Maxwell’s equations so far

| "E = 4#% [” Relates E and charge density ( ) - Gauss
| "B=0 [” Magnetic field lines are closed
! 1$B . .
I " E= #—— [" Change in B creates E - Faraday
| 47 . .
" B= ?J /" Relates B and its sources (J) - Ampere
Is this set of equations completely consistent?
Not quiteE
To see inconsistency, take the divergence of AmpereOs law
-\ 4
! ||(! # B) _$| ||
¢ ‘w3 IdA= g dv  +
! /4$ & (continuity equation) %S v ) _ --g# .5 %ﬁidv 0. # .3 L,
C & ;$ /Ql/r;)sde — o llc?dvg %
#B)=0  (ALWAYS) v
( =0

AmpereOs law works only whenap /ot =0 which works in most cases but not always:
I AmpereOs law is incomplete! It is inconsistent with the continuity equation in general!



Fixing the inconsistency

Since ! (' #\7) = Qwve can add some term to the right hand side such that its
divergence will be identically 0 (wonOt change LHS of equation)

. ~ | ax! ] .
Generalized AmpereOs law: ! " B_TJ +F Assumption

What is F? We know that divergence of RHS must be =0, I.e,,

| | | i
| (1 #B)=0=) ZAfJ+F§+ | "(cF) =, 49 "\'1:4$—'t
+ "(Cl':)=4$-_—'t Similar to Gauss's law!

Take time derivative of GaussOs law:

Ll R)=asa L )= 1S = e

since time and space derlvatlves commute

| n :
c"t
Displacement currents _
. ~ . CLoagl 1$E
Generalized AmpereOs equation ! " B = TJ +E§
L gq#,!
This can also be written as: I " B= ?(J + Jd)

With Js = displacement current (density): J, =



What is the Jq7? (first proposed by Maxwell(not based on continuity but on symmetry!))
Not a real current:
does not describe charges flowing through some region
But it acts like a real current:
whenever have changing E field, can treat its effect as if due to as a real current J 4

What is a displacement current?
Consider a current flowing in a circuit and charging a capacitor C as shown below:

+ -
+ -

> + -

Y

+ -

+ -

Standard integral AmpereOs law: "IIB' dII 4# |y = 4#" Jlda

C C C s

LetOs choose the path C and the surface S as in the drawing below(left): It all makes sense!

Contour C * -

+ - Contour C / .

N m -

—= 1 - — | —=
|

Y

+

Surface S

(hashed region) /
Surface S’

Now choose the same path C but the surface SO (right figure)
(OK by StokesE) No standard current J through the surface (no charge crosses C!)
But there Is a flux of displacement current Jq4 through the plates!



We can use the generalized AmpereOs Law:

I
ng1di = 4#(
C

C

Iendosad t Id)

I
I : l

with 1,="3 1da=——nE gh-1 3 Erah= - P

A% B A% St _ 4% H

SI

The displacement current is related to the change over time of the flux of the electric field.
In the example above, the electric field E is the one produced in between the plates of the
capacitor C

The electric field E:
Points in the same direction as the current (+x)
At a given instant in time:

The flux of E will then be:
c=4"Q (yes, Gauss's law!)

The rate of the change of this fluxis: |«

It
Where | is the current that is charging the capacitor

|
= :4#§:4#|



Comparing this with earlier results:

| generalized AmpereOs Law igalid no matter what surface we use

The importance of displacement currents
When we examined the following circuit:

| said the same current | was flowing in each circuit element.

How is it possible? No current flows through the plates of a capacitor!
Displacement currents fix this inconsistency!

SI

: I : "!_
g =1J"da=1J,"da=1I

Displacement current OcontinuesO the OrealO current across the capacitors

ensuring the validity of KirchoffOs laws.

Displacement current: application

Consider the following RC circuit:
As C charges up, k flows
la induces B inside the plates
Assuming cylindrical plates of radius a
Calculate B inside the plates

: 41
Find E(t): E(t)=4/" = ,Qz(t)

i L 'Ja_ 1 "E(t) _ 1 "Q(t) _ I(t)
Dlsplacementcurrentde\r;sﬂy. TR TR AT
Remember that (1) = Ebe! tRC

|
Magnetic field inside the plate (Ampere's law): 'fB dl =

Direction: RH Rule - Thumb in direction of J4 and flngers curl like B.

