
Prob. 2-23 (solution by Michael Fisher) 1

a

We are given that

A =

0 0 1

0 −1 0

1 0 0

 (1)

So, it is immediately evident that A† = A because A is real and is its own transpose.

Furthermore, AA† = I so A is also unitary. To find the eigenvalues, set the determinant

equal to zero which gives

−λ2(1 + λ) + (1 + λ) = (1 + λ)(1− λ2) = 0 (2)

Therefore the eigenvalues are

λ = 1,−1,−1 (3)

Plugging in λ1 = 1 and doing some row reduction gives

−1 0 1

0 −2 0

0 0 0

 (4)

which gives the eigenvector, after normalization, of

~v1 =
1√
2

1

0

1

 (5)

Plugging in λ2 = λ3 = −1 and doing row reduction gives

1 0 1

0 0 0

0 0 0

 (6)

Since this eigenvalue is degenerate, we are looking for two orthonormal eigenvectors that are

both solutions. The first we find the usual way as
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~v2 =
1√
2

 1

0

−1

 (7)

Then looking at this eigenvector and at the corresponding matrix, it is easy to find a solution

that is orthonormal, namely

~v3 =

0

1

0

 (8)

It is easy to verify that ~v1, ~v2, and ~v3 are orthonormal.

b

Now we find the projection operator matrices by computing

P̂1 = |~v1〉 〈~v1| (9)

P̂2 = |~v2〉 〈~v2| (10)

P̂3 = |~v3〉 〈~v3| (11)

So in matrix form this gives

P1 =
1

2

1

0

1

(1 0 1
)

=
1

2

1 0 1

0 0 0

1 0 1

 (12)

P2 =
1

2

 1

0

−1

(1 0 −1
)

=
1

2

 1 0 −1

0 0 0

−1 0 1

 (13)

P3 =

0

1

0

(0 1 0
)

=

0 0 0

0 1 0

0 0 0

 (14)



Prob. 4.22.18 (solution by Alexandra Werth) 1

In the world of hard/soft particles, let us define a state using a hardness basis |h〉 , |s〉, where

ÔHARDNESS |h〉 = |h〉 , ÔHARDNESS |s〉 = − |s〉 and the hardness operator ÔHARDNESS is

represented by

ÔHARDNESS =

(
1 0

0 −1

)

In the state, |A〉 = cos θ |h〉+ eiφ sin θ |s〉. This state is normalized because...

〈A| |A〉 = cos2 θ + eiφe−iφ sin2 θ = 1 (1)

For two states, A and B to be orthogonal, 〈A| |B〉 = 0. The state |B〉 is also normalized

therefore, | |B〉 |2 = |a|2 + |b|2 = 1. Given |B〉 = a |h〉+ b |s〉 we want to solve for a and b so

that |B〉 satisfies the above conditions.

So,

〈A| |B〉 = a cos θ |s〉+ b sin θe−iφ |h〉 = 0 (2)

Therefore,

a = e−iφ sin θ (3)

b = − cos θ (4)

|B〉 = e−iφ sin θ |h〉 − cos θ |s〉 (5)

Next, I can solve for |h〉 and |s〉 in terms of |A〉 and |B〉.

|h〉 = cos θ |A〉 − eiφ sin θ |B〉 (6)

|s〉 = e−iφ sin θ |A〉 − cos θ |B〉 (7)

The possible outcomes of hardness measurement on state |A〉 are h and s. The probablities

that they will occur are...

P (h|A) = cos2 θ (8)

P (s|A) = sin2θ (9)

The hardness operator in the |A〉 , |B〉 basis is,

ÔHARDNESS =

(
cos θ −eiφ sin θ

e−iφ sin θ cos θ

)
(10)
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Boccio 4.22.14.

In this problem we are given the matrix

M =

 0 1 0
1 0 1
0 1 0


,

and asked to find the eigenvalues and corresponding eigenvectors. Then, we want to
construct the corresponding projection operators and verify that the matrix can be written
in terms of its eigenvalues and eigenvectors.

First, to find the eigenvalues we have:

det(M) =

∣∣∣∣∣∣
−λ 1 0
1 −λ 1
0 1 −λ

∣∣∣∣∣∣ = 0.

