity does not depend on a distance scale, but on the
magnitude of the acceleration (a0)Milgrom. In contrast, the NGT acceleration formula
does depend on the radius r and the distance scale r0 which for galaxies is fixed by
the formula (80).

8 Local and Solar System Observations

We obtain from Eq.(65) the orbit equation

d2u

dφ2
+ u =

GM

c2J2
− K

J2
exp(−r/r0)

[

1 +
(

r

r0

)]

+
3GM

c2
u2, (90)

where now K = λsG2M2/3c4r2
0. Using the large r weak field approximation, and

the expansion

exp(−r/r0) = 1 − r

r0
+

1

2

(

r

r0

)2

+ ... (91)

we obtain the orbit equation for r < r0:

d2u

dφ2
+ u =

GM

c2J2
N

− K

J2
N

+ 3
GM

c2
u2. (92)

We can write this as
d2u

dφ2
+ u = N + 3

GM

c2
u2, (93)

where

N =
GM

c2J2
N

− K

J2
N

. (94)

We can solve Eq.(93) by perturbation theory and find for the perihelion advance
of a planetary orbit

∆ω =
6π

c2p
(GM⊙ − c2K⊙), (95)

where JN = (GM⊙p/c2)1/2, p = a(1 − e2) and a and e denote the semimajor axis
and the eccentricity of the planetary orbit, respectively.

We choose for the mean orbital radius of the solar planetary system

〈rorb〉⊙ = 1 a.u. = 1.49 × 1013 cm, (96)
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which yields using (74) and k = 2 × 10−13 g1/2 cm−1:

α⊙ ≡ (
√

M0)⊙ = 1.2 × 107 g1/2 (97)

and
(

√

M0

M

)

⊙

= 2.6 × 10−10. (98)

This result gives
∆G

G0
∼ 10−10. (99)

and G = G0 within the experimental errors for the measurement of Newton’s con-
stant G0.

We choose for the solar system K⊙ ≪ 1.5 km and use G = G∞ = G0 to obtain
from (95) a perihelion advance of Mercury in agreement with GR.

For terrestrial experiments and orbits of satellites, we choose the mean orbital
radius equal to the earth-moon distance, 〈rorb〉⊕ = 3.57 × 1010 cm, which gives

(

√

M0

M

)

⊕

= 1.7 × 10−11. (100)

This also yields G = G0 within the experimental errors.
For the binary pulsar PSR 1913+16 the formula (95) can be adapted to the

periastron shift of a binary system. Combining this with the NGT gravitational wave
radiation formula, which will approximate closely the GR formula, we can obtain
agreement with the observations for the binary pulsar. We choose the mean orbital
radius equal to the projected semi-major axis of the binary, 〈rorb〉N = 7 × 1010 cm,

giving (
√

M0/M)N = 5 × 10−14. Thus, G = G0 within the experimental errors
and agreement with the binary pulsar data for the periastron shift is obtained for
KN ≪ 4.2 km.

For a massless photon E = 0 and we have

d2u

dφ2
+ u = 3

GM

c2
u2. (101)

For the solar system using (99) this gives the light deflection:

∆⊙ =
4G0M⊙

c2R⊙

(102)

in agreement with GR.

9 Galaxy Clusters and Lensing

We can assess the existence of dark matter of galaxies and clusters of galaxies in
two independent ways: from the dynamical behavior of test particles through the
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study of extended rotation curves of galaxies, and from the deflection and focusing
of electromagnetic radiation, e.g., gravitational lensing of clusters of galaxies. The
light deflection by gravitational fields is a relativistic effect, so the second approach
provides a way to test the relativistic effects of gravitation at the extra-galactic level.
It has been shown that for conformal tensor-scalar gravity theories the bending of
light is either the same or can even be weaker than predicted by GR [25, 28]. To rem-
edy this problem, Bekenstein [25] has recently formulated a relativistic description
of Milgrom’s MOND model, including a time-like vector field as well as two scalar
fields within a GR metric scenario. However, the time-like vector field violates local
Lorentz invariance and requires preferred frames of reference.