jJ da = B(r)= 2

2 V e —t/RC

ca’R



MaxwellOs equations(complete!): differential form

(I "E = 4#% , (I "E=
* ! * * !
«! "B=0 % «1 "B =
* | 1'|B * * |
)I OE = &= -COS )1 owE
C t I* *
o L Agl 1'E, |
x| %B:—J+——* *1 B =
+ C C' +

$1/, ;
0 *
! %
= &_B - Sl
I t l *
I *
: E
,uo‘] +“0/ _t

The last equations are the generalized AmpereQOs law
Note: when Maxwell introduced the term dE/dt in the generalized AmpereOs law,

his arguments were based purely on symmetry
Yes, he was a theorist! ©

MaxwellOs equatlons mtegral form

—"E#da 4$Q dosad
S
I
_="B#la=0
S
I
emf-“E#dI 18
c C 81
| |
"Bl = 4$(|+|)
C

C

where the currents and fd

are defined as

(Gauss's law)

(Magnetic field line are closed)
(Faraday's law)

(Generalized Ampere's law)

|
4#

I I I
I:Jda

S



L
| _="E#da=4%$Q_, .,

S

I
= "B#da=0

——
S
|
enf = "E#dl = %5
c cC &
| |
" B :ﬁ(l +1,)

C

C

Electric flux through closed surface S = 4! time charge enclosed
by S

Magnetic flux through closed surface S =0

EMF induced around closed contour C = -1/c times rate of
change of magnetic flux through surface S bounded by C

Line integral of magnetic field around closed contour C =
4! [c times the sum of the total current -- real + displacement --
pass through that contour.



3 good reasons to remember MaxwellOs equations
They compactly and beautifully summarize all the E&M we learned so far!

You will see them on T shirts for the rest of your life around the world:
Better to get familiar with them ASAP!

On the first day of P112 next year you will need to remember them:
save your honor (and mine)

Maxwell equations in vacuum

What happens when we write MaxwellOs equations in vacuum?
Vacuum: no sources, ! =0 and J=0

(1 "E = 4#% ., (1 "E=0 ,
* ! * * ! *
< "B=0 x 1 "B=0 *
. 1'E|3 TRy
)| %E = &> -1 )1 gE=g=—-

c't T c, t*
o ook arl 1'E, L, L 1'E |
*| B= —J+-—* *I B==— *
+ C c't. + o

Except for a b sign, these equations are exquisitely symmetric(Maxwell saw this)!

Consequence: an electric field E varying in time will create a magnetic field B;

a B field varying in time creates an E field:
E and B are intimately related!



Maxwell equations in v m: solution e
q S acuum: solutio & "E = (1)

How to solve these equations? (, ..
Uncouple them! (! "B=0 | (2)
Separate E and B in equations '(I I | V=]
How? | ( #E_$E% (3)
Take the curl of equations (3) and (4) ( | !
Use other equations((1) and (4)) as needed (1 # B = }OE
Start from (3): ' c % (4)
! $B )
(1 E)= eI
c ,
! I I 1
(1 ok)#! PE= pl¥ "B _, 185
' c c” St $
1 $°E
B ow

Now repeat the procedure starting from (4)

(1 B)= . HE

C #t |

| ! 1# " E 1##B

(1 $8)% 2B=9% = %
| c # c’ #t #t
|25—iﬂ
c’ #t°

These results are special cases of a known equation: the wave equation



2
Wave Equations: For V°f = iz %f{ Solution = any function f that has well-behaved
Vv

derivatives and arguments of function have specified form f = f(x £ vi)
Note: we are restricting ourselves to the 1D case; extension to 3D later

Solution of wave equation: proof

Prove that f = f(x =X vf) is a solution of the wave equation
Just calculate time and space derivatives.

g 9 0
Keep in mind that VvV’ =— +—+—
Define: u = x £ vt N
of (xtvt) of du of O f(xxvt) LO°f
= =fy—= =y —=
ot du ot Jdu ot’ ou’
of (xtvt) of du df N f(xtvt) 9*f
dx  Ouodx Ou ox?  ou’
Plug the above results into the equation ~ 9°f 1 ,9°f | Jonti
As we wanted to prove! 2 o ldenniy
Wave equation solution fx)

t=0
What is a function such as f = f(x+vt)?
Assume v=1 cm/s

At time t=0: Position of the max: Xo X, A

At time t=1s: Peak still occurs when the argument of f is Xo

But since the time is not 0, function will be shifted in x by vt=1cm
Position of the max: x1=Xo-1. Thus,

t=1

%)

f = f(x+vt) represents a wave traveling in -x direction with velocity v

) X1= X:J'l

10



EM waves <{Wave equation: Vif=—

Solution: f = f(xxvt)