This gives us the eigenvalues of:

−λ(λ2 − 1)− 1(−λ) = 0
λ3 − 2λ = 0
λ(λ2 − 2) = 0

λ1 = 0, λ2 =
√

2, λ3 = −
√

2.

We are then able to find eigenvectors of

~v1 =
1√
2

 1
0
−1


,

~v2 =
1

2

 1√
2

1


, and

~v3 =
1

2

 1

−
√

2
1


.

Then, using these vectors, we have the projection operators of:

1



P1 = |1〉〈1| = 1

2

 1 0 1
0 0 0
−1 0 1


,

P2 = |2〉〈2| = 1

4

 1
√

2 1√
2 2

√
2

1
√

2 1


,

P3 = |3〉〈3| = 1

4

 1 −
√

2 1

−
√

2 2 −
√

2

1 −
√

2 1


.

Then, to verify that the matrix can be written in terms of its eigenvalues and eigenvectors,
we multiply the eigenvectors by their corresponding projection matrix and add all of these
together. This addition should equal the original matrix.

So,

M =

 0 1 0
1 0 1
0 1 0

 =

√
2

4

 1
√

2 1√
2 2

√
2

1
√

2 1

− √2

4

 1 −
√

2 1

−
√

2 2 −
√

2

1 −
√

2 1


,

2



Assignment 2 (solutions by Anthony Yoshimura) 1

B.4.22.16

Let

R =

(
6 −2

−2 9

)

represent an observable, and

|ψ〉 =

(
a

b

)

be an arbitrary state vector (with |a|2 + |b|2 = 1). Calculate 〈R2〉 in two ways:

(a) Evaluate 〈R2〉 = 〈ψ|R2|ψ〉 directly.

(b) Find the eigenvalues (r1 and r2) and eigenvectores (|r1〉 and |r2〉) of R2 or R. Expand

the state vector as a linear combination of eigenvectors and evaluate.

〈R2〉 = r21|c1|2 + r22|c2|2

Solution.a

〈R2〉 = 〈ψ|R2|ψ〉 =
(
a∗ b∗

)( 40 −30

−30 85

)(
a

b

)
(1)

= 40a∗a− 30ab∗ − 30a∗b+ 85b∗b (2)

Solution.b

The Characteristic polynomial

(6− λ)(9− λ)− 4 = (λ− 5)(λ− 10) = 0 (3)

yields the eigenvalues

λ = 5, 10. (4)
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The corresponding eigenvectors are then

|5〉 = ker

(
1 −2

−2 4

)
=

1√
5

(
2

1

)
|10〉 = ker

(
−4 −2

−2 −1

)
=

1√
5

(
−1

−2

)
. (5)

Because R2 is hermitian, these eigenvectors are orthogonal. We want to write |ψ〉 in terms

of these vectors, that is, find c5 and c10 such that

|ψ〉 =

(
a

b

)
= c5|5〉+ c10|10〉. (6)

We can solve the system

1√
5

(
2 −1

1 2

)(
c5
c10

)
=

(
a

b

)
(7)

which yields

c5 =
1√
5

(b+ 2a) c10 =
1√
5

(2b− a). (8)

The expectation value of R2 can now be written as

〈ψ|R2|ψ〉 =
(
c∗5〈5|+ c∗10〈10|

)
R̂2
(
c5|5〉+ c10|10〉

)
(9)

=
(
c5〈5|+ c10〈10|

)(
25c5|5〉+ 100c10|10〉

)
= 25|c1|2 + 100|c2|2. (10)

Plugging the coefficients we found in equation 8, we get

〈R2〉 = 40a∗a− 30ab∗ − 30a∗b+ 85b∗b, (11)

which is consistent with out solution in part a.

B.4.22.19

For all parts of this problem, letH be a Hilbert space spanned by the basis kets {|0〉, |1〉, |2〉|3〉},
and let a and b be arbitrary complex constants
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(a) Which of the following are Hermitian operators on H?