The bending angle of a light ray as it passes near a massive system along an
approximately straight path is given to lowest order in v2/c2 by

θ =
2

c2

∫

|a⊥|dz, (103)

where ⊥ denotes the perpendicular component to the ray’s direction, and dz is the
element of length along the ray and a denotes the acceleration. The best evidence
in favor of dark matter lensing is the observed luminous arcs seen in the central
regions of rich galaxy clusters [29]. The cluster velocity dispersion predicted by the
observed arcs is consistent within errors with the observed velocity dispersion of
the cluster galaxies. This points to a consistency between the virial mass and the
lensing mass, which favors the existence of dark matter.

From (101), we obtain the light deflection

∆ =
4GM

c2R
=

4G0M

c2R
, (104)

where

M = M
(

1 +

√

M0

M

)

. (105)

We obtain from Eq.(74) and k = 2×10−13 for a mean orbital cluster radius 〈rorb〉cl ∼
2 Mpc:

αcl ≡ (
√

M0)cl = 3.1 × 1024 g1/2. (106)

For a cluster of mass Mcl ∼ 1013 M⊙, we obtain

(

√

M0

M

)

cl
∼ 22. (107)

We see that M ∼ 22M and we can explain the increase in the light bending without
exotic dark matter.

From the formula Eq.(72) for r ≫ r0 ∼ 14 kpc we get

a(r) = −G0M

r2
. (108)
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We expect to obtain from this result a satisfactory description of lensing phenomena
using Eq.(103).

The scaling by the parameter αi = (
√

M0)i caused by the varying strength of
the coupling of the skew field g[23](r) = f(r) sin θ to matter due to the renormalized
gravitational constant is seen to play an important role in describing consistently the
solar system and the galaxy and cluster dynamics, without the postulate of exotic
dark matter.

10 Conclusions

There is a large enough sample of galaxy data which fits our predicted NGT ac-
celeration law to warrant taking seriously the proposal that NGT can explain the
flat rotational velocity curves of galaxies without exotic dark matter. We do predict
that there will be galaxy matter additional to that due to visible stars and baryons,
associated with the energy density ρm residing in the skew field g[µν]. It is interesting
to note that we can fit the rotational velocity data of galaxies in the distance range
0.02 kpc < r < 70 kpc and in the mass range 105 M⊙ < M < 1011 M⊙. without
exotic dark matter halos. We are required to investigate further the behavior of the
NGT predictions for distances approaching the cores of galaxies, using a disk profile
density. The lensing of clusters can also be explained by the theory without exotic
dark matter in cluster halos.

We are able to obtain agreement with the observations in the solar system and
terrestrial gravitational experiments for suitable values of the parameter M0. This
required that we scale G and the parameter

√
M0 as functions of the mean orbital

radius 〈rorb〉 of bound systems with the behavior αi = (
√

M0)i = 〈rorb〉3/2
i .

A numerical solution of the NGT field equations for cosmology must be imple-
mented to see whether the theory can account for the large scale structure of the
universe and account for galaxy formation and big bang nucleosynthesis, without
requiring the existence of exotic, undetected dark matter and a positive cosmological
constant to describe dark energy.

11 Appendix A: The Static Spherically Symmet-

ric Solution and the Vacuum Field Equations

In the case of a spherically symmetric static field [5], the canonical form of gµν in
NGT is given by

gµν =











−α 0 0 w
0 −β fsinθ 0
0 −fsinθ −βsin2θ 0

−w 0 0 γ











, (109)
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where α, β, γ and w are functions of r. The tensor gµν has the components:

gµν =













γ
w2−αγ

0 0 w
w2−αγ

0 − β
β2+f2

fcscθ
β2+f2 0

0 − fcscθ
β2+f2 −βcsc2θ

β2+f2 0
− w

w2−αγ
0 0 − α

w2−αγ













. (110)

For the theory in which there is no NGT magnetic monopole charge, we have w = 0
and only the g[23] component of g[µν] survives.