Any function of argument  x%vt

These solution represent waves traveling with velocity v
X-vt represents a wave traveling in the +x direction
X+vt represents a wave traveling in the —x direction

Maxwell’s equation: = 1 9°f
Vif=——
c” ot
Same equation! Only difference: v=c
Solution: EM waves traveling with speed of light

I light IS an EM wave!!!
EM waves in SI

This same result looks much more interesting in SI. N H2 §
Maxwell’s equations in SI: Lo =, "o?

where ! o is the permittivity of free space and po is the permeability of free space
Maxwell's equations tell us what the velocity of an EM wave is: -1

, _ Ho!
l o and Lo can be measured! we can predict velocity of EM waves:

U, = 4! " 10"C*N"m? | $ =8.85418' 10"?Nsec®C*

I v=2.998x108 m/s? which is the speed of light!
Maxwell was the first to realize that E&M equations were leading to a wave equation
that was propagating at the speed of light: light is an EM wave!



Plane waves: a particularly important and useful class of waves

Defipition of plane waves, in the most general form:
= IIEOsin(II< P #) = IIEOsin(kXx+ ky+kz" #t)
B =B,sin(k X #t) = Bysin(kx+ ky+kz" #t)

' k

Example: k || x ! E = E,sin(kx—ot)

with Kk = wawevector; |k| =wawenunber; ©= propagaton direction

Fourier Theorem(Physics 50- fseries.m):
Any periodic function can be expressed as a linear combination of sin and cos functions
I sin and cos are the building blocks of all waves!
This is what makes plane waves so important! We can build up all waves as
superpositions of plane waves.

Plane waves vs f(x-ct)

Goal: Prove that plane waves satisfy wave equation
We proved that f(xzct) satisfies the wave equation R
How to connect x*ct to the the argument of plane waves £k -7 + @t

sin(k -7 — o) = sin k(/%-f—ﬂrj :f(l%-f—ﬂtj
k k
A Q
When kllx:f(x—;t):wo:ck

12



More on k and !

Choose a system of coordinates so that our wave vector k is oriented || to x axis:

I plane wave solution for E is E = Eosm(kxx! " t)

LetOs consider only the spatial variation of the wave (e.g. t=0):

; : 4 /f ~ }'--\ At t=0
E = E,sin(k,x) EQ/ N~ /N
" = wavelength = 2 #/k 2K\ /) w52k x
LetOs now consider the time variation of the wave (e.g. x=0):
. . A . At x=0
E=1!E,sin("t) EOy /N
AR

Relationships between variables:

2”
!=_|_ =2"# , I =ck , $#=c

Do plane wave satisfy MaxwellOs equations?

EM waves are a consequence of MaxwellOs equations in the sense that we
used the 4 MaxwellOs Equations to derive the wave equations for E and B:

# ,1 172 L |
0 E:_ZHZO — . . = l
SR e

| ||2. n n . . !
% 2 1 "Bo% g =Bysin(k+ , -t)y
% C2 utZ% y

13



Does the solution of the EM wave equation satisfy all MaxwellOs Equations?
Not necessarily! LetOs start with GaussOs law:l "E =0

e =1 (Esin(kx+ky+kz# $t))
(EOXkX *Epk, + Eok, ) cos(kx+ Ky +k,z# $t)

=k’ IIEcos(k r#$t)

=V-E=0 when k -E,=0= E L k = wave's direction of propagation

More constraints on plane waves
Divergence equations imply radiationOs

Constraints following from | B =0 _

A . . E and B fields are orthogonal to
V-B=k-B, COS(k T a)t) =0=k-5,=0 direction of propagation of plane wave -
= B | k = wave's direction of propagation e in a plane

| 158
Constraints following from curl equations ! " E= #—%
C
Time derivative does not change direction of B ! E! B
| 1 HE
Same conclusion follows from:1 " B =
cH#H

Conclusion: kI E' B' k

LetOs now calcu]ate

1'E 1 (E Cos(k r#$t)):§l!zosin(|!<";#$t) KE s|n(l|< ;#$t)
clt ¢ 't ¢

" B=1" Eocos(kxx+kyy+kzz#$t)

14



Using | " (Vs) =(1 " \!/)s+(! s)" vV and the fact that B o = constant
| "B=! "B cos(k X+ky+ kzz#$t)