1. |0〉〈1|+ i|1〉〈0|

2. |0〉〈0|+ |1〉〈1|+ |2〉〈3|+ |3〉〈2|

3. (a|0〉+ |1〉)†(a|0〉+ |1〉)

4. ((a|0〉+ b∗|1〉)†(b|0〉 − a∗|1〉))|2〉〈1|+ |3〉〈3|

5. |0〉〈0|+ i|1〉〈0| − i|0〉〈1|+ |1〉〈1|

(b) Find the spectral decomposition of the following operator on H:

K̂ = |0〉〈0|2|1〉〈2|+ 2|2〉〈1| − |3〉〈3|

(c) Let |ψ〉 be a normalized ket in H, and let Î denote the identity operator on H. Is the

operator

B̂ = 1√
2

(
Î + |ψ〉〈ψ|

)
a projection operator?

(d) Find the spectral decomposition of the operator B̂ from part (c).

Solution.a

1. Not hermitian

P̂ †1 = |1〉〈0| − i|0〉〈1| 6= P̂ †1 (12)

2. Hermitian

P̂ †2 = |0〉〈0|+ |1〉〈1|+ |2〉〈3|+ |3〉〈2| = P̂2 (13)

3. Hermitian

P̂3 = (a|0〉+ |1〉)†(a|0〉+ |1〉) = a∗a+ 1 = a real number (14)

Real numbers are hermitian.
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4. Hermitian

P̂4 =

(
(a|0〉+ b∗|1〉)†(b|0〉 − a∗|1〉)

)
|2〉〈1|+ |3〉〈3| (15)

= (a∗b− a∗b)|2〉〈1|+ |3〉〈3| = |3〉〈3| (16)

Projection operators are hermitian.

5. Hermitian

P̂ †5 = |0〉〈0| − i|0〉〈1|+ i|1〉〈0|+ |1〉〈1| = P̂5 (17)

Solution.b

K̂ =


1 0 0 0

0 0 2 0

0 2 0 0

0 0 0 −1

 (18)

We can pick out 3 smaller matrices along the diagonal

(
1
) (

0 2

2 0

) (
− 1). (19)

The eigenvalues of these matrices are clearly

λ = −2,−1, 1, 2. (20)

These are also the eigenvalues of K̂. Finding the eigenvectors is now straightforward.

| − 2〉 =
1√
2


0

−1

1

0

 | − 1〉 =


0

0

0

1

 |1〉 =


1

0

0

0

 |2〉 =
1√
2


0

1

1

0

 (21)

Solution.c
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B̂2 =
1

2

(
Î + |ψ〉〈ψ|

)(
Î + |ψ〉〈ψ|

)
(22)

=
1

2

(
Î + 3|ψ〉〈ψ|

)
6= B̂ (23)

B̂ is therefore not a projection operator.

Solution.d

By inspection, we can see that |ψ〉 is an eigenvector of B̂, since both operators in the

parenthesis, Î and |ψ〉〈ψ|, yield |ψ〉 when operating on |ψ〉. The corresponding eigenvalue is

therefore

λ‖ =
2√
2

=
√

2. (24)

Meanwhile, all vectors perpendicular to |ψ〉 are eigenvectors as well, since the operator

|ψ〉〈ψ| yields zero, leaving only Î, for which, all vectors are eigenvectors. Let E⊥ be the

eigenspace of dimension n−1 = 3 spanned by all vectors perpendicular to |ψ〉. The eigenvalue

corresponding to E⊥ is

λ⊥ =
1√
2
. (25)

This eigenvalue is 3-fold degenerate.

B.5.6.7

Two psychologists reported on tests in which subjects were given the prior information:

I = In a certain, 85% of the taxicabs are blue and 15% are green

and the data:

D = A witness (80% reliable) reports that the cab was green

The subjects were then asked to judge the probability that the taxicab was actually blue.

What is the correct answer?

Solution

Let B be the event that the cab was actually blue. From Bayes theorem we have.
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P (B|D ∩ I) = P (D|B ∩ I)
P (B|I)

P (D|I)
(26)

Because the witness is 80% reliable, there is a 20% likelihood that the witness reports the

cab to green if it was actually blue. Therefore

P (D|B ∩ I) = 0.2. (27)

Meanwhile, given the initial conditions, the probability that the car was actually blue is

P (B|I) = 0.85. (28)

Lastly, we need to find the expectation value of the probability of the witness reporting a

green cab given the initial conditions. The witness is 20% likely to report that a blue cab

was green and 80% likely to report that a green cab was green. We therefore have

P (D|I) = 0.2(0.85) + 0.8(0.15) = 0.29. (29)

Plugging everything back into equation 26 gives us

P (B|D ∩ I) = 0.586. (30)
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Two cards are drawn at random from a shuffed deck and laid aside without being examined.