The time independent field equations, Eq.(21), in empty space are given by

R11(Γ) = −1

2
A

′′ − 1

8
[(A′)2 + 4B2] +

α′A′

4α
+

γ′

2γ

(

α′

2α
− γ′

2γ

)

(111)

−
(

γ′

2γ

)′

= −Λα +
1

4
µ2 αf 2

β2 + f 2
, (112)

1

β
R22(Γ) =

1

β
R33(Γ)cosec2θ =

1

β
+

1

β

(

2fB − βA′

4α

)′

+
2fB − βA′

8α2βγ
(α′γ+γ′α) (113)

+
B(fA′ + 2βB)

4αβ
= −Λ − 1

4
µ2 f 2

β2 + f 2
, (114)

R00(Γ) =
(

γ′

2α

)′

+
γ′

2α

(

α′

2α
− γ′

2γ
+

1

2
A′

)

= Λγ − 1

4
µ2 γf 2

β2 + f 2
, (115)

R[10](Γ) = 0, (116)

R(10)(Γ) = 0, (117)

R[23](Γ) = sinθ
[(

fA′ + 2βB

4α

)′

+
1

8α
(fA′ + 2βB)

(

α′

α
+

γ′

γ

)

(118)

− B

4α
(2fB − βA′) =

[

Λf − 1

4
µ2f

(

1 +
β2

β2 + f 2

)]

sinθ. (119)

Here, prime denotes differentiation with respect to r, and we have used the notation

A = ln(β2 + f 2), (120)

B =
fβ ′ − βf ′

β2 + f 2
. (121)

Let us assume the long-range approximation for which the µ2 contributions in
the vacuum field equations (21) can be neglected and that µ−1 > 2M . We then
obtain the static, spherically symmetric Wyman solution for Λ = 0 [9]:

γ = exp(ν), (122)

α =
(f 2 + β2)(γ′)2

4M2
1 γ

, (123)
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f + iβ =
M2

1 (1 + is) exp(−ν)

A + i
sech2[−1

2
(1 + is)1/2ν + B], (124)

where M1, A, B and s are integration constants and ν is an arbitrary function of r.
We shall restrict our attention to the asymptotic condition g(µν) → ηµν where ηµν

is the Minkowski flat metric tensor ηµν = diag(1,−1,−1,−1). This requires that

sinh2 B = −1, (125)

so that we obtain

f + iβ = −M2
1 (1 + is) exp(−ν)

A + i
csch2[−1

2
(1 + is)1/2ν]. (126)

This form of f + iβ does not place any a priori boundary condition on g[µν].
We now obtain the form of the static Wyman solution:

γ = exp(ν), (127)

α =
M2

1 (ν ′)2exp(−ν)(1 + s2)

A + i
[cosh(aν) − cos(bν)]−2, (128)

f =
2M2

1

1 + A2
exp(−ν)[(1 − As)sinh(aν)sin(bν)

+s(1 − cosh(aν)cos(bν)][cosh(aν) − cos(bν)]−2, (129)

where

a =
(

√
1 + s2 + 1

2

)1/2

, b =
(

√
1 + s2 − 1

2

)1/2

, (130)

and ν is implicitly determined by the equation

exp(ν)(cosh(aν) − cos(bν))2 r2(1 + A2)

2M2
1

= (1 − As)[cosh(aν)cos(bν) − 1]

+(A + s)sinh(aν)sin(bν). (131)

At large distances r → ∞, we have

α = 1 +
2M1

(1 + A2)1/2

1

r
+ O

(

1

r2

)

, (132)

γ = 1 − 2M1

(1 + A2)1/2

1

r
+ O

(

1

r3

)

, (133)

f = −Ar2 +
1

3
sM2

1 + O
(

1

r

)

. (134)

If we assume that A = 0, then M = M1 where M denotes the mass of the particle
source.
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and Gilles Esposito-Farése, Gary Mamon, Stacey McGough, Martin Green and Lee
Smolin for helpful discussions.