(1 ' )Cos(k%#$t) (1 cos{kx+ky+ kzz#fb“t))" :

#(k )0+ K, ¥+ kZZ))sm(k X+Ky+ kzz#$t)

#(k B)sm(k%#$t)

Therefore, 5 4
! I:EO =" [0# éo ! k E and B are arighthanded coordinae system .
Important consequences: B IE
In cgs, E and B have the same magnltude
E|=je 8)=[a" € =8,
fEO ! f30 Is parallel to the direction of propagation of the wave
E,=! K" B, # E," B,=! " B," B, =1 B,(® ﬁ) ( $B)@
=0 <[5y =JEof

| | |,
# Eo Bo ‘E‘ © parallel to k

This says that E x B has an important physical meaning as we will soon see.

15



Summary: radiation so far

source free Maxwell equations: V-E=0 VXE=- c ot
V.5=0 xB=19
c Ot
can be rewritten as wave equation for Eand B O°E 22F
oz~ © VT T
828 .
W — szzB =0

E(7,t) = Eysin(k - 7 — wt)
B(7,t) = Bysin(k - 7 — wt)

This solution represents an electromagnetic wave propagating in the k = E/ k direction
(where k = Vk -k = \/kg + k2 + k2).

By considering how the wave behaves at some fixed time, we learned that k£ is simply
related to the wavelength A: k=2m/\.

The requirement that this solution satisfy the wave equation tells us that
w=ck .

From the definition w = 2w (angular frequency is 27 radians times “regular” frequency),

we then obtain
AV =CcC.

16



Finally, requiring that the plane wave solution satisfy all of Maxwell’s equations leads to
some important constraints on the vector amplitudes Ey and By. These constraints are:

e The amplitudes are orthogonal to the propagation direction: k - Eo = (), k - ﬁo = (.
e The amplitudes are orthogonal to each other EO . ﬁo = (.

e The amplitudes have the same magnitude: |E,| = |By).

e The propagation direction is parallel to E x B.

These are important and rather constraining conditions. Nonetheless, they leave us with a
great deal of freedom in the amplitudes. This freedom is described in terms of the radiation’s
polarization state.

Polarization of EM waves
Did we use all of our freedom in choosing the waves?

No, we can still choose a property called the “polarization state”
Linear polarization:

Consider a plane wave propagating in the x direction
Choose the coordinate system so that att=0E || yand B || z

If the directions of Eo and Bo are constant in time, the wave is “linearly polarized”

17



I;E = E,cogkx! "t)p
B =B,cogkx! "t)d

Note: direction of polarization
= direction of electric field
(a definition)

-
L4
S

Linear Polarization of EM waves(all E or B vectors || to single fixed line)

How to produce linearly polarized waves?
Oscillating charge distribution in a conductor
= Broadcasting antenna
How to produce such a charge?
Long conductor driven by oscillating current
Field generated (in phase with current) shown below

Examples:

wt=0 wt=7n/2 Wt=T

-

|~
\_/

——

e (2) E=(ER+2E@)sin(kz! "t)

(1) I::_I:Eo)ésin(ky! "t)# B=!Egsn(ky! "t)

18



How do we receive or measure the signal?

. . For linear polarization:
Receliving antenna (RCL circuit)~E 0 P

7 o When receiving antenna is || to
Oscillating field in signal  proadcasting one, good reception

NN oscillates charges in When receiver is perpendicular to
receiver antenna --> broadcasting antenna: no reception
current --> measure because there is not enough room

, or use as in radio i
olaroids for charges to oscillate

Sheet of plastic embedded with organic molecules extended in one direction
They can carry current in that particular direction: behave like antennas!
When linearly polarized light hits the polaroid:
If E Is aligned with orientation of molecules:
Charges move current is generated! plastic heats: light stopped
If E is perpendicular to orientation of molecules (Opreferred directionO):
Charges will not be able to move in that direction: light goes through
Conclusion:
Polaroids are transparent to light polarized || to their preferred direction and opaque to
light polarized in the direction perpendicular to their preferred direction
Polaroids and polarization direction

What happens when the light is polarized in a direction in between the preferred direction

and its perpendicular?
Example: light polarized along x axis; polaroid oriented at angle !