Then a third card is drawn. Show that the probability that the third card is a spade is the

sum of all the possibilies of cards being drawn. The two unexamined cards could be two

spades, one spade and one nonspade, one nonspade and one spade, or two nonspades.

P (spade1)P (spade2)P (spade3) = (
13

52
)(

12

51
)(

11

50
) = 0.0129 (1)

P (spade1)P (notspade2)P (spade3) = (
13

52
)(

39

51
)(

12

50
) = 0.0459 (2)

P (notspade1)P (spade2)P (spade3) = (
39

52
)(

13

51
)(

12

50
) = 0.0459 (3)

P (notspade1)P (notspade2)P (spade3) = (
39

52
)(

38

51
)(

13

50
) = 0.1453 (4)

The sum of the above probabilites is 0.2500 which is the same as drawing a spade on the

first try. The reason these probabilies are the same is because we gain no new information

when we did drew the two cards, but did not look at them.
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(a) Suppose your friend rolls a pair of dice and, without showing you the result, tells you

that sum of the two dice, s = 8. What is your conditional probability distribution for the

value of the first die, a?

In order for the two dice to sum up to eight there are five possibilities.

a b

6 2

5 3

4 4

3 5

2 6

The possible values for a are 2 through 6 and each of the values has a probability of 1
5

to

occur.

(b) Suppose your friend rolls a pair of dice and, without showing you the result, tells you

that the product, p = 12. What is your conditional expectation value for s?

In order for the multiply to 12 there are four possible combinations.

a b

6 2

4 3

3 4

2 6

6 + 2 = 8 and 4 + 3 = 7 therefore the conditional expectation value is...

7P (s = 7) + 8P (s = 8) =
15

2
(1)



Prob. 5.6.3 (solution by Michael Fisher) 1

The probability that a friend and I have different birthdays is given by prob(me + friend)

= 364
365

= 1− 1
365

since there is one day in the year when the friend could have a birthday in

common with the me.

The probability that three people share a birthday is given by

prob(3) = prob(2)prob(3 | 2) =

(
1− 1

365

)(
1− 2

365

)
(1)

where the last term is true since the third person must have a birthday different from the

first two birthdays. We can extend this result with induction to get

p = prob(n) = prob(2)prob(3 | 2)...prob(n | n−1) =

(
1− 1

365

)(
1− 2

365

)
...

(
1− n− 1

365

)
= p

(2)

Taking the natural logarithm allows us to separate the product into a sum as

ln(p) = ln

(
1− 1

365

)
+ ln

(
1− 2

365

)
+ ... + ln

(
1− n− 1

365

)
(3)

Using the approximation ln(1 + x) ≈ x for small x we get

ln(p) ≈ 1

365
(−1− 2− ...− (n− 1)) =

−1

365

n−1∑
i=1

i =
−1

365

n(n− 1)

2
=

n− n2

2 ∗ 365
(4)

Now we plug in for p a value of 1
2

and solve for n, which gives

ln

(
1

2

)
=

n− n2

2 ∗ 365
(5)

Solving the resulting quadratic gives that

N = 23 (6)

so in a group of 23 people there is a 50% chance that they have no common birthdays.
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For this problem, in ones right pocket there are 3 nickels and 4 dimes and in ones left
pocket there are 2 nickels and 1 quarter. You pick a random pocket, and pick a random coin
out of that pocket. The coin is a nickel. What is the probability that the nickel came from
your right pocket?

To determine this probability we just Bayes’ formula. So, we multiply the probability of
the coin being a nickel if you picked your right pocket by the probability of you picking your
right pocket. Then, divide that by the total probability that the coin is a nickel.

Therefore, we have:

P (RP |N) =
P (N |RP )× P (RP )

P (N)

=

(
3
7

) (
1
2

)
1
2

(
3
7

)
+ 1

2

(
2
3

)
=

3
7

3
7
+ 2

3

= 0.39.

Thus, the probability that the nickel came from the right pocket is 0.39.

1
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