References

[1] S. Perlmutter et al. Ap. J. 483, 565 (1997), astro-ph/9608192; A. G. Riess,
et al. Astron. J. 116, 1009 (1998), astro-ph/9805201; P. M. Garnavich, et al.
Ap. J. 509, 74 (1998), astro-ph/9806396.

[2] A. G. Riess, et al. astro-ph/0402512.

[3] D. N. Spergel et al. Astrophys. J. Suppl. 148, 175 (2003), astro-ph/0302209.

[4] J. W. Moffat, astro-ph/0403266.

[5] J. W. Moffat, Phys. Rev. 19, 3554 (1979).

[6] J. W. Moffat, Phys. Letts. B 335, 447 (1995), gr-qc/9411006.

[7] J. W. Moffat, J. Math. Phys. 36, 3722 (1995); Erratum, J. Math. Phys. 36,
7128 (1995).

[8] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989); N. Straumann, astro-ph/020333.

[9] M. Wyman, Can J. Math. 2, 427 (1950); J. R. Vanstone, Can J. Math. 14,
568 (1962).
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Table 1. Values of the total galaxy mass M used to fit rotational velocity data.
Also shown are the mass-to-light-ratios M/L with L obtained from ref. [18].

Galaxy M(×1010M⊙) M/L(M⊙/L⊙)
NGC 2903 5.63 3.68
NGC 5533 24.2 4.29
NGC 5907 11.8 4.92
NGC 6503 1.36 2.84
NGC 3198 3.0 3.33
NGC 2403 2.37 3.0
NGC 1560 0.427 12.20
NGC 4138 2.94 3.59
NGC 3379 5.78 –
M33 0.93 1.98
UGC 6917 0.96 2.53
UGC 6923 0.388 1.76
UGC 6930 1.04 2.08
FORNAX 0.0026 1.86
DRACO 0.00050 27.94
ω Centauri 3.05 × 10−5 –
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Fig. 1 - Fits to low-surface-brightness and high-surface-brightness spiral galaxy
data. The black curve is the rotational velocity v versus r obtained from the
modified Newtonian acceleration, while the green curve shows the Newtonian

rotational velocity v versus r. The data are shown as red circles.
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Fig. 2 - Fits to the data of two dwarf galaxies Fornax and Draco. The simple
relation V ∼

√
2σ is assumed between the velocity dispersion σ and the rotational

velocity v. The black curve is the rotational velocity v versus r obtained from the
modified Newtonian acceleration, while the green curve shows the Newtonian

rotational velocity v versus r. The data are shown as red circles and the errors
(not shown) are large and for Draco the Newtonian fit cannot be distinguished

from the NGT fit to the data within the errors.

NGC 3379

140

160

180

200

220

240

260

280

300

v(km/s)

2 4 6 8 10 12
r(kpc)

omega Centauri

4

6

8

10

12

14

16

v(km/s)

0.02 0.04 0.06 0.08 0.1
r(kpc)

25



Fig. 3 - Fits to the elliptical galaxy NGC 3379 and the globular cluster ω
Centauri. The black curve is the rotational velocity v versus r obtained from the

modified NGT acceleration, while the green curve is the Newtonian-Kepler velocity
curve. For ω Centauri the black and green curves cannot be distinguished from one

another.
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Fig. 4 - 3-dimensional plot of v versus the range of distance 0.1 kpc < r < 10 kpc
and the range of galaxy mass 5 × 106 M⊙ < M < 2.5 × 1011 M⊙. The red surface
shows the Newtonian values of the rotational velocity v, while the black surface

displays the NGT prediction for v.
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