E=E,cogkz! "t)0
0 = XCOS# + YPSin#

19



Light will go through partially
Since E has a component || to preferred direction of polaroid
E coming out is “overlap” between incoming E and polaroid’s orientation

E..|=E!P=E,cos" cogkz# $t)
| |

FE =

out

out

EOUt

P (parallel to polaroid’s orientation)

Conclusion:
Polaroids reduce the amplitude of linearly polarized light by cos@(angle between E and
polaroid’s orientation) and rotate the orientation of E by ©

Polarization of random light

Light from a bulb, sunlight, etc is not polarized
Superposition of many plane waves, each with its own polarization

—

E_. = ZEO ()Ac cos6, + ysin6, )cos(kz — t)

When light passes through a polaroid becomes linearly polarized
If polaroid is oriented || x axis:

E =% E, (xcos!,)cos(kz" #1)= E,xcos(kz" #1)$ cos!.

Conclusion:
Polaroids can be used to produce linearly polarized light
The intensity of the light will be reduced

20



Demo: 3 vs 2 polaroids
2 polaroids with orthogonal preferred direction will block light
First polaroid (P1) polarizes light in the direction x (for example)
Second polaroid (P2) oriented in the y direction, but E is now just || x

Source of

i )
unpolarized p3 p2

light

Now place a third polaroid P3 in between P1 and P2 (at 45°)
P1 will polarize light || x
P3 will select only component || to its preferred direction and rotate
direction of polarization by 45 °. EoO=kcos45°
P2 will select component y direction that now is not O anymore.
Intensity further reduced, but not 0! E ¢O=kc0s45°)2= E/2
Circular polarization

Consider a wave with the following form:
|;5 = E¥sin(kz! "t)+E ycogkz! " t)
B=B,%sin(kz! "t)+B,ycogkz! "t)

What is it? 4 W
Easier to understand if we look at z=0 N MATLAN /
E =1 EOX)SI n(" t) + EOS.D.COQH t) o‘-e.{l,f“,é;ﬁ»"‘u!’(la{%’%ﬁeb&a{!éﬁr
! : ;:‘, ..?;';. --E_i'_.'-..;z':, ~‘!"7.1\
= | ByWdsin(" t) + Byyicog(" L A A
B=1!B,wsn("t)+ B,pcog" t) / /7‘\ j}‘ ,,/1," 4‘\

Electric and magnetic fields rotate at frequency !
Circular polarization because E and B vector tips describe circles over time

21



How to produce it? Rotating dipole ®\

-
'—Fl E O E i 7o E i;/ - 1 1
- & o ® ; produces circularly polarized light
. Y P o propagating out of board
(N) | ! (7)) "
N ) | AN ( \+—.‘/_,|

0t=0 ot=1/4 | ot=t/2 ‘ot=3nM4 ot=r |
or 2 antennas at 90° driven by

o= " currents out of phase by 90°

A
cd

Note: circular polarization does exist naturally in nature; in fact nature likes to produce it!

Elliptical Polarization B
af, A’A "rl
For a given k-vector, there are 2 independent solutions for the N e M (e & |l [Las
plane waves, e.g. 2 possible directions of the E-vector b 111 j i d yf?{"-‘
SN L
S " o il /&L r
IIE1 = E@an(kz! "t+#) |l ‘{tv ]
E2 — EOWOde ! t + #2) ‘a‘, . o E » ’ljf
All other solutions are just linear combinations of these )il TR A7
| 1 =1 2 linear polarization ,;~~-;~-7‘—"’51%'::-:;;.,;,.43[’1”’5’5’?:”%13;;,..;:;..-:,;{-;
l 1 =12+ 90": circular polarization 7/ 1177 |1}
All the rest: elliptical polarization 4y B Y




For example, many organic molecules have a “chirality”, meaning that they twist in a par-
ticular way. This turns out to mean that they interact with clockwise circular polarization
differently than they interact with counterclockwise circular polarization!

If we were to shoot linearly polarized light into a medium containing such molecules, it
would interact with the clockwise component of the linear wave differently than it would
interact with the counterclockwise component. In other words, the medium would separate

the linear polarization into its two circular components. We might expect any number of
funky things to happen in this case.

Sugar solution experiment

Light goes through a Polaroid, an optically active sugar solution, a second Polaroid

o “

S
” P r-:) A
| |
< , -
N -
—— \

3
Polarizer Polarizer

wall

First polarizer creates linearly polarized wave:
Overlap of right-handed and left-handed circularly polarized waves.
RH and LH waves propagate at different speeds in the solution,
causing linear polarization direction to rotate as light penetrates in the solution.
Since the effect depends on wavelength !, different colors are rotated differently.
The second polarizer selects polarization direction at exit, selecting different ! (colors)